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Abstract. We study the entropy of the set traced by an n-step simple symmetric random walk on Z
d . We show that for d ≥ 3, the

entropy is of order n. For d = 2, the entropy is of order n/ log2 n. These values are essentially governed by the size of the boundary
of the trace.

Résumé. Nous étudions l’entropie de la trace d’une marche aléatoire simple et symétrique de longueur n sur Z
d . Nous montrons

que si d ≥ 3, cette entropie est d’ordre n, tandis que pour d = 2 elle est d’ordre n/ log2 n. Ces valeurs proviennent essentiellement
de la taille de la frontière de la trace.
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1. Introduction

A natural observable of a random walk is its range, the set of positions it visited. In this note we study the entropy of
this range, which is roughly the number of bits of information needed in order to describe it. We calculate the entropy
of the range of a random walk on Z

d , d ∈ N, up to constant factors.

1.1. Main result

Let S(0), . . . , S(n) be a simple symmetric random walk on Z
d , d ∈ N, of length n. Define the range of the random

walk to be

R(n) = {
S(0), S(1), . . . , S(n)

}
,

the set of vertices visited by the walk.
In this note we study the entropy of R(n) as a function of n (for formal definition of entropy, see Section 2.1). We

calculate the value of the entropy, H(R(n)), up to constants, precisely:

Theorem 1. For d = 2 there exist constants c2,C2 > 0 such that for all n ∈ N,

c2
n

log2(n)
≤ H

(
R(n)

) ≤ C2
n

log2(n)
,
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and for d ≥ 3 there exist constants cd,Cd > 0 such that for all n ∈ N,

cdn ≤ H
(
R(n)

) ≤ Cdn.

The proof of Theorem 1 is organized as follows: We first prove the lower bound which is easier and follows directly
from estimates on the size of the boundary of the range; in two dimensions the boundary of the range of the walk is of
order n/ log2 n, and in higher dimensions it is linear in n. This is done in Section 2.2. We then show the upper bounds.
The proof for dimensions greater than two is in Section 2.3. The proof for dimension two, which requires a certain
renormalization argument, appears in Section 2.4. An interesting feature of the procedure is that at each step of the
renormalization process, the number of “active” boxes is not determined by examining the previous renormalization
step, but rather globally. For a more detailed discussion of this procedure see Section 2.4.2.

The one-dimensional case is not difficult.

Exercise
In the case d = 1, there exist constants c1,C1 > 0 such that for all n ∈ N,

c1 logn ≤ H
(
R(n)

) ≤ C1 logn.

2. Entropy of random walk

2.1. Entropy

Here we provide some background on entropy. Let X be a random variable taking values in an arbitrary finite set Ω .
For x ∈ Ω , let p(x) be the probability that X = x. The entropy of X is defined as H(X) = E[− logp(X)] (all
logarithms in this note are base 2). For two random variables X and Y , the conditional entropy of X conditioned
on Y is defined as H(X|Y) = H(X,Y ) − H(Y).

Proposition 2. The following relations hold:

(i) 0 ≤ H(X) ≤ log |Ω|.
(ii) For every function f , H(f (X)|X) = 0.

(iii) H(X) ≤ H(Y) + H(X|Y).

For more information on entropy and for proofs of these properties see, e.g., [1], Chapter 2.

2.2. Lower bound

Notation
By Pz and Ez we denote the probability measure and expectation of the random walk conditioned on S(0) = z. We
denote P = P0 and E = E0. Let z,w ∈ Z

d and A ⊂ Z
d . Denote by dist(z,w) the graph distance between z and w

in Z
d . Denote dist(z,A) = inf{dist(z, a): a ∈ A}. We write z ∼ w if dist(z,w) = 1, and z ∼ A if dist(z,A) = 1. The

inner boundary of A is defined as

∂A = {
z ∈ A: z ∼ Z

d \ A
}
.

Let pn(A) = P[R(n) = A].

Lemma 3. For every A ⊂ Z
d ,

pn(A) ≤
(

1 − 1

2d

)|∂A|−1

.
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Proof. Let T0 = 0 and define inductively for j ≥ 1,

Tj = inf
{
t ≥ Tj−1 + 1: S(t) ∈ ∂A

}
.

By the strong Markov property, for any 0 < j < |∂A|,

P
[
S(Tj + 1) /∈ A | S(0), . . . , S(Tj ), Tj < ∞] ≥ 1

2d
.

The event A ⊆ R(n) implies that Tj ≤ n for all j ≤ |∂A|. The event R(n) ⊆ A implies that S(Tj + 1) ∈ A for all
j ≤ |∂A| − 1. Let Ej be the event that S(Tj + 1) ∈ A and Tj+1 < ∞. Thus,

P
[
R(n) = A

] ≤ P

[|∂A|−1⋂
j=1

Ej

]
≤

|∂A|−1∏
j=1

P[Ej | E1, . . . ,Ej−1] ≤
(

1 − 1

2d

)|∂A|−1

.
�

Lemma 3 shows that in order to bound the entropy of the random walk trace from below, it is enough to bound the
expected value of the size of the inner boundary of the random walk trace from below. More precisely, we have:

Corollary 4. H(R(n)) ≥ − log(1 − 1
2d

) · E[|∂R(n)| − 1].

The following lemma gives the lower bound for the entropy of the random walk trace.

Lemma 5. For any d ≥ 2, there exists a constant cd > 0 such that for all n ∈ N,

H
(
R(n)

) ≥
{

c2
n

log2(n)
, d = 2,

cdn, d ≥ 3.

Proof. By Corollary 4, it suffices to show that

E
[∣∣∂R(n)

∣∣] ≥
{

c2
n

log2(n)
, d = 2,

cdn, d ≥ 3

for some constants cd > 0. For z ∈ Z
d , define Tz = inf{t ≥ 0: S(t) = z}. By Lemma 19.1 of [4], and by the transience

of the random walk for d ≥ 3, there exist constants cd > 0 such that for any z ∼ w ∈ Z
d ,

Pz[Tw > n] ≥
{

c2
logn

, d = 2,

cd, d ≥ 3.

Denote the right-hand side of the above inequality by fd(n). Using the strong Markov property at time Tz, for any
z ∼ w ∈ Z

d ,

P
[
z ∈ ∂R(n)

] ≥ P[Tz ≤ n,Tw > n] ≥ fd(n)P[Tz ≤ n].
This proves the lemma, since

E
[∣∣∂R(n)

∣∣] ≥ fd(n)
∑
z∈Zd

P[Tz ≤ n] = fd(n)E
[∣∣R(n)

∣∣],
and since

E
[∣∣R(n)

∣∣] ≥
{

c′
2 · n

logn
, d = 2,

c′
dn, d ≥ 3

for some constants c′
d > 0 (see, e.g., Theorem 20.1 in [4]). �
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2.3. Upper bound

We now show that the lower bounds on the entropy of the random walk trace given by Lemma 5 are correct up to
a constant. The transient case is much simpler than the two-dimensional case.

Proposition 6. For d ≥ 3, there exists a constant Cd > 0 such that for all n ∈ N,

H
(
R(n)

) ≤ Cd · n.

Proof. Let Ω = {A ⊂ Z
d : pn(A) > 0}. By clause (i) of Proposition 2 it suffices to prove that |Ω| ≤ (2d)n. This

follows from the fact that the number of possible n-step trajectories in Z
d starting at 0 is (2d)n. �

2.4. Two dimensions

We now turn to the two-dimensional case, which is more elaborate.
For z ∈ Z

2, we denote by ‖z‖ the L2-norm of z. Define

Tz,r = inf
{
t ≥ 0 :

∥∥S(t) − z
∥∥ ≤ r

}
,

and Tr = T�0,r
. Also set

τz,r = inf
{
t ≥ 0:

∥∥S(t) − z
∥∥ ≥ r

}
,

and τr = τ�0,r
.

2.4.1. Probability estimates
We begin with some classical probability estimates regarding the random walk on Z

2, which we include for the sake
of completeness.

Lemma 7. There exists a constant C > 0 such that for all n ∈ N,

E

[
max

0≤k≤n

∥∥S(k)
∥∥2

]
≤ Cn.

Proof. Let S(k) = (X(k),Y (k)), so ‖S(k)‖2 = |X(k)|2 + |Y(k)|2. Doob’s maximal inequality (see, e.g., [5], Chap-
ter II) on the martingale X(k) tells us that

E

[
max

0≤k≤n

∣∣X(k)
∣∣2

]
≤ 4E

[∣∣X(n)
∣∣2]

.

The martingale |X(k)|2 − k/2 tells us that E[|X(n)|2] = n/2, which completes the proof, since X(k) and Y(k) have
the same distribution. �

Lemma 8. There exist constants c1, c2 > 0 such that for all n ∈ N and λ > 0,

P

[
max

1≤j≤n

∥∥S(j)
∥∥ ≥ λ

]
≤ c1 · exp

(
−c2

λ2

n

)
.

Proof. This is a consequence of Theorem 2.13 in [4]. �

Lemma 9. There exists a constant c > 0 such that the following holds. Let T = T�0,0. Then, for z ∈ Z
2 and r ≥ 2‖z‖,

Pz[T ≤ τr ] ≥ c log(r/‖z‖)
log r

.
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Proof. Let a : Z2 → [0,∞) be the potential kernel defined in Chapter 1.6 of [2]. That is, a(0) = 0, a(·) is harmonic
in Z

2 \ {0}, and there exist constants c1, c2 > 0 such that for any z ∈ Z
2 \ {0}, a(z) = c1 log‖z‖ + c2 + O(‖z‖−2).

Since a(·) is harmonic in Z
2 \ {0}, if r > ‖z‖ then a(S(t)) is a martingale up to time T ′ = min{T , τr}. Thus,

a(z) = (
1 − Pz[T ≤ τr ]

) · Ez

[
a
(
S
(
T ′)) | T > τr

]
,

which implies

Pz[T ≤ τr ] ≥ 1 − c1 log‖z‖ + c2 + O(‖z‖−2)

c1 log r + c2 + O(r−2)
. �

We also need an upper bound.

Lemma 10. There exists a constant C > 0 such that for every z ∈ Z
2 and r,R such that 1 ≤ r ≤ 1

2‖z‖ ≤ 1
4R,

Pz[Tr ≤ τR] ≤ C · log(R/‖z‖)
log(R/r)

.

Proof. Using the potential kernel from the proof of Lemma 9 with the stopping time min{Tr, τR}, there exists a
constant c1 > 0 such that

Pz[Tr ≤ τR] ≤ c1(logR − log‖z‖) + O(R−1 + ‖z‖−2)

c1(logR − log r) + O(r−2)

≤ C · log(R/‖z‖)
log(R/r)

for some constant C > 0. �

Lemma 11. For any 0 < α < 1, there exists a constant C > 0 such that the following holds. Let z ∈ Z
2 such that

‖z‖ ≥ 1/α. Then for any n ∈ N such that n > ‖z‖4,

Pz[Tα‖z‖ ≥ n] ≤ C

log(n/‖z‖4)
.

Proof. By adjusting the constant, we can assume without loss of generality that n/‖z‖4 is large enough. Let r = α‖z‖
and R = n1/4. Using the potential kernel from the proof of Lemma 9 with the stopping time T ′ = min{Tr, τR},

Pz[Tr ≥ τR] ≤ c1 log(‖z‖/r) + O(r−1)

c1 log(R/r) + O(r−1)
≤ C1

log(n/‖z‖4)
(2.1)

for some constant C1 = C1(α) > 0 independent of z and n. Also, considering the martingale ‖S(t)‖2 − t up to time τR

shows that Ez[τR] ≤ (R + 1)2. Thus, by Markov’s inequality,

Pz[τR > n] ≤ 4√
n
. (2.2)

Equations (2.1) and (2.2) together prove the proposition, since

Pz[Tr ≥ n] ≤ Pz[Tr ≥ τR] + Pz[τR > n]. �

Lemma 12. There exists a constant C > 0 such that for all n ∈ N and 1 ≤ r ≤ 1
2

√
n the following holds. Let z ∈ Z

2

be such that ‖z‖ ≥ √
n. Then,

Pz[Tr ≤ n] ≤ C

log(n/r2)
.
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Proof. For m ≥ 1, let Am be the event {τm‖z‖ < Tr ≤ τ(m+1)‖z‖ ≤ n}. The family {Am} consists of pairwise disjoint
events, and

Pz[Tr ≤ n] ≤
∞∑

m=1

P[Am].

For every m ≥ 1, using the strong Markov property at time τm‖z‖,

Pz[Am] ≤ Pz[τm‖z‖ ≤ n] · max
{
Px[Tr ≤ τ(m+1)‖z‖]: m‖z‖ ≤ ‖x‖ ≤ m‖z‖ + 1

}
.

By Lemma 8, there exist constants C1, c2 > 0 such that

Pz[τm‖z‖ ≤ n] ≤ Pz

[
max

1≤j≤n

∥∥S(j)
∥∥ ≥ m‖z‖ − ‖z‖

]
≤ C1 exp

(−c2m
2).

By Lemma 10, for any x ∈ Z
2 such that m‖z‖ ≤ ‖x‖ ≤ m‖z‖ + 1,

Px[Tr ≤ τ(m+1)‖z‖] ≤ Px[Tr ≤ τ2(m‖z‖+1)] ≤ c3

log(n/r2)

for some constant c3 > 0. Summing over all m ≥ 1,

Pz[Tr ≤ n] ≤ c3

log(n/r2)

∞∑
m=1

c1 exp
(−c2 · m2).

�

2.4.2. Upper bound in two dimensions
The general scheme of the proof is quite simple. Here is how we efficiently store the information (this implies that the
entropy cannot be too big). Divide the relevant area, which is roughly a

√
n×√

n box, to smaller blocks. Each of these
blocks can have three states: empty (most common), full, or partial (least common). Record the state of all blocks.
The empty and full blocks need not be considered any further. The partial blocks are further divided into sub-blocks,
and recorded recursively. We will show that this scheme requires an average of ≈ n/ log2 n bits, which will finish the
proof.

Hence the crucial question is: how many partial blocks are there? Consider k × k blocks. For a block to be partial,
the random walk needs to first hit it (this “costs” 1/ logn), and then escape before covering the block completely. It is
well known that the cover time of a k × k square is order k2 log2 k, that is, it requires about log2 k “visits” to the block
(if you are unfamiliar with the notion of a visit, examine the proof of Lemma 15, a visit is the time interval [τj , σj ]).
Thus, the random walk needs to “escape” from our block, this costs another factor of 1/ logn, but it has about log2 k

“attempts” to do so. To conclude, the final probability of a typical block to be partial is order log2 k/ log2 n.
This argument is spelt out in Lemmas 15 and 17 below. Lemma 15 contains the calculation above except for the

very first 1/ logn term, since there the starting point is close to the block. Lemma 17 contains the full calculation,
with the main problem being estimating separately blocks which are close by and far away (Lemma 13 helps with the
far away blocks).

Let us use this opportunity to repeat a point already made in the Introduction. Our blocks have a typical hierarchical
structure, with the blocks of level j contained in blocks of level j + 1. Naïvely, at level j the blocks we are interested
in are blocks partially covered by the random walk, which are contained in partial block at level j + 1, which are
themselves contained in partial blocks at level j + 2, etc. So it seems that estimating the number of such blocks
requires going through this hierarchy. But it does not, because once a block is partially covered by the random walk,
we get this property automatically for all its super-blocks. We can thus estimate the number of partially covered blocks
in level j directly. This simplifies the proof significantly.

We move to the details of the proof. For z ∈ Z
2 and k ∈ N, let

Q(z, k) = {
z + (

j, j ′): −k ≤ j, j ′ ≤ k
};

i.e., Q(z, k) is the square of side length 2k + 1 centered at z. For a path x(0), x(1), . . . , x(n) in Z
2, we denote by

x[s, t] the path x(s), x(s + 1), . . . , x(t).
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Lemma 13. There exist constants c,C > 0 such that for all n, k ∈ N such that k ≤ n1/4, and all z ∈ Z
d such that

‖z‖ ≥ 5
√

n,

P
[
R(n) ∩ Q(z, k) �= ∅

] ≤ C

logn
· exp

(
−c

‖z‖2

n

)
.

Proof. Let λ = ‖z‖ − 2
√

n. Let T be the first time the walk S(·) started at 0 hits Q(z, k). Then τλ < Tz,2k < T . By
Lemmas 8 and 12,

P
[
R(n) ∩ Q(z, k) �= ∅

] ≤ P[τλ ≤ n] · max
{
Px[Tz,2k ≤ n]: λ ≤ ‖x‖ ≤ λ + 1

}
≤ P

[
max

1≤j≤n

∥∥S(j)
∥∥ ≥ λ

]
· c1

logn

≤ c2

logn
· exp

(
−c3

‖z‖2

n

)

for some constants c1, c2, c3 > 0. �

Lemma 14. There exists a constant C > 0 such that the following holds. For all n, k ∈ N such that k ≤ n1/4, and all
z ∈ Z

d such that 1 ≤ ‖z‖ < 5
√

n,

P
[
R(n) ∩ Q(z, k) �= ∅

] ≤ C · log(10
√

n/‖z‖)
logn

.

Proof. By adjusting the constant, we can assume without loss of generality that ‖z‖ ≥ 3k. Let Q = Q(z, k). Define
σ0 = 0, and for i ≥ 1, define

σi = τ10i
√

n = inf
{
t ≥ 0:

∥∥S(t)
∥∥ ≥ 10i

√
n
}
.

The event {R(n) ∩ Q �= ∅} is contained in the event{
S[0, σ1] ∩ Q �= ∅

} ∪
⋃
i≥1

{
S[σi, σi+1] ∩ Q �= ∅, σi ≤ n

}
.

Since 3k ≤ ‖z‖ < 5
√

n, we have that on the event {S[0, σ1] ∩ Q �= ∅}, the random walk started at 0 enters the ball of
radius 2k around z before exiting the ball of radius 20

√
n around z. Translating by minus z we get by Lemma 10 that

there exists a constant C1 > 0 such that

P
[
S[0, σ1] ∩ Q �= ∅

] ≤ P−z[T2k ≤ τ20
√

n] ≤ C1 · log(10
√

n/‖z‖)
logn

.

Fix i ≥ 1. By Lemma 8,

P[σi ≤ n] ≤ P

[
max

0≤j≤n

∥∥S(j)
∥∥ ≥ 10i

√
n
]

≤ C2 · exp
(−C3 · 102i

)
for some constants C2,C3 > 0. Using Lemma 10 again,

P
[
S[σi, σi+1] ∩ Q �= ∅ | σi ≤ n

] ≤ C4

logn

for some constant C4 > 0. Therefore,

P
[
R(n) ∩ Q �= ∅

] ≤ C1 · log(10
√

n/‖z‖)
logn

+ C2 · C4

logn

∑
i≥1

exp
(−C3 · 102i

)
.

�

We have reached the main geometric lemma.
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Lemma 15. There exists a constant C > 0 such that the following holds. Let n, k ∈ N, let Q = Q(0, k) and let z ∼ Q.
Then,

Pz

[
∂R(n) ∩ Q �= ∅

] ≤ C · log2 k

logn
.

Proof. Without loss of generality assume that log2 k ≤ logn. Define Q+ = Q(0, k + 1). So Q+ contains the union
of Q with all vertices that are adjacent to Q. Define τ0 = 0, and inductively

σj = inf
{
t ≥ τj :

∥∥S(t)
∥∥ ≥ 10k

}
,

τj+1 = inf
{
t ≥ σj : S(t) ∈ Q+}

.

If Q+ ⊆ R(n) then ∂R(n)∩Q = ∅. Thus, it suffices to bound from above the probability of the event {Q+ �⊂ R(n)}. It
is convenient to choose m = �logk · logn�, as will soon be clear. Set Vj = {σj+1 −σj ≥ n

2m
} and Uj = {Q+ �⊂ R(σj )}.

We prove the following inclusion of events

{
Q+ �⊂ R(n)

} ⊆ {σ0 ≥ n/2} ∪ Um ∪
m−1⋃
j=0

(Uj ∩ Vj ). (2.3)

Assume that the event on the right-hand side of (2.3) does not occur; i.e., assume that σ0 < n/2, that Um, and that for
all 0 ≤ j ≤ m − 1, Uj ∪ Vj . Let J = min{0 ≤ j ≤ m: Uj }. Consider the following cases:

• Case 1: J = 0. Then Q+ ⊂ R(σ0). Since σ0 < n/2, we get that Q+ ⊂ R(n).
• Case 2: J > 0. Since we assumed that Um, we know that 1 ≤ J ≤ m. By the assumption

⋂m−1
j=0 (Uj ∪ Vj ), we have

that σj+1 − σj < n/2m, for all 0 ≤ j ≤ J − 1. Since we assumed that σ0 < n/2, we get that

σJ = σ0 +
J−1∑
j=0

σj+1 − σj < n.

But J was chosen so that UJ occurs, so Q+ ⊂ R(σJ ) ⊂ R(n). This proves (2.3).

Fix j ≥ 0. Since ‖S(t) − z‖2 − t is a martingale, we have that Ez[σj − τj | F (τj )] ≤ C1k
2 for some constant

C1 > 0. Using Markov’s inequality,

Pz

[
σj − τj ≥ n

4m

∣∣∣ F (τj )

]
≤ C2mk2

n
(2.4)

for some constant C2 > 0. By Lemma 11, there exists a constant C3 > 0 such that

Pz

[
τj+1 − σj ≥ n

4m

∣∣∣ F (σj )

]
≤ C3

logn
. (2.5)

The two inequalities, (2.4) and (2.5), imply that

Pz

[
Vj | F (σj )

] ≤ C4

logn
(2.6)

for some constant C4 > 0. Using Lemma 9, there exists a universal constant C5 > 0 such that for any x ∈ Q+,

Pz

[
x ∈ S[τj , σj ] | F (τj )

] ≥ C5

logk
.
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Thus,

Pz[Uj ] = Pz

[
Q+ �⊂ R(σj )

] ≤ min
{
1,

∣∣Q+∣∣ · (1 − C5/ logk)j+1}
≤ min

{
1,C6k

2 exp
(−C5(j + 1)/ logk

)}
(2.7)

for some constant C6 > 0. Plugging (2.4), (2.6) and (2.7) into (2.3) yields

Pz

[
Q+ �⊂ R(n)

] ≤ Pz[σ0 ≥ n/2] + Pz[Um] +
K∑

j=0

Pz[Uj ∩ Vj ] +
∑
j>K

Pz[Uj ∩ Vj ]

≤ C7

(
k2

n
+ n−C8 +

K∑
j=0

1

logn
+

∑
j>K

k2 exp(−C5(j + 1)/ logk)

logn

)
≤ C9 log2 k

logn
, (2.8)

where K = �4 log2 k/C5� and C7,C8,C9 > 0 are constants. �

Definition 16. Define Λ(k) = {(2k + 1)z: z ∈ Z
2}. The collection {Q(z, k)}z∈Λ(k) consists of disjoint squares that

cover Z
2. For k,n ∈ N and z ∈ Z

2, define I (z, k, n) to be the indicator function of the event {∂R(n) ∩ Q(z, k) �= ∅}.
Define

M(k,n) =
∑

z∈Λ(k)

I (z, k, n),

i.e. the number of squares that intersect ∂R(n).

Lemma 17. There exists a constant C > 0 such that for every k,n ∈ N,

E
[
M(k,n)

] ≤ C · max

{
1,

n

k2
· log2 k

log2 n

}
.

Proof. Fix k,n ∈ N. For z ∈ Z
2, the event {∂R(n) ∩ Q(z, k) �= ∅} implies the event{

max
0≤j≤n

∥∥S(j)
∥∥ ≥ ‖z‖ − √

2(k + 1)
}
.

We start with an a priori bound. Using Lemma 7, there exist constants C1,C2 > 0 so that

E
[
M(n,k)

] ≤
∑

z∈Λ(k)

P

[
‖z‖ ≤ max

0≤j≤n

∥∥S(j)
∥∥ + √

2(k + 1)
]

≤ E

[∣∣∣{z ∈ Λ(k): ‖z‖ ≤ max
0≤j≤n

∥∥S(j)
∥∥ + √

2(k + 1)
}∣∣∣]

≤ C1 · max
{

1, k−2 · E

[
max

0≤j≤n

∥∥S(j)
∥∥2

]}
≤ C2 · max

{
1,

n

k2

}
,

where the third inequality holds as for every R > 0, the size of {z ∈ Λ(k): ‖z‖ ≤ R} is at most a constant times
max{1, k−2 · R2}. Thus, we can assume without loss of generality that k < k + 1 ≤ (n − √

n)1/4 ≤ n1/4.
Let

τQ(z) = inf
{
t ≥ 0: S(t) ∈ Q(z, k + 1)

}
(we use that fact that Q(z, k + 1) is ‘bigger’ than Q(z, k)), and let

J (z, k, n) = 1{τQ(z)≤n−√
n} · I (z, k, n).
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For all z ∈ Λ(k), a.s.

I (z, k, n) ≤ 1{n−√
n<τQ(z)≤n} + J (z, k, n).

Summing over all z ∈ Λ(k), a.s.

M(n,k) ≤ 4
√

n +
∑

z∈Λ(k)

J (z, n, k). (2.9)

By the strong Markov property at time τQ(z) and Lemma 15, there exists a constant C3 > 0 such that a.s.

P
[
∂R(n) ∩ Q(z, k) �= ∅ | τQ(z) ≤ n − √

n
] ≤ C3 · log2 k

logn
. (2.10)

By Lemma 14, as k < n1/4, there exists a constant C4 > 0 such that for all z ∈ Z
d with 1 ≤ ‖z‖ < 5

√
n,

P
[
τQ(z) ≤ n − √

n
] ≤ C4 · log(10

√
n/‖z‖)

logn
,

which implies

P
[
J (z, k, n)

] ≤ C5 · log2 k

logn
· log(10

√
n/‖z‖)

logn
(2.11)

for some constant C5 > 0.
Denote Γ = 5

√
n/(2k + 1). Summing over all z ∈ Λ(k) such that 2 ≤ ‖z‖ < 5

√
n,

∑
z∈Λ(k)

2≤‖z‖<5
√

n

log
(
10

√
n/‖z‖) ≤

∑
x,y∈Z

2≤x2+y2<Γ 2

log
(
2Γ/

√
x2 + y2

) ≤ C6Γ
∑

2≤x≤Γ

log(2Γ/x) ≤ C7Γ
2 (2.12)

for some constants C6,C7 > 0. Plugging (2.12) into (2.11), and summing over all z ∈ Λ(k) such that ‖z‖ < 5
√

n, we
get

∑
z∈Λ(k): ‖z‖<5

√
n

P
[
J (z, k, n)

] ≤ C8 · log2 k

log2 n
· n

k2
(2.13)

for some constant C8 > 0. In addition, by Lemma 13, there exist constants C9,C10 > 0 such that for every z ∈ Λ(k)

such that ‖z‖ ≥ 5
√

n,

P
[
τQ(z) ≤ n − √

n
] ≤ C9

logn
· exp

(
−C10

‖z‖2

n

)
,

which implies, using (2.10),

P
[
J (z, k, n)

] ≤ C11 · log2 k

log2 n
· exp

(
−C10

‖z‖2

n

)

for some constant C11 > 0. Summing over all z ∈ Λ(k) such that ‖z‖ ≥ 5
√

n,

∑
z∈Λ(k): ‖z‖≥5

√
n

P
[
J (z, k, n)

] ≤ C11 · log2 k

log2 n

∑
z∈Λ(k):‖z‖≥5

√
n

exp

(
−C10

‖z‖2

n

)
≤ C12 · log2 k

log2 n
· n

k2
(2.14)

for some constant C12 > 0. The lemma follows by (2.9), (2.13) and (2.14). �
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For k < n ∈ N, let ∂(k,n) be the vector (I (z, k, n))z∈Λ(k)∩[−2n,2n]2 . Note that

M(k,n) =
∑

z∈Λ(k)

I (z, k, n) =
∑

z∈Λ(k)∩[−2n,2n]2

I (z, k, n).

Lemma 18. Let k, 
,n ∈ N and let k′ = (2
 + 1)k + 
. Then,

H
(
∂(k,n) | ∂(

k′, n
)) ≤ E

[
M

(
k′, n

)] · (2
 + 1)2.

Proof. For any z′ ∈ Λ(k′), the square Q(z′, k′) is of side length 2k′ + 1 = (2
 + 1)(2k + 1), and so Q(z′, k′) is a
union of (2
 + 1)2 disjoint squares from the collection {Q(z, k)}z∈Λ(k).

If Q(z, k) ⊂ Q(z′, k′), then I (z, k, n) ≤ I (z′, k′, n). Thus, conditioned on the vector ∂(k′, n), there are at most
2M(k′,n)·(2
+1)2

possibilities for the vector ∂(k,n). By clause (i) of Proposition 2, and by the definition of conditional
entropy, H(∂(k,n) | ∂(k′, n)) ≤ E[M(k′, n) · (2
 + 1)2]. �

Lemma 19. There exists a constant C2 > 0 such that for all n,

H
(
R(n)

) ≤ C2
n

log2(n)
.

Proof. Since the vector ∂(0, n) determines R(n), clauses (ii) and (iii) of Proposition 2 yield that H(R(n)) ≤
H(∂(0, n)).

Set k0 = 0, and for j ≥ 0, define inductively kj+1 = 3kj + 1. For every j ≥ 1, since 3kj ≤ kj+1 ≤ 4kj , it holds

that
log kj

kj
≤ 9j3−j . Let m > 0 be the smallest j such that kj > n. The vector ∂(km,n) is constant, and so its entropy

is zero. By Lemmas 17 and 18, for 0 ≤ j ≤ m − 1, there exist universal constants c2, c3 > 0 such that

H
(
∂(kj , n) | ∂(kj+1, n)

) ≤ c3 · max

{
1,

n

log2 n
· (j + 1)2

9j+1

}
.

Using clause (iii) of Proposition 2, there exists a constant C > 0 such that

H
(
∂(0, n)

) ≤
m−1∑
j=0

H
(
∂(kj , n) | ∂(kj+1, n)

) + H
(
∂(km,n)

) ≤ C · n

log2 n
.

�

Remark 20. The proof of Lemma 19 shows that provided one can calculate the various conditional probabilities (e.g.,
with unlimited computational power), one can sample the range of a random walk using only order n/ log2 n bits.

3. Concluding remarks and problems for further research

3.1. Extracting entropy

Lemma 5 shows that the entropy of R(n) in two dimensions is at least c2n/ log2 n. It is interesting to note that one can
extract order of n/ log2 n almost uniformly distributed random bits, by observing a sample of the range. We sketch the
construction.

Consider the two configurations that appear in Fig. 1. The walk can only enter the configuration from the “bridge”
on the right, so the situation is symmetric to vertical flips. This symmetry implies that conditioned on outside of the
configuration, both have the same probability of occurring. Thus, any occurrence of such a configuration in the range
of the random walk gives an independent bit, e.g., setting the bit to be 1 if the right configuration occurs, and 0 if the
left configuration occurs. Considerations similar to those raised in the proofs above show that the expected number of
such configurations is of order n/ log2 n.
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Fig. 1. Two symmetric configurations. ×’s are vertices occupied by the range.

3.2. Intersection equivalence

Consider the n × n square centered at 0 in Z
2, and consider the following procedure. Divide the square into 4 squares

of side length n/2. Retain each of the squares with probability 1/2, independently. Continue inductively: at level k,
divide each remaining square of side length n2−(k−1) into 4 squares of side length n2−k , and retain each one with
probability k/(k + 1) independently.

This procedure produces a random subset of the n×n square, denote this set by Q(n2). In [3], Peres shows that the
sets Q(n2) and R(n2) are intersection equivalent; that is, there exist constants c,C > 0 such that for any set A ⊂ Z

2,

c ≤ P[Q(n2) ∩ A �= ∅]
P[R(n2) ∩ A �= ∅] ≤ C

from a random starting point. The entropy H(Q(n2)) is of order n2/ log2(n), as is H(R(n2)). Note that intersection
equivalence does not imply or follow from equal entropy. See [3] for more details.

3.3. Open questions

Let G be an infinite graph, and let {S(n)}n≥0 be a simple random walk on G. Let R(n) = {S(0), S(1), . . . , S(n)} be
the range of the walk at time n. Let H(n) be the entropy of R(n).

Our results above suggest the following natural question.

• How small can H(n) be in transient graphs? It is possible to construct (spherically symmetric) trees that are transient
but have H(n) = O(log2 n). Is it possible to get a smaller entropy?

Note added in proof

David Windisch has some new results on this topic, including an answer to a question posed in previous versions of
this paper, see [6].
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