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SEMI-PARAMETRIC DYNAMIC TIME SERIES MODELLING WITH
APPLICATIONS TO DETECTING NEURAL DYNAMICS

BY FABIO RIGAT AND JIM Q. SMITH

University of Warwick

This paper illustrates novel methods for nonstationary time series model-
ing along with their applications to selected problems in neuroscience. These
methods are semi-parametric in that inferences are derived by combining se-
quential Bayesian updating with a non-parametric change-point test. As a test
statistic, we propose a Kullback–Leibler (KL) divergence between posterior
distributions arising from different sets of data. A closed form expression
of this statistic is derived for exponential family models, whereas standard
Markov chain Monte Carlo output is used to approximate its value and its
critical region for more general models. The behavior of one-step ahead pre-
dictive distributions under our semi-parametric framework is described an-
alytically for a dynamic linear time series model. Conditions under which
our approach reduces to fully parametric state-space modeling are also illus-
trated. We apply our methods to estimating the functional dynamics of a wide
range of neural data, including multi-channel electroencephalogram record-
ings, longitudinal behavioral experiments and in-vivo multiple spike trains
recordings. The estimated dynamics are related to the presentation of visual
stimuli, to the evaluation of a learning performance and to changes in the
functional connections between neurons over a sequence of experiments.

Introduction. Stochastic modeling of dynamic processes is often imple-
mented via models having time-dependent parameters [Hamilton (1994), West
and Harrison (1997), Frühwirth-Shnatter (2006)]. For instance, the coefficients of
state-space (SS) and hidden Markov (HM) time series models [Kalman (1960),
West, Harrison and Migon (1985), West and Harrison (1997), Cappe, Moulines
and Ryden (2005)] follow smooth Markovian processes defined either on their own
past or on past values of other latent variables, whereas those of change-point (CP)
models [Muller (1992), Stephens (1994), Loader (1996), Mira and Petrone (1996),
Bélisle et al. (1998), Fearnhead and Liu (2007)] describe pure jump processes.
When these dynamics are specified appropriately, these time series models can
effectively capture nonstationarities induced by switches among different depen-
dence regimes [Hamilton (1990), Shumway and Stoffer (1991), Robert, Celeux
and Diebolt (1993), Albert and Chib (1993), McCulloch and Tsay (1994), Kim
(1994), Ghahramani and Hinton (2000), Frühwirth-Shnatter (2001)], by smooth
changes of the model parameters through time [Harrison and Stevens (1976), West
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and Harrison (1986)] or by the occurrence of abrupt changes in the data depen-
dence structure [Page (1955), Smith (1975), Carlin, Gelfand and Smith (1992),
Ferger (1995), Chib (1998)].

This paper illustrates theory and applications of a novel sequential method for
estimating semi-parametrically the coefficients of time series models having time-
dependent parameters. Our approach is motivated by applications where little is
known about the factors driving the data dynamics. Here we focus on selected
problems in neuroscience where the data exhibit periods of smooth change in-
terlaced with occasional large jumps. We model this type of data by combining
sequential Bayesian updating with a nonparametric change-point test. Sequential
change-point testing is in fact a well established field which can be traced back at
least to the seminal works of Page (1954), Kemp (1957), Barnard (1959) and Page
(1961) in statistical process control. We propose testing for significant changes of
a model’s parameters using a novel Kullback–Leibler (KL) divergence [Kullback
and Leibler (1951), Kullback (1997)] between their one-step ahead predictive dis-
tributions. The null distribution of this KL statistic reflects the concentration of
the joint posterior density when new data are generated using the assumed model
likelihood with parameter values drawn from their current posterior distribution.
The semi-parametric nature of our method stands in the fact that the value of this
test statistic does not depend on the model’s parameters, which are integrated out
in the calculation of the KL divergence.

With respect to the SS and HM families, our approach does not describe the
parameters’ dynamics using auxiliary regression equations depending on known
predictors. With respect to CP models, we do not assume that parameter values be-
tween successive change points are constant. Instead, we induce a time-dependent
parameter process by adopting different updating strategies depending on whether
the KL statistic lies within its critical region or not. In the former case, the parame-
ters’ joint distribution is updated via Bayes’ theorem. In the latter case, updating
is carried out by matching the first two marginal moments of the current joint pos-
terior probability density to the prior for the next time point. This second strategy,
which does not carry the full information content of a posterior distribution to the
future, substantiates the notion that a change point in the parameter values has been
detected.

With respect to SS, HM and CP models, the advantages of our approach are
twofold. First, in SS and HM models inferences and predictions are sensitive to the
form of the state evolution equations [Frühwirth-Shnatter (1995), Bengtsson and
Cavanaugh (2006)]. Therefore, an exploratory semi-parametric approach is a nat-
ural choice for a first analysis of time series data when a specific parametrization of
the likelihood function is chosen but no reliable information about the evolution of
its parameters is available [Robinson (1983), Härdle, Lütkepohl and Chen (1997)].
This is typically the case for many biological systems, where dynamic responses to
novel experimental conditions are difficult to anticipate. Second, the joint distribu-
tion of the model’s parameters is updated also between successive change-points,
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allowing for a reduction of uncertainty and for smooth changes of the parameter
estimates over time.

From a computational perspective, our approach is motivated by observing that
fully Bayesian sequential inference for a model’s time-dependent parameters and
for a latent multiple change-point process is impractical unless marginal likeli-
hoods can be calculated explicitly. Otherwise, the Bayes factors measuring the
strength of evidence in the data about the occurrence of change-points can only be
approximated numerically [Han and Carlin (2001)]. Current methods for calculat-
ing these approximations require knowledge of normalizing constants which may
be hard to obtain and they also require estimating the exact value of a posterior
probability density at one point, which is ideally chosen as one of the posterior
modes [Newton and Raftery (1994), Gelfand and Dey (1994), Chib (1995), Chib
(1998), Frühwirth-Shnatter (2006)]. Our approach represents a practical alterna-
tive to these methods in that point estimates of a latent change-point process are
derived without using marginal likelihoods.

Section 1 of this paper includes its methodological developments. A general
time series framework is introduced and the KL test is illustrated. A closed form
expression of the KL statistic for exponential family models is derived and ex-
amples are presented. Markov chain Monte Carlo (MCMC) simulation [Gelfand
and Smith (1990), Tierney (1994)] is used to approximate the exact critical re-
gion of the KL statistic under the null hypothesis. This approximation is chosen as
it only requires the assumed data sampling distribution and the standard MCMC
output. We present a simulation study showing that the power of the KL change-
point test is unaffected in practice by adopting these MCMC approximations when
using a conjugate Bernoulli model. A sequential algorithm summarizing the com-
putational steps involved in the implementation of our method is presented. The
behavior of location and spread of the one-step ahead predictive distributions aris-
ing from our method is described analytically for a conjugate Gaussian linear dy-
namic model. Conditions are given so that our semi-parametric approach reduces
to fully parametric state-space dynamic time series modeling. In Sections 2, 3
and 4 our method is applied to estimating three different types of neural dynamics.
First, we analyze a multivariate time series of electroencephalogram (EEG) record-
ings [Delorme et al. (2002), Makeig et al. (2002)] to reconstruct the time-varying
functional relationships among different brain areas. Second, we estimate semi-
parametrically a learning curve using a univariate binary time series arising from
a longitudinal behavioral experiment [Smith et al. (2004)]. Finally, our method is
applied to estimating the functional dynamics of networks of neurons using in-vivo
experimental multiple spike trains recordings [Buzsáki (2004)].

1. Sequential time series modeling and Kullback–Leibler change-point
testing. Let {Yi}Ni=1 represent a sequence of K-dimensional time series Yi ∈ Y
of random variables Yi,k,t measured at the time points t = ti,1 < ti,2 < · · · < ti,ni

with ti,ni
< ti+1,1 and k = 1, . . . ,K . The distinction between the N time series
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is relevant when we allow for the occurrence of time gaps between them. This
situation arises, for instance, when N consecutive trials are run sequentially in-
terposed by resting periods. When ni = 1 for all values of i, we effectively have
a single K-dimensional time series of length N measured at the time points ti,1.
In this paper the time series data Yi = yi are assumed to be generated by a finite-
dimensional model P(yi |θi−1, y

0:(i−1)), such as a vector auto-regressive (VAR)
model with shared coefficients θi−1 within each of the N periods. The probabil-
ity density f (θi−1|y0:(i−1)) here represents a distribution of the model coefficients
given the initial conditions y0 and all past observations up to and including period
i −1. Note that, although we allow the parameter values to vary in time, neither the
functional form of the likelihood nor the interpretation of its coefficients change
over time.

Within this framework, dynamic modeling consists of specifying a transfer map,
taking as arguments the posterior density f (θi−1|y0:(i−1)), the time series data yi

and possibly other fixed hyper-parameters α and returning the density f (θi |y0:i )
for i = 1, . . . ,N . Various characterizations of analogous maps are given in Smith
(1990, 1992). For instance, in standard state-space models, this transfer map is
defined by indexing the prior distribution for θi using the coefficients θi−1 and a set
of hyper-parameters. In Markov switching and finite mixture time series models,
this transfer map is again derived by parametric modeling of the joint density of
the coefficients θi and θi−1 conditional on the location of a sequence of change-
points [Frühwirth-Shnatter (2006)]. Here we provide an overview of a transfer map
which integrates sequential Bayesian inference and change-point testing, leaving
to Section 1.1 the detailed description of an appropriate test statistic.

Let θ̂i−1 be a current point estimate of the model’s parameters at time ti,1. When
i = 1 these are prior summaries, whereas for i > 1 these estimates incorporate ev-
idence from past data as described below. If the data yi are generated under signif-
icantly different parameter values with respect to period i − 1, we say a change-
point has occurred. In this case we define a transfer prior

θi ∼ h(θi |θ̂i−1),(1.1)

taking as arguments the current parameter estimates and returning a prior density
h(·) for the model’s coefficients θi . Among the many possible formulations of this
prior, we let its hyperparameters be functions of the first two marginal moments of
the current posterior density. Similar forms of prior moment matching have been
used for dynamic point process modeling by Gamerman (1992) and for multi-
process dynamic linear models by West and Harrison (1997). This partial infor-
mation transfer from the posterior distribution ensures that the moment-matched
priors allocate most of their mass around the current marginal posterior means, but
upon detecting a change-point, the dependencies among different models’ parame-
ters, skewness, curtosis and the other higher-order moments are all reset to their
values prior to observing any data. Equation (1.1) represents a partially specified
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state evolution density where neither the exact form of the prior nor the time of
occurrence of the change-points are given a priori. Specific choices for the prior
density depend on the structure of the time series model being entertained and on
the interpretation of its parameters.

When no change-points are detected prior to observing the data Yi = yi , under
(1.1) the joint posterior density of the model’s parameters is

f (θi |y0:i , α) ∝
{

f
(
θi |y0:(i−1)

)
P

(
yi |θi, y

0:(i−1)
)
, if yi ∈ �i(α),

h(θi |θ̂i−1)P
(
yi |θi, y

0:(i−1)
)
, if yi /∈ �i(α).

(1.2)

Here �1(α) = Y and for i = 2, . . . ,N the sets �i(α) ⊆ Y include the time series Yi

which are inconsistent with their observed past y0:(i−1) under the current estimates
of the model parameters and the hyper-parameters α.

Implementation of (1.2) presents two related challenges. First, it is essential to
formulate the rejection sets (�2(α), . . . ,�N(α)) in terms of a low-dimensional
statistic of the data and of the hyper-parameters α. Second, it must be possible to
derive the distribution of such a statistic over the sample space so as to provide at
least a sequential approximation of the rejection sets for any value of α. A natural
way to overcome these challenges is to view (�2(α), . . . ,�N(α)) as the α-level
critical regions of a sequential change-point test based on an appropriate statistic.
The transfer map is thus completely specified by the prior (1.1) together with a
choice of this test statistic.

1.1. A Kullback–Leibler change-point statistic. The Kullback–Leibler diver-
gence [Kullback and Leibler (1951)] is a well-known information-theoretic crite-
rion with many applications in statistics, such as density estimation [Hall (1987),
Hastie (1987)], model selection [Akaike (1978), Akaike (1981), Carota, Parmi-
giani and Polson (1996), Goutis and Robert (1998)], experimental design [Lind-
ley (1956), Stone (1959)] and the construction of uninformative priors [Bernardo
(1979)]. Its geometric properties have been thoroughly explored by Critchley, Mar-
riott and Salmon (1994). The change-point statistic proposed in this work has a
complementary function to the KL divergence when used to support model selec-
tion. Instead of testing which of two competing model structures best predicts one
given set of data, here we construct a statistic detecting whether the same para-
meter values could have likely generated two sets of data given a common model
structure.

As change-point test statistic we adopt a Kullback–Leibler divergence

KL
(
y0:(i+1)) =

∫
�

log
(

f (θi |y0:i )
f (θi |y0:(i+1))

)
f (θi |y0:i ) dθi

= log(Eθi |y0:i (P (yi+1|θi, y
0:i )))(1.3)

− Eθi |y0:i (log(P (yi+1|θi, y
0:i ))),
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where the expectations in (1.3) are taken with respect to the posterior density
f (θi |y0:i ). The right-hand side of (1.3) is finite when the likelihood function is
bounded away from zero and infinity for all values of the model’s parameters and
when their posterior density is proper. In this case (1.3) is a nonnegative con-
vex function measuring the discrepancy between the posterior densities f (θi |y0:i )
and f (θi |y0:(i+1)) over their common support �. Prior to observing the data
Yi+1 = yi+1, (1.3) is a random variable in which distribution under the null hy-
pothesis depends on that of the future data Yi+1 via the likelihood P(Yi+1|θi, y

0:i).
The following sections focus on the interpretation and on the computation of (1.3).

1.1.1. Interpretation of the KL statistic and of the change-points. The scalar
hyper-parameter α of the joint posterior (1.2) has the interpretation of the type-1
error probability for the change-point test using the statistic (1.3). The rejection
sets can be written explicitly as intervals �i(α) = (li,α, ui,α) representing the α-
level highest probability interval for the random variable (1.3) under the hypothesis
of no change over period i.

When α is low and (1.3) lies below the value li,α , the likelihood of the observed
data is almost a constant in the parameters θi over the range of their current poste-
rior density. In other terms, the parameter values maximizing the likelihood of the
observed yi+1 conditionally on the past data y0:i are given almost zero probability
by the posterior distribution under the hypothesis of no change. If the change-point
statistic lies above ui,α , the parameter values maximizing the likelihood of the data
yi+1 are associated to substantial values of the current joint posterior density, but
they are far from its global maximum. In this case the joint posterior density of all
data y0:(i+1) under the hypothesis of no change is bimodal, indicating that the latest
batch of data yi+1 are not adequately explained by the current parameter values. In
both cases the value of the statistic (1.3) indicates that, in light of the data y0:(i+1),
the posterior density of the model’s parameters f (θi |y0:(i+1)) significantly departs
from its assumed form under the hypothesis that sequential Bayesian updating is
adequate.

When α = 0, no change-point is ever detected, so that the model’s parame-
ters are updated sequentially only via Bayes’ rule. On the other end, if α = 1,
a change in the parameter values is systematically detected at every time point. In
this second limiting case the method proposed in this work is equivalent to a fully
parametric first order Markov state-space model in which state evolution equations
have the form (1.1).

1.1.2. Computation of the change-point statistic. The test statistic (1.3) is sim-
ilar in spirit to the cumulative Bayes factors proposed in West (1986) and West and
Harrison (1986), with the practical advantage that the computation of marginal
likelihoods is not required. However, in general, neither the value of (1.3) nor the
rejection sets (�2(α), . . . ,�N(α)) may be available in closed form, so that numer-
ical approximations may be required. In these cases, at each time period these ap-
proximations can be calculated without incurring in additional computational cost
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using a sequence of parameter values {θm
i }Mm=1 generated using a Markov chain

Monte Carlo algorithm [Gelfand and Smith (1990), Smith and Roberts (1993),
Tierney (1994)] having as its target the current posterior probability density. Using
this technique, the value of (1.3) is approximated by the average

KL
(
y0:(i+1)) ≈ log

(∑M
m=1 pm

i+1

M

)
−

∑M
m=1 log(pm

i+1)

M
,(1.4)

where pm
i+1 = P(yi+1|θm

i , y0:i ) is the likelihood of the data yi+1 given the para-
meter values θm

i and the past data y0:i . Using (1.4), the null distribution of (1.3)
can be approximated as follows:

(i) for each draw θm
i generate a pseudo-realization ym

i+1 using the joint sampling
distribution P(Yi+1|θm

i , y0:i );
(ii) compute the statistic KL(y

0:(i+1)
m ), where y

0:(i+1)
m = (y0, . . . , yi, y

m
i+1), using

its Monte Carlo approximation (1.4).

The empirical distribution of the sequence {KL(y
0:(i+1)
m )}Mm=1 approximates that

of the KL statistic (1.3) under the hypothesis of no change. Therefore, the empir-
ical (α

2 ,1 − α
2 )th percentiles of the sequence {KL(y

0:(i+1)
m )}Mm=1 approximate the

rejection sets �i(α) = (li,α, ui,α) for any given value of α.

1.2. Change-point test power and sample size. When the time series {Yi}Ni=1
have substantially different lengths, the power of the change-point test based on
the KL statistic is theoretically unchanged. For any value of α, this invariance is
ensured by the behavior of the posterior distribution at the denominator of (1.3).
When the data Yi+1 = yi+1 carries a large amount of information about the coef-
ficients of model P(Yi+1|θi, y

0:i ), their joint posterior distribution under the hy-
pothesis of no change concentrates by a corresponding large amount, so that the
distribution of the KL divergence concentrates over large values. If Yi+1 is not
expected to carry much additional information about the model parameters, for
instance, due to its small sample size ni+1, the null distribution of the KL discrep-
ancy is concentrated over small nonnegative values. This mechanism represents an
automatic adaptation of the critical region �i+1(α) of the KL test, ensuring that
its power does not vary with the sample size of the data sequentially accrued over
time.

Although this property is sufficiently clear in theory, it is an open question
whether the power of the test is significantly affected when our method is im-
plemented using the MCMC approximations outlined above. Here we briefly in-
vestigate this issue by simulation using a conjugate Bernoulli model. One hundred
thousand simulations were run. For each simulation, two sample sizes n1 and n2
were independently generated as independent draws from a discrete uniform distri-
bution on the integers (1, . . . ,M) with M = 100. A success probability π was also
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independently generated for each simulation using a uniform distribution on the in-
terval (0,1). Conditionally on (n1, n2, π), two independent samples of Bernoulli
random variables were generated, Y1 ∼ Ber(π,n1) and Y2 ∼ Ber(π,n2). For each
simulation, a sample of size 5000 was generated from the conjugate posterior
Beta(1+∑n1

j=1 Y1,j ,1+n1 −∑n1
j=1 Y1,j ) to compute the Monte Carlo approxima-

tion of the KL statistic and of the end-points of its 95% probability interval under
the hypothesis of no change. For this simulation study the type-1 error probability
of the test was fixed to α = 0.2. Under this sampling scheme, with n∗

i = ni − 1 for

i = 1,2, the random variables
n∗

1
M−1 and

n∗
2

M−1 are independent and approximately

uniform on (0,1), so that the distribution of the statistic Z = log(
n∗

1
n∗

2
) is approxi-

mately standard double-exponential. If the power of the KL change-point test is in
practice not affected by the values of (n1, n2, π), the distribution of Z for the group
of simulations where the hypothesis of no change is accepted should be standard
double exponential. Figure 1 represents with a solid line the empirical cumulative
distribution function (CDF) of Z for the 79,743 simulations where a significant
change was not detected. The two dashed lines in the same figure represent the
point-wise 99% probability intervals for the CDF of a standard double exponential

FIG. 1. The solid line represents the empirical cumulative distribution function (CDF) of the ran-
dom variable Z for the 79,743 simulations where the hypothesis of no change was accepted. The
dashed lines represent the approximate end-points of the point-wise 99% probability intervals for
the CDF of a standard double exponential random variable. Acceptance of the hypothesis of no
change did not cause a significant departure of the distribution of Z from that of a standard dou-
ble exponential distribution, suggesting that the power of the change-point test is not significantly
affected by different sample sizes (n1, n2).
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random variable. Since at each point the former CDF always lies within its 99% in-
terval, this simulation study suggests that for the Bernoulli model the power of the
change-point test is not significantly affected by different sample sizes (n1, n2).

1.3. Sequential fitting and change-point testing algorithm. This section pro-
vides a summary of the computational steps involved by the dynamic modeling
method illustrated so far. Despite not addressing any model-specific issues such
as the explicit form of posterior distributions, we aim at providing here a general
blueprint for implementing our method starting from the first sample y1:

(i) Upon observing the data y1, derive the posterior density

f (θ1|y0:1) ∝ h(θ1|θ̂0)P (y1|θ1, y0),

where θ̂0 represents an estimate of the parameter values as reflected by the
initial conditions y0.

(ii) Having observed data y2, compute the statistic KL(y0:2) and its rejection in-
terval �1(α) = (l1,α, u1,α) as described in Section 1.1.

(iii) If l1,α < KL(y0:2) < u1,α , no change-point is detected. In this case the prior
density for θ2 is the posterior at point (i) and the posterior density for θ2
derived using Bayes’ rule is

f (θ2|y0:2, α) ∝ f (θ2|y0:1)P (y2|θ2, y
0:1).

(iv) Otherwise, match the first two posterior moments θ̂1 to those of the prior for
θ2 and again apply Bayes’ rule, deriving the conditional posterior density

f (θ2|θ̂1, y
0:2, α) ∝ h(θ2|θ̂1)P (y2|θ2, y

0:1).
In case (iv) above, the sequentially estimated change-point process up to and in-
cluding times (1,2) reports one change at time 2. Consistently with the interpre-
tation of the KL statistic, the model parameters are updated using all data starting
from the last detected change-point, if any. When a change is detected at level
1 − α, the new parameter values are updated using their conditional posterior dis-
tribution under the transfer prior (1.1) and the likelihood of the latest batch of data.

1.4. Change-point KL statistic for exponential family models. Several prop-
erties of the KL divergence for exponential family models have been explored
by McCulloch (1988). Here we show that in this circumstance also the diver-
gence (1.3) has a closed form. In this case the algorithm illustrated in Section 1.2
is simplified, as only the critical intervals �i(α) = (li,α, ui,α) need being approxi-
mated. Without loss of generality, in what follows we assume that no change-point
is detected prior to period i. Also, we let Yi be a 1 dimensional sample of condi-
tionally independent observations with length ni and joint density [Diaconis and
Ylvisaker (1979)]

P(Yi |θi) =
ni∏

j=1

a(Yi,j )e
Yi,j θi−b(θi),(1.5)
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where θi is a scalar canonical parameter. Diaconis and Ylvisaker (1979) show that
each element of Yi has mean and variance

E(Yi,j |θi) = ∂b(θi)

∂θi

, V (Yi,j |θi) = ∂2b(θi)

∂θ
′
i ∂θi

.

Using the prior

f (θi |n0, y0) = c(n0, S0)e
S0θi−n0b(θi),

where S0 = n0y0 for scalar n0 and y0, the posterior for θi given the past data y0:i
has conjugate density

f (θi |n(i), y0:i) = c(n(i), S(i))en(i)((S(i)/n(i))θi−b(θi)),(1.6)

where n(i) = ∑i
j=0 nj , S(i) = ∑i

j=0 nj ȳj and ȳj represents the arithmetic mean
of sample yj . Using the results of Gutiérrez-Peña (1997), the posterior mean and
variance of θi are

E(θi |n(i), S(i)) = ∂H(n(i), S(i))

∂S(i)
, V (θi |n(i), S(i)) = ∂H(n(i), S(i))

∂S(i)2 ,

and the posterior mean and variance of the function b(θi) are

E(b(θi)|n(i), S(i)) = ∂H(n(i), S(i))

∂n(i)
,

V (b(θi)|n(i), S(i)) = ∂H(n(i), S(i))

∂n(i)2 ,

where H(n(i), S(i)) = − log(c(n(i), S(i))). Using these results, we derive the fol-
lowing explicit form for the KL divergence (1.3):

THEOREM. When the posterior density for the coefficients θi has form (1.6),
given the data up to and including yi+1, the Kullback–Leibler statistic (1.3) is

KL
(
y0:(i+1)) = log

(
c(n(i), S(i))

c(n(i + 1), S(i + 1))

)
− Si+1

∂H(n(i), S(i))

∂S(i)
(1.7)

+ ni+1
∂H(n(i), S(i))

∂n(i)
,

where the terms on the right-hand side of (1.7) are defined above.

PROOF. By letting the posterior densities f (θi |n(i), S(i)) and f (θi |n(i +
1), S(i + 1)) have form (1.6), the KL (1.3) becomes

KL
(
y0:(i+1)) = log

(
c(n(i), S(i))

c(n(i + 1), S(i + 1))

)
− Si+1E(θi) + ni+1E(b(θi)).

For exponential family models, the expectations E(θi) and E(b(θi)) with re-
spect to f (θi |y0:i ) are reported above. By substituting these expressions, equa-
tion (1.7) obtains the following. �
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EXAMPLE 1.1. When Yi is a Gaussian random variable with mean μi and pre-
cision λi , its distribution can be written in the form (1.5) using the two-dimensional
statistic

Y ∗
i = [Yi, Y

2
i ]

and the canonical parameter

θi = [θ1,i , θ2,i] =
[
λiμi,−λi

2

]

with

a(Y ∗
i ) = (2π)−1/2,

b(θi) = −1

2
log(θ2,i ) − θ2

1,i

θ2,i

.

The conjugate prior for (μi, λi) is Normal-Gamma N(μi |γ,λi(2α − 1))Ga(λi |α,

β) with coefficients α > 0.5, β > 0, γ ∈ R and normalizing constant [Bernardo
and Smith (2007)]

c(n0, S0) =
(

2π

n0

)1/2 S
S1,0/2
2,0 /2

�((n0 + 1)/2)
,

where n0 = 2α − 1, y∗
0 = [y∗

1,0, y
∗
2,0] = [γ,

2β
2α−1 + γ 2], S1,0 = n0y

∗
1,0 and S2,0 =

n0y
∗
2,0. Upon observing the realization (y1, . . . , yi), the normalizing constant of

the corresponding conjugate posterior is

c(n(i), S(i)) =
(

2π

n(i)

)1/2 S(2, i)S(1,i)/2/2

�((n(i) + 1)/2)
,

where n(i) = n0+i, S(1, i) = S1,0 +∑i
j=1 yj and S(2, i) = S2,0 +∑i

j=1 y2
j . When

also yi+1 is observed, using (1.7), the KL statistic can be written as

KL
(
y0:(i+1)) = log

(
�

(
n(i + 1) + 1

2

)/
�

(
n(i) + 1

2

))
+ 1

2
log

(
n(i + 1)

n(i)

)

+ log
(

S(2, i)S(1,i)/2

S(2, i + 1)S(1,i+1)/2

)
− yi+1

2
log

(
S(2, i)

2

)

− y2
i+1

S(1, i)

S(2, i)
+ 1

2n(i)
+ �

(
n(i) + 1

2

)
∂�((n(i) + 1)/2)

∂n(i)
.

EXAMPLE 1.2. Let Yi be a sample of size ni of conditionally indepen-
dent Bernoulli random variables with success probabilities {πi}Ni=1. The canoni-
cal representation of the Bernoulli probability mass function obtains, by letting
θi = log( πi

1−πi
), b(θi) = log(1 + eθi ) and a(Yi) = 1. The conjugate prior for πi
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is Beta(S0,m0), where m0 = n0 − S0. Upon observing (y1, . . . , yi), the conju-
gate posterior is Beta(S(i),m(i)), where S(i) = ∑i

j=0 Sj , n(i) = ∑i
j=0 nj and

m(i) = n(i) − S(i). When also yi+1 is observed, the KL statistic (1.7) has form

KL
(
y0:(i+1)) = log

(∏ni

k=1(n(i) + k)
∏ni−Si

w=1 (m(i) + w)∏Si

j=1(S(i) + j)

)

− Si+1
�(S(i))

�(m(i))

∂(�(m(i))/�(S(i)))

∂S(i)

+ ni+1

(
∂(�(n(i))�(m(i)))

∂n(i)

)/
(�(n(i))�(m(i))),

where m(i) = n(i) − S(i).

EXAMPLE 1.3. Let Yi represent the random number of events of a given kind
observed within a time interval (ti,1, ti,ni

] of fixed length. For this example we
assume that the latter is identical for all samples i = 1, . . . ,N . Let the random
times at which the events take place be distributed according to a homogeneous
Poisson process with intensity λi , so that the distribution of Yi is Poisson with
parameter λ∗

i = λi(ti,ni
− ti,1). The canonical form of the Poisson distribution has

parameter θi = log(λ∗
i ) and functions a(Yi) = 1

Yi ! , b(θi) = eθi . The conjugate prior
for λ∗

i is Gamma with parameters Ga(S0, n0) having mean y0 and variance y0
n0

.
Upon observing (y1, . . . , yi), the conjugate posterior for λ∗

i is Ga(S(i), n(i)) with
S(i) = S0 + ∑i

j=1 yj , n(i) = n0 + i. When also yi+1 is observed, using (1.7), the
KL statistic has form

KL
(
y0:(i+1)) = log

(
S(i)n(i)S(i)

n(i + 1)S(i+1)

)

+ yi+1

(
log(n(i)) −

(
∂�(S(i))

∂S(i)

)/
�(S(i))

)
− S(i)

n(i)
.

1.5. Effect of change-points on predictive densities. In this section we illus-
trate analytically the effect of detecting a change-point on the one-step ahead pre-
dictive density using the transfer prior (1.1) and a conjugate Gaussian dynamic lin-
ear model. For each value of i, in what follows we let the scalar random variable
Yi be distributed as N(μi, σ

2
i ). Analogously to Example 1.1, the prior distribution

for θi = (μi, σ
2
i ) is taken as the conjugate Normal-inverse Gamma

μi ∼ N(μ̂i∗−1, σ
2
i ),

σ 2
i ∼ IGa

(
ν

2
,
ν

2
σ̂ 2

i∗−1

)
,

where 1 ≤ i∗ < i is the time of the last detected change-point and (μ̂i∗−1, σ̂
2
i∗−1)

represent the estimated mean and variance of the joint posterior density at time i∗.
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If i∗ = 1, (μ0, σ
2
0 ) represents a fixed initial condition. Here the prior density of the

variance is

f (σ 2
i |ν, σ̂ 2

i∗−1) = (νσ̂ 2
i∗−1/2)ν/2

�(ν/2)
σ

−2(ν/2+1)
i e

−(νσ̂ 2
i∗−1)/(2σ 2

i )
.

Under this formulation, the prior expectation of the mean is μ̂i∗−1 and that of
the variance is ν/2

ν/2−1 σ̂ 2
i∗−1. If follows that the one-step ahead marginal predictive

distribution is a noncentral Student-t . In absence of change-points prior to time i,
the predictive density is

Yi+1 ∼ tν+i

(
μ̃i,

i + 1

i + 2

ν + i

2

1

σ̃ 2
i

)
,(1.8)

where

μ̃i = 1

1 + i
μ0 + i

1 + i
ȳ(1:i),

σ̃ 2
i = ν

2
σ 2

0 + i

2
s2
(1:i) + i

i + 1

(
μ0 − ȳ(1:i))2

,

and (ȳ(1:i), s2
(1:i)) represent respectively the sample mean and variance of the data

y1:i . If a change-point is detected by the KL statistic (1.3) at time 1 < i∗ < i, under
the transfer prior (1.1), the conditional predictive density is

Yi+1 ∼ tν+i−(i∗−1)

(
μ̃∗

i ,
i − i∗ + 2

i − i∗ + 3

ν + i − i∗ + 1

2

1

(σ̃ 2
i )∗

)
,(1.9)

where

μ̃∗
i = 1

i − i∗ + 2
μ̂i∗−1 + i − (i∗ − 1)

i − i∗ + 2
ȳ(i∗:i),

(σ̃ 2
i )∗ = ν

2
(σ̂i∗−1)

2 + i − (i∗ − 1)

2
s2
(i∗:i) + i − (i∗ − 1)

i − i∗ + 2

(
μ̂i∗−1 − ȳ(i∗:i))2

.

Since the mean and variance of the noncentral Student-t random variable with den-
sity tν(μ,σ 2) are respectively equal to μ and to ν

ν+2σ 2, equations (1.8) and (1.9)
provide a characterization of the one-step ahead posterior predictive moments as
a function of the time of the last detected change-point and of the inverse-Gamma
prior coefficient ν. For i∗ > 1 the predictive mean is less influenced by the sam-
ple mean of the data preceding the change-point, ȳ1:(i∗−1), and it is more heavily
influenced by ȳi∗:i , that is, the sample mean of the data from the change-point on.
When a change-point is detected, the predictive variance is larger with respect to
the case of no change. Its relative increase is a decreasing function of the differ-
ence (i − i∗), which measures how far in time the change-point occurred, and it
is an increasing function of the coefficient ν, which measures the strength of the
prior at the initial time.
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This behavior is consistent with the intuition that predictions ensuing from a
dynamic time series model should discount the information content of remote data
and focus on more recent data when significant dynamics occur. In absence of an
autoregressive model structure, as in the present section, the distinction between
remote and recent data is entirely left to the timing of the detected change-points.

2. Analysis of multivariate EEG recordings. This section presents an ap-
plication of the methods discussed above to estimating neural functional dynam-
ics using multivariate electroencephalogram (EEG) recordings. The data analyzed
here arise from a sequence of 80 identical tests each having length of approxi-
mately four seconds with sampling rate of 128 points per second. During each test,
the same subject was to press a button when a green square appeared in a specific
screen location [Makeig et al. (2002)]. Previous analyses of these data have empha-
sized aspects of time-dependent interactions among different EEG channels, such
as an increased overall synchronization of different brain areas after presentation
of the visual stimulus [Delorme et al. (2002)]. The multidimensional EEG time
series are modeled here as a discrete time Gaussian stochastic process, in which
randomness is thought of as arising from the intrinsic variability of the brain activ-
ity and from the presence of experimental artifacts. We describe the dynamic func-
tional relationships among different brain areas using the time-dependent means
and covariance matrices indexing the data likelihood.

The 32 EEG channels record neural activity arising from seven functionally dis-
tinct brain areas, that are the frontal (F), central (C), central-parietal (CP), parietal
(P), temporal (T), parietal-occipital (PO) and occipital (O) lobes. At each time
point the recording channels targeting each of the seven brain areas were averaged
within each trial and then across trials so as to obtain a seven-dimensional time se-
ries. The rationale for this preprocessing is that recordings within each brain area
exhibit similar patterns within and across trials so that, for the purpose of our analy-
sis, averaging yields a lower dimensional signal less affected by channel-specific
recording noise. These trial-averaged EEG recordings are represented in Figure 2.
The activity of the different areas prior to the presentation of the visual cue are
tightly synchronized, exhibiting oscillations of high amplitude around frequency
10 Hz and fast low-amplitude oscillations at 60 Hz. Due to their low amplitude,
the latter are hard to see in Figure 2. The lower frequency oscillations are consis-
tent with the so-called α band reflecting eye movements. The higher frequency and
lower amplitude oscillations are due to the alternating current being used in this
experiment, suggesting an imperfect electrode grounding.

The trial-averaged signal at time i, Yi , is modeled as N7(μi,�i). To derive
Bayesian inferences for the mean vector and for the covariance matrix, we use the
conjugate Normal-inverse Wishart prior:

μi ∼ N7(μ̂i∗−1,�i),(2.1)

�i ∼ IW7(9, I7�̂i∗−1),(2.2)
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FIG. 2. EEG recordings (blue), one-step ahead marginal posterior point predictions and 95% pos-
terior predictive intervals for each brain area (red). The estimated change-point times are marked on
the horizontal axis of each plot. The two vertical lines represent respectively the average stimulus and
response times. The brain activity is reduced roughly at half of the initial phase of the experiment
and it increases when the cue is presented. The sharpest increases are detected in the frontal (F)
and central (C) lobes, followed by the central-parietal (CP), parietal (P) and temporal (T) lobes.
The estimated change in activity in the parietal-occipital (PO) and occipital (O) areas is far less
pronounced.
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where 1 ≤ i∗ < i is the time of the last detected change-point prior to time i. The
marginal prior expectations are matched to the corresponding estimated marginal
posterior moments at time i∗ − 1 consistently with (1.1). At time i these prior dis-
tributions are updated using Bayes’ theorem, taking into account all data points
within the interval [i∗ + 1, i]. Therefore, by combining the KL test with a static
Bayesian update, this dynamic model retains a memory of past mean and covari-
ance estimates from the last detected change-point onward. From this perspective,
this model can be thought of as a form of time-varing vector autoregression which
at time i has order i − i∗.

For this analysis, the initial conditions μ0 and �0 were set respectively equal
to the null vector and to the identity matrix. The hyper-parameter of the posterior
density was set at α = 0.01, so as to detect only the most prominent changes.
The number of degrees of freedom of the Inverse Wishart density is set so that
predictive intervals of length consistent with the set value of α are not excessively
inflated when a change is detected. The distribution of the KL statistic and its value
were approximated at each time i using the last 500 Gibbs sampler draws of the
mean and of the covariance matrix.

Along with the data, Figure 2 shows the one-step ahead marginal posterior point
predictions and their 95% highest posterior predictive intervals for each of the
seven brain areas. The estimated change-point times are marked along the hori-
zontal axes. The predictions emphasize a downward shift in brain activity taking
place roughly at half of the initial phase of the experiments, followed by a sharp
increase corresponding to the cue presentation, a downward trend following the
motor response and a stabilization of the EEG signals toward the end of the ex-
periments. The first two change-points identify a transition during the first part of
the experiment toward a state of more intense attention. The third to sixth change-
points capture an abrupt increase in neural activity related to the presentation of the
visual cue, whereas the last change-point indicates a return to a baseline activity.
The sharp increases in the activity of the frontal and central areas during the gen-
eration of the response are consistent with their characterization as executive and
motor centers of the brain. The intermediate increase in activity of the temporal and
parietal lobes, mainly involved in speech, hearing, memory and in the integration
of sensory inputs, reflects the mild involvement of their functions in the execution
of the task entailed by this experimental protocol. The mild response to the visual
stimulus of the parietal-occipital and occipital areas, including the visual cortex, is
somewhat surprising. An analogous analysis of the trial-averaged EEG data from
the eight distinct channels recording from these two areas reveals a consistently
higher activity of the occipital channels with respect to the parietal-occipital ones
but no significant change in response to the visual stimulus.

Figure 3 depicts the estimates of the time-dependent variance and covariance
functions for each brain area. Whole segments represent periods during which
their respective 95% highest posterior intervals do not intersect zero. The esti-
mated change-point times are marked on the horizontal axis of each plot, as in
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FIG. 3. Estimates of the time-dependent variance and covariance functions for the frontal (green),
temporal (yellow), central (magenta), central-parietal (cyan), parietal (black), parietal-occipital
(red) and occipital (blue) lobes. Whole segments represent periods during which their 95% posterior
intervals do not intersect zero. The estimated change-point times are marked on the horizontal axis
of each plot. The estimated covariances are almost always positive and time-varying, representing
different levels of cooperative activity of the seven brain areas over time. The covariance functions
are also spatially ordered, the strongest relationships being estimated between physically adjacent
brain areas.
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Figure 2. All estimated variances and covariances vary over time, indicating that
a time-dependent covariance matrix is an appropriate modeling assumption for
this data. The estimated covariances are almost always positive, suggesting that
the activity of the seven brain areas is dynamically cooperative as found by De-
lorme et al. (2002). An unexpected feature of the estimated covariance functions
is their spatial ordering over time, the strongest relationships being estimated be-
tween adjacent brain areas. Since neither in the Gaussian likelihood nor the priors
(2.1)–(2.2) include a spatial component, these estimates suggest a close correspon-
dence between the detected functional relationships and the anatomical structure
of the brain.

3. Estimation of a learning curve. The data analyzed in this section arises
from a sequence of 55 trials during which a macaque monkey performed a
location-scene association task [Wirth et al. (2003)]. The learning curve is repre-
sented by the time-dependent estimates of the trials’ success probabilities. Smith et
al. (2004) introduced a parametric state-space model for inferring the learning per-
formance using longitudinal behavioral experiments. The learning curve is thereby
modeled using univariate binary time series data along with a logit link for each
trial’s success probability and a Gaussian state evolution equation for the parame-
ters’ dynamics. In this section we use the same Bernoulli sampling distribution for
the binary trial outcomes as in Smith et al. (2004) and we estimate the dynamics
of its success probability over time using the semi-parametric method illustrated
in Section 1. A first difference between our model and that of Smith et al. (2004)
is that we do not use a nonlinear link function, thus imposing fewer constraints on
the shape of the learning curve. A second difference is that the results of Smith et
al. (2004) are based on a smoothing algorithm using both past and future data to
obtain estimates at present times, whereas our method uses past observed values
and simulated current data to update the distribution of the success probability. In
the following analyses the success probability of the first trial was given a uniform
prior, whereas the transfer prior (1.1) was implemented using a conjugate Beta
prior. The data were analyzed under different values for the hyper-parameter α

within the range (0.01,0.9), respectively requiring from strong to weak evidence
for detecting a change-point. The distribution of the KL statistic under the null hy-
pothesis of no change was approximated using ten thousand Monte Carlo samples
from the Beta posterior distribution of each trial’s success probability. For this data,
the smoothed state-space estimates of Smith et al. (2004) indicate that with 90%
confidence the success probability significantly exceeds its chance value 0.25 from
trial 23 onward, whereas their unsmoothed estimates indicate that the chance value
is significantly exceeded from trial 27 onward. Figure 4 shows our estimates of the
success probabilities under the four selected values of α = 0.9,0.5,0.1,0.01. From
these estimates we conclude that learning has effectively taken place from trial 29
onward, that is, after observing a total of 7 successes yielding an empirical cumu-
lative success rate of 0.24. Figure 4 also compares our dynamic estimates with the
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FIG. 4. Macaque monkey binary data and semi-parametric estimates of their time-dependent suc-
cess probabilities using α = 0.9,0.5,0.1,0.01. The binary data are represented as vertical ticks
along the lower and upper horizontal axes. Asterisks represent the cumulative proportion of success-
ful trials. The sequence of estimates of the success probabilities describe the macaque’s learning
curve over time. The first trial at which the learning curve lies above its chance level 0.25, indicat-
ing that learning has effectively taken place, is number 29. Lower values of α require more extreme
values of the KL statistic for detecting change-points, making our estimates of the learning curve
progressively closer to the empirical cumulative success rates.

empirical cumulative proportion of successful trials, which is represented by aster-
isks. As the value of α decreases, so does the number of detected change-points. In
particular, under the uniform prior for the initial success probability when α ≤ 0.1,
our estimates of the learning curve are roughly equivalent to the empirical propor-
tion of cumulative successes.

4. Dynamic modeling of functional neuronal networks. This example il-
lustrates the application of the method presented in Section 1 in the context of a
model for networks of spiking neurons. During the experiments analyzed here, the
neural activity of a small section of a sheep’s temporal cortex is recorded in vivo
on a millisecond time frame using a multi-electrode array [Kendrick et al. (2001)].
The goal of these experiments was to investigate in detail the activity of brain areas
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associated with memory. Along each of 77 disconnected experiments, a sheep is
shown either a blank screen or two images. In the latter case, a reward is given
when one of a set of “familiar faces” is correctly identified. It is important to note
that, even within small brain areas, these experimental techniques only record the
activity of a relatively small fraction of neurons. Therefore, these data do not al-
low reconstructing direct physical interactions among neurons but only functional
relationships among relatively distant recording electrodes.

Introductions to the neuronal physiology and to neuronal modeling are pre-
sented in Fienberg (1974) and Brillinger (1988). Recent surveys of the state-of-
the-art in multiple spike trains modeling can be found in Iyengar (2001), Brown,
Kass and Mitra (2004), Kass, Ventura and Brown (2005), Okatan, Wilson and
Brown (2005), Rao (2005) and Rigat, de Gunst and ven Pelt (2006). Dynamic
point process neuronal models based on fully parametric state-space representa-
tions have been proposed by Eden et al. (2004), Truccolo et al. (2005), Brown and
Barbieri (2006), Srinivansan et al. (2006) and Eden and Brown (2008).

4.1. Binary network model. In what follows each element of the experimental
time series {Yi}77

i=1 is Yi,k,ti,j (i)
= 1 if neuron k fires at time ti,j (i) during trial i

and Yi,k,ti,j (i)
= 0 otherwise with j (i) = 1, . . . , ni . We model the joint sampling

distribution of the multiple spike train data for trial i, Yi , as a Bernoulli process
with renewal [Rigat, de Gunst and ven Pelt (2006)]. The joint probability of a given
realization yi is

P(Yi = yi |πi) =
ti,ni∏

t=ti,1

K∏
k=1

π
yi,k,t

i,k,t (1 − πi,k,t )
1−yi,k,t .(4.1)

For model (4.1) to be biologically interpretable, the firing probability of neuron k

at time ti,j (i) during trial i, πi,k,ti,j (i)
, is defined as a one-to-one nondecreasing map-

ping of a real-valued voltage function vi,k,ti,j (i)
onto the interval (0,1). The func-

tion vi,k,ti,j (i)
represents the unnormalized difference of electrical potential across

the membrane of neuron k at time ti,j (i). Let τi,k,ti,j (i)
be the last spiking time of

neuron k prior to time ti,j (i) during trial i, that is,

τi,k,ti,j (i)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if
ti,j (i)∑
τ=1

Yi,k,τ = 0 or ti,j (i) = 1,

max
{
1 ≤ τ < ti,j (i) :Yi,k,τ = 1

}
,

otherwise

and the voltage function is modeled as

vi,k,ti,j (i)
=

K∑
l=1

βi,k,l

ti,j (i)−1∑
w=τi,k,ti,j (i)

yi,l,w.(4.2)
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The spiking probabilities are linked to (4.2) via the logistic mapping

πi,k,ti,j (i)
= e

vi,k,ti,j (i)

1 + e
vi,k,ti,j (i)

.

The coefficients βi,k,l represent the strength of the functional relationship from
neuron l to neuron k during trial i. When βi,k,l is positive during trial i, the firing
activity of neuron l promotes that of neuron k, whereas when it is negative, firing
of l inhibits that of k. When neurons l and k are physically connected to each other,
the coefficients βi,k,l and βi,k,l represent direct functional connections. When the
two neurons are not directly connected to each other, these network coefficients
summarize a functional relationship possibly arising from a long chain of neurons
in which activity cannot be currently recorded by the MEA technique. The coeffi-
cients βi,k,k represent the spontaneous spiking rate of neuron k during trial i. The
last summation term in equation (4.2) indicates that the membrane potential of a
neuron is assumed to be influenced only by the spiking activity of the other neu-
rons during its last inter-spike interval. In this simple model we do not take into
account the occurrence of leakage currents across the neuronal membrane [Plesser
and Gerstner (2000)], so that the effect of the spikes produced by neuron l on the
voltage function does not decrease over time.

For each trial i = 1, . . . ,N we use a Metropolis sampler to produce approxi-
mate posterior inferences for the K2 model parameters. For each experiment, we
run a neuron-wise random scan update with independent Gaussian random walk
proposals for twenty-five thousand iterations. The initial prior for the parameters
of all experiments is Gaussian with zero mean, standard deviation 1 and zero co-
variance for all pairs of neurons. Conditionally on the data y0:i and on the current
posterior estimates, upon observing the outcome of the ith + 1 experiment, yi+1,
we use the KL statistic (1.3) to test whether a significant change occurred in any
of the model’s parameters. The occurrence of such changes and the corresponding
parameter estimates indicate statistically significant variations of different aspects
of the neural activity.

4.2. Analysis of sheep multiple spike trains. In this section we analyze the
spiking activity of the 7 most active electrodes among the 64 recording channels.
The plot on the left in Figure 5 shows the number of spikes recorded from these
7 electrodes along all 77 experiments. The panel on the right shows the mean spik-
ing rates for each electrode and experiment, which reflect the overall low spiking
rates typical of this type of measurement. The co-occurrence of relatively high fir-
ing rates for all electrodes suggests that the most prominent connections among
the underlying neurons may be mutually excitatory functional relationships.

Table 1 displays summaries of the point estimates of the network coefficients
across all experiments. Each cell reports the proportions of experiments during
which each of the network coefficients were found either significantly excitatory
or inhibitory. Significance here denotes experiments during which both 95% end
points of the posterior interval of a pair-wise functional connection lie respec-
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FIG. 5. Each dot in the left panel marks the number of recorded spikes of the 7 most active elec-
trodes for each millisecond of the 77 experiments. Each dot in the right panel marks the proportion
of milliseconds during which each electrode recorded a spike during each experiment. The range
of these mean firing rates is 0.02–0.14, reflecting the low overall spiking rates typical for this type
of recording. Clusters of points associated to relatively high mean spiking rates suggest that the
underlying neurons may be mostly connected via mutually excitatory functional relationships.

tively above or below zero. The self-dependence coefficients on the main diagonal
are always found significant and negative, representing the well-known property
of neural refractoriness. The excitatory functional connection from electrode 3 to-
ward 6 is most prominent, being significant over approximately 63% of the experi-

TABLE 1
Relative number of experiments during which both end points of the 95% posterior interval for any
of the pair-wise functional connection coefficients lie respectively above or below zero, identifying

significant excitatory (left proportion) or inhibitory (right proportion) relations

i \ j 1 2 3 4 5 6 7

1 0.00 1.00 0.10 0.28 0.28 0.35 0.30 0.12 0.30 0.30 0.08 0.29 0.08 0.38
2 0.01 0.46 0.00 1.00 0.32 0.35 0.05 0.60 0.25 0.25 0.30 0.14 0.41 0.12
3 0.25 0.13 0.28 0.14 0.00 1.00 0.08 0.30 0.25 0.12 0.01 0.68 0.08 0.28
4 0.09 0.40 0.05 0.36 0.34 0.14 0.00 1.00 0.33 0.12 0.08 0.13 0.10 0.36
5 0.28 0.10 0.08 0.42 0.51 0.13 0.08 0.62 0.00 1.00 0.08 0.28 0.25 0.25
6 0.10 0.39 0.10 0.13 0.63 0.00 0.08 0.51 0.05 0.30 0.00 1.00 0.08 0.40
7 0.09 0.41 0.10 0.14 0.30 0.28 0.08 0.14 0.08 0.28 0.05 0.39 0.00 1.00

The self-dependence coefficients on the main diagonal are always found significant and negative,
representing the well-known property of neural refractoriness. Bold entries represent functional con-
nections which are found significant over more than 50% of the experiments. The excitatory func-
tional connection from electrode 3 toward 6 is most prominent, being significant over approximately
63% of the experiments. The most prominent inhibitory connections relate electrode 4 to 5, which is
significant over 62% of the experiments, and electrode 6 to 3, which is found significant over 68%
of the experiments.
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FIG. 6. Point estimates and 95% highest posterior intervals for the self-dependence parameters
of electrodes 3 and 6 (main diagonal) and of their pair-wise functional connections β3,6 and β6,3.
These two electrodes exhibit a comparable level of refractoriness over all experiments. The estimated
correlations over experiments between the self-dependence coefficients β3,3 and those of β3,6 is
−0.28 and that between β6,6 and β6,3 is −0.29, suggesting that neural self-inhibition may tend to
compensate for excitations and inhibitions supplied by functionally connected cells.

ments. The most prominent inhibitory connections are found significant over 62%
and 68% of the experiments and they relate respectively electrodes 4 to 5 and 6
to 3. Note that the time series model (4.2) identifies a directed cyclic graph (DCG)
of pair-wise functional relationships where the connections i → j and j → i are
captured by distinct coefficients, so that the proportion of 3 → 6 significant ex-
citatory connections and that of 6 → 3 significant inhibitory connections are not
constrained to add up to one. Figure 6 illustrates in detail the point estimates and
the 95% highest posterior intervals for the most prominent excitatory connection,
3 → 6, together with those of both electrodes’ self-dependence and of the mostly
inhibitory connection 6 → 3. The estimated correlation over experiments between
the self-dependence coefficients β3,3 and those of β3,6 is −0.28 and that between
β6,6 and β6,3 is −0.29, suggesting that neural self-inhibition may tend to com-
pensate for excitations and inhibitions supplied by the other recorded functionally
connected cells.

5. Discussion. This work is motivated by the challenges encountered in con-
structing time series models when the factors driving the dynamics of their pa-
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rameters are not well understood. The semi-parametric method illustrated here
provides flexible time-dependent estimates without relying on explicit modeling
of these dynamics. For exploratory data analyses, such as those presented in Sec-
tions 2, 3 and 4, these estimates may suffice to address specific scientific questions.
Otherwise, appropriate measures of dependence between these time-dependent es-
timates and experimental factors of interest provide a principled basis for more
precise formulations of the parameters’ dynamics. Describing the exact form of
such dependence measures is very much context-dependent and it lies outside of
the scope of this work.

A distinctive feature of the modeling approach proposed here is that it com-
bines elements of sequential Bayesian learning and conditional frequentist infer-
ence along the lines of Guttman (1967), Box (1980), Berger, Brown and Wolpert
(1994), Meng (1994), Gelman, Meng and Stern (1996), Berger and Bayarri (1997),
Spiegelhalter et al. (2002), Bayarri and Morales (2003), Kuhnert, Mergesen and
Tesar (2003) and Bayarri and Berger (2004), among others. A general treatment of
such pragmatic combination of frequentist and Bayesian ideas for model criticism
can be found in Chapter 8 of O’Hagan and Forster (1999). From this perspective,
our method is a “Bayesianly justifiable” procedure [Rubin (1984)] because only
those future unobserved data that are consistent with the current conditional pos-
terior distribution of the model’s parameters are relevant for approximating the
distribution of the KL change-point statistic (1.3).

The latter reflects a notion of change-point as an observation which, on the
basis of the chosen model with its prior and the observations accrued so far, is
“surprising” from a predictive point of view. Note that this characterization does
not depend on the parametrization of the state space nor on the unobservable sam-
ple paths of latent states, but it depends only on the predictives on observables.
Defining models and their properties via their one step ahead predictive statements
has been recommended, among others, by Geisser and Eddy (1979) and San Mar-
tini and Spezzaferri (1984) for predictive model selection, by Dawid (1984) in his
prequential inference, by West and Harrison (1986) for monitoring the adequacy
of Bayesian forecasting models and by Smith (1992) for comparing the charac-
teristics of different forecasting models. More recently, optimal predictive model
selection criteria have been proposed by Barbieri and Berger (2004).

The results presented in Section 3 revealed a substantial dependence of the es-
timated learning curve with respect to the value of the hyper-parameter α. It is
important to recall that this hyper-parameter measures how extreme a value of the
KL statistic is needed for detecting a change-point. Therefore, a dependence of its
corresponding estimated change-point process on the value of α is to be expected,
with lower values of this hyper-parameter yielding less numerous change-points
and vice versa. From this perspective, our method is not meant to be fully auto-
matic and parameter estimates derived using different values of α should be in-
spected to gauge their sensitivity in the context of the specific time series model
being entertained.
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In this work, a single change-point process common to all model’s parame-
ters is used to define their conditional posterior distribution. Should the data pro-
vide evidence of changes of only some parameters, the posterior distributions for
the unchanging coefficients would not make the most efficient use of the data. It
is important to note that while in principle any subset of model parameters can
be associated to a distinct change-point process, the limitations for implementing
multivariate change-point process inference within our framework are eminently
practical. This is because marginal likelihoods for each subset of model parameters
having a different change-point process are required to approximate the distribu-
tion of their change-point test statistic. For classes of models where marginal like-
lihoods are available in closed form, this work can be extended by introducing a
random variable identifying groups of coefficients sharing a common change-point
process.

Posterior simulation via Markov chain Monte Carlo algorithms has been used
in this work to fit multivariate time series models and to approximate critical val-
ues of the KL statistic. Although the current implementation of our method is
operationally realistic, these computationally intensive methods are in fact rather
impractical for an iterative process of model formulation and criticism. Cur-
rently two directions are being pursued to improve the computational efficiency
of our method. On the one hand, faster resampling methods such as particle filters
[Doucet, De Freitas and Gordon (2001)] and approximate Bayesian computation
[Marjoram et al. (2003)] can be adopted. Alternatively, analytical posterior ap-
proximations can be adopted [Tierney and Kadane (1986)]. For instance, in the
context of sequential time series modeling, Koyama, Perez-Bolde and Kass (2008)
recently proposed a Laplace–Gauss posterior approximation that obviates the use
of cumbersome resampling techniques.
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