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ARE A SET OF MICROARRAYS INDEPENDENT
OF EACH OTHER?1

BY BRADLEY EFRON

Stanford University

Having observed an m×n matrix X whose rows are possibly correlated,
we wish to test the hypothesis that the columns are independent of each other.
Our motivation comes from microarray studies, where the rows of X record
expression levels for m different genes, often highly correlated, while the
columns represent n individual microarrays, presumably obtained indepen-
dently. The presumption of independence underlies all the familiar permuta-
tion, cross-validation and bootstrap methods for microarray analysis, so it is
important to know when independence fails. We develop nonparametric and
normal-theory testing methods. The row and column correlations of X inter-
act with each other in a way that complicates test procedures, essentially by
reducing the accuracy of the relevant estimators.

1. Introduction. The formal statistical problem considered here can be stated
simply: having observed an m×n data matrix X with possibly correlated rows, test
the hypothesis that the columns are independent of each other. Relationships be-
tween the row correlations and column correlations of X complicate the problem’s
solution.

Why are we interested in column-wise independence? The motivation in this
paper comes from microarray studies, where X is a matrix of expression levels
for m genes on n microarrays. In the “Cardio” study I will use for illustration
there are m = 20,426 genes each measured on n = 63 arrays, with the microarrays
corresponding to 63 subjects, 44 healthy controls and 19 cardiovascular patients.2

We expect the gene expressions to be correlated, inducing substantial correlations
within each column [Owen (2005), Efron (2007a), Qiu et al. (2005a)], but most of
the standard analysis techniques begin with an assumption of independence across
microarrays, that is, across the columns of X. This can be a risky assumption: all
of the familiar permutation, cross-validation and bootstrap methods for microarray
analysis, such as the popular SAM program of Tusher, Tibshirani and Chu (2001),
depend on column-wise independence of X; dependence can invalidate the usual
choice of a null hypothesis, as discussed next, leading to flawed assessments of
significance.
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An immediate purpose of the Cardio study is to identify genes involved in the
disease process. For gene i we compute the two-sample t-statistic “ti” comparing
sick versus healthy subjects. It will be convenient for discussion to convert these
to z-scores,

zi = �−1(F61(ti)), i = 1,2, . . . ,m,(1.1)

with � and F61 the cumulative distribution functions (c.d.f.) of standard normal
and t61 distributions; under the usual assumptions, zi will have a standard N(0,1)

null distribution, called here the “theoretical null.” Unusually large values of zi

or −zi are used to identify nonnull genes, with the meaning of “unusual” depend-
ing heavily on column-wise independence.

The left panel of Figure 1 shows the histogram of all 20,426 zi values, which
is seen to be much wider than N(0,1) near its center. An “empirical null” fit to
the center, as in Efron (2007b), was estimated to be N(0.03,1.572). Null overdis-
persion has many possible causes [Efron (2004, 2007a, 2007b)], one of which is
positive correlation across the columns of X. Such correlations reduce the effective
degrees of freedom for the t-statistic, causing (1.1) to yield overdispersed null zis,
and of course changing our assessment of significance for outlying values.

The right panel of Figure 1 seems to offer a “smoking gun” for correlation: the
scattergram of expression levels for microarrays 31 and 32 looks strikingly cor-
related, with sample correlation coefficient 0.805. Here X has been standardized

FIG. 1. Left panel: histogram of m = 20,426 z-values (1.1) for Cardio study; center of histogram
is much wider than N(0,1) theoretical null. Right panel: scatterplot of microarrays 31 and 32,
(xi31, xi32) for i = 1,2, . . . ,m, after removal of row-wise gene means; the scattergram seems to
indicate substantial correlation between the two arrays.
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by subtraction of its row means, so the effect is not due to so-called ecological
correlations. (X is actually “doubly standardized,” as defined in Section 2). Nev-
ertheless, the question of whether or not correlation 0.805 is significantly positive
turns out to be surprisingly close, as discussed in Section 4, because the row-wise
correlations in X drastically reduce the degrees of freedom for the scatterplot. De-
spite the massive appearance of 20,426 points, the scattergram’s accuracy is no
more than would be given by 17 independent bivariate normal pairs.

Answering the title’s question, that is, testing for column-wise independence in
the presence of row-wise dependence, has both easy and difficult aspects. Section 2
introduces a class of simple permutation tests which, in the case of the Cardio data,
clearly discredit column-wise independence. However, these tests depend on the
ordering of the n columns, and can’t be used if the initial order is lost. It is nat-
ural and desirable to look for test statistics of column-wise independence that are
invariant under permutation of the columns. Classical multivariate analysis, as in
Anderson (2003), develops column independence tests in terms of the eigenvalues
of an n by n Wishart matrix. However, this theory depends on the assumption of
row-wise independence, disqualifying it for use here.

Sections 3 through 5 consider more general classes of independence tests, both
from nonparametric and normal theory points of view. The theorem in Section 3 il-
lustrates a key difficulty: correlation between the rows of X (ruled out in the classic
theory) can give a misleading appearance of column-wise dependence. Similarly,
row-wise dependence can greatly degrade the accuracy of the usual n × n sample
covariance matrix of the columns, as shown by the theorem in Section 4. Various
nonpermutation normal-theory tests are discussed in Section 5, some promising,
but with difficulties seen for all of them. The paper ends in Section 6 with a col-
lection of remarks and details.

2. Permutation tests of column-wise independence. Simple permutation
tests can provide strong evidence against column-wise independence, as we will
see for the Cardio data. Our main example concerns the 44 healthy subjects,
where X is now an m × n matrix with m = 20,426 and n = 44. For convenience,
we assume that X has been “demeaned” by the subtraction of row and column
means, giving∑

i

xij = ∑
j

xij = 0 for i = 1,2, . . . ,m and j = 1,2, . . . , n.(2.1)

Our numerical results go further and assume “double standardization”: that in ad-
dition to (2.1),∑

j

x2
ij = n and

∑
i

x2
ij = m for i = 1, . . . ,m and j = 1, . . . , n,(2.2)

that is, that each row and column of X has mean 0 and variance 1; see Remark 6.4
in Section 6.
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FIG. 2. Left panel: Components of first eigenvector of row sample correlation matrix for the 44
healthy Cardio subjects, plotted versus array number 1,2, . . . ,44; dashes emphasize the block of
large components for arrays 27–32. Right panel: First eigenvectors for healthy (solid line) and can-
cer (dashed) subjects, prostate cancer study, Singh et al. (2002); there was a systematic drift in
expression levels as the study progressed.

Let �̂ be the familiar estimate of the n × n covariance matrix � between the
columns of X,

�̂ = (X′X)/m.(2.3)

Under double standardization, �̂ is actually the sample correlation matrix,
which we expect to be near the identity matrix In under column-wise indepen-
dence. Also let v1 denote the first eigenvector of �̂. The left panel of Figure 2
plots the components of v1 versus array number 1,2, . . . ,44. Suppose that the
columns of the original expression matrix, before standardization, are independent
and identically distributed m-vectors (“i.i.d.”). Then it is easy to see (Remark 6.2
of Section 6) that all orderings of the components of v1 are equally likely. This is
not what Figure 2 shows: the components seem to increase from left to right, with
a noticeable block of large values for arrays 27–32.

Let S(v1) be a statistic that measures structure, for instance, a linear regression
of v1 versus array index. Comparing S(v1) with a set of permuted values

{S∗l = S(v∗l), l = 1,2, . . . ,L},(2.4)

v∗l a random permutation of the components of v1, provides a quick test of the
i.i.d. null hypothesis.

Permutation testing was applied to v1 for the Cardio data, using the “block”
statistic

S(v1) = v′
1Bv1,(2.5)
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where B is the n × n matrix

B = ∑
h

βhβ
′
h.(2.6)

The sum in (2.6) is over all vectors βh of the form

βh = (0,0, . . . ,0,1,1, . . . ,1,0,0, . . . ,0),(2.7)

with the 1s forming blocks of length between 2 and 10 inclusive. A heuristic ratio-
nale for block testing appears below; intuitively, microarray experiments are prone
to block disturbances because of the way they are developed and read; see Cal-
low et al. (2000). After L = 5000 permutations, only three S∗ values exceeded the
actual value S(v1), p-value 0.0006, yielding strong evidence against the i.i.d. null
hypothesis.

The right panel of Figure 2 pertains to a microarray prostate cancer study
[Singh et al. (2002)] discussed in Efron (2008): m = 6033 genes were measured on
each of n = 102 men, 50 healthy controls and 52 prostate cancer patients. The right
panel plots first eigenvectors for �̂, (2.3), computed separately for the healthy con-
trols and the cancer patients (the two matrices being individually doubly standard-
ized). Both vectors increase almost linearly from left to right. Taking S(v1) as the
linear regression of v1 versus array number, permutation testing overwhelmingly
rejected the i.i.d. null hypothesis, as it also did using the block test. The prostate
study appears as a favorable example of microarray technology in Efron (2008).
Nevertheless, Figure 2 indicates a systematic drift in the expression level read-
ings as the study progressed. Some genes drift up, others down (the average drift
equaling 0 because of standardization), inducing a small amount of column-wise
correlation.

Section 5 discusses models for X where the n × n column covariance matrix �

is of the “single degree of freedom” form

� = I + λββ ′(2.8)

for some known fixed vector β , the null hypothesis of column-wise independence
being H0 :λ = 0. An obvious choice of test statistic in this situation is

Sβ = β ′(�̂ − I )β,(2.9)

a monotone increasing function of β ′�̂β . If β is unknown, we can replace Sβ with

SB =
H∑

h=1

β ′
h�̂βh = tr

(
�̂

∑
h

βhβ
′
h

)
≡ tr(�̂B),(2.10)

where {β1, β2, . . . , βH } is a catalog of “likely prospects” as in (2.7).
Permutation test statistics such as (2.5) can be motivated from the singular value

decomposition (SVD) of X,

X
m×n

= U
m×K

d
K×K

V ′
K×n

,(2.11)
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where K is the rank, d the diagonal matrix of ordered singular values, and U and V

orthonormal matrices of sizes m × K and n × K ,

U ′U = V ′V = IK,(2.12)

IK the K × K identity. The squares of the diagonal elements, say,

e1 ≥ e2 ≥ · · · ≥ eK > 0 (ek = d2
k ),(2.13)

are the eigenvalues of X′X = V ′d2V .
SB in (2.10) can now be written as

SB =
k∑

j=1

ej

m
(v′

jBvj ).(2.14)

Model (2.8) suggests that most of the information against the null hypothesis H0
of independence lies in the first eigenvector v1, getting us back to test statistic
S(v1) = v′

1Bv1 as in (2.5).
What should the statistician do if column-wise independence is strongly re-

jected, as in the Cardio example? Use of an empirical null rather than a permuta-
tion or theoretical null, N (0.03,1.572) rather than N (0,1) in Figure 1, removes
the reliance on column-wise independence for hypothesis testing methods such as
False Discovery Rates, at the expense of increased variability. Efron (2008) dis-
cusses these points.

Two objections can be raised to our permutation tests: (1) they are really test-
ing i.i.d., not independence; (2) nonindependence might not manifest itself in the
order of v1 (particularly if the order of the microarrays has been shuffled in some
unknown way).

Column-wise standardization makes the column distributions more similar, mit-
igating objection (1). Going further, “quantile standardization”—say, replacing
each column’s entries by normal scores [Bolstad et al. (2003)]—makes the mar-
ginals exactly the same. The Cardio data was reanalyzed using normal scores, with
almost identical results.

Objection (2) is more worrisome from the point of view of statistical power. The
order in which the arrays were obtained should be available to the statistician, and
should be analyzed to expose possible trends like those in Figure 2.3 It would be
desirable, nevertheless, to have independence tests that do not depend on order—
that is, test statistics invariant under column-wise permutations. The remainder of
this paper concerns both the possibilities and difficulties in the development of
“nonpermutation” tests.

3The referee points out that when Affymetrix CEL files are available, array run dates will usually
be found in the DatHeader lines.
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3. Row and column correlations. There is an interesting relationship be-
tween the row and column correlations of the matrix X, which complicates the
question of column-wise independence. For the notation of this section define the
n × n matrix of sample covariances between the columns of X as

Ĉov = X′X/m,(3.1)

called �̂ in Section 2, and likewise

ĉov = XX′/n,(3.2)

for the m × m matrix of row-wise sample covariances (having more than
400,000,000 entries in the Cardio example!).

THEOREM 1. If X has row and column means 0, (2.1), then the n2 entries
of Ĉov have empirical mean 0 and variance c2,

c2 =
K∑

k=1

e2
k/(mn)2,(3.3)

with ek the eigenvalues (2.13), and so do the m2 entries of ĉov.

PROOF. The sum of Ĉov’s entries is

1′
nX

′X1n/m = 0,(3.4)

according to (2.1), while the mean of squared entries is∑n
j=1

∑n
j ′=1 Ĉov

2
jj ′

n2 = tr((X′X)2)

m2n2 = tr(V ′d4V )

m2n2 = c2.(3.5)

Replacing X′X with XX′ yields the same results for the row covariances ĉov. �

Under double standardization (2.1)–(2.2), the covariances become sample cor-
relations, say, Ĉor and ĉor for the columns and rows. Theorem 1 has a surpris-
ing consequence: whether or not the columns of X are independent, the column
sample correlations will have the same mean and variance as the row correla-
tions. In other words, substantial row-wise correlation can induce the appearance
of column-wise correlation.

Figure 3 concerns the 44 healthy subjects in the Cardio study, with X an
(m,n) = (20,426,44) doubly standardized matrix. All 442 column correlations
are shown by the solid histogram, while the line histogram is a random sample
of 10,000 row correlations. Here c2 = 0.2832, so according to the theorem, both
histograms have mean 0 and standard deviation 0.283.

The 44 diagonal elements of Ĉor protrude as a prominent spike at 1. (We can
not see the spike of 20,426 diagonal elements for the row correlation matrix ĉor
because they form such a small fraction of all 20,4262.) It is easy to remove the
diagonal 1’s from consideration.
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FIG. 3. Left panel: solid histogram the 442 column sample correlations for X the doubly stan-
dardized matrix of healthy Cardio subjects; line histogram is sample of 10,000 of the 20,4262 row
correlations. Right panel: solid histogram the column correlations excluding diagonal 1s; line his-
togram the row correlations corrected for sampling overdispersion.

COROLLARY. In the doubly standardized situation, the off-diagonal elements
of the column correlation matrix Ĉor have empirical mean and variance

μ̂ = − 1

n − 1
and α̂2 = n

n − 1

(
c2 − 1

n − 1

)
.(3.6)

For n = 44 and c2 = 0.283 this gives

(μ̂, α̂2) = (−0.023,0.2412).(3.7)

The corresponding diagonal-removing corrections for the row correlations [re-
placing n by m in (3.6)] are negligible for m = 20,426. However, c2 overestimates
the variance of the row correlations for another reason: with only 44 points avail-
able to estimate each correlation, estimation error adds a considerable component
of variance to the ĉor histogram in the left panel, as discussed next.

Suppose now that the columns of X are in fact independent, in which case the
substantial column correlations seen in Figure 3 must actually be induced by row
correlations, via Theorem 1. Let corii′ indicate the true correlation between rows i

and i ′ (i.e., between Xij and Xi′j ), and define α the total correlation to be the root
mean square of the corii′ values,

α2 = ∑
i<i′

cor2
ii′

/(
m

2

)
.(3.8)
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Remark 6.5 of Section 6 shows that α̂2 in (3.6) is an approximately unbiased es-
timate of α2, assuming column-wise independence. For the Cardio example α̂ =
0.241, similar to the size of the microarray correlation estimates in Efron (2007a),
Owen (2005) and Qiu et al. (2005a). Section 4 discusses the crucial role of α in
determining the accuracy of estimates based on X.

The right panel of Figure 3 compares the histogram of the column correlations
Ĉorjj ′ , now excluding cases j = j ′, with the row correlation histogram corrected
for sampling overdispersion via the shrinkage factor 0.0241/0.283. As predicted
by Theorem 1, the similarity is striking. A possible difference lies in the long right
tail of the Ĉor distribution (including Ĉor31,32, the case illustrated in Figure 1),
whose significance is examined in Section 4.

4. Normal theory. The results of Sections 2 and 3 were developed nonpara-
metrically. This section concerns multivariate normal theory, afterward used in
Section 5 to draw the connection with classical multivariate independence tests.
We consider the matrix normal distribution for X,

X
m×n

∼ Nm,n

(
0, �/

m×m
⊗ �

n×n

)
,(4.1)

where the Kronecker notation indicates covariance structure

cov(Xij ,Xi′j ′) = �/ ii′�jj ′ .(4.2)

Row xi of X has covariance matrix proportional to �,

xi ∼ Nn(0,�/ ii�)(4.3)

(not independently across rows unless �/ is diagonal), and likewise for column xj ,
xj ∼ Nm(0,�jj�/ ). As in (2.1), we take all means equal to 0.

Much of classical multivariate analysis focuses on the situation �/ = I , where
the rows xi are independent replicates,4

�/ = I :xi
i.i.d.∼ Nn(0,�), i = 1,2, . . . ,m,(4.4)

in which case the sample covariance matrix �̂ = X′X/m has a scaled Wishart
distribution,

�̂ ∼ Wishart(m,�)/m.(4.5)

Distribution (4.5) has first and second moments

�̂
n×n

∼ (
�

n×n
, �(2)

n2×n2
/m

)
with �

(2)
jk,lh = �jl�kh + �jh�kl(4.6)

for j, k, l, h = 1,2, . . . , n; see Mardia, Kent and Bibby [(1979), page 92].

4Most multivariate texts reverse the situation, taking the columns as independent replicas of pos-
sibly correlated rows.
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Relation (4.6) says that when �/ = I , that is when the rows of X are independent,
�̂ unbiasedly estimates the row covariance matrix � with accuracy proportional
to m−1/2. Correlation between rows reduces the accuracy of �̂, as shown next.

Returning to the general situation (4.1)–(4.3), define

�̃ = X′σ−2X/m,(4.7)

where σ is the diagonal matrix with diagonal entries σi = �/
1/2
ii .

THEOREM 2. Under model (4.1), �̃ has first and second moments

�̃ ∼ (
�,�(2)/m̃

)
, m̃ = m/[1 + (m − 1)α2],(4.8)

where α is the total correlation as in (3.8),

α2 = ∑
i<i′

(�/ 2
ii′/�/ ii�/ i′i′)

/(
m

2

)
,(4.9)

and �(2) is the Wishart covariance (4.6).

Comparing (4.8) with (4.6), we see that correlation between the rows reduces
“effective sample size” from m to m̃: for α = 0.241 as in (3.7), the reduction is
from m = 20,426 to m̃ = 17.2! (Notice that row standardization effectively makes
σi

.= 1 in (4.7), so �̃
.= �̂ (2.3), justifying the comparison.) The total correlation α

shows up in other efficiency calculations; see Remark 6.7.

PROOF OF THEOREM 2. The row-standardized matrix X̃ = σ−1X has matrix
normal distribution

X̃ ∼ Nm,n(0, �̃/ ⊗ �),(4.10)

where �̃/ = σ−1�/σ−1 has diagonal elements �̃/ ii = 1. From (4.2) we see that
�̃/ ii′ = �/ ii′/(�/ ii�/ i′i′)1/2 is the correlation between elements Xij and Xi′j in the
same column of X; �̃ = X̃′X̃/m has entries �̃jk = ∑

i X̃ij X̃ik/m, and is unbiased
for �,

E{�̃jk} = �jk,(4.11)

using (4.2).
The covariance calculation for �̃ involves expansion

�̃jk�̃lh =
(∑

i

X̃ij X̃ik/m

)(∑
i′

X̃i′lX̃i′h/m

)
(4.12)

= 1

m2

(∑
i

X̃ij X̃ikX̃ilX̃ih + ∑
i �=i′

X̃ij X̃ikX̃i′lX̃i′h

)
.(4.13)



932 B. EFRON

Using the formula

E{Z1Z2Z3Z4} = γ12γ34 + γ13γ24 + γ14γ23(4.14)

for a normal vector (Z1Z2Z3Z4)
′ with 0 means and covariances γij , (4.2) gives

E

{∑
i

X̃ij X̃ikX̃ilX̃ih

}
= m[�jk�lh + �jl�kh + �jh�kl](4.15)

and

E

{∑
i �=i′

X̃ij X̃ikX̃i′lX̃i′h

}
= m(m − 1)�jk�lh

(4.16)
+ (�jl�kh + �jh�kl)

∑
i �=i′

�̃/
2
ii′ .

Then (4.13) yields

E{�̃jk�̃lh} = �jk�lh + (�jl�kh + �jh�kl)

(
1 + (m − 1)α2

m

)
,(4.17)

giving

cov(�̃jk, �̃lh) = (�jl�kh + �jh�kl)/m̃,(4.18)

as in (4.8). �

A corollary of Theorem 2, used in Section 5, concerns bilinear functions of �

and �̃,

τ 2 = w′�w and τ̃ 2 = w′�̃w,(4.19)

where w is a given n-vector.

COROLLARY. Under model (4.1), τ̃ 2 has mean and variance

τ̃ 2 ∼ (τ 2,2τ 4/m̃).(4.20)

The proof follows that for Theorem 2; see Remark 6.9.
If �/ = I in (4.1), then �̃ = �̂ and τ̃ 2 has a scaled chi-squared distribution,

τ̃ 2 ∼ τ 2 · χ2
m/m,(4.21)

with mean and variance τ̃ 2 ∼ (τ 2,2τ 4/m), so again the effect of correlation
within �/ is to reduce the effective sample size from m to m̃ (4.8).

We can approximate �̃ (4.7), with

�̂ = X′σ̂−2
X/m,(4.22)
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where σ̂ 2
ii is an estimate of �/ ii based on the observed variability in row i. If the

rows of X have been standardized, then σ̂ 2
ii = 1 and �̂ returns to its original defi-

nition X′X/m.
Both Theorem 2 and the Corollary encourage us to think of �̂ as, approximately,

a scaled Wishart distribution based on an independent sample of size m̃,

�̂ ∼̇Wishart(m̃,�)/m̃.(4.23)

The dangers of this approximation are discussed in Section 5, but it is, nevertheless,
an evocative heuristic, as shown below.

Figure 4 returns to the question of the seemingly overwhelming correlation
0.805 between arrays 31 and 32 seen in Figure 1. A one-sided p-value was calcu-
lated for each of the 946 column correlations, using as a null hypothesis the nor-
mal theory correlation coefficient distribution based on a sample size of m̃ = 17.2
pairs of N2(0, I ) points [the correct null if � = I in (4.23)]. Benjamini and
Hochberg’s (1995) False Discovery Rate test, level q = 0.1, was applied to the 946
p-values. This yielded 7 significant cases, those with sample correlation ≥ 0.723;
all 7 were from the block of arrays 27 to 32 indicated in Figure 2. Correlation 0.805
does turn out to be significant, but by a much closer margin than Figure 1’s scat-
tergram suggests.

The FDR procedure was also applied using the simpler null distribution
N (−0.023,0.2412) (3.7). This raised the significance threshold from 0.723 to
0.780, removing two of the previously significant correlations.

FIG. 4. Dashed curve is normal-theory null density for correlation coefficient from m̃ = 17.2 pairs
of points; see Remark 6.6. Histogram is the 946 column correlations, right panel Figure 3. FDR test,
q = 0.1, yielded 7 significant correlations, Ĉor ≥ 0.723, including 0.805 between arrays 31 and 32,
Figure 1.
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Theorem 1 showed that the variance of the observed column correlations is
useless for testing column-wise independence, since any value at all can be induced
by row correlations. The test in Figure 4 avoids this trap by looking for unusual
outliers among the column correlations. It does not depend on the order of the
columns, objection (2) in Section 2 for permutation tests, but pays the price of
increased modeling assumptions.

5. Other test statistics. Theorem 2 offers a normal-theory strategy for testing
column-wise independence. We begin with X ∼ Nm,n(0,�/ ⊗ �) (4.1), taking

�/ ii = 1 and �jj = 1 for all i and j ,(5.1)

as suggested by double standardization. The null hypothesis of column-wise inde-
pendence is equivalent to the column correlation matrix � equaling the identity,

H0 :� = I,(5.2)

since then (4.2) says that all pairs in different columns are independent.
To test (5.2), we estimate � with �̂, (4.22) or more simply �̂ = X′X/m after

standardization, and compute a test statistic

S = s(�̂),(5.3)

where s(·) is some measure of distance between �̂ and I . The accuracy approxi-
mation �̂ ∼̇ (�,�(2)/m̃) from (4.8), with � = I , is used to assess the significance
level of the observed S, maybe even employing the more daring approximation
�̂ ∼̇Wishart(m̃, I )/m̃. Strategy (5.3) looks promising but, as the examples of this
section will show, it suffers from serious difficulties that are absent under the clas-
sic assumption of independent rows.

One of the difficulties stems from Theorem 1. An obvious test statistic for
H0 :� = I is

S = ∑
j<j ′

�̂2
j,j ′

/(
n

2

)
,(5.4)

the average squared off-diagonal element of �̂. But �̂ = Ĉov (3.1), so in the dou-
bly standardized situation of (3.6), S is an increasing monotone function of α̂, the
estimated total correlation. This disqualifies S as a test statistic for (5.2), since
large values of α̂ can always be attributed to row-wise correlation alone.

Similarly, the variance of the eigenvalues (2.13),

S =
K∑

k=1

(ek − e·)2/k
(
e· =

∑
ek/K

)
,(5.5)

looks appealing since the true eigenvalues all equal 1 when � = I . However, (5.5)
is also a monotonic function of α̂; see Remark 6.1.
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The general difficulty here is “leakage,” the fact that row-wise correlations af-
fect the observed pattern of column-wise correlations. This becomes clearer by
comparison with classical multivariate methods, where row-wise correlations are
assumed away by taking �/ = I in (4.1). Johnson and Graybill (1972) consider
a two-way ANOVA problem where, after subtraction of main effects, X has the
form

Xij = aiβj + εij for i = 1,2, . . . ,m and j = 1,2, . . . , n,(5.6)

ai ∼ N (0, λ) and εij ∼ N (0,1), all independently, with β = (β1, β2, . . . , βn)

a fixed but unknown vector (representing “one degree of freedom for nonaddi-
tivity” in the two-way table X, Johnson and Graybill’s extension of Tukey’s pro-
cedure).

In the Kronecker notation (4.1), X ∼ Nm,n(0, I ⊗ �) with

� = I + λββ ′.(5.7)

Now (5.2) becomes H0 :λ = 0. Johnson and Graybill show that, with β unknown,
the likelihood ratio test rejects H0 for large values of the eigenvalue ratio (2.13),

S = e1

/ K∑
k=1

ek.(5.8)

Since the m rows of X are assumed independent, they can test H0 by comparison
of S with values S∗ = e∗

1/
∑K

k=1 e∗
k obtained from

�̂∗ ∼ Wishart(m, I)/m,(5.9)

as in (4.5).
Getting back to the correlated rows situation, Theorem 2 suggests comparing S

with values S∗ from

�̂∗ ∼ Wishart(m̃, I )/m̃,(5.10)

m̃ as in (4.8). The solid histogram in Figure 5 compares 100 S∗ values from (5.10),
m̃ = 17.2 for the Cardio data, with the observed value S = 0.207 from the doubly
standardized Cardio matrix for the healthy subjects used in Figure 3. All 100 S∗
values are much smaller than S, providing strong evidence against H0 :� = I .

The evidence looks somewhat weaker, though, if we simulate S∗ values with �̂∗
obtained from random matrices

X∗ ∼ N20,426,44(0,�/ ⊗ I ),(5.11)

doubly standardized, where �/ has total correlation α = 0.241, the estimated value
for X, (4.9). The line histogram in Figure 5 shows 100 such S∗ values, all still
smaller than S, but substantially less so. (Remark 6.8 describes the construction
of X∗.)
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FIG. 5. Eigenratio statistic (5.8) equals 0.207 for 20,426 × 44 Cardio matrix X; solid his-
togram 100 simulations S∗ from Wishart (5.10), m̃ = 17.2; line histogram 100 simulations from
correlated-row X∗ matrices (5.11), α = 0.241,� = I .

Why does (5.11) produce larger “null” S∗ values than (5.10)? The answer is
simple: even though the first and second moments of �̂∗ = X∗′X∗/m match �̂∗
from (5.10), its eigenvalues do not. The nonzero eigenvalues of X∗′X∗/m equal
those of �̂/

∗ = X∗X∗′/n. This is another example of leakage, where the fact that �/

in (5.11) is not the identity Im distorts the estimated eigenvalue of �̂∗, even if
� = In.

The eigenratio statistic S = e1/
∑

ek is invariant under permutations of the
columns of X, answering objection (2) to permutation testing of Section 2. Be-
cause of invariance, the eigenratio and permutation tests provide independent p-
values for testing the null hypothesis of i.i.d. columns, and so can be employed
together. Figure 5 is disturbing nonetheless, in suggesting that an appropriate null
distribution for S depends considerably on the choice of the nuisance parameter �/

in (5.11).
The bilinear form (4.19)–(4.20) yields another class of test statistics,

τ̂ 2 = w′�̂w ∼̇ (τ 2,2τ 4/m̃),(5.12)

where w is a pre-chosen n-vector and τ 2 = w′�w. Delta-method arguments give
CV(τ̂ )

.= (2m̃)−1/2 for the coefficient of variation of τ̂ . Defining

Zi = x′
iw (x′

i the ith row of X)(5.13)

yields the alternative form

τ̂ 2 =
m∑

i=1

Z2
i /m.(5.14)
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In a two-sample situation like that for the Cardio study, sample sizes n1 and n2,
we can choose

w′ =
(

n1n2

n1 + n2

)1/2

(−1n1/n1,1n2/n2),(5.15)

“1n” indicating a vector of n 1’s. This choice makes

Zi =
(

n1n2

n1 + n2

)1/2

(x̄2i − x̄1i ),(5.16)

the multiple of the mean response difference between the two samples that has
variance 1 if � = I . In terms of (5.12), ‖w‖2 = 1 so τ 2 = 1.

For the Cardio study, with n1 = 44, n2 = 19, and m̃ = 17.2, we obtain τ̂ =
1.48, coefficient of variation 0.17. This puts τ̂ more than 2.8 standard errors above
the null hypothesis value τ = 1, again providing evidence against column-wise
independence. The Zi values from (5.16) are nearly indistinguishable from the zi

values in Figure 1—not surprisingly since with the rows of X standardized, Zi is
an equivalent form of the two-sample t-statistic ti in (1.1).

Once again, however, there are difficulties with this as a test for column-wise
independence. There is no question that the Zi’s are overdispersed compared to
the theoretical value τ = 1. But problems other than column dependence can cause
overdispersion, in particular unobserved covariate differences between subjects in
the two samples [Efron (2004, 2008)].

The statistic S = w′�̂w in (5.15) does not depend upon the order of the columns
of X within each of the two samples, answering objection (2) against permutation
tests, but it is the only such choice for a two-sample situation. Other w’s might
yield interesting results. The version of (5.15) comparing the first 22 healthy Car-
dio subjects with the second 22 provided the spectacular value τ̂ = 1.87, and here
the “unobserved covariate” objection has less force.

Now, however, the test statistic depends on the order of the columns within the
healthy subjects’ matrix, reviving objection (2). Again we might want to check
a catalog of possible w vectors w1,w2, . . . ,wH , leading back to test statistic

SB = ∑
h

w′
h�̂wh = tr(�̂B)

(
B = ∑

h

whw
′
h

)
,(5.17)

as in (2.10), the only difference being that the null distribution of �̂ now involves
normal theory rather than permutations. Remark 6.9 shows that the null first and
second moments of SB are similar to (5.12),

SB ∼
H0

(
tr(B),

2

m̃
tr(B2)

)
.(5.18)

In summary, normal-theory methods are interesting and promising, but are not
yet proven competitors for the permutation tests of Section 2.
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6. Remarks. This section presents some brief remarks and details supple-
menting the previous material.

REMARK 6.1 (The constant c2). The variance constant c2 in Theorem 1 (3.3)
can be expressed as

c2 = K

(mn)2

[
ē2 +

K∑
k=1

(ek − ē)2

] (
ē ≡

K∑
1

ek/K

)
,(6.1)

so that c2 ≥ K(ē/mn)2, with equality only if the eigenvalues ek are equal. In the
doubly standardized case ē = mn/K , giving

c2 ≥ 1/K,(6.2)

where K is the rank of X.

REMARK 6.2 (Permutation invariance). If the columns of X are i.i.d. obser-
vations from a distribution on R

m, then the distribution of X is invariant under per-
mutations: Xπ ∼ X for any n×n permutation matrix π . Now suppose X̃ = L(X),
where L performs the same operation on each column of X, for example, replacing
each column by its normal scores vector. Then

X̃π = L(X)π = L(Xπ) ∼ L(X) = X̃,(6.3)

showing that X̃ is permutation invariant.
Similarly, suppose X̃ = R(X), R performing the same operation X̃i = r(Xi)

on each row of X, where now we require r(x)π = r(xπ) for all n-vectors x. The
same argument as (6.3) demonstrates that X̃ is still permutation invariant. Iterating
row and column standardizations as in Table 1 then shows that if the original data
matrix X is permutation invariant, so is its doubly standardized version.

REMARK 6.3 (Covariances after demeaning). Suppose that X is normally dis-
tributed, with covariances �/ ⊗ � (4.2), all columns having the same expectation
vector μ. Let X̃ be the demeaned matrix obtained by subtracting all the row and
column means of X. Then

X̃ ∼ Nm,n(0, �̃/ ⊗ �̃),(6.4)

where

�̃jj ′ = �jj ′ − �·j ′ − �j · + �··,(6.5)

dots indicating averaging over the missing subscripts, and similarly for �̃/ . This
shows that demeaning tends to reduce covariances by recentering them around 0.
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TABLE 1
Successive row and column standardizations of the 20,426 × 44 matrix of healthy Cardio subjects.
“Col” empirical standard deviation of Ĉorjj ′ , j < j ′; “Eig” α̂ from (3.6); “Row” from 1% sample

of ĉorii′ values, adjusted for overdispersion (6.6), sampling standard error 0.0034

Col Row Eig Col Row Eig

Demeaned 0.252 0.286 0.000 Demeaned 0.252 0.286 0.000
Col 0.252 0.249 0.251 Row 0.241 0.283 0.279
Row 0.242 0.255 0.246 Col 0.241 0.251 0.240
Col 0.242 0.241 0.242 Row 0.240 0.247 0.241
Row 0.241 0.246 0.235 Col 0.240 0.247 0.240
Col 0.241 0.244 0.241 Row 0.241 0.240 0.235
Row 0.241 0.245 0.234 Col 0.241 0.237 0.240
Col 0.241 0.238 0.241 Row 0.241 0.233 0.233

REMARK 6.4 (Standardization). A matrix X is “column standardized” by in-
dividually subtracting the mean and dividing by the standard deviation of each
column, and similarly for row standardization. Table 1 shows the effect of suc-
cessive row and column standardizations on the 20,426 × 44 demeaned matrix of
healthy Cardio subjects. Here “Col” is the empirical standard deviation of the 946
column-wise correlations Ĉorjj ′ , j < j ′; “Eig” is α̂ in (3.6); and “Row” is the em-
pirical standard deviation “β̂” of a 1% sample of the row correlations ĉorii′ , but
adjusted for overdispersion,

Row2 = n

n − 1

(
β̂2 − 1

n − 1

)
.(6.6)

Sampling error of the Row entries is about ±0.0034.
The doubly standardized matrix X used for Figure 3 was obtained after five

successive column-row standardizations. This was excessive; the figure looked al-
most the same after two iterations. Other microarray examples converged equally
rapidly, though small counterexamples can be constructed where double standard-
ization is not possible.

Microarray analyzes usually begin with some form of column-wise standard-
ization [Bolstad et al. (2003), Qiu, Klebanov and Yakovlev (2005b)], designed
to negate “brightness” differences between the n microarrays. In the same spirit,
row standardization helps prevent incidental gene differences (e.g., very great or
very small expression level variabilities) from obscuring the actual effects of in-
terest. Standardization tends to reduce the apparent correlations as in Remark 6.3.
Without standardization, the scatterplot in Figure 1 stretches out along the main
diagonal, correlation 0.917, driven by genes with unusually large or small inherent
expression levels.

REMARK 6.5 (Corrected estimates of the total correlation). Suppose that the
true row correlations corii′ have mean 0 and variance α2, as in (3.8) with cor = 0,
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and that given corii′ , the usual estimate ĉorii′ has mean and variance

ĉori,i′
.= [corii′, (1 − cor2

ii′)
2/(n − 3)],(6.7)

(6.7) being a good normal-theory approximation [Johnson and Kotz 1970, Chapter
32]. Letting ᾱ2 be the empirical variance of the ĉorii′ values, a standard empirical
Bayes derivation yields

α̂2 = A2 − 3

n − 5
A4

[
A2 = (n − 3)ᾱ2 − 1

n − 5

]
(6.8)

as an approximately unbiased estimate of α2. (If cor is not assumed to equal 0,
a slightly more complicated formula applies.) Of course, α̂2 = 0 if the right-hand
side of (6.8) is negative.

Theorem 1 implies that ᾱ2 nearly equals c2, (3.3), in the doubly standardized
situation. Formula (3.6), with, say,

α̃2 = n

n − 1

(
ᾱ2 − 1

n − 1

)
,(6.9)

is not identical to (6.8), but provides an excellent approximation for values of ᾱ ≤
0.5: with n = 44 and ᾱ = 0.283 as in (3.6), α̂ = 0.2415 while α̃ = 0.2412.

REMARK 6.6 (Column and row centerings). The column correlation mean
μ̂ = −1/(n − 1) in (3.6) is forced by the row-wise demeaning

∑
j xij = 0, (2.1),

centering the solid histogram in the right panel of Figure 3 at −0.023. With m =
20,426, the corresponding center for the line histogram is nearly 0, and the dif-
ference in the two centerings is noticeable. The dashed density curve in Figure 4,
and the corresponding p-values for the FDR analysis, were shifted 0.023 units
leftward.

REMARK 6.7 (The total correlation α). The total correlation α, which plays
a key role in Theorem 2, (4.9), also is the central parameter of the theory developed
in Efron (2007a). Equations (3.15)–(3.16) there are equivalent to (5.12) here. In
both papers, α has the very convenient feature of summarizing the effects of an
enormous m × m correlation matrix �/ in a single number.

REMARK 6.8 [�/ for simulation (5.11)]. The X∗ simulation used in Figure 5
began with m × n matrix Y = (yij ),

yij = cIj + eij ,

{
eij ∼ N (0,1),

cIj ∼ N (0, γ 2)
(all independent),(6.10)

where I = 1,2,3,4,5 as i is in the first, second, . . . , last fifth of 1 through m;
Y was then column standardized to give X∗, so that �/ had a block form, with
large positive correlations (about 0.61) in the (m/5)× (m/5) diagonal blocks. The
choice γ = 1.23 was required to yield α = 0.241.
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REMARK 6.9 (Bilinear statistics). Since �̃ ∼ (�,�(2)/m̃) (4.8), it is clear
that E{τ̃ 2} = τ 2 in Corollary (4.20). The variance calculation proceeds as in The-
orem 2:

var{τ̃ 2} = ∑
jk

∑
lh

�
(2)
jk,lhwjwkwlwh/m̃

= ∑
jk

∑
lh

[�jl�kh + �jh�kl]wjwkwlwh/m̃

(6.11)

=
[∑

j l

∑
kh

(�jlwjwl)(�khwkwh) + ∑
jh

∑
kl

(�jhwjwh)(�klwkwl)

]/
m̃

= 2
(∑

jk

�jkwjwl

)2/
m̃ = 2τ 4/m̃.

The verification of (5.18) is the same, except with element bjk of B replacing
wjwk above, blh replacing wlwh, etc.
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