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Causal inference approaches in systems genetics exploit quantitative
trait loci (QTL) genotypes to infer causal relationships among phenotypes.
The genetic architecture of each phenotype may be complex, and poorly es-
timated genetic architectures may compromise the inference of causal rela-
tionships among phenotypes. Existing methods assume QTLs are known or
inferred without regard to the phenotype network structure. In this paper we
develop a QTL-driven phenotype network method (QTLnet) to jointly in-
fer a causal phenotype network and associated genetic architecture for sets
of correlated phenotypes. Randomization of alleles during meiosis and the
unidirectional influence of genotype on phenotype allow the inference of
QTLs causal to phenotypes. Causal relationships among phenotypes can be
inferred using these QTL nodes, enabling us to distinguish among phenotype
networks that would otherwise be distribution equivalent. We jointly model
phenotypes and QTLs using homogeneous conditional Gaussian regression
models, and we derive a graphical criterion for distribution equivalence. We
validate the QTLnet approach in a simulation study. Finally, we illustrate with
simulated data and a real example how QTLnet can be used to infer both di-
rect and indirect effects of QTLs and phenotypes that co-map to a genomic
region.

1. Introduction. In the past few years it has been recognized that genetics can
be used to establish causal relationships among phenotypes organized in networks
[Schadt et al. (2005), Kulp and Jagalur (2006), Li et al. (2006), Chen, Emmert-
Streib and Storey (2007), Liu, de la Fuente and Hoeschele (2008), Aten et al.
(2008), Chaibub Neto et al. (2008)]. These approaches aim to generate a hypothe-
sis about causal relationships among phenotypes involved in biological pathways
underlying complex diseases such as diabetes. A key element in these methods is
the identification of quantitative trait loci (QTLs) that are causal for each pheno-
type. The genetic architecture of each phenotype, which consists of the locations
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and effects of detectable QTLs, may be complex. Poorly estimated genetic archi-
tectures may compromise the inference of causal relationships among phenotypes.
Existing methods that estimate QTLs from genome scans that ignore causal pheno-
types bias the genetic architecture by incorrectly inferring QTLs that have indirect
effects.

In this paper we propose a novel framework for the joint inference of pheno-
type network structure and genetic architecture (QTLnet). We model phenotypes
and QTL genotypes jointly using homogeneous conditional Gaussian regression
(HCGR) models [Lauritzen (1996)]. The genetic architecture for each phenotype
is inferred conditional on the phenotype network. Because the phenotype network
structure is itself unknown, the algorithm iterates between updating the network
structure and genetic architecture using a Markov chain Monte Carlo (MCMC)
approach. The posterior sample of network structures is summarized by Bayesian
model averaging. To the best of our knowledge, no other proposed method explic-
itly uses an inferred network structure among phenotypes when performing QTL
mapping. Tailoring QTL mapping to network structure avoids the false detection
of QTLs with indirect effects and improves phenotype network structure inference.

We employ a causal inference framework with components of both randomized
experiments and conditional probability. Randomization of alleles during meiosis
and the unidirectional influence of genotype on phenotype allow the inference of
causal QTLs for phenotypes. Causal relationships among phenotypes can be in-
ferred using these QTL nodes, enabling us to distinguish between networks that
would otherwise be distribution equivalent.

We are particularly interested in inferring causal networks relating sets of phe-
notypes mapping to coincident genomic regions. It is widely asserted that alleged
“hot spots” may have a “master regulator” and that most co-mapping is due to in-
direct effects [Breitling et al. (2008)]. That is, such a hot spot QTL could influence
a single phenotype that is upstream of many others in a causal network; ignoring
the phenotype network would result in a perceived hot spot. One objective of our
QTLnet method is to sort out the direct and indirect effects of QTLs and pheno-
types in such situations.

In the next sections we develop in detail a framework for the joint inference of
causal network and genetic architecture of correlated phenotypes. The core idea is
to learn the structure of mixed Bayesian networks composed of phenotypes (con-
tinuous variables) and QTLs (discrete variables). We model the conditional dis-
tribution of phenotypes given the QTLs with homogeneous conditional Gaussian
regression models described in Section 2. This allows us to justify formal infer-
ence of causal direction along the Bayesian networks in Section 3. That is, we can
reduce the size of equivalence classes of Bayesian networks of phenotypes by us-
ing driving QTL. In Section 4 we show how a conditional LOD score can formally
measure conditional dependence among phenotypes and QTLs and how QTL map-
ping can be embedded in a graphical models framework. Section 5 presents the
MCMC approach for QTLnet. Simulation studies in Section 6 validate the QTLnet
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approach and provide an explanation for some QTL hot spots. Section 7 uses real
data to illustrate how QTLnet can be used to infer direct and indirect effects of
QTLs and phenotypes that co-map to a genomic region. The Discussion puts this
work in the context of open questions. Proofs of formal results are given in the
Supplement [Chaibub Neto et al. (2009)].

2. HCGR genetic model. In this section we recast the genetical model for
QTL studies as a homogeneous conditional Gaussian regression model that jointly
models phenotypes and QTL genotypes. Conditional on the QTL genotypes and
covariates, the phenotypes are distributed according to a multivariate normal dis-
tribution. The QTLs and covariates enter the HCGR model through the mean in
a similar fashion to the seemingly unrelated regression model [Banerjee et al.
(2008)]. However, the correlation structure among phenotypes is explicitly mod-
eled according to the directed graph representation of the phenotype network. We
derive the genetic model from a system of linear regression equations and show
that it corresponds to a homogenous conditional Gaussian regression model.

In QTL studies, the observed data consist of phenotypic trait values, y, and
marker genotypes, m, on n individuals derived from an inbred line cross. Follow-
ing Sen and Churchill (2001), we condition on unobserved QTL genotypes, q,
to partition our model into genetic and recombination components, respectively
relating phenotypes to QTLs and QTLs to observed markers across the genome,

p(y,q | m) = p(y | q,m)p(q | m) = p(y | q)p(q | m),

where the second equality follows from conditional independence, y ⊥⊥ m | q. That
is, given the QTL genotypes, the marker genotypes provide no additional informa-
tion about the phenotypes. Estimation of the recombination model, p(q | m), is a
well-solved problem [Broman et al. (2003)] and is not addressed in this paper.

Let i = 1, . . . , n and t = 1, . . . , T index individuals and phenotype traits,
respectively. Let y = (y1, . . . ,yn)

′ represent all phenotypic trait values, yi =
(y1i , . . . , yT i)

′ represent the measurements of the T phenotype traits for individ-
ual i, and let εi = (ε1i , . . . , εT i)

′ represent the associated independent normal error
terms. We assume that individual i and trait t have the following phenotype model:

yti = μ�
ti + ∑

v∈pa(yt )

βtvyvi + εti, εti ∼ N(0, σ 2
t ),(2.1)

where μ�
ti = μt + Xt iθ t , where μt is the overall mean for trait t , θ t is a column

vector of all genetic effects constituting the genetic architecture of trait t plus any
additional additive or interactive covariates, and Xt i represents the row vector of
genetic effects predictors derived from the QTL genotypes along with any covari-
ates. The notation pa(yt ) represents the set of parent phenotype nodes of yt , that
is, the set of phenotype nodes that directly affect yt . Genetic effects may follow
Cockerham’s genetic model, but need not be restricted to this form [Zeng, Wang
and Zou (2005)].
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The Jacobian transformation from εi → yi allows us to represent the joint den-
sity of the phenotype traits conditional on the respective genetic architectures as
multivariate normal with the following mean vector and covariance matrix.

RESULT 1. The conditional joint distribution of the phenotype traits organized
according to the set of structural equations defined in (2.1) is yi | μ�

i ,β,σ 2 ∼
NT (�−1γ i ,�

−1), where μ�
i = (μ�

1i , . . . ,μ
�
T i)

′, β = {βtv :v ∈ pa(yt ), t = 1,

. . . , T }, σ 2 = (σ 2
1 , . . . , σ 2

T )′, � is the concentration matrix with entries given by

ωtv =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

σ 2
t

+ ∑
s

β2
st

σ 2
s

1{t→s}, for t = v,

−βvt

σ 2
v

1{t→v} − βtv

σ 2
t

1{v→t} + ∑
s

βsvβst

σ 2
v

1{v→s,t→s}, for t �= v,

γ i is a vector with entries
μ�

ti

σ 2
t

− ∑
s �=t

βstμ
�
si

σ 2
s

1{t→s}, and 1{t→s} is the indicator

function that trait t affects trait s.

REMARKS. (1) The model allows different genetic architectures for each
phenotype. (2) The covariance structure depends exclusively in the relationships
among phenotypes since � depends only on the partial regression coefficients re-
lating phenotypes (β’s) and variances of error terms (σ 2’s), and not on the genetic
architectures defined by the θ ’s. (3) When the correlation between two phenotypes
arises exclusively because of a pleoitropic QTL, conditioning on the QTL geno-
types makes the phenotypes independent; thus, the concentration matrix of the
conditional model does not depend on the genetic architecture. (4) This model can
represent acyclic and cyclic networks. However, we focus on acyclic networks in
this paper.

We now show that our model corresponds to a homogeneous conditional
Gaussian regression model. The conditional Gaussian (CG) parametric family
models the covariation of discrete and continuous random variables. Continuous
random variables conditional on discrete variables are multivariate normal [Lau-
ritzen (1996)]. The joint distribution of the vectors of discrete (qi) and continuous
(yi) variables have a density f such that

logf (qi ,yi) = g(qi) + h′(qi )yi − y′
iK(qi)yi/2,(2.2)

where g(qi ) is a scalar, h(qi) is a vector and K(qi) is a positive definite matrix.
The density f depends on observed markers mi as

logf (qi ,yi) = logp(yi ,qi | mi ),(2.3)

where g(qi ) = logp(qi | mi )− 1
2(T log 2π − log det(�)+∑T

t=1 μ�2
t i /σ 2

t ). Observe
that the linear coefficients h(qi) = γ i depend on qi through Xt i , while the concen-
tration matrix K(qi) = � does not. Thus, our model is a homogeneous CG model
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[Lauritzen (1996), page 160]. Furthermore, since our genetic model was derived
from a set of regression equations with normal errors, our model is in the homo-
geneous conditional Gaussian regression parametric family.

3. A causal framework for systems genetics. This section formalizes our
causal inference framework for systems genetics that combines ideas from ran-
domized experiments with a purely probabilistic approach to causal inference. We
argue that while causal claims about the relationship between QTLs and pheno-
types are justified by randomization of alleles during meiosis and the unidirec-
tional influence of genotype on phenotype, causal claims about the relationships
between phenotypes follow from conditional probability. In a nutshell, by adding
QTL nodes to phenotype networks, we can distinguish between phenotype net-
works that would, otherwise, be distribution equivalent.

In order to formalize our approach, we first show that adding causal QTL nodes
can break Markov-equivalence among phenotype networks by creating new condi-
tional independence relationships among nodes. Second, we note that two models
in the HCGR parametric family are distribution equivalent if and only if they are
Markov equivalent. The last result together with Theorem 1 (see below) provide a
simple graphical criterion to determine whether two DAGs belonging to the HCGR
parametric family are distribution equivalent.

The analogy between the randomization of alleles during meiosis and a random-
ized experimental design was first pointed out by Li et al. (2006). Causality can
be unambiguously inferred from a randomized experiment for two reasons [Dawid
(2007)]: (1) the treatment to an experimental unit (genotype) precedes measured
outcomes (phenotypes); and (2) random allocation of treatments to experimental
units guarantees that other common causes are averaged out. The central dogma of
molecular biology [Crick (1958)] suggests that QTL genotypes generally precede
phenotypes. For the types of Eukaryotic data which we analyze (including clinical
traits gene expression and metabolites), causality must go from QTL to phenotype.
Furthermore, random allocation of QTL genotypes eliminates confounding from
other genetic and environmental effects.

Causal relationships among phenotypes require the additional assumption of
conditional independence. Suppose a QTL, Q, and two phenotypes mapping to Q,
Y1 and Y2, have true causal relationship Q → Y1 → Y2. That is, Y2 is independent
of Q given Y1. The randomization of genotypes in Q leads to a randomization
of Y1, thus averaging out confounding affects. However, precedence of the ‘ran-
domized’ Y1 before the ‘outcome’ Y2 cannot in general be determined a priori.
Conditional independence is the key to determine causal order among phenotypes
[Schadt et al. (2005), Li et al. (2006), Chen, Emmert-Streib and Storey (2007),
Liu, de la Fuente and Hoeschele (2008), Chaibub Neto et al. (2008)].

In the remainder of this section we present some graphical model definitions
and results needed in the formalization of our causal graphical models framework.
A path is any unbroken, nonintersecting sequence of edges in a graph, which may
go along or against the direction of the arrows.
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DEFINITION 1 (d-separation). A path p is said to be d-separated (or blocked)
by a set of nodes Z if and only if

1. p contains a chain i → m → j or a fork i ← m → j such that the middle node
m is in Z, or

2. p contains an inverted fork (or collider) i → m ← j such that the middle node
m is not in Z and such that no descendant of m is in Z.

A set Z is said to d-separate X from Y if and only if Z blocks every path from a
node in X to a node in Y. X and Y are d-connected if they are not d-separated [Pearl
(1988, 2000)].

Two graphs are Markov equivalent (or faithful indistinguishable) if they have
the same set of d-separation relations [Spirtes, Glymour and Scheines (2000)].
The skeleton of a causal graph is the undirected graph obtained by replacing its
arrows by undirected edges. A v-structure is composed by two converging arrows
whose tails are not connected by an arrow.

THEOREM 1 (Detecting Markov equivalence). Two directed acyclic graphs
(DAGs) are Markov equivalent if and only if they have the same skeletons and the
same set of v-structures [Verma and Pearl (1990)].

Two models are likelihood equivalent if f (y | M1) = f (y | M2) for any data
set y, where f (y | M) represent the prior predictive density of the data, y, con-
ditional on model M [Heckerman, Geiger and Chickering (1995)]. In this paper
we extend the definition of likelihood equivalence to predictive densities obtained
by plugging in maximum likelihood estimates in the respective sampling mod-
els. A closely related concept, distribution equivalence, states that two models are
distribution equivalent if one is a reparametrization of the other. While likelihood
equivalence is defined in terms of predictive densities (prior predictive density
or sampling model evaluated on the maximum likelihood estimates), distribution
equivalence is defined in terms of the sampling model directly. Because of the
invariance property of maximum likelihood estimates, distribution and likelihood
equivalence are equivalent concepts in the frequentist setting. This is also true in
the Bayesian setting with proper priors invariant to model reparameterizations.

Suppose that for each pair of connected phenotypes in a graph there exists at
least one QTL affecting one but not the other phenotype. Denote this new graph
with QTLs included by the “extended graph.” The next result shows that, in this
particular situation, we can distinguish between causal models belonging to a
Markov equivalent class of phenotype networks.

RESULT 2. Consider a class of Markov equivalent DAGs G . Let Y1 and Y2 be
any two adjacent nodes in the graphs in G . Assume that for each such pair there
exists at least one variable, Q, directly affecting Y1 but not Y2. Let GE represent
the class of extended graphs. Then the graphs in GE are not Markov equivalent.
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As an illustrative example consider the following class of Markov equivalent
models: G = {Y1 → Y2 → Y3, Y1 ← Y2 ← Y3, Y1 ← Y2 → Y3}. These causal mod-
els are Markov equivalent because they have the same set of conditional indepen-
dence relations, namely, Y1 ⊥⊥ Y3 | Y2. In accordance with Theorem 1, the three
models have the same skeleton, Y1 − Y2 − Y3, and the same set of v-structures (no
v-structures). Now consider one QTL, Q, affecting Y2 but not Y1 and Y3. Then GE

is composed by

Q Q Q

Y1 Y2 Y3 Y1 Y2 Y3 Y1 Y2 Y3.

Observe that these models still have the same skeleton but different sets of v-
structures: Y1 → Y2 ← Q, Q → Y2 ← Y3 and ∅, respectively. The next result
guarantees that for the HCGR parametric family Markov equivalence implies dis-
tribution equivalence and vice-versa.

RESULT 3. For the HCGR parametric family, two DAGs are distribution
equivalent if and only if they are Markov equivalent.

It follows from Results 2 and 3 that by extending the phenotype network to
include QTLs we are able to reduce the size of and equivalence class of graphs
(possibly to a single network). Furthermore, if we consider Theorem 1 and Result 3
together, we have the following:

RESULT 4. For the HCGR parametric family, two DAGs are distribution
equivalent if and only if they have the same skeletons and same sets of v-structures.

Result 4 provides a simple graphical criterion to determine whether two HCGR
models are distribution equivalent. This allows us to determine distribution equiv-
alence by inspection of graph structures without the need to go through algebraic
manipulations of joint probability distributions as in Chaibub Neto et al. (2008).

4. QTL mapping and phenotype network structure. In this section we
show that the conditional LOD score can be used as a formal measure of con-
ditional independence relationships between phenotypes and QTLs. Even though
in this paper we restrict our attention to HCGR models, conditional LOD profiling
is a general framework for the detection of conditional independencies between
continuous and discrete random variables and does not depend on the particular
parametric family adopted in the modeling. Contrary to partial correlations, the
conditional LOD score does not require the assumption of multinormality of the
data in order to formally test for independence [recall that only in the Gaussian
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case, a zero (partial) correlation implies statistical (conditional) independence],
and it can handle interactive covariates.

The conditional LOD score is defined as

LOD(y, q | x) = LOD(y, q, x) − LOD(y, x)
(4.1)

= log10

{
f (y | q, x)

f (y)

}
− log10

{
f (y | x)

f (y)

}
,

where f (·) represents a predictive density (a maximized likelihood or the prior
predictive density in a Bayesian setting). It follows directly from this definition
that

LOD(y, q | x) = 0 ⇔ f (y | q, x) = f (y | x) ⇔ Y ⊥⊥ Q | X.(4.2)

Therefore, we can use conditional LOD scores as a formal measure of indepen-
dence between continuous (Y ) and discrete (Q) random variables, conditional on
any set of variables X, that could be either continuous, discrete or both.

Furthermore, the conditional LOD score can be used to formally test for condi-
tional independence in the presence of interacting covariates (denoted by X · Q)
since

LOD(y, q | x, x · q) = log10

{
f (y | q, x, x · q)

f (y)

}
− log10

{
f (y | x)

f (y)

}
= 0(4.3)

if and only if Y ⊥⊥ {Q,X · Q} | X. This is a very desirable property since, in gen-
eral, testing for conditional independence in the presence of interactions is not
straightforward. For example, Andrei and Kendziorski (2009) point that in the
presence of interactions, there is no one-to-one correspondence between zero par-
tial correlations and conditional independencies, even when we assume normality
of the full conditional distributions.

Traditional QTL mapping focuses on single trait analysis, where the network
structure among the phenotypes is not taken into consideration in the analysis.
Thus, single-trait analysis may detect QTLs that directly affect the phenotype un-
der investigation, as well as QTLs with indirect effects, affecting phenotypes up-
stream to the phenotype under study. Consider, for example, the causal graph in
Figure 1. The outputs of single trait analysis when Figure 1 represents the true
network are given in Figure 2.

FIG. 1. Example network with five phenotypes and four QTLs.
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FIG. 2. Output of a single trait QTL mapping analysis for the phenotypes in Figure 1. Dashed and
pointed arrows represent direct and indirect QTL/phenotype causal relationships, respectively.

Now let’s consider QTL mapping according to the phenotype network structure.
When the phenotype structure corresponds to the true causal model, we avoid de-
tecting indirect QTLs by simply performing mapping analysis of the phenotypes
conditional on their parents. For example, in Figure 1, if we perform a mapping
analysis of Y5 conditional on Y2, Y3 and Y4, we do not detect Q1, Q2 and Q4
because Y5 ⊥⊥ Q1 | Y2, Y3, Y4, Y5 ⊥⊥ Q2 | Y2, Y3, Y4 and Y5 ⊥⊥ Q4 | Y2, Y3, Y4. We
only detect Q5 since Y5 �⊥⊥ Q5 | Y2, Y3, Y4.

Now consider Figure 3(a). If we perform a mapping analysis of Y5 conditional
on Y3 and Y4, we still detect Q1 and Q2 as QTLs for Y5, since failing to condition
on Y2 leaves the paths Q1 → Y1 → Y2 → Y5 and Q2 → Y2 → Y5 in Figure 1 open.
In other words, Q1 and Q2 are d-connected to Y5 conditional on (Y3, Y4) in the true
causal graph. Mistakenly inferring that a QTL has a direct effect when in reality it
indirectly affects the phenotype is problematic, but not a serious concern.

On the other hand, if we map an upstream phenotype conditional on down-
stream phenotypes, we could infer that downstream QTLs are causal. This would
be a serious problem, as it would dramatically reverse the causal flow. Consider,
for example, Figure 3(b). If we perform a mapping analysis of Y4 conditional on
Y1, Y3 and Y5, we incorrectly detect Q5 as a QTL for Y4 because in the true net-
work the paths Y4 → Y5 ← Q5 and Y4 ← Y3 → Y5 ← Q5 in Figure 1 are open
when we condition on Y5. That is, if we perform mapping analysis of a phenotype
conditional on phenotypes located downstream in the true network, we induce
dependencies between the upstream phenotype and QTLs affecting downstream
phenotypes, and we erroneously conclude that a downstream QTL affects an up-
stream phenotype. However, a model with reversed causal relationships among
phenotypes and incorrectly having downstream QTLs detected as direct QTLs for
the upstream node will generally have a lower marginal likelihood score than the

FIG. 3. QTL mapping tailored to the network structure. (a) and (b) display the results of QTL
mapping according to slightly altered network structures from Figure 1. Dashed, pointed and wiggled
arrows represent, respectively, direct, indirect and incorrect QTL/phenotype causal relationships.
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model with the correct causal order for the phenotypes and correct genetic archi-
tecture. Therefore, in practice, our model selection procedure protects against this
type of mistake.

5. QTLnet algorithm. In this section we propose a statistical framework
(QTLnet) for the joint inference of phenotype network structure and genetic ar-
chitecture in systems genetics studies. Work to date in genetical network recon-
struction has treated the problems of QTL inference and phenotype network re-
construction separately, generally performing genetic architecture inference first,
and then using QTLs to help in the determination of the phenotype network struc-
ture [Chaibub Neto et al. (2008), Zhu et al. (2008)]. As indicated in the previous
section, such strategy can incorporate QTLs with indirect effects into the genetic
architecture of phenotypes.

The great challenge in the reconstruction of networks is that the graph space
grows super-exponentially with the number of nodes, so that exhaustive searches
are impractical even for small networks, and heuristic approaches are needed to
efficiently traverse the graph space. The Metropolis–Hastings algorithm below in-
tegrates the sampling of network structures [Madigan and York (1995), Husmeier
(2003)] and QTL mapping.

Let M represent the structure of a phenotype network composed of T nodes.
The posterior probability of a specified structure is given by

p(M | y,q) = p(y | q, M)p(M)∑
M p(y | q, M)p(M)

,(5.1)

where the marginal likelihood

p(y | q, M) =
∫
�

p(y | q,�, M)p(� | M) d�(5.2)

is obtained by integrating the product of the prior and likelihood of the HCGR
model with respect to all parameters � in the model. Assuming that the phenotype
network is a DAG, the likelihood function factors according to M as

p(yi | qi ,�, M) = ∏
t

p(yti | qt i ,pa(yt )),(5.3)

where

p(yti | qt i ,pa(yt )) = N

(
μ�

ti + ∑
yk∈pa(yt )

βtkyki, σ
2
t

)
(5.4)

and the problem factors out as a series of linear regression models. (Note that QTL
genotypes qt i enter the model through μ�

ti .)
We estimate the posterior probability in (5.1) using a Metropolis–Hastings al-

gorithm detailed in Section 1 of the Supplement. The M–H proposals, which make
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single changes (add or drop an edge, or change causal direction), require remap-
ping of any phenotypes that have altered sets of parent nodes. The accept/reject
calculation involves estimation of the marginal likelihood conditional on the par-
ent nodes and newly mapped QTL(s).

Because the graph space grows rapidly with the number of phenotype nodes, the
network structure with the highest posterior probability may still have a very low
probability. Therefore, instead of selecting the network structure with the high-
est posterior probability, we perform Bayesian model averaging [Hoeting et al.
(1999)] for the causal relationships between phenotypes and infer an averaged net-
work. Explicitly, let �uv represent a causal relationship between phenotypes u

and v, that is, �uv = {Yu → Yv,Yu ← Yv,Yu �→ Yv and Yu �← Yv}. Then

p(�uv | y) = ∑
k

p(�uv | Mk,y,q)p(Mk | y,q)

(5.5)
= ∑

k

1{�uv ∈ Mk}p(Mk | y,q).

The averaged network is constructed by putting together all causal relationships
with maximum posterior probability or with posterior probability above a prede-
termined threshold.

6. Simulations. In this section we evaluate the performance of the QTLnet
approach in simulation studies of a causal network with five phenotypes and four
causal QTLs. We consider situations with strong or weak causal signals, leading
respectively to high or low phenotype correlations. We show that important fea-
tures of the causal network can be recovered. Further, this simulation illustrates
how an alleged hot spot could be explained by sorting out direct and indirect ef-
fects of the QTLs.

We generated 1000 data sets according to Figure 1. Each simulated cross object
[Broman et al. (2003)] had 5 phenotypes simulated for an F2 population with 500
individuals. The genome had 5 chromosomes of length 100 cM with 10 equally
spaced markers per chromosome. We simulated one QTL per phenotype, except
for phenotype Y3 with no QTLs. The QTLs Qt , t = 1,2,4,5, were unlinked and
placed at the middle marker on chromosome t .

Each simulated cross object had different sampled parameter value combina-
tions for each realization. In the strong signal simulation, we sampled the additive
and dominance effects according to U [0.5,1] and U [0,0.5], respectively. The par-
tial regression coefficients for the phenotypes were sampled according to βuv ∼
0.5U [−1.5,−0.5] + 0.5U [0.5,1.5]. In the weak signal simulation, we generated
data sets with additive and dominance effects from U [0,0.5] and U [0,0.25], re-
spectively, and partial regression coefficients sampled with βuv ∼ U [−0.5,0.5].
The residual phenotypic variance was fixed at 1 in both settings.
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TABLE 1
Frequencies of QTL detection for both unconditional (top half) and conditional (bottom half) QTL

mapping according with the true phenotype network structure in Figure 1. Results, for each
simulation, based on 1000 simulated data sets described in the text. The expected
architecture is the set of d-connected QTLs for the phenotype conditioning with

respect to the network in Figure 1

Strong signal Weak signal
Expected

architecturePhenotypes Q1 Q2 Q4 Q5 Q1 Q2 Q4 Q5

Y1 0.997 0.000 0.000 0.000 0.431 0.000 0.000 0.000 {Q1}
Y2 0.884 0.930 0.000 0.000 0.001 0.384 0.000 0.000 {Q1,Q2}
Y3 0.941 0.000 0.000 0.000 0.003 0.000 0.000 0.000 {Q1}
Y4 0.603 0.000 0.690 0.000 0.003 0.000 0.370 0.000 {Q1,Q4}
Y5 0.637 0.321 0.321 0.340 0.000 0.000 0.001 0.336 {Q1,Q2,Q4,Q5}
Y2 | Y1 0.001 0.999 0.000 0.000 0.000 0.424 0.000 0.000 {Q2}
Y3 | Y1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ∅

Y4 | Y1, Y3 0.000 0.000 0.999 0.000 0.000 0.000 0.422 0.000 {Q4}
Y5 | Y2, Y3, Y4 0.000 0.000 0.000 0.999 0.000 0.000 0.000 0.415 {Q5}

We first show the accuracy of the mapping analysis in our simulated data sets.
We used interval mapping with a LOD score threshold of 5 to detect signifi-
cant QTLs. Table 1 shows the results of both unconditional and QTL mapping
according to the phenotype network in Figure 1. In the strong signal setting, the un-
conditional mapping often detected indirect QTLs, but the mapping of phenotypes
conditional on their parent nodes increased detection of the true genetic archi-
tectures. In the weak signal simulation, the unconditional mapping did not detect
indirect QTLs in most cases, but we still observe improvement in detection of the
correct genetic architecture when we condition on the parents.

The expected architecture contains the d-connected QTLs when conditioning
(or not) on other phenotypes as indicated in the first column of Table 1. For in-
stance, Q1 and Q2 are d-connected to Y2, but only Q2 is d-connected to Y2 when
properly conditioning on Y1. Supplementary Tables S1, S2, S3, S4 and S5 show
the simulation results for all possible conditional mapping combinations.

For each simulated data set we applied the QTLnet algorithm using simple
interval mapping for QTL detection. The ratio of marginal likelihoods in the
Metropolis–Hastings algorithm was computed using the BIC asymptotic approxi-
mation to the Bayes factor (equation 1.1 on the Supplement). We adopted uniform
priors over network structures. We ran each Markov chain for 30,000 iterations,
sampled a structure every 10 iterations, and discarded the first 300 (burnin) net-
work structures producing posterior samples of size 2700. Posterior probabilities
for each causal relationship were computed via Bayesian model averaging.

Table 2 shows the frequency, out of the 1000 simulations, the true model was
the most probable, second most probable, etc. The results show that in the strong
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TABLE 2
Frequencies that the posterior probability of the true model was the highest, second highest, etc.

Results based on 1000 simulated data sets described in the text

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th ≥13th

Strong 842 100 21 11 3 4 3 2 1 1 3 1 8
Weak 21 33 18 19 19 16 17 15 8 12 13 5 804

signal setting the true model got the highest posterior probability in most of the
simulations. In the weak signal setting the range of rankings was very wide-
spread.

Table 3 shows the proportion of times that each possible causal direction
(Yu → Yv , Yu ← Yv) or no causal relation ({Yu �→ Yv,Yu �← Yv}) had the high-
est posterior probability for all pairs of phenotypes. The results show that in the
strong signal simulations, the correct causal relationships were recovered with high
probability. The results are weaker but in the correct direction in the weak signal
setting.

Interestingly, single trait analysis with strong signal showed that Y5 mapped
to Q1 more frequently than to Q5 (Table 1). This result can be understood using a
path analysis [Wright (1934)] argument. In path analysis, we decompose the cor-
relation between two variables among all paths connecting the two variables in a
graph. Let Duv represent the set of all direct and indirect directed paths connecting
u and v (a directed path is a path with all arrows pointing in the same direction).

TABLE 3
Frequencies that each possible causal relationship had the highest posterior probability (computed

via Bayesian model averaging). Results based on 1000 simulated data sets described in the text

Strong signal Weak signal

Phenotypes → ← �→, �← → ← �→, �←
(1, 2) 0.996 0.002 0.002 0.594 0.177 0.229
(1, 3) 0.990 0.002 0.008 0.471 0.263 0.266
(1, 4) 0.990 0.001 0.009 0.541 0.196 0.263
(1, 5) 0.054 0.002 0.944 0.028 0.005 0.967
(2, 3) 0.016 0.022 0.962 0.018 0.017 0.965
(2, 4) 0.037 0.012 0.951 0.018 0.015 0.967
(2, 5) 0.997 0.003 0.000 0.712 0.075 0.213
(3, 4) 0.967 0.031 0.002 0.482 0.253 0.265
(3, 5) 0.997 0.003 0.000 0.653 0.116 0.231
(4, 5) 0.996 0.004 0.000 0.670 0.115 0.215
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Then the correlation between these nodes can be decomposed as

cor(yu, yv) = ∑
P∈Duv

φp2uφp3p2 · · ·φvpm−1

(6.1)

=
{

var(yu)

var(yv)

}1/2 ∑
P∈Duv

βp2uβp3p2 · · ·βvpm−1,

where φij = βij {var(yj )/var(yi)}1/2 is a standardized path coefficient. Assuming
intra-locus additivity and encoding the genotypes as 0, 1 and 2 (for the sake of
easy computation), we have from equation (6.1) that

cor(y5, q1) = β1,q1(β52β21 + β53β31 + β54β41 + β54β43β31)

{
var(q1)

var(y5)

}1/2

,

cor(y5, q5) = β1,q5

{
var(q5)

var(y5)

}1/2

.

We therefore see that if the partial regression coefficients between phenotypes are
high, and the QTL effects β1,q1 and β5,q5 and QTL variances are close (as in the
strong signal simulation), then cor(y5, q1) will be higher than cor(y5, q5) and Y5
will map to Q1 with stronger signal than to Q5.

This result suggests a possible scenario for the appearance of eQTL hot spots
when phenotypes are highly correlated. A set of correlated phenotypes may be
better modeled in a causal network with one upstream phenotype that in turn has a
causal QTL. Ignoring the phenotype network can result in an apparent hot spot for
the correlated phenotypes. Here, all phenotypes detect QTL Q1 with high probabil-
ity when mapped unconditionally (Table 1). In the weak signal setting, the pheno-
types map mostly to their respective QTLs and do not show evidence for a hot spot.
No hot spot was found in additional simulations having strong QTL/phenotype re-
lationships and weak phenotype/phenotype relations (results not shown). Thus,
our QTLnet approach can effectively explain a hot spot found with unconditional
mapping when phenotypes show strong causal structure.

7. Network inference for a liver hot spot. In this section we illustrate the
application of QTLnet to a subset of gene expression data derived from a F2 inter-
cross between inbred lines C3H/HeJ and C57BL/6J [Ghazalpour et al. (2006),
Wang et al. (2006)]. The data set is composed of genotype data on 1,065 mark-
ers and liver expression data on the 3421 available transcripts from 135 female
mice. Interval mapping indicates that 14 transcripts map to the same region on
chromosome 2 with a LOD score higher than 5.3 (permutation p-value < 0.001).
Only one transcript, Pscdbp, is located on chromosome 2 near the hot spot locus.
The 14 transcripts show a strong correlation structure, and the correlation struc-
ture adjusting for the peak marker on chromosome 2, rs3707138, is still strong
(see Supplementary Table S6). This co-mapping suggest all transcripts are under
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the regulation of a common factor. Causal relationships among phenotypes could
explain the strong correlation structure that we observe, although other possibili-
ties are environmental factors or a latent factor that is not included.

We applied the QTLnet algorithm on the 129 mice that had no missing tran-
script data using Haley–Knott (1992) regression (and assuming genotyping er-
ror rate of 0.01) for the detection of QTLs conditional on the network structure,
and we used the BIC approximation to estimate the marginal likelihood ratio in
the Metropolis–Hastings algorithm (equation 1.1 on the Supplement). We adopted
uniform priors over network structures. We ran a Markov chain for 1,000,000 it-
erations and sampled a network structure every 100 iterations, discarding the first
1000 and basing inference on a posterior sample with 9000 network structures.
Diagnostic plots and measures (see Section 3 on the Supplement) support the con-
vergence of the Markov chain.

We performed Bayesian model averaging and, for each of 91 possible pairs
(Yu,Yv), we obtained the posterior probabilities of Yu → Yv , Yu ← Yv and of no
direct causal connection. The results are shown in Supplementary Table S7. Fig-
ure 4 shows a model-averaged network.

This network suggests a key role of I l16 in the regulation of the other transcripts
in the network. I l16 is upstream to all other transcripts, and is the only one directly

FIG. 4. Model-averaged posterior network. Arrow darkness is proportional to the posterior prob-
ability of the causal relation computed via Bayesian model averaging. For each pair of phenotypes,
the figure displays the causal relationship (presence or absence of an arrow) with highest posterior
probability. Light grey nodes represent QTLs and show their chromosome number and position in
centimorgans. Riken represents the riken gene 6530401C20Rik.
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mapping to the locus of chromosome 2. We would have expected the cis transcript,
Pscdbp, to be the upstream phenotype in this network. However, the data suggests
Pscdbp is causal to only two other transcripts and that some other genetic factor
on chromosome 2 may be driving this pathway. This estimated QTLnet causal net-
work provides new hypotheses that could be tested in future mouse experiments.

8. Discussion. We have developed a statistical framework for causal inference
in systems genetics. Causal relationships between QTLs and phenotypes are justi-
fied by the randomization of alleles during meiosis together with the unidirectional
influence of genotypes on phenotypes. Causal relationships between phenotypes
follows from breakage of distribution equivalence due to QTL nodes augmenting
the phenotype network. We have proposed a novel approach to jointly infer genetic
architecture and causal phenotype network structure using HCGR models. We ar-
gue in this paper that failing to properly account for phenotype network structure
for mapping analysis can yield QTLs with indirect effects in the genetic archi-
tecture, which can decrease the power to detect the correct causal relationships
between phenotypes.

Current literature in systems genetics [Chaibub Neto et al. (2008), Zhu et
al. (2008)] has considered the problems of genetic architecture and phenotype
network structure inference separately. Chaibub Neto et al. (2008) used the
PC-algorithm [Spirtes, Glymour and Scheines (2000)] to first infer the skeleton of
the phenotype network and then use QTLs to determine the directions of the edges
in the phenotype network. Zhu et al. (2008) reconstructed networks from a con-
sensus of Bayesian phenotype networks with a prior distribution based on causal
tests of Schadt et al. (2005). Their prior was computed with QTLs determined by
single trait analysis.

Liu, de la Fuente and Hoeschele (2008) presented an approach based in struc-
tural equation models (and applicable to species where sequence information is
available) that partially accounts for the phenotype network structure when se-
lecting the QTLs to be incorporated in the network. They perform eQTL map-
ping using cis, cis-trans and trans-regulation [Doss et al. (2005), Kulp and Jagalur
(2006)] and then use local structural models to identify regulator-target pairs for
each eQTL. The identified relationships are then used to construct an encompass-
ing directed network (EDN) with nodes composed by transcripts and eQTLs and
arrows from (1) eQTls to cis-regulated target transcripts; (2) cis-regulated tran-
scripts to cis-trans-regulated target transcripts; and (3) trans-regulator transcripts
to target transcripts, and from trans-eQTL to target transcripts. The EDN defines a
network search space for network inference with model selection based on penal-
ized likelihood scores and an adaptation of Occam’s window [Madigan and Raftery
(1994)]. Their local structural models, which fit at most two candidate regulators
per target transcript, can include indirect eQTLs in the genetic architecture of target
transcripts when there are multiple paths connecting a cis-regulator to a cis-trans-
target transcript. In other words, some transcripts identified as cis-regulated targets
may actually be cis-trans.
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Winrow et al. (2009) rely on a (nonhomogeneous) conditional Gaussian model
and employ the standard Metropolis–Hastings (M–H) algorithm (add, remove or
delete edges) to search over the space of DAG structures. It differs from our ap-
proach in how QTL detection is coupled with the M–H proposal. QTLnet con-
structs M–H proposals for edges connecting phenotypes and detects QTLs condi-
tional on the network structure. On the other hand, Winrow et al. first detect QTLs
and then construct M–H proposals for both phenotypes and QTL nodes. In Sec-
tion 4 of the Supplement we present a simulation study comparing our approach to
Winrow’s strategy. QTLnet inferred the proper genetic architecture and phenotype
network structure at a higher rate than Winrow’s approach with high signal-to-
noise ratio. In the weak signal setting, QTLnet picks up direct causal relationship
at a higher rate, but Winrow’s is better when there is no direct causal link; on aver-
age, they were comparable. Although Winrow’s strategy also avoids the detection
of indirect QTLs, it is prone to miss direct QTLs when the causal effects among
phenotypes are strong, and can perform poorly depending on the structure of the
phenotype network (see Supplement for details).

Current interest in the eQTL literature centers on understanding the relation-
ships among expression traits that co-map to a genomic region. It is often sug-
gested that these eQTL “hot spots” result from a master regulator affecting the
expression levels of many other genes [see Breitling et al. (2008)]. A path analy-
sis argument suggests that if the correlation structure between the phenotypes is
strong because of a strong causal signal, a well-defined hot spot pattern will likely
appear when we perform single trait analysis. Our simulations and real data exam-
ple suggest that this is the situation where the QTLnet algorithm is expected to be
most fruitful.

The QTLnet approach is based on a Metropolis–Hastings algorithm that at each
step proposes a slightly modified phenotype network and fits the genetic architec-
ture conditional on this proposed network. Conditioning on the phenotype network
structure should generally lead to a better inferred genetic architecture. Likewise,
a better inferred genetic architecture should lead to a better inferred phenotype
structure (models with better inferred genetic architectures should have higher
marginal likelihood scores. A poorly inferred genetic architecture may compro-
mise the marginal likelihood of a network with phenotype structure close to the
true network).

Because the proposal mechanism of the Metropolis–Hastings algorithm is based
in small modification of the last accepted network (addition, deletion or reversion
of a single edge), the mixing of the Markov chain is generally slow and it is nec-
essary to run long chains and use big thinning windows in order to achieve good
mixing. This is a bottleneck to the scalability of this approach. We therefore plan to
investigate more efficient versions of the Metropolis–Hastings algorithm for net-
work structure inference. In particular, a new and more extensive edge reversal
move proposed by Grzegorczyk and Husmeier (2008) and an approach based in a
Markov blanket decomposition of the network [Riggelsen (2005)].
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Our method is currently implemented with R code. The analysis of the real data
example took over 20 hours in a 64 bit Intel(R) Core(TM) 2 Quad 2.66 GHz ma-
chine. We can handle up to 20 phenotype nodes, at this point. The run time for the
code, written in R, should be substantially improved as we optimize code, convert-
ing key functions to C (under development). Nonetheless, because the number of
DAGs increases super-exponentially with the number of phenotype nodes, scaling
up the proposed approach to large networks will likely be a very challenging task.
Current R code is available from the authors upon request.

One of the most attractive features of a Bayesian framework is its ability to
formally incorporate prior information in the analysis. Given the complexity of
biological processes and the many limitations associated with the partial pictures
provided by any of the “omic” data sets now available, incorporation of external
information is highly desirable. We are currently working in the development of
priors for network structures.

The QTLnet approach can be seen as a method to infer causal Bayesian net-
works composed of phenotype and QTL nodes. Standard Bayesian networks pro-
vide a compact representation of the conditional dependency and independencies
associated with a joint probability distribution. The main criticism of a causal inter-
pretation of such networks is that different structures may be likelihood equivalent
while representing totally different causal process. In other words, we can only
infer a class of likelihood equivalent networks. We have formally shown how to
break likelihood equivalence by incorporating causal QTLs.

We have focussed on experimental crosses with inbred founders, as the recombi-
nation model and genetic architecture are relatively straightforward. However, this
approach might be extended to outbred populations with some additional work.
The genotypic effects are random, and the problem needs to be recast in terms of
variance components.

In this paper we only consider directed acyclic graphs. We point out, however,
that the HCGR parametric family accommodates cyclic networks. The QTLnet
approach can only infer causality among phenotypes that are consistent with the
assumption of no latent variables and no measurement error. However, these com-
plications can impact network reconstruction. We are currently investigating ex-
tensions of the proposed framework along these lines.
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SUPPLEMENTARY MATERIAL

Supplement to “Causal graphical models in systems genetics: A unified
framework for joint inference of causal network and genetic architecture for
correlated phenotypes” (DOI: 10.1214/09-AOAS288SUPP; .pdf). The Supple-
ment article presents: (1) the Metropolis–Hastings algorithm for QTLnet; (2) sup-

http://dx.doi.org/10.1214/09-AOAS288SUPP
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plementary tables for the simulations and real data example; (3) convergence di-
agnostics for the real data example; (4) comparison with Winrow et al. (2009);
and (5) the proofs of Results 1, 2, 3 and 4.
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