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Microarrays have been developed that tile the entire nonrepetitive
genomes of many different organisms, allowing for the unbiased mapping of
active transcription regions or protein binding sites across the entire genome.
These tiling array experiments produce massive correlated data sets that have
many experimental artifacts, presenting many challenges to researchers that
require innovative analysis methods and efficient computational algorithms.
This paper presents a doubly stochastic latent variable analysis method for
transcript discovery and protein binding region localization using tiling ar-
ray data. This model is unique in that it considers actual genomic distance
between probes. Additionally, the model is designed to be robust to cross-
hybridized and nonresponsive probes, which can often lead to false-positive
results in microarray experiments. We apply our model to a transcript finding
data set to illustrate the consistency of our method. Additionally, we apply
our method to a spike-in experiment that can be used as a benchmark data
set for researchers interested in developing and comparing future tiling array
methods. The results indicate that our method is very powerful, accurate and
can be used on a single sample and without control experiments, thus defray-
ing some of the overhead cost of conducting experiments on tiling arrays.

1. Introduction. Commercial whole-genome tiling arrays have been devel-
oped that “tile” the entire genomes of organisms at a very high resolution. For
example, Affymetrix has developed a set of 7 arrays that tile the entire human
genome which on average contains one 25-mer oligonucleotide probe within every
35 base pairs in the genome. Other companies offer researchers the option to select
their own probes on the array, leading to the ability to consider genomic regions of
their choice at very high resolution. With these data, biologists are able to interro-
gate the entire genome to find transcription factor (TF) binding sites, nucleosome
occupancy, histone modifications, new transcripts, or alternative splicing events
that discover new biological phenomena and confirm previous hypotheses.

Tiling array technology presents many new statistical and computational chal-
lenges to researchers. One new issue presented by tiling array experiments is that
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the measured intensity values from probes that map to nearby genomic regions
are expected to be highly correlated, compared to traditional array analysis where
the probes are typically treated as independent. To complicate analysis further,
the increased genomic coverage of tiling arrays results in data that are noisier,
mainly because the higher resolution reduces options for probe selection and be-
cause there is typically no preset region of interest (such as probe set in traditional
microarray design). Additionally, a typical tiling Affymetrix array experiment on
the whole human genome with triplicate treatment and triplicate controls can pro-
duce as many as 270 million data points, in which a researcher may only be look-
ing for a few hundred interesting genomic sites. Therefore, tiling array analysis
requires highly sensitive statistical methods that balance the logistical constraints
of working with such large data sets.

Tiling array analysis is typically accomplished in two steps: background sub-
traction and normalization followed by genomic region localization or peak-
finding. Background subtraction and normalization are typically applied to mi-
croarray data to filter out chip and probe background effects in the data. Re-
searchers have proposed simultaneous normalization/background subtraction
methods [Li, Meyer and Liu (2005), Johnson et al. (2006), Huber, Toedling and
Steinmetz (2006), Song et al. (2007)] that can be applied to arrays individually and
model individual probe behavior, attempting to filter any probe-specific bias out of
the data. The reader is referred to the references above for more details on tiling
array normalization and background subtraction.

Several researchers have developed methods for peak finding in tiling array
analysis. Some of the first peak-finding methods were based on sliding window
scan statistics estimated using a fixed number of probes [Ji et al. (2008), Got-
tardo et al. (2008) or by pooling probes within a genomic window of fixed size
Cawley et al. (2004), Johnson et al. (2006)]. These window-based methods are
developed using nonparametric or robust methodology to protect against outly-
ing measurements at the cost of statistical power or efficiency. Additionally, win-
dowing methods are less accurate in precisely identifying the actual start and end
positions of the regions of interest [described in detail in Huber, Toedling and
Steinmetz (2006)]. In addition, scan statistics based on a fixed number of probes
do not take into account the fact that the probes are unequally spaced across the
genome and, therefore, probes that are very distant from each other could be com-
bined or pooled. Other peak finding algorithms do allow for more flexible peak
size. However, these methods either require a user-defined peak size distribution
[Keles (2006)], a user-defined peak region shape [Zheng et al. (2008)] or the spec-
ification of the expected number of peak regions [Huber, Toedling and Steinmetz
(2006)].

In this paper we propose a model for peak finding in tiling array applications
using a continuous-space latent Markov model. The observed probe intensity val-
ues are modeled using a two component mixture model that individually estimates
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the probability that each probe is differentially hybridized in the treatment sam-
ples compared to the control samples (or hybridized at a level above background
for applications/analyses without control samples). Then, based on the probability
of differential hybridization, the model considers neighborhoods of probes, look-
ing for genomic regions with high percentages of differentially hybridized probes
using a continuous-space Hidden Markov Model (HMM). This model structure
naturally deals with cross-hybridized probes by allowing for a small percentage
of differentially hybridized probes in the nonpeak regions, making the method
very robust. Additionally, the model deals with nonresponsive probes by allowing
for a percentage of the peak region probes to be nonhybridized, where previous
analyses often ignore these or attempt to locate and discard these before the analy-
sis. The continuous-space Markov assumption naturally deals with differences in
probe spacing, asserting that correlation of one probe with its nearest neighbor
is dependent on the distance between the midpoints of the probes, meaning that
probes very close together are expected to be highly correlated and probes very
far away from each other are nearly independent. We are unaware of any other
peak finding method in the literature that explicitly accounts for this differential
probe spacing. Furthermore, the mixture component for the hybridized probes is
assumed to have a hierarchical Bayesian structure, allowing different peaks to have
different means, and estimation of these means are a byproduct of the model-fitting
procedure, providing a measure for the magnitude of each peak region. Finally, the
model can handle most applications on tiling arrays and can easily be adapted to
analyze data from experiments with or without replicate samples and with or with-
out control samples.

2. Data examples and preprocessing. We applied our method on two tiling
array datasets: (1) the the recent S. cerevisiae tiling experiment presented in David
et al. (2006) and (2) a spike in study presented in conducted as part of the Human
ENCODE project presented in Johnson et al. (2008). We use the first dataset to
illustrate our method and also to compare with the method of Huber, Toedling and
Steinmetz (2006). The second dataset is a spike-in experiment that can be used
as a benchmark data set for comparing existing and future tiling array analysis
methods. More details of these data sets are given below.

2.1. Transcript finding. The S. cerevisiae tiling experiment was designed for
mapping actively transcribed regions in the entire yeast genome. In this experi-
ment, total RNA was isolated from yeast cells and enriched for Poly(A) RNA.
First-strand cDNA was synthesized using random primers, and then labeled and
hybridized on a microarray. The array tiles both strands of each chromosome using
overlapping 25-mer probes that have an average of 8 bp between probe midpoints.
The experiment included three replicate hybridizations for the RNA samples and
no control samples.
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We mapped the microarray probes to the yeast genome using the software pre-
sented in Li et al. (2008). There were ∼2.8 million probes that mapped to a unique
location in the genome and any probes that mapped to multiple genomic locations
were discarded. We then applied the method of Johnson et al. (2006) to normalize
the data and take out bias and variation in the data that can be attributed to probe
and sample effects.

2.2. ENCODE spike-in study. The spike-in study was conducted on the
Affymetrix Human ENCODE version 1.0 array which contains approximately
700K probes and tiles nearly 1% of the human genome. In the experiment, 96
clones approximately 500 bps in length were spiked into sample at (2n + 1)-fold
enrichment for n = 1, . . . ,8 compared to genomic DNA. Some of these clones
mapped to overlapping locations on the genome and a few of the clones mapped to
locations that were not tiled on the array. Control samples consisted of sonicated
DNA that were labeled and hybridized on the array.

There were 70 unique spike-in regions and the number of probes in each region
ranged from 2 to 94 probes, with a median of 21. The size of the regions covered
on the array ranged from 44 bps to 2044 bps, with a median of 465. The probes
on the array are 25 bps long and the midpoints of consecutive probes are spaced at
an average of 35 bps. The analysis in the sections below includes three arrays for
both the treatment and control samples. We first preprocessed these samples using
the standardization method of Johnson et al. (2006).

3. Tiling array model definition. We apply a continuous-time Markov
process to model tiling array data to locate regions of protein binding or areas
of active transcription. Our model definition below equates to four-state HMM,
where each probe across the chromosome is assumed to fall within one of the
four states. In simple terms, the model classifies each probe as having high or
low intensity using a mixture model. In addition, using a Markov assumption,
the model considers the status of neighboring probes. Each probe is either clas-
sified as a high or low probe in the midst of a genomic region containing mostly
high or low probes (peak or nonpeak). Convolutions of probe high/low and region
peak/nonpeak leads to the four states of the model. The main assumption of the
model is that peak regions will have a high proportion of high-intenstity probes,
whereas nonpeak regions will have a low proportion of high probes.

The inclusion of these four states has a buffering effect on outlying probes.
For example, in nonpeak regions it is common to observe sporadic high-valued
probes due to cross-hybrization or sequence repeats in the genome. The four-state
HMM allows for the probe status of these probes to change almost freely, but
considers several probes at once to determine region status. This buffers the effect
of cross-hybridized and nonresponsive probes and avoids the frequent region state-
switching—making the model more robust and accurate.
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3.1. Formal model definition. To formally define our model for peak-finding,
let i = 1, . . . ,N index the probes from the tiling array that map to a given chro-
mosome, where the probes are ordered by increasing genomic location Li , and the
distance between probes given as di = Li+1 − Li . Let X = (X1, . . . ,XN), where
Xi = (Xi1, . . . ,Xinc)

T , be the observed normalized logged intensity values from
the nc control samples in the experiment, and likewise let Y = (Y1, . . . ,YN),
where Yi = (Yi1, . . . , Yint )

T , be the observed normalized logged intensity val-
ues from the nt treatment samples. Xij is assumed to follow a Gaussian dis-
tribution with probe-specific parameters θi0 = (μi, σ

2), and henceforth denote
ϕθi0(Xi) = ∏nc

j=1 fθi0(Xij ), where fθ (·) is the density function of a Gaussian dis-
tribution with parameters θi0. Yij is assumed to be generated by a mixture of
two Gaussian distributions. If the complementary DNA/RNA sequence for probe
i is not enriched in the treatment samples, Yij will be assumed to follow the
same distribution as Xij , and if the complementary sequence is enriched in the
sample, Yij will be assumed to follow a Gaussian distribution with parameters
θi1 = (μi + δi, τ

2), where δi measures difference in the abundance of the com-
plementary sequence for probe i in the treatment versus control samples. We will
define ϕθij

(Yi) as with ϕθij
(Xi) above.

As illustrated in Figure 1(a), we assume a hierarchical or random effects struc-
ture on μi and δi , meaning that the probe-specific means and abundance levels are
themselves random variables drawn from a common distribution across all probes
on the array. More formally, we assume that μi ∼ N(μ,η2) and δi ∼ N(δ, ξ2),
where μ, η2, δ and ξ are the same for all probes on the array. For future refer-
ence, let θ0 = (μ,η2), θ1 = (δ, ξ2), and φθi0(Yi) = ϕθi0(Yi)ϕθ0(μi) and φθi1(Yi) =
ϕθi1(Yi)ϕθ0(μi)ϕθ1(δi). The model design assumes that the control samples are

(a) (b)

FIG. 1. (a) Illustration of the random probe effects portion of the tiling array model. (b) Correlation
structure of the defined tiling array model. There is one set of (three) nodes for each probe on the
array. Y,X represent the observed data, H is a latent variable indicating the hybridization status
of the probe, and E is a latent continuous-time Markov chain that indicates whether the region is a
peak region.
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draws from a distribution with a mean of μi . Including the hierarchical assump-
tion will stabilize the estimates of μi and δi in experiments with small sample
size.

We define H = (H1, . . . ,HN) as a set of unobserved indicator variables that
take on values

Hi =
{

1, if probe i has mean μi + δi ,
0, if probe i has mean μi .

Therefore, Hi = 0 indicates that the observed probe signal measures probe-
specific background noise and Hi = 1 indicates that the probe is specifically or
differentially hybridized, or meaning that there is an enrichment of the complemen-
tary DNA/RNA sequence in the sample hybridized on the array. Henceforth, these
probes will merely be referred to as hybridized probes. Additionally, as with the
intensity values, we assume that Hi is independent of Hj for all i and j , given that
the region status (peak or nonpeak) is known. Additionally, we assume that inten-
sity values are independent of each other across probes given the hybridization sta-
tus of the probes. Peak regions can be identified as regions with high percentages of
hybridized probes. Not all the probes in these regions are required to be hybridized,
allowing for a percentage of the probes to be nonresponsive, a phenomenon com-
monly observed in array experiments. Additionally, the nonpeak genomic regions
are allowed sporadic high probe values, accounting for cross-hybridizations which
occur when an incorrect sequence binds to the probe or when the probe’s com-
plementary sequence appears in multiple locations on the genome. More formally,
this equates to Hi being derived from a mixture of Bernoulli distributions, with
parameters p0 and p1 for the nonpeak and peak regions respectively. To identify
peak regions, we define another set of latent indicators given by E = (E1, . . . ,EN)

that take on values

Ei =
{

1, if probe i is in a peak region,
0, if probe i is not in a peak region.

We assume that E is a two-state continuous-time Markov chain with a transition
matrix defined below. Convolutions of Hi and Ei lead to a four state HMM where
transitions between hybridization states are independently determined by the indi-
vidual probes and transitions between region status are governed by the Markov
transition matrix.

We use the transition matrix defined in the the doubly stochastic Poisson process
often referred to as a Cox Process [Cox (1955)]. We assume that the distance be-
tween peak regions and the size of the peak regions follow Exponential(μ0) and
Exponential(μ1) distributions, respectively. Under this assumption, the transition
matrix is given by

T(d) =
(

π0 + π1 exp(−kd) π1{1 − exp(−kd)}
π0{1 − exp(−kd)} π1 + π0 exp(−kd)

)
,(1)
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where k = μ0 + μ1, π0 = μ1/(μ0 + μ1), π1 = 1 − π0 and where d is the genomic
distance between consecutive probes. Figure 1(b) contains a schematic diagram
illustrating the correlation structure of the tiling array model described here. A de-
tailed complete data likelihood of the observed and missing data is given in the
supplemental article [Johnson, Liu and Liu (2009)].

The data generating process assumed by the model, as illustrated in Figure 1,
consists of partitioning all contiguously tiled genomic regions into peak and non-
peak regions using a continuous-time Markov process. Then each probe is des-
ignated as hybridized or nonhybridized with probability p0 if the probe is in a
nonpeak region and p1 if the probe is in a peak region. Then given hybridization
status, the probe is given intensity values from ϕθi0(Yi) for controls and nonhy-
bridized probes and ϕθi1(Yi) for hybridized probes.

3.2. Bayesian implementation. We will use a fully Bayesian approach to esti-
mate the parameters and latent states in the model. We impose the following prior
distributions on the model parameters:

μ ∼ N(m, s2), σ 2 ∼ IG(aσ , bσ ),
δ ∼ N(d, t2), τ 2 ∼ IG(aτ , bτ ),

p0 ∼ Beta(a0, b0), η2 ∼ IG(aη, bη),
p1 ∼ Beta(a1, b1), ξ2 ∼ IG(aξ , bξ ),
π ∼ Beta(aπ , bπ), k ∼ Gamma(ak, bk).

Hyperprior values were selected based on the application; but in general, these
have very little effect on the results because of the massive amounts of data that
are associated with tiling arrays. These priors are conjugate for the parameters μ,
δ, σ 2, τ 2, η2, ξ2, p0 and p1.

3.3. Adapting the model for nontraditional designs. Some applications on
tiling arrays require control samples, but other experiments have no natural control,
for example, mapping all actively transcribed genes in the genome [Kapranov et
al. (2002), David et al. (2006)]. In addition, although including replicate and con-
trol samples generally increase sensitivity and decrease false positive rates of the
peak detection algorithm, recent research has shown that it is possible to achieve
consistent results with a single sample analyses without replicate samples and/or
controls [Johnson et al. (2006), Song et al. (2007)]. This is a very beneficial result
for exploratory studies or in experiments that are very expensive to conduct. For
this reason, we have adapted our model to accommodate experimental designs that
do not include controls or replicates or neither.

In experiments without replicate samples and/or controls, we simplify the model
by omitting the probe-specific random effects and assume that the log-intensity
values Yi are derived from a mixture of Gaussian distributions with common means
and variances across the probes; more specifically, the values are generated from
either a N(μ,σ 2) or a N(μ+δ, τ 2) distribution. The major limitation of this model
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is that it does not allow for probe or region specific enrichment measurements,
meaning that no natural measure of absolute enrichment is derived from the model.
However, as shown in the results below, this model is able to detect true signals
with high accuracy and sensitivity.

4. Estimation.

4.1. An Expectation Conditional Maximization algorithm. For efficient model
estimation, we developed an Expectation Conditional/Maximization (ECM) algo-
rithm [Meng and Rubin (1993)] to estimate the parameters of the model and then
subsequently infer the latent Markov chain. The latent indicators H and E are as-
sumed to be missing data and � = (μ, δ, σ 2, τ 2, η2, ξ2,p0,p1, π, k,μi, δi for i =
1, . . . ,N) are treated as parameters in the model. Also let �(t) denote the estimates
of the parameters � at the t th iteration of the algorithm.

In the Expectation step (E-step), we let Q(�|�(t)) = E�(t)[�(�|y,x,H,E)],
where �(�|y,x,H,E) is the log of the likelihood function given in Johnson, Liu
and Liu (2009). Since Hi and Ei are binary random variables, their expectations
(and expectations of functions of Hi and Ei ) can be represented as probabilities.
With this in mind, it follows that the log-likelihood is linear in P(Hi = j |�(t)),
P(Ei = k|�(t)), P(Hi = j,Ei = k|�(t)) and P(El−1 = j,El = k|�(t)) for all
for all i = 1, . . . ,N and j, k = 0,1, and l = 2, . . . ,N . Therefore, we estimate these
probabilities using a forward–backward dynamic programming algorithm and then
substitute them into Q(�|�(t)), which completes the E-step. A detailed descrip-
tion of the forward–backward algorithm used here is given in the supplemental
article [Johnson, Liu and Liu (2009)].

The Maximization step (CM-step) is a hybrid between a Maximization and Con-
ditional Maximization step. It is staightforward to maximize Q(�|�(t)) over the
parameters p0, p1, π and k because they are independent of the other model pa-
rameters and p0 and p1 have closed-form maximizers. Q(�|�(t)) is maximized
over π and k using a Newton–Raphson algorithm nested within each iteration of
the CM-step. The remaining parameters of the model are estimated by condition-
ally maximizing Q(�|�(t)) iteratively over the others parameters, one at a time,
while holding the other parameters at the most recent estimated value as described
in Meng and Rubin (1993). A more detailed implementation of this algorithm is
described in the supplemental article [Johnson, Liu and Liu (2009)].

4.2. A Markov chain Monte Carlo approach. We also use a Gibbs sampling
approach to sample from the posterior distribution of the parameters and miss-
ing data. This approach included a forward–backward sampling algorithm which
samples from the joint posterior of the Markov chain [see the supplemental article
[Johnson, Liu and Liu (2009)] for details]. Most parameters have conjugate priors,
with the exception of π and k for which we include an integrated Metropolis-
type algorithm to draw from their distributions. Details for the implementation of
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this algorithm are given in Appendix B. In Section 5.4 we compare the ECM and
MCMC algorithms.

4.3. Region scoring. In a tiling array analysis using the model presented here,
it is of primary interest to estimate the peak region indicators Ei , and then rank
the significant regions based on the strength of the peak. Statistical significance
of peak regions can be determined using the marginal probability estimates of Ei ,
obtained using P(Ei = 1|�CMLE) for the ECM algorithm (where �CMLE is the
value of the parameters to which the algorithm converged) or P(Ei = 1) for the
MCMC method estimated by stochastic simulation.

In order to rank the regions, we utilize the marginal probabilities, and the
model parameter δi , which is designed to measure the difference in abundance
of DNA/RNA fragments between the treatment and control samples, and therefore
can be thought of as a measure of practical significance (under the assumption that
higher values of δi are more interesting). Additionally, we incorporate Hi in the
score calculation, which basically removes nonrepsonsive probes from the region
score calculation for each significant peak region. We rank the regions based on

Region ScoreR =
∑

i:i∈SR
wiδi∑

i:i∈SR
wi

,

where SR is the set of consecutive statistically significant probes that constitute
region R, and wi is the estimate of P(Hi = 1,Ei = 1) from the model. For the
model that accommodates no replicates or controls, there are no δis in the model,
so the scoring is based on the actual observed log-intensity values.

Heuristically, this scoring function given above is a compromise between the
statistical significance of the individual probes in the regions, their difference in
abundance between samples, and the likelihood that the probe is measuring dif-
ferential hybridization or background noise. This scoring function is similar to the
method used by Johnson et al. (2006), which uses a trimmed mean statistic to re-
move nonresponsive probes, but also has the disadvantage of removing the top
scoring probes in the region. Additionally, the method presented here has the ad-
vantage of trimming specific probes whose likelihood of being nonresponsive are
high as opposed to trimming a set percentage of probes in the region. In fact, the
hidden H layer acts as a trimming agent that is optimized locally, meaning that the
trimming proportion for each region can have different trimming percentages, as
dictated by the probes in the region [see the supplemental article by Johnson, Liu
and Liu (2009) for more detail].

5. Results.

5.1. Transcript finding. Henceforth, we denote our tiling array model de-
scribed above as DSAT (Doubly Stochastic Analysis of Tiling arrays). We applied
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DSAT to the transcription data using the ECM algorithm with a probability cutoff
of 0.9. We defined the convergence criterion for the ECM algorithm to be that the
complete data log likelihood must change by less than 0.001. The algorithm con-
verged in 1 hour 48 minutes on a single CPU of a Macintosh computer with two
3GHZ Quad-Core Intel Xeon processors.

To evaluate the performance of DSAT on this dataset, we obtaned a list of
6,604 open reading frames (ORFs) for the yeast genome (SGD, http://www.
yeastgenome.org/). Of these ORFs, 6475 were tiled by probes on the array, rang-
ing from 1 to 1810 probes per ORF, with a median 129. The number of bps tiled
for each ORF ranged from 25 to 14,753, with median of 1081. Of the total base
pairs called significant by DSAT, 87.6% fell on either strand within ORF bound-
aries [compared with 84% reported in David et al. (2006)] and 91.4% of the ORFs
contained some significant expression in the DSAT regions [compared to 90% re-
ported in David et al. (2006)]. Figure 2(a) shows an up-close view of one region
from chromosome 4.

We also compared DSAT with the segmentation-based transcript discovery
method from Huber, Toedling and Steinmetz (2006). This method requires the
pre-specification of the number of segments, which we specified by predicting that
the average segment length is 1500 bps as recommended by Huber, Toedling and
Steinmetz (2006). We analyzed the data using all three replicates simultaneously
(3R), the three replicates individually (R1, R2, R3) and then all three replicates
but removing 90% of the probes (3R10). We used the top scoring 1000 3R regions
from each method to compare the consistency of the results when replicates and
probes are removed. For DSAT, 92%, 88% and 84% of the R1, R2, R3 regions
and 82% of of the 3R10 regions were in the DSAT 3R list. For the segmentation
algorithm, 83%, 77% and 77% of the R1, R2, R3 regions and only 52% of of the
3R10 regions were in the segmentation 3R list. Therefore, it appears that DSAT is
much more consistent, particularly when the density of the array is reduced.

5.2. Spike-in results. We applied DSAT using the ECM and MCMC algo-
rithms to the spike-in samples individually (S1, S2, S3), to each spike-in individu-
ally using one control (S1C1, S2C2, S3C3), three replicates with no controls (3S),
three replicates with three controls (3S3C) and, for comparison with other meth-
ods, we also conducted the 3S3C analysis eliminating two-thirds of the probes on
the array (used every third probe). DSAT regions were selected using a probability
cutoff of 0.10 and ordered by the scoring function defined above. Normally we rec-
ommend a higher probability cutoff, but the lower cutoff was used in this case so
that the number of significant DSAT regions better matched the number of regions
called by the other methods (using default parameter values) in the comparisons
below.

Table 1 contains the final parameter values from the S1, S1C1, 3S and 3S3C
analyses for the ECM algorithm. Some of the parameter estimates of these analy-
ses yield some interesting insight into the data. In the S1 analysis, p0 indicated that

http://www.yeastgenome.org/
http://www.yeastgenome.org/
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(a)

(b)

FIG. 2. For plots (a) and (b) the x-axis represents chromosomal location. Plot (a) is a view from the
transcript finding dataset. The top and bottom tracks are the probabilities from the model (highest
ones are very near to 1) based on the data from the positive and negative strands, respectively. The
second and third tracks (boxes) show the locations of annotated ORFs on the positive and negative
strands, respectively. For plot (b), the tracks represent the probe intensity values from the S1 sample,
the DSAT (ECM) probabilities after removing the hidden H layer, the DSAT (ECM) probabilities
including the H layer, and the box in the fourth track indicates the true spike-in region. Notice that
including the H layer buffers the noise in the data and produces a clear result.

an estimated 5.1% of the probes in nonspike-in regions are considered hybridized
above background, while 1 − p1 indicates that 5.8% of the probes in the spike-in
regions are not hybridized above background or are nonresponsive. Similar inter-
pretations are appropriate for p0 and p1 in the analyses with controls, except that
they measure the differential hybridization of the spike-ins versus the controls. In
the single sample (with single control) featured here, we estimate that 0.6% of the
probes in nonspike-in regions are differentially hybridized in the nonspike-in re-
gions and 94.8% of the probes in the spike-in regions are differentially hybridized.
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TABLE 1
Parameter values from the ECM algorithm on the Encode Spike-in study for varying numbers of

replicates and controls

p0 p1 μ δ σ 2 η2 ξ2 π k

S1 0.051 0.942 −0.111 2.25 0.41 — 6.55 0.0020 347.2
3S 0.140 0.778 −0.226 1.52 0.34 — 2.61 0.0030 401.0
S1C1 0.006 0.948 0.004 3.19 0.33 — 1.56 0.0032 371.1
S3C3 0.007 0.978 0.018 3.01 0.27 0.58 19.9 0.0032 356.0

S1 = The first spike-in sample without controls.
3S = The first three spike-in sample without controls.
S1C1 = The first spike-in sample with the first control.
3S3C = The first three spike-in samples with the first three controls.

In the S3C3 analysis, 0.7% of the probes in the nonspike-in regions were con-
sistently differentially hybridized across arrays, while 97.8% of the probes in the
putative spike-in regions were consistently differentially hybridized.

The values of π and k also give interesting insight into the data. π , which ranges
from 0.20–0.32%, measures the approximate proportion of base pairs in the sam-
ple that are in spike-in regions. k measures the approximate length (in base pairs)
of the spike-in regions, ranges from 347.2–401.0 which seem to slightly underes-
timate the true length of ∼465.

5.3. Latent H layer and probe spacing. The H layer is an absolutely essential
element of the model. Sporadic cross-hybridized probes (or single probes in repeat
regions) in nonpeak regions often have such high signals that DSAT without the H
layer will tend to change states based on one probe and then immediately switch
back. This same phenomenon also occurs in enriched/expressed regions with non-
responsive probes. To illustrate this point, we removed the H layer and reanalyzed
the S1 sample. Figure 2(b) shows that the model without the H layer changes states
too often. In fact, there is little difference between the normalized data (track 1)
and the DSAT probabilites without the H layer (track 2). However, note that for
the DSAT method with the H layer (track 3) the effect of the noisy cross-hyridized
and nonresponsive probes is buffered, thus providing a clean analysis result for
this region.

To show incorporating probe spacing is beneficial, we reanalyzed the S1 sam-
ple with a stationary transition matrix. There was virtually no difference in the true
and false positive regions called and when probes were fairly uniformly spaced the
results were indistinguishable. However, when probes were not uniformly spaced
there were severe problems with the stationary transition matrix method. Figure 3
illustrates these problems. The stationary matrix carries information across large
genomic distances, sometimes as much as 1000 bps, leading to less accurate re-
gion definitions. In the examples in Figure 3, the true spike-ins are both about 500
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(a)

(b)

FIG. 3. The tracks (y-axes, top to bottom) in the plots above represent the normalized data, DSAT
with a stationary transition matrix, and DSAT accounting for probe spacing. The bars at the bottom
represent spike-in regions. Notice that the stationary matrix results in carrying information across
large genomic distances, leading to less accurate region definitions.

base pairs. DSAT with a stationary matrix calls regions of size 1500–2000 base
pairs, while DSAT incorporating genomic distance calls regions of 500–800 base
pairs. The extra thousand base pairs called by the stationary method will be very
detrimental to motif searching and transcription mapping. Therefore, it is clear that
incorporating genomic distance is highly beneficial. Note that methods using sta-
tistics that combine a fixed number of probes (such as BAC, TileMap and HGMM)
may also suffer from this problem.

5.4. Comparing the ECM and MCMC algorithms. Most of the parameter es-
timates for the ECM and the posterior modes of the parameters from the MCMC
algorithm were very similar in the analysis of the spike-in study. However, some
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of the parameter estimates and the posterior estimates of the hidden Markov chain
were surprisingly different, even though they were estimated based on the same
model. For example, in S1 the MCMC algorithm estimated p1 = 77.6% (com-
pared to 94.2% from the ECM) and the MCMC approach gave an estimate of
k = 509.7, which is very close to the actual value (as opposed to 401.0 from the
ECM method).

Based on the spike-in study, the MCMC algorithm appears to call more peak re-
gions significant than the ECM algorithm. For example, the ECM algorithm gave
between 104–118 regions in S1, S2, S3 with probability greater than 0.10, while
the MCMC algorithm gave between 110–137 regions at the same cutoff (pair-
wise average difference is 12.7). Additionally, Figure 4(a) and (b) illustrate the
increased sensitivity obtained by using the MCMC approach. In these figures, the
first track is the normalized data (normalized intensity values vs. genomic posi-
tion), the second track contains the ECM probabilities, the third track contains the
MCMC probabilities, and the bars (if any) on the fourth track indicates the true
spike-ins. Figure 4(a) shows a region with four spike-in regions in close proximity.
It appears that the MCMC approach reliably identifies all four regions, whereas the
ECM method only identifies three. Figure 4(c) shows the negative impact of the
MCMC approach by showing a false positive region that appears to have higher
significance in the MCMC vs. the ECM.

We attribute the increase in significance in the MCMC vs. the ECM to the fact
that the ECM estimate for the missing peak region indicators Ei is a conditional
probability of Ei given the parameters are fixed at �CMLE, whereas the estimate
from the MCMC algorithm is the posterior mean of the marginal distribution of
Ei , integrating out �. We noticed that a few of the parameters, in particular, the
k from the transition matrix, had a large effect on the results of the model, so
marginalizing over the uncertainty in k increased the sensitivity of the model sub-
stantially. However, in the spike-in study, this increased significance was not ben-
eficial in terms of false discovery rate, because it appears that the ECM algorithm
and MCMC algorithms find roughly the same true positive sites and so the addi-
tional sites are mostly false positives. However, in other data analyses this may not
be the case, and increased significance could lead to an increase in the sensitivity
of the method.

On the S1 analysis, we defined the convergence criterion for the ECM algo-
rithm to be that the complete data log likelihood must change by less than 0.1,
which turned out to be a change of ∼0.0001%. The algorithm converged in about
40 iterations which took about 25 minutes on a single CPU of a Macintosh com-
puter with two 3GHZ Quad-Core Intel Xeon processors. The MCMC simulations
took much more time; 10,500 iterations took about 24 hours to run on the same
computer. Therefore, although the MCMC method was more sensitive, the ECM
algorithm converged much faster and will therefore be more tractable for tiling
array experiments with millions of probes.
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(a)

(b)

FIG. 4. For plots (a) and (b) the x-axis represents chromosomal location. The first track represents
the probe intensity values from the S1 sample, the second track represents the ECM probabilities,
the third track contains the MCMC probabilities, and the boxes in the fourth track indicate the true
spike-in regions.

5.5. Comparing DSAT with other methods. We compared the performance
of DSAT with several common methods on the Affymetrix spike-in experiment.
We only compare DSAT, MAT [Johnson et al. (2006)] and Tilemapv2 [Ji et
al. (2008)] for single array analysis. For experiments with control samples, we
compared DSAT with MAT, TileMapv2, TIMAT2 (http://timat2.sourceforge.net/),
BAC [Gottardo et al. (2008)], HGMM [Keles (2006)], and the Affymetrix Tiling

http://timat2.sourceforge.net/
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Array Suite (TAS) software, which is based on the methods used in [Cawley et al.
(2004)].

For BAC, we set the number of MCMC iterations to 25,000 and we still found
true spike-in regions at a joint probability cutoff of 0.01. For HGMM, which re-
quires the prespecification of peak-size distribution (based on number of probes),
we inputted the actual probe distribution from the spike-in experiment. In addition,
HGMM only works for positive probe values, so the normalized intensities were
exponentiated, and TIMAT only works with quantile-normalized data, so we could
not use the same normalization method as with the other methods. TileMap para-
meters were set based on the recommendation in Ji et al. (2008). All other methods
and parameters were set at default values.

5.5.1. False positive rates. We first considered the false positive rates of the
several methods on the Affymetrix spike-in experiment. Figure 5 contains a com-
parison between the false positive rates of the methods on the Affymetrix spike-in
experiment. The x-axis represents the ordered significant regions for the methods
and the height of the line represents the number of regions that are true spike-in
regions. The plots represent the average performance for each method on the S1,
S2, S3 and S1C1, S2C2, S3C3 analyses, the performance on the 3S3C analysis,
and the performance on the 3S3C analysis when only one third of the probes are
considered.

On the single same analyses without controls, DSAT slightly outperforms MAT,
and Tilemap performs very poorly. On the single sample/single control analyses
DSAT slightly outperforms MAT, TIMAT and TileMap. At around 75 regions,
TileMap overcomes DSAT, although there are only 70 true regions in the data set.
TAS performs very poorly on this comparison and BAC and HGMM cannot be
applied to these analyses. In the 3S3C comparison, TileMap, MAT and BAC seem
to work better than all the other methods. The performances of DSAT and TIMAT
were similar to TileMap, MAT and BAC until about 60 regions, where DSAT and
TIMAT stopped finding high-confidence regions (i.e., for DSAT the cutoff was set
at 0.10). For the 3S3C analysis using every third probe, DSAT, MAT, TIMAT and
TileMap performed similarly, whereas the accuracy of BAC HGMM and TAS are
greatly reduced. We postulate that the poor performance here indicates that these
methods may need large quantities of data for the best performance.

Also of note is that DSAT does not require the user to select parameters such as
window size (genomic: MAT, TIMAT, TAS; number of probes: BAC, TileMap,
HGMM), trimming percentage (MAT), or window size distribution (HGMM),
which DSAT does automatically by design. Therefore, it appears that DSAT can
achieve the same or better performance level with fewer user-defined parameters.

5.5.2. Region precision. One of the major advantages of DSAT is that it leads
to more accurate and precise identification of important biological features than
window-based methods. Windowing methods (either genomic or probe-based)
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FIG. 5. Comparison of false positive rates of various tiling array methods on the Affymetrix spike-in
experiment. The x-axis represents the ordered significant regions for the methods and the height of the
line represents the number of these significant regions that are true spike-in regions. DSAT appears
to slightly outperform others on the single sample analysis. TileMap, MAT and BAC outperform all
methods using three samples and three controls. HGMM, TAS, Tilemap and BAC seem to underper-
form in some of the plots on the right and bottom.

typically identify regions that are larger (or smaller depending on the cutoff used)
than the true biological features of interest. Figure 6 compares DSAT with the ge-
nomic window-based MAT algorithm, showing that DSAT can clearly identify the
start/stop locations of the spike-in regions within 1-2 probes—almost independent
of the probability cutoff used. MAT’s identification of the start/stop is unclear and
possibly cut-off dependent, meaning that one needs to find the proper window-
size and cutoff combination for each data set to accurately identify the start/stop
region. Methods based on combining a fixed number of probes also suffer from
precision problems based on combining probes that are spaced very distant from
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(a)

(b)

FIG. 6. The tracks (y-axes, top to bottom) in the plots above represent the normalized data, scores
from the MAT algorithm, and the DSAT (ECM) probabilities. The bars at the bottom represent
spike-in regions. It is clear that DSAT can clearly identify the start/stop locations of the spike-in
regions within 1-2 probes, whereas MAT’s identification is unclear and possibly cut-off dependent.

each other on the chromosome [See the supplemental article Johnson, Liu and Liu
(2009) for more details]. Precise identification of such regions are very important
for follow-up analyses such as transcript mapping and motif searching (in ChIP-
chip experiments).

5.5.3. Region ordering. We also compared the spike-in region ordering from
each algorithm and compared this versus the true spike-in concentration to see
if the algorithms could correctly order the regions based on fold enrichment. For
the regions that were correctly identified by each method, we calculated the rank
(Spearman) correlation between the true spike-in level and the region score. These
correlations are contained in Table 2. Based on these results, it is clear that DSAT
outperforms all other methods with respect to this metric.
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TABLE 2
Rank correlations between the significant regions and the true spike-in concentration for the

Affymetrix spike-in experiment

Method S1, S2, S3 correlations 3S3C correlation

DSAT (ECM) 0.86, 0.85, 0.87 0.88
DSAT (MCMC) 0.85, 0.83, 0.87 0.87
MAT 0.80, 0.82, 0.76 0.80
HGMM — 0.76
BAC — 0.58
TAS — 0.51
TileMap 0.24, 0.15, 0.20 0.26
TIMAT — 0.11

6. Discussion. Genome tiling arrays are tools that are proving to be very help-
ful in producing high-dimensional snapshots of biological processes. Tiling arrays
are some of the most versatile and useful arrays available, as measured by the
plethora of applications that are currently being conducted on them. However,
tiling arrays are presenting new challenges to researchers trying to analyze and
interpret the data that are produced. As the resolution of these arrays increase, the
data become more correlated, variable, and contain more artifacts.

In this work we present a novel doubly stochastic latent variable model and
a Bayesian analysis approach for analyzing data from many of the applications
on tiling arrays. Two hidden layers of indicator variables are included in the
model. One of these latent layers makes the model robust to nonresponsive and
cross-hybridized probes. The other, which is assumed to follow a continuous-time
Markov chain, accounts for some of the local correlation present in the data and
the differential spacing between probes on the arrays, a phenomenon that has not
been adequately addressed in the literature. We also allow for probe-specific ran-
dom effects, allowing each probe to have its own background and hybridization
distribution. The model is very flexible in that it is able to handle many appli-
cations and many different experimental designs, including experiments without
replicate and/or control samples. We present two estimation approaches, the first,
which utilizes an ECM algorithm, is computationally efficient and can be used on
very large data sets. The second method is a Markov chain Monte Carlo method
which is very sensitive because it marginalizes over all parameters in the model.

We apply our method to two datasets. The first dataset, designed for mapping
active transcripts, illustrates our method in the case of a tiling array experiment
without control experiments. We showed that our method handles this type of ex-
periment well and that it outperforms a method designed specifically for this tiling
array application. Additionally, we apply our method to a spike-in experiment to
compare with many other tiling array methods and show that our method performs
at least as well with fewer user-defined parameters. The spike-in experiment will



1202 W. E. JOHNSON, X. S. LIU AND J. S. LIU

be a very useful reference for future statisticians wishing to develop and compare
new methods for tiling array applications.

Acknowledgments. The authors would like to thank Xihong Lin and Wei Li
for helpful insights and discussions in regard to this work.

SUPPLEMENTARY MATERIAL

Likelihood, ECM/MCMC algorithms, and additional results and compar-
isons (DOI: 10.1214/09-AOAS248SUPP; .pdf). Here we provide a detailed likeli-
hood equation and a description of the ECM and MCMC algorithms used in this
paper. In particular, we provide details on the forward–backward and forward–
backward sampling algorithms used to infer the hidden Markov chain.
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