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HIERARCHICAL MIXTURE MODELS FOR ASSESSING
FINGERPRINT INDIVIDUALITY1
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The study of fingerprint individuality aims to determine to what extent
a fingerprint uniquely identifies an individual. Recent court cases have high-
lighted the need for measures of fingerprint individuality when a person is
identified based on fingerprint evidence. The main challenge in studies of
fingerprint individuality is to adequately capture the variability of fingerprint
features in a population. In this paper hierarchical mixture models are intro-
duced to infer the extent of individualization. Hierarchical mixtures utilize
complementary aspects of mixtures at different levels of the hierarchy. At the
first (top) level, a mixture is used to represent homogeneous groups of fin-
gerprints in the population, whereas at the second level, nested mixtures are
used as flexible representations of distributions of features from each finger-
print. Inference for hierarchical mixtures is more challenging since the num-
ber of unknown mixture components arise in both the first and second lev-
els of the hierarchy. A Bayesian approach based on reversible jump Markov
chain Monte Carlo methodology is developed for the inference of all un-
known parameters of hierarchical mixtures. The methodology is illustrated
on fingerprint images from the NIST database and is used to make inference
on fingerprint individuality estimates from this population.

1. Introduction. Recent court cases have highlighted the need for reporting
error rates when an individual is identified based on forensic evidence such as fin-
gerprints. In the case of Daubert v. Merrell Dow Pharmaceuticals [Daubert v. Mer-
rell Dow Pharmaceuticals Inc. (1993)], the U.S. Supreme Court ruled that in order
for expert forensic testimony to be allowed in courts, it had to be subject to five
main criteria of scientific validation, that is, whether (i) the particular technique or
methodology has been subject to statistical hypothesis testing, (ii) its error rates
have been established, (iii) standards controlling the technique’s operation exist
and have been maintained, (iv) it has been peer reviewed, and (v) it has a general
widespread acceptance [see Pankanti, Prabhakar and Jain (2002) and Zhu, Dass
and Jain (2007)]. Following Daubert, forensic evidence based on fingerprints was
first challenged in the 1999 case of U.S. v. Byron C. Mitchell, stating that the
fundamental premise for asserting the uniqueness of fingerprints had not been ob-
jectively tested and its potential matching error rates were unknown. Subsequently,
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fingerprint based identification has been challenged in more than 20 court cases in
the United States. To address these concerns, several research investigations have
proposed measures that characterize the extent of uniqueness of fingerprints (i.e.,
fingerprint individuality); see Pankanti, Prabhakar and Jain (2002), Zhu, Dass and
Jain (2007) and the references therein. The primary aim of these measures is to
capture the inherent variability and uncertainty when an individual is identified
based on fingerprint evidence.

The statistical test of hypotheses for fingerprint based identification can be set
up as follows: Consider an input fingerprint with an unknown identity It being
compared to the fingerprint of a claimed identity Ic. The test of hypotheses is

H0 : It �= Ic versus H1 : It = Ic,(1.1)

where H0 (resp., H1) is the hypothesis of a negative (resp., positive) identifica-
tion. The hypotheses posed in the order of negative vs. positive identification (as
opposed to the reverse order) allows us to control for the probability of making a
false positive identification (i.e., the probability of Type I error). The test of H0
versus H1 in (1.1) is carried out by ascertaining the degree of similarity between
the two prints and involves two important steps: First, salient fingerprint features
are extracted from each print, and second, the collection of features of the two
prints are “matched” with each other to obtain the best measure of similarity.

Figure 1 illustrates an example of the feature extraction and matching proce-
dures described in the previous paragraph. Typical fingerprints as in Figure 1 con-
sist of smooth, nonintersecting flow patterns with alternating dark and light lines,
called ridges and valleys, respectively. Occasionally, a ridge will either bifurcate
or terminate and give rise to an anomaly. The anomalies in the ridge structures
are called minutiae which are the fingerprint features used for identifying individ-
uals. Figure 1 shows the locations of minutiae (x ∈ R2) as white squares for the
two fingerprint images extracted using a pattern recognition algorithm described in

FIG. 1. Illustrating minutiae matching [taken from Pankanti, Prabhakar and Jain (2002)]. A total
of m = 64 and n = 65 minutiae were detected in left and right image, respectively, and 25 correspon-
dences (i.e., matches) were found. The white squares and lines, respectively, represent the minutiae
location and the direction of ridge flow at that minutiae.
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Zhu, Dass and Jain (2007). Minutiae information of a fingerprint is easy to extract,
permanent (does not change with time) and unique (distinct minutiae patterns for
different individuals), making it a popular method for identifying individuals in
the forensics community. Subsequently, the number of matches is determined by
an optimal rigid transformation that brings the two sets of minutiae as close to each
other as possible and counting the number of minutiae in the right panel that falls
within a square of area 4r2

0 centered at each minutiae in the left panel; r0 is a small
prespecified number relative to the size of the fingerprint image. A higher number
of matches indicates a higher degree of similarity and favors the rejection of H0
in (1.1).

The number of matching minutiae in Figure 1 is 25 but the question is: Should
H0 be rejected? In that case, what is the uncertainty or error associated with the
decision? This is precisely the issue of fingerprint individuality since error rates
associated with the observed match are unknown. Pankanti, Prabhakar and Jain
(2002) and Zhu, Dass and Jain (2007) propose using the probability of a random
correspondence (PRC) as a measure of fingerprint individuality. Mathematically,
the PRC is expressed as

PRC(w|m,n) = P(S ≥ w|m,n),(1.2)

where the random variable S denotes the number of minutiae matches, w denotes
the observed number of matches, and m and n, respectively, are the number of
minutiae in the two fingerprint images. The probability in (1.2) is calculated as-
suming H0 is true, that is, the pair of prints are impostors coming from two dif-
ferent individuals. Small (resp., large) values of the PRC indicate low (resp., high)
levels of uncertainty which correspond to high (resp., low) extent of fingerprint
individualization. A PRC of 0.0004, for example, indicates that only 4 out of
10,000 impostor matches will result in matching numbers that are greater than
or equal to w. So, having observed w causes us to suspect that H0 may not be true.
The uncertainty associated with this suspicion decreases as the PRC gets smaller
(i.e., closer to 0). The connection between the PRC and the hypothesis testing cri-
teria in Daubert (which is one of the five main criteria for the scientific validation
of forensic evidence) can be seen as follows: Under the hypotheses testing of (1.1),
the PRC is the p-value, computed under H0, corresponding to the observed num-
ber of matches w.

The value of the PRC depends on the distribution of minutiae locations in a pair
of prints. Zhu, Dass and Jain (2007) demonstrated that when m and n are large, the
distribution of S in (1.2) can be approximated by a Poisson distribution with mean
(expected) number of matches

λ(q1, q2,m,n) = mnp(q1, q2),(1.3)

where qh,h = 1,2 are the distributions fitted to the minutiae locations in the pair
of prints, and p(q1, q2) is the probability of a match given by

p(q1, q2) =
∫ ∫

(x,y) : x∈S(y,r0)
q1(x)q2(y) dx dy,(1.4)
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where x ∈ R2 and y ∈ R2 are independent minutiae from q1 and q2, respectively,
and S(y, r0) is the square of area 4r2

0 centered at y.
The reliability of the PRC computed from a sample of fingerprints depends on

(1) how well elicited statistical models fit the distribution of minutiae for different
fingerprints, and (2) whether the sample is representative of the target population.
The aim in this paper is to develop methodology for (1) while implicitly assuming
the validity of (2). Thus, the results in Section 5 are valid for a population which
has the fingerprint database as a representative sample.

It is well known, for example, that the distribution of minutiae locations in
fingerprints tend to form clusters [see, e.g., Scolve (1979), Stoney and Thornton
(1986) and Zhu, Dass and Jain (2007)]. Thus, candidate statistical models have to
meet two important requirements: (i) flexibility, that is, the model can represent a
variety of minutiae distributions for different fingerprints, and (ii) associated mea-
sures of fingerprint individuality can be easily obtained from these models. These
considerations led Zhu, Dass and Jain (2007) to propose mixture distributions as
candidate choices for q1 and q2. Based on mixtures of independent normals, the
analytical expression for p(q1, q2) in (1.6) becomes

p(q1, q2) = 4r2
0

K1∑
k=1

K2∑
k′=1

2∏
b=1

φ1
(
0| (μ(b)

k1 − μ
(b)
k2

)︸ ︷︷ ︸, (
σ

(b)
k1

)2 + (
σ

(b)
k2

)2︸ ︷︷ ︸),(1.5)

μ σ 2

where qh(x) = ∑Kh

k=1
∏2

b=1 φ1(x
(b)|μ(b)

kh , (σ
(b)
kh )2) for h = 1,2, x = (x(1), x(2)) and

φ1(·|μ,σ 2) is the normal density with mean μ and variance σ 2.
One drawback of Zhu, Dass and Jain (2007) is that no statistical model is elicited

on the minutiae for a population of fingerprints; standard mixture distributions
were proposed for minutiae distributions in each fingerprint separately. As a result,
no inference (e.g., confidence intervals) can be obtained for the population version
of the PRC. This is our motivation for developing hierarchical mixture models and
related inferential tools in this paper. The hierarchical mixture model [see (2.1)] is
a model on the minutiae for a population of fingerprints that satisfies both require-
ments of (i) flexibility and (ii) computational ease mentioned earlier. We assume
that the fingerprint population consists of G homogeneous groups with respect to
the distribution of minutiae, with qg and wg , respectively, denoting the distribu-
tion of minutiae locations and population proportion of the gth sub-population,
g = 1,2, . . . ,G. For a fingerprint pair coming from the sub-populations g1 and g2
with 1 ≤ g1, g2 ≤ G, we have q1 = qg1 and q2 = qg2 in (1.3). Hence, it follows that
the population mean PRC corresponding to w observed matches in the population
is given by

PRC(w|m,n) =
G∑

g1=1

G∑
g2=1

ωg1ωg2P
(
S ≥ w|λ(qg1, qg2,m,n)

)
,(1.6)
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where S follows a Poisson distribution with mean λ(qg1, qg2,m,n).
In this paper a Bayesian framework for the inference from hierarchical mixture

models is developed, which in turn can be used to make inference for the popula-
tion mean PRC in (1.6). Hierarchical mixture models contain an unknown number
of mixture components at two levels. Green (1995) and Green and Richardson
(1997) developed the reversible jump Markov chain Monte Carlo (RJMCMC) ap-
proach for estimating the unknown number of mixture components by exploring
the space of models of varying dimensions. The RJMCMC procedure developed
in this paper generalizes the work of Green and Richardson (1997) to hierarchical
mixture models with two levels of hierarchy. The rest of the paper is organized as
follows: Section 2 develops hierarchical mixture models for a heterogeneous pop-
ulation of objects (the objects are fingerprints in our application). Sections 3 and 4
develop the Bayesian and RJMCMC framework for inference from hierarchical
mixture models. Section 5 discusses the application to fingerprint analysis using
PRCs.

2. Hierarchical mixture models. Consider an object, O, selected at ran-
dom from a heterogenous population, P , with G (unknown) groups. Let X ≡
(x1, x2, x3, . . .) denote the observables on O where xj ≡ (x

(1)
j , x

(2)
j , . . . , x

(d)
j )′ is a

d-variate random vector in Rd . A hierarchical mixture model for the distribution
of O in the population is

q(x) =
G∑

g=1

ωg

n∏
j=1

qg(xj ),(2.1)

where x = (x1, x2, . . . , xn) are the n observations made on O, ωg,g = 1,2, . . . ,G

are the G cluster proportions with ωg > 0 and
∑G

g=1 ωg = 1, qg(·) is the mixture
density for the gth cluster given by

qg(x) =
Kg∑
k=1

pkgfkg(x|λkg),(2.2)

with fkg denoting a density with respect to the Lebesgue measure on Rd , pkg

denoting the mixing probabilities satisfying: (1) pkg > 0 and (2)
∑Kg

k=1 pkg = 1,
and λkg denoting the set of all unknown parameters in fkg . Identifiability of the
hierarchical mixture model of (2.1) with respect to its components is achieved by
imposing the constraints

ω1 < ω2 < · · · < ωG and λ1g ≺ λ2g ≺ · · · ≺ λKgg(2.3)

for each g = 1,2, . . . ,G, where ≺ is a partial ordering to be defined later. The set
of all unknown parameters in the hierarchical mixture model (2.1) is denoted
by θ = (G,ω,K,p,λ), where ω = (ω1,ω2, . . . ,ωG), K = (K1,K2, . . . ,Kg),
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p = (pkg, k = 1,2, . . . ,Kg, g = 1,2, . . . ,G) and λ = (λkg, k = 1,2, . . . ,Kg, g =
1,2, . . . ,G).

Hierarchical mixture models consists of two levels of hierarchy: At the first
(top, or G) level, the mixture is used to represent the groups, whereas at the sec-
ond (or Kg) level, nested mixture models (nested within each g = 1,2, . . . ,G

specification) are used as a flexible representation of the distribution of observ-
ables. The unknown number of mixture components, or mixture complexity, arise
at both levels of the hierarchy, and is, therefore, more challenging to estimate com-
pared to standard mixtures. Estimating mixture complexity has been the focus of
intense research for many years, resulting in various estimation methodologies in
a broad application domain. Nonparametric methods were developed in Escobar
and West (1995) and Roeder and Wasserman (1997), whereas Ishwaran, James and
Sun (2001) and Woo and Sriram (2007) developed methodology for the robust es-
timation of mixture complexity for count data. As discussed earlier, our approach
for estimating mixture complexity will be Bayesian based on the RJMCMC algo-
rithm.

In the subsequent text we assume each fkg is multivariate normal with mean

vector μkg ≡ (μ
(1)
kg ,μ

(2)
kg , . . . ,μ

(d)
kg )′ ∈ Rd and covariance matrix

∑
kg ∈ Rd × Rd .

Our analysis on the fingerprint images in the NIST database (see Section 5)
reveal that it is adequate to consider diagonal covariance matrices of the form∑

kg = diag((σ
(1)
kg )2, (σ

(2)
kg )2, . . . , (σ

(d)
kg )2), where (σ

(b)
kg )2 is the variance of the

bth component. Four different choices of the covariance matrix
∑

kg are consid-
ered, namely, diagonal covariance matrix with (i) common entries over k [i.e.,
σ

(d)
kg = σ

(d)
g , for some common value of σ

(d)
g ], (ii) different entries over k, un-

restricted covariance matrix with (iii) common entries over k, and (iv) different
entries over k. These four choices are evaluated using the Bayes Information Cri-
teria (BIC) which is a model selection criteria that favors parsimonious models
consistent with the observed data. The highest BIC was found for the choice of di-
agonal covariance matrix of (i) or (ii) for almost all of the fingerprints in the NIST
database; see Table 1.

Thus, we take the density fkg in (2.2) to be

fkg(x|λkg) = φd(x|μkg,σ kg) =
d∏

b=1

φ1
(
x(b)

∣∣μ(b)
kg ,

(
σ

(b)
kg

)2)
,(2.4)

TABLE 1
Covariance matrix selection: Entries give the number and percentages of fingerprint images in the

NIST database that ranked each covariance model as the top choice based on BIC

Covariance choice (i) (ii) (iii) (iv) Total

Frequency 1731 238 0 29 1998
Percentage 86.64 11.91 0 1.45 100.00
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where φ1(·|μ,σ 2) denotes the density of the univariate normal distribution with
mean μ and variance σ 2, and σ kg ≡ ((σ

(1)
kg )2, (σ

(2)
kg )2, . . . , (σ

(d)
kg )2)′ is the d-variate

vector of the variances. The second identifiability condition of (2.3) is re-expressed
in terms of the first component of the mean vector as

μ
(1)
1g < μ

(1)
2g < · · · < μ

(1)
Kgg.(2.5)

For N independent objects selected randomly from the population, it follows
that the distribution of observables for the ith object, i = 1,2, . . . ,N has the den-
sity

q(xi) =
G∑

g=1

ωg

ni∏
j=1

Kg∑
k=1

pkgφd(xij |μkg,σ kg),(2.6)

where xi ≡ (xij , j = 1,2, . . . , ni) is the set of ni observations made on the ith
object with each xij ∈ Rd , for j = 1,2, . . . , ni . It follows from independence that
the joint distribution of all observables, x ≡ (xi, i = 1,2, . . . ,N), from N objects
is given by

∏N
i=1 q(xi).

Two other notations are introduced here: μ and σ will respectively denote
the collection of all {μkg, k = 1,2, . . . ,Kg, g = 1,2, . . . ,G} and {σ kg, k = 1,2,

. . . ,Kg, g = 1,2, . . . ,G} vectors. Our goal is to infer the unknown parameters
θ = (G,ω,K,p,μ,σ ) based on the observed data x.

3. A Bayesian framework for inference. For the subsequent text, some ad-
ditional notation is introduced. The symbol I (S) will denote the indicator func-
tion of the set S , that is, I (S) = 1 if S is true, and 0, otherwise. The notation
A,B, . . . |C,D, . . . will denote the distribution of random variables A,B, . . . con-
ditioned on C,D, . . . , with π(A,B, . . . |C,D, . . .) denoting the specific form of
the conditional distribution. Also, π(A,B, . . . |·) will denote the distribution of
A,B, . . . given the rest of the parameters. We specify a joint prior distribution on
θ in terms of the hierarchical specification

π(θ) = π(G,K) · π(ω,p|G,K) · π(μ|G,K) · π(σ |G,K).(3.1)

The component priors in (3.1) are as follows:

(1) The prior on the mean vector is taken as

π(μ|K,G) =
G∏

g=1

[(
Kg!

Kg∏
k=1

φ1
(
μ

(1)
kg |μ0, τ

2))

× (
I
(
μ

(1)
1g < μ

(1)
2g < · · · < μ

(1)
Kgg

))
(3.2)

×
(

d∏
b=2

Kg∏
k=1

φ1
(
μ

(b)
kg |μ0, τ

2))]
.
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The indicator function appears due to the identifiability constraint (2.3) imposed
on μ with resulting normalizing constant Kg! for each g = 1,2, . . . ,G.

(2) The prior distribution of the variances is taken as

π(σ |K,G) =
G∏

g=1

( Kg∏
k=1

d∏
b=1

IG
((

σ
(b)
kg

)2|α0, β0
))

,(3.3)

where IG denotes the inverse gamma distribution with prior shape and scale para-
meters α0 and β0, respectively.

(3) The prior on the first and second level mixing proportions is taken as

π(ω,p|G,K) = G!DG(ω|δω) · I (ω1 < ω2 < · · · < ωG)
(3.4)

×
G∏

g=1

DKg(pg|δp),

where DH(·|δ) denotes the H -dimensional Dirichlet density with the H -compo-
nent baseline measure (δ, δ, . . . , δ), where δ is a prespecified constant, and pg ≡
(p1g,p2g, . . . , pKg,g)

′. The indicator function arises due to the imposed identi-
fiability constraint (2.3) on ω. It follows that G! is the appropriate normalizing
constant for this constrained density, obtained by integrating out ω and noting that
DG(ω|δω) is invariant under different permutations of ω.

(4) The prior on G and K is taken as

π(G,K) = π(G) · π(K|G) = π0(G) ·
G∏

g=1

π0(Kg),(3.5)

where π0 is the discrete uniform distribution between Gmin and Gmax (resp., Kmin
to Kmax), both inclusive, for G (resp., Kg).

The prior on θ depends on the hyper-parameters δp , δω, Gmax, Gmin, Kmin,
Kmax, μ0, τ 2, α0 and β0, all of which need to be specified for a given applica-
tion. The reader is referred to our technical report [Dass and Li (2008)] for these
specifications.

The likelihood of the hierarchical mixture model involves several summa-
tions within each product term and is simplified by augmenting variables to
denote the class labels of the individual observations. Two different class la-
bels are introduced for the two levels of hierarchy: (1) The augmented variable
W ≡ (W1,W2, . . . ,WN) denotes the class label of the G sub-populations, that
is, Wi = g whenever object i arises from the gth subpopulation, and (2) Z ≡
(Z1,Z2, . . . ,ZN) with Zi ≡ (Zij , j = 1,2, . . . , ni), where Zij = k for 1 ≤ k ≤
Kg if xij arises from the kth mixture component φd(·|μkg,σ kg). We denote
the augmented parameter space by the same symbol θ as before, that is, θ =
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(G,ω,K,p,μ,σ ,W,Z). The augmented likelihood is now

�(G,ω,K,p,μ,σ ,W,Z)
(3.6)

=
N∏

i=1

ni∏
j=1

G∏
g=1

Kg∏
k=1

(φd(xij |μkg,σ kg))
I (Zij=k,Wi=g),

with priors on W and Z given by

π(W,Z|G,K,ω,p) = π(W|G,ω) · π(Z|G,K,W,p),(3.7)

where π(W|G,ω) = ∏N
i=1

∏G
g=1 ω

I(Wi=g)
g and

π(Z|G,K,W,p) =
G∏

g=1

∏
i : Wi=g

ni∏
j=1

Kg∏
k=1

p
I(Zij=k)

kg .

Based on the augmented likelihood and prior distributions, one can write down the
posterior distribution (up to a normalizing constant) via Bayes theorem. The pos-
terior has the expression

π(θ |x) ∝ �(G,ω,K,p,μ,σ ,W,Z) × π(W,Z|G,K,ω,p)
(3.8)

× π(G,K,ω,p,μ,σ )

based on (3.1), (3.6), (3.7) and observed data x.

4. Posterior inference. The total number of unknown parameters in the hi-
erarchical mixture model depends on the values G and K. Thus, the posterior in
(3.8) can be viewed as a probability distribution on the space of all hierarchical
mixture models with varying dimensions. To obtain posterior inference for such
a space of models, Green (1995) and Green and Richardson (1997) developed
the RJMCMC for Bayesian inference. In this paper we develop a RJMCMC ap-
proach to explore the posterior distribution in (3.8) resulting from the hierarchical
mixture model specification. We briefly discuss the general RJMCMC implemen-
tation here. Let θ and θ∗ be elements of the model space with possibly differing di-
mensions. The RJMCMC approach proposes a move, say, m, with probability rm.
The move m takes θ to θ∗ via the proposal distribution qm(θ, θ∗). In order to
maintain the time reversibility condition, we require to accept the proposal with
probability

α(θ , θ∗) = min
{

1,
π(θ∗|x)

π(θ |x)

rm′qm′(θ∗, θ)

rmqm(θ, θ∗)

}
;(4.1)

in (4.1), qm′(θ∗, θ) represents the probability of moving from θ∗ to θ based on
the “reverse” move m′, and π(θ |x) denotes the posterior distribution of θ given x.
It is crucial that the moves m and m′ be reversible [see Green (1995)], meaning
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that the densities qm(θ , θ∗) and qm′(θ∗, θ) have the same support with respect to
a dominating measure. In case θ∗ represents the higher dimensional model, we
can first sample u from a proposal q0(θ ,u) (with possible dependence on θ ), and
then obtain θ∗ as a one-to-one function of (θ ,u). In that case, the proposal density
qm(θ , θ∗) in (4.1) is expressed as

qm(θ , θ∗) = q0(θ ,u)
/

det
[

∂θ∗

∂(θ,u)

]
,(4.2)

where ∂θ∗
∂(θ ,u)

denotes the Jacobian of the transformation from (θ ,u) to θ∗, and det
represents the absolute value of its determinant. If the triplet (θ ,u, θ∗) involves
some discrete components, then the Jacobian of the transformation is obtained by
the one-to-one map of the continuous parts of θ∗ and (θ ,u), which can depend on
the values realized by the discrete components.

For the inference on hierarchical mixture models, five types of updating steps
are considered with reversible pairs of moves, (m,m′), corresponding to moves in
spaces of varying dimensions. The outline of the steps are as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1) Update G with (m,m′) ≡ (G-split,G-merge),
(2) Update K|G,ω,W with (m,m′) ≡ (K-split,K-merge),
(3) Update ω|G,K,W,Z,p,μ,σ ,

(4) Update W,Z|G,K,ω,p,μ,σ and
(5) Update p,μ,σ |G,K,ω,W,Z.

(4.3)

Our methodological contribution is the development of the Update G steps
(G-split and G-merge) based on a pair of reversible jump moves. The steps for
merging and splitting G are described in detail in the Appendix. The Update K
steps are similar to that of Green and Richardson (1997). The other steps (3)–(5)
do not involve jumps in spaces of varying dimensions, and can be carried out based
on a regular Gibbs proposal. One cycle through steps (1)–(5) completes one itera-
tion of the RJMCMC sampler.

The assessment of convergence of the RJMCMC is carried out based on the
methodology of Brooks and Guidici (1998, 2000). A total of 3 chains are run from
different starting points and different variance components of the log-likelihood
are calculated to obtain 3 diagnostic plots, namely, the plots of (i) the overall and
within chain variance, V̂ and Wc, (ii) within model and within chain within model
variances, Wm and WmWc, and (iii) between model and between model within
chain variances, Bm and BmWc, against the number of iterations. The merging of
the two lines in each plot indicate that the chains have sufficiently mixed.

5. Assessing fingerprint individuality. Our inferential methodology for as-
sessing fingerprint individuality is illustrated using fingerprint images from the
NIST Special Database. The NIST fingerprint database is publicly available and
consists of 2000 8-bit gray scale fingerprint image pairs of size 512-by-512 pix-
els. Because of the similarity of the image pairs, only the first image of each pair
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FIG. 2. Two fingerprint images from the NIST database with minutiae locations indicated by white
squares.

was used in the statistical modeling. The algorithm described in Zhu, Dass and
Jain (2007) (also mentioned in the Introduction) was used to extract minutiae from
these images; minutiae could not be automatically extracted from two images of
the NIST database due to poor quality and these were discarded from further con-
sideration. Figure 2 shows examples of two fingerprint images from the NIST data-
base with minutiae locations indicated by white squares.

The RJMCMC algorithm developed in the previous section is used to obtain the
posterior distribution of PRC. The first N0 = 100 fingerprint images from the NIST
database are taken as the sample and three chains with starting values obtained us-
ing the clustering procedure of Zhu, Dass and Jain (2007) are run. Figure 3 gives
the diagnostic plots of the RJMCMC sampler which establish convergence after a
burn-in of B = 250,000 iterations. The posterior distribution of PRC (correspond-
ing to m = 64, n = 65, w = 25 and r0 = 15 pixels) based on 1000 realizations of
the RJMCMC after the burn-in period is given in Figure 4 with a posterior mean
of 0.6859 and the 95% HPD interval given by [0.63,0.735]. We conclude that if
a fingerprint pair was chosen from this population with m = 64, n = 65 and an
observed number of matches w = 25, there is high uncertainty in making a posi-

FIG. 3. Convergence diagnostics for the NIST fingerprint database with N0 = 100. Panels (a), (b)
and (c), respectively, show the plots of (V̂ ,Wc), (Wm,WmWc) and (Bm,BmWc) as a function of the
iterations. The x-axis unit is 10,000 iterations.
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FIG. 4. Posterior distribution of PRC based on 1000 realizations of the RJMCMC after 300,000
iterations for N0 = 100.

tive identification. Our analysis actually indicates that the fingerprints in Figure 1
represent a typical impostor pair. The 95% HPD set suggests that the PRC can be
as high as 0.735, that is, about 3 in every 4 impostor pairs result in 25 or more
matches.

How many matches does it take to positively identify an individual? Different
countries around the world have different standards [Girard (2007)]. In the Nether-
lands, this number is 12, whereas in South Africa, it is 7. In the United States and
the UK, this number is not fixed and depends on expert testimonial. To assess the
level of uncertainty associated with these standards, we conduct a study of the
PRC based on w = 7 matches. The best case scenario corresponds to the com-
bination (m,n,w) = (7,7,7) (when all query and template minutiae match with
each other) with a mean PRC of 5.09 × 10−5 in Table 2. Note that 7 matches has
moderate strength of evidence for declaring a positive match; the PRC implies 5 in
100,000 impostor fingerprint pairs will have all 7 minutiae match with each other.
It is also very unlikely that n = 7 in real life since fingerprints lifted from a crime
scene have far lesser number of minutiae (thus, m � n) compared to the template
it is being matched to. In this latter case, the PRCs are far larger (see Table 2),
making the case for positive identification even weaker.

To compare the results of inference using a larger sample size, we ran the
RJMCMC sampler for the first N0 = 200 and 500 fingerprint images in the
NIST database. The computational complexity increases in two ways: first, it
takes longer, on the average, to complete one iteration of the RJMCMC and sec-
ond, the RJMCMC takes a longer time to converge. On our personal computer
with processing speed 2.66 GHz and 1.96 GB of RAM, it took about 12.5, 31.8
and 90.0 hours, respectively, to generate every 50,000 iterations of the RJMCMC

TABLE 2
Mean PRCs for the combinations (7,7, n)

n 7 10 15 55 65 75
Mean PRC 5.09 × 10−5 1.40 × 10−4 3.25 × 10−4 0.0155 0.0333 0.0614



1460 S. C. DASS AND M. LI

FIG. 5. Convergence diagnostics for the NIST fingerprint database with N0 = 200. Panels (a), (b)
and (c), respectively, show the plots of (V̂ ,Wc), (Wm,WmWc) and (Bm,BmWc) as a function of the
iterations. The x-axis unit is 10,000 iterations.

for N0 = 100,200 and 500. While the RJMCMC converged at 300,000 itera-
tions for N0 = 100, the chain did not converge even at B = 350,000 iterations
for N0 = 200 (see Figure 5) and N0 = 500 (the diagnostic plots are not shown).

Discussion: The RJMCMC sampler is able to accommodate all N0 = 1998 fin-
gerprint images from the NIST database. However, this chain is extremely slow at
mixing, and therefore, we do not expect convergence to occur in real time on our
computers. Computational demand magnifies exponentially for very large data-
bases such as the US-VISIT program. Thus, for implementation on very large
databases, results can be obtained with the help of high-end computing facilities.

One enormous advantage of the methodology outlined in this paper is that the
RJMCMC needs to be run on large databases only once. After convergence is
achieved, inference on PRC for any combination of (w,m,n) can be obtained us-
ing formula (1.6). As an illustration based on our smaller sample size of N0 = 100,
Table 3 gives the results of this analysis for different combinations of (w,m,n).
The entries of Table 3 provides a general guideline to FBI and forensic experts
on the extent of uncertainty associated with making a positive identification. Note
that when (w,m,n) = (25,64,65), the PRC is high, indicating a low extent of in-
dividualization. However, Table 3 also provides several combinations of (w,m,n)

that favor positive identification with a high degree of individualization. For exam-
ple, we can look at entries in Table 3 for 95% HPD sets that fall entirely below a
threshold, say, T0. With the choice of T0 = 0.003 (that is, 3 in every 1000 impostor
fingerprint pairs will have w or more observed matches), the combinations that al-
low for positive identification with uncertainty level of at most T0 are (45,54,55),
(50,54,55), (53,54,55), (50,64,65) and (53,64,65); for these combinations, the
probability that the true PRCs occur below T0 is at least 95%. For larger values
of N0, the size of the HPD sets will decrease due to decreasing variability of the
estimate of PRC.

In this paper we only considered a two level hierarchical mixture model.
The US-VISIT program now requires individuals to submit prints from all 10 fin-
gers. This is the case of a 3-level hierarchical mixture model; in the first (top) level,
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TABLE 3
Posterior means and 95% HPD sets calculated based on 1000 realizations

of the RJMCMC for N0 = 100

w Mean HPD

(m,n) = (54,55)

25 1.33 × 10−1 (1.16,1.53) × 10−1

35 1.70 × 10−3 (0.80,3.40) × 10−3

45 5.69 × 10−4 (0.0007,2.40) × 10−3

50 5.68 × 10−4 (0.00002,2.40) × 10−3

53 5.68 × 10−4 (0.0002,7.34) × 10−4

(m,n) = (64,65)

25 6.84 × 10−1 (6.27,7.26) × 10−1

35 9.22 × 10−2 (0.77,1.09) × 10−1

45 1.90 × 10−3 (0.93,3.60) × 10−3

50 6.42 × 10−4 (0.0051,2.40) × 10−3

53 5.80 × 10−4 (0.0089,2.40) × 10−3

(m,n) = (74,75)

25 9.50 × 10−1 (8.99,9.87) × 10−1

35 6.10 × 10−1 (5.54,6.57) × 10−1

45 9.91 × 10−2 (0.81,1.20) × 10−1

50 2.12 × 10−2 (1.63,2.73) × 10−2

53 7.10 × 10−3 (5.10,9.80) × 10−3

individuals form the G groups based on similar characteristics of their 10 fingers,
and the distribution of features in each finger is modeled using standard mixtures.
Any higher level hierarchical mixture models will be more involved in two ways:
(1) The computational costs, including memory and time, since convergence will
be much slower to achieve, and (2) the development of reversible moves such as
G-merge and G-split for the higher level of mixtures. We are of the view that the
best estimate of the population PRC can be obtained if the data is characterized by
a model that best represents the way the data is structured and observed. In the case
of the US-VISIT, the 3-level hierarchical mixture model is indeed the right way to
view the available data. Further research will be needed to see how the computa-
tional complexity can be reduced. The availability of high-end computing facilities
will definitely be a requirement for fitting higher level hierarchical mixtures.

The central issue for extending the proposed analysis to other biometrics, such
as face and iris, is the type of feature extracted for each of the different biometrics.
The framework of hierarchical mixture models will apply to these biometric traits
but we have to develop mixture models on different feature spaces. The features
we used in this paper were minutiae locations, and therefore, we needed mixture
models on points in R2. An additional feature for fingerprints are the minutiae di-
rections (the white lines in Figure 1). In order to run a similar analysis, one would
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need to develop suitable mixture models on the product space R2 × [0,2π). Simi-
larly, in the case of iris, the feature used is the IrisCode (consisting of a rectangular
array of 0s and 1s), and so the statistical models that have to be developed are
potentially Markov Random Field models (since there is significant spatial depen-
dence between neighboring 0s and 1s) indexed by a set of parameters. Then, one
could postulate that the population consists of G such groups of MRF models. We
will also need a distribution for the number of matching features and derive the
distribution of this under impostor pairs of IrisCodes.

6. Summary and future work. We have developed Bayesian inference
methodology for hierarchical mixture models with application to fingerprint in-
dividuality. One way to further reduce the level of uncertainty for a fixed com-
bination (w,m,n) is to increase the number of features used for matching. Our
future work will be to derive hierarchical mixture models on the extended feature
space consisting of minutiae locations and directions. The challenge here is that
the angles are significantly spatially correlated and the minutiae locations exhibit
clusters. We are currently developing a model that can account for these minu-
tiae characteristics. We plan to improve our algorithm so that it can be run more
quickly on very large databases. Hierarchical mixture models have potential use in
other areas as well, including the clustering of soil samples (objects) based on soil
characteristics which can be modeled by a mixture or a transformation of mixtures.

APPENDIX

In the subsequent text, the identifiability condition (2.5) based on the first com-
ponents of μkg for k = 1,2, . . . ,Kg will be rewritten using the ‘≺’ symbol as

μ1g ≺ μ2g ≺ · · · ≺ μKgg(A.1)

for each g = 1,2, . . . ,G. Let θ and θ∗ denote two different states of the model
space, that is,

θ = (G,ω,K,p,μ,σ ,W,Z) and
(A.2)

θ∗ = (G∗,ω∗,K∗,p∗,μ∗,σ ∗,W∗,Z∗),

where the ∗s in (A.2) denote a possibly different setting of the parameters.

A.1. The G-merge move. The G-merge move changes the current G to G−1
(that is, G∗ = G − 1) and is carried out based on the following steps:

Step 1: Two of the G components, say, g1 and g2, with g1 < g2, are selected
randomly for merging into g∗ with ωg∗ = ωg1 + ωg2 .

Step 2: The K-components, Kg1 and Kg2 , are combined to obtain Kg∗ in the
following way. Adding Kg1 + Kg2 = Kt , we set Kg∗ = (Kt + 1)/2 if Kt is odd,
and Kg∗ = Kt/2 if Kt is even.
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Step 3: Next, (pg1,μg1
,σ g1) and (pg2,μg2

,σ g2) are merged to obtain (pg∗,
μg∗,σ g∗) as follows. The identifiability conditions of (A.1) hold for g = g1 and
g = g2, and must be ensured to hold for g = g∗ after the merge step. To achieve
this, the Kt μ’s are arranged in increasing order

μ1 ≺ μ2 ≺ · · · ≺ μKt−1 ≺ μKt
(A.3)

with associated probability pj for μj , for j = 1,2, . . . ,Kt . Thus, pj are a re-
arrangement of the Kt probabilities in pg1 and pg2 according to the partial ordering
on μg1

and μg2
in (A.3). First, the case when Kt is even is considered. Adjacent μ

values in (A.3) are paired

μ1 ≺ μ2︸ ︷︷ ︸ ≺ μ3 ≺ μ4︸ ︷︷ ︸ ≺ · · · ≺ μKt−1 ≺ μKt︸ ︷︷ ︸(A.4)

and the corresponding g∗ parameters are obtained using the formulas p∗
kg∗ =

p2k−1+p2k

2 ,

μ∗
kg∗ = p2k−1μ2k−1 + p2kμ2k

p2k−1 + p2k

and

(A.5)
σ ∗

kg∗ = p2k−1σ 2k−1 + p2kσ 2k

p2k−1 + p2k

for k = 1,2, . . . ,Kg∗ . To obtain W∗ and Z∗, objects with Wi = g1 or Wi = g2
are relabeled as W ∗

i = g∗. For these objects, the allocation to the Kg∗ compo-
nents is carried out using a Bayes allocation scheme. Explicit expressions for the
allocation probabilities are provided in Dass and Li (2008). When Kt is odd, an
index, i0 is selected at random from the set of all odd integers up to Kt , namely,
{1,3,5, . . . ,Kt }. The triplet (pi0,μi0

,σ i0 ) is not merged with any other indices
but the new p∗

i0
= pi0/2. The remaining adjacent indices are merged according to

Step 3.

A.2. The G-split move. The split move is reverse to the merge step above
and is carried out in the following steps:

Step 1: A candidate G-component for split, say, g, is chosen randomly with
probability 1/G. The split components are denoted by g1 and g2. The first level
mixing probability, ωg , is split into ωg1 and ωg2 by generating a uniform random
variable, u0, in [0,1] and setting ωg1 = u0ωg and ωg2 = (1 − u0)ωg.

Step 2: The value of Kg is transformed to Kt where Kt is either 2Kg −1 or 2Kg

with probability 1/2 each. Once Kt is determined, a pair of indices (Kg1,Kg2) is
selected randomly from the set of all possible pairs of integers in {Kmin,Kmin +
1, . . . ,Kmax}2 satisfying Kg1 + Kg2 = Kt . If M0 is the total number of such pairs,
then the probability of selecting one such pair is 1/M0. The selection of Kg1 and
Kg2 determines the number of second level components in the g1 and g2 groups.
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Step 3: The aim now is to split each component of the triplet (pg,μg,σ g) into
2 parts: (pg1,μg1

,σ g1) and (pg2,μg2
,σ g2) such that both μg1

and μg2
satisfy the

constraints (A.1) for g = g1 and g2. The case of Kg1 + Kg2 = 2Kg is first consid-
ered. A sketch of the split move is best described by the diagram in Figure 6, which
introduces the additional variables to be used for performing the split. In Figure 6,
2pg is considered for splitting because the two split components will represent the
second level mixing probabilities of g1 and g2, the sum of which together equals 2.

For each k, the variable ukg in Figure 6 takes three values, namely, 0, 1 and 2
that respectively determines if the split components of 2pkg , μkg and σ kg either
(1) both go to component g2, (2) one goes to component g1 and the other goes
to g2, or (3) both go to g1. The variables ukg, k = 1,2, . . . ,Kg must satisfy several

constraints: (1)
∑Kg

k=1 ukg = Kg1 , (2) ukg = 1 for any k such that pkg > 0.5, and
(3)

∑
k : ukg=h 2pkg < 1 for h = 0,2. The reader is referred to our technical report

Dass and Li (2008) for further explanation of these restrictions.
To generate the vector u ≡ (u1g, u2g, . . . , uKgg)

′, we consider all combinations
of u ∈ {0,1,2}Kg , and reject the ones that do not satisfy the three restrictions.
From the total number of remaining admissible combinations, M1, say, we select
a vector u randomly with equal probability 1/M1.

Once u has been generated, a random vector v ≡ (vkg, k = 1,2, . . . ,Kg) is gen-
erated to split 2pg (see Figure 6). Some notation are in order: Let A0 = {k :ukg =
0}, A1 = {k :ukg = 1} and A2 = {k :ukg = 2}. As in the case of u, a few restrictions
also need to be placed on the vector v. To see what these restrictions are, we denote

p
(1)
kg = 2vkgpkg and p

(2)
kg = 2(1 − vkg)pkg(A.6)

FIG. 6. Splits of 2pg , μg and σg . The partial ordering ≺ is the ordering on μ
(1)
kg s. The right arrows

“→” represents the sequential split for μg and σg .
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for k = 1,2, . . . ,Kg , to be the split components from 2pkg . Note that depending

on the value of ukg = 0,1 or 2, the split components, p
(1)
kg and p

(2)
kg , are either both

assigned to component g2, one to g1 and the other to g2, or both to g1. For the
case ukg = 1, we will assume that p

(1)
kg is the split probability that goes to g1 and

p
(2)
kg goes to g2. Note that the mixing probabilities for both components g1 and g2

should equal 1. This implies∑
k : k∈A1

p
(1)
kg + ∑

k : k∈A2

2pkg = 1 and
∑

k : k∈A1

p
(2)
kg + ∑

k : k∈A0

2pkg = 1(A.7)

for components g1 and g2, respectively. The second equation of (A.7) is redun-
dant if the first is assumed since

∑
k : k∈A1

p
(1)
kg + ∑

k : k∈A2
2pkg + ∑

k : k∈A1
p

(2)
kg +∑

k : k∈A0
2pkg = 2

∑Kg

k=1 pkg = 2. We rewrite the first equation as∑
k : k∈A1

akvkg = 1,(A.8)

where ak = 2pkg/(1 − ∑
k : k∈A2

2pkg). Equation (A.8) implies that the entries
of the vector v are required to satisfy two restrictions: (1) 0 ≤ vkg ≤ 1 for
k = 1,2, . . . ,Kg from (A.6), and (2) equation (A.8) above. In Dass and Li (2008),
an algorithm is given to generate such a v where the proposal density can be writ-
ten down in closed form.

The split of μg and σ g is carried out by generating two new random vectors
ykg and zkg , for k = 1,2, . . . ,Kg ; see Figure 6. The generation of ykg is subject
to restrictions arising from constraint (A.1) on μg . The other component of the
split of μg and σ g , ỹkg and z̃kg , are obtained by solving two (vectorized) linear
equations [see Dass and Li (2008)]. Our techical report also gives further details
of the RJMCMC sampler, including obtaining the new first and second level labels
as well as the deriving explicit expressions for the allocation probabilities and the
Jacobian of the transformation from (θ ,u) to θ∗.
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