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Abstract. The aim of this paper is to study the long-term behavior of a class of self-interacting diffusion processes on Rd . These
are solutions to SDEs with a drift term depending on the actual position of the process and its normalized occupation measure μt .
These processes have so far been studied on compact spaces by Benaïm, Ledoux and Raimond, using stochastic approximation
methods. We extend these methods to Rd , assuming a confinement potential satisfying some conditions. These hypotheses on the
confinement potential are required since in general the process can be transient, and is thus very difficult to analyze. Finally, we
illustrate our study with an example on R2.

Résumé. Le but de cet article est d’étudier le comportement asymptotique d’une classe de processus en auto-interaction sur Rd .
Ces processus de diffusion s’écrivent comme solution d’E.D.S. dont le terme de dérive dépend à la fois de la position actuelle du
processus et de sa mesure empirique μt . Jusqu’à présent, Benaïm, Ledoux et Raimond ont mené l’étude de ce type de diffusions
sur des espaces compacts, via des méthodes d’approximation stochastique. Nous étendons ces techniques à Rd , en supposant
l’existence d’un potentiel de confinement (vérifiant certaines conditions). Nous avons besoin de ces hypothèses sur le potentiel de
confinement, car, en général, un tel processus peut être transient. Nous concluons cet article par un exemple sur R2.
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1. Introduction

This paper addresses the long-term behavior of a class of “self-interacting diffusion” processes (Xt , t ≥ 0) living
on Rd . These processes are time-continuous and non-Markov. They are solutions to a kind of diffusion SDEs, whose
drift term depends on the whole past of the path through the occupation measure of the process. Due to their non-
Markovianity, they often exhibit an interesting ergodic behavior.

1.1. Previous results on self-interacting diffusions

Time-continuous self-interacting processes, also named “reinforced processes,” have already been studied in many
contexts. Under the name of “Brownian polymers”, Durrett and Rogers [10] first introduced them as a possible math-
ematical model for the evolution of a growing polymer. They are solutions of SDEs of the form

dXt = dBt + dt

∫ t

0
ds f (Xt − Xs),

where (Bt ; t ≥ 0) is a standard Brownian motion on Rd and f is a given function. As the process (Xt ; t ≥ 0) evolves
in an environment changing with its past trajectory, this SDE defines a self-interacting diffusion, either self-repelling
or self-attracting, depending on f .

http://www.imstat.org/aihp
http://www.imstat.org/aihp
http://dx.doi.org/10.1214/09-AIHP206
mailto:aline.kurtzmann@iecn.u-nancy.fr


Some self-interacting diffusions on Rd 619

Another modelisation, with dependence on the normalized occupation measure (μt , t ≥ 0), has been considered by
Benaïm et al. [5]. They introduced a process living in a compact smooth connected Riemannian manifold M without
boundary:

dXt =
N∑

i=1

Fi(Xt ) ◦ dBi
t −

∫
M

∇xW(Xt , y)μt (dy)dt, (1.1)

where W is a (smooth) interaction potential, (B1, . . . ,BN) is a standard Brownian motion on RN and the symbol ◦
stands for the Stratonovich stochastic integration. The family of smooth vector fields (Fi)1≤i≤N comes from the Hör-
mander “sum of squares” decomposition of the Laplace–Beltrami operator � = ∑N

i=1 F 2
i . The normalized occupation

(or empirical) measure μt is defined by

μt := r

r + t
μ + 1

r + t

∫ t

0
δXs ds, (1.2)

where μ is an initial probability measure and r is a positive weight. In the compact-space case, they showed that the
asymptotic behavior of μt can be related to the analysis of some deterministic dynamical flow defined on the space
of the Borel probability measures. They went further in this study in [6] and gave sufficient conditions for the a.s.
convergence of the empirical measure. When the interaction is symmetric, then μt converges a.s. to a local minimum
of a nonlinear free energy functional (each local minimum having a positive probability to be chosen). All these results
are summarized in a recent survey of Pemantle [18].

The present paper follows the same lead and extends the results of Benaïm et al. [5] in the non-compact setting.
We present all results in the Euclidean space Rd for the sake of simplicity, but they can be extended to the case of
a complete connected Riemannian manifold M without boundary with no further difficulty than the use of notations
and a bit of geometry. One needs in particular to involve the Ricci curvature in the assumptions and work on the space
M\ cut(o), where cut(o) is the cut locus of o (which has zero Lebesgue-measure).

1.2. Statement of the problem

Here we set the main definitions. Consider a confinement potential V : Rd → R+ and an interaction potential W : Rd ×
Rd → R+. For any bounded Borel measure μ, we consider the “convoled” function

W ∗ μ : Rd → R, W ∗ μ(x) :=
∫

Rd

W(x, y)μ(dy). (1.3)

Our main object of interest is the self-interacting diffusion solution to⎧⎪⎨
⎪⎩

dXt = dBt − (∇V (Xt ) + ∇W ∗ μt(Xt )
)

dt,

dμt = (δXt − μt)
dt

r+t
,

X0 = x, μ0 = μ,

(1.4)

where (Bt ) is a d-dimensional Brownian motion. Our goal is to study the long-term behavior of (μt , t ≥ 0). Let us
recall that the main difference with the work [5] is that the state space is Rd and hence is not compact anymore.
However, we are able to extend the results obtained in the compact case: the behavior of μt is closely related to the
behavior of a deterministic flow. We will also give some sufficient conditions on the interaction potential in order to
prove ergodic results for X.

Before stating the theorems proved in this paper, let us briefly describe the main results obtained so far on self-
interacting diffusions in non-compact spaces. They concern the model of Durrett and Rogers, and can be classified
in three categories. First, when f is real, non-negative and compactly supported, Cranston and Mountford [8] have
solved a (partially proved) conjecture of Durrett and Rogers and shown that Xt/t converges a.s. Second, the attracting
interaction on R (i.e. xf (x) ≤ 0 for all x ∈ R) has been studied in the constant case by Cranston and Le Jan [7] and
its generalization by Raimond [19] for the case f (x) = −ax/‖x‖, or by Herrmann and Roynette [11] for a local
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interaction. Under some conditions, it is proved that Xt converges a.s., whereas for a non-local interaction, it does not
in general (but the paths are a.s. bounded for f (x) = − sign(x)1|x|≥a). The third category concerns a non-integrable
repulsive f on R (i.e. xf (x) ≥ 0 for all x ∈ R) studied by Mountford and Tarrès [17] and solving a conjecture of
Durrett and Rogers. They have proved that for f (x) = x/(1 + |x|1+β), with 0 < β < 1, there exists a positive c such
that with probability 1/2, the symmetric process t−2/(1+β)Xt converges to c.

These previous works have in common that the drift may overcome the noise, so that the randomness of the process
is “controlled”. To illustrate that, let us mention, for the same model of Durrett and Rogers, the case of a compactly
supported repulsive function, also conjectured in [10], which is still unsolved.

Conjecture 1 ([10]). Suppose that f : R → R is an odd function, of compact support. Then Xt/t converges a.s. to 0.

Coming back to our process of interest, the role of the confinement potential is to similarly “control” the drift term
of the diffusion. Indeed, for the process (1.4) with V = 0, the interaction potential is in general not strong enough for
the process to be recurrent, and the behavior is then very difficult to analyze. In particular, it is hard to predict the
relative importance of the drift term in the evolution.

1.2.1. Technical assumptions on the potentials
First, we denote the Euclidian scalar product by (·, ·) and by (H) the following set of hypotheses:

(i) (regularity and positivity) V ∈ C 2(Rd), W ∈ C 2(Rd × Rd) and V ≥ 1, W ≥ 0;
(ii) (growth) there exists C > 0 such that for all x, y ∈ Rd

∣∣∇V (x) − ∇V (y)
∣∣ ≤ C

(|x − y| ∧ 1
)(

V (x) + V (y)
); (1.5)

(iii) (domination) there exists κ ≥ 1 such that for all x, y ∈ Rd ,

W(x,y) ≤ κ
(
V (x) + V (y)

)
and

∣∣∇2
xxW(x, y)

∣∣ + ∣∣∇xW(x, y)
∣∣ ≤ κ

(
V (x) + W(x,y)

)
, (1.6)

lim|x|→∞ sup
y∈Rd

|∇V (x)|2 + 2(∇V (x),∇xW(x, y))

V (x) + W(x,y)
= +∞; (1.7)

(iv) (curvature) there exist α,a > 0, δ > 1 and M ∈ R such that for all x, y, ξ ∈ Rd ,(
x,∇V (x) + ∇xW(x, y)

) ≥ a|x|2δ − α and
((∇2V (x) + ∇2

xxW(x, y)
)
ξ, ξ

) ≥ M|ξ |2. (1.8)

Remark 1.1.

(1) The most important conditions are the domination and the curvature.

(2) The growth condition (1.5) on V ensures that there exists a > 0 such that for all x ∈ Rd ,

�V (x) ≤ aV (x). (1.9)

(3) The positivity and domination conditions on the interaction potential are not so hard to be satisfied, since the
self-interacting process will be invariant by the gauge transform W(x,y) �→ W(x,y) + φ(y) for any function φ that
does not grow faster than V .

1.2.2. Results
We can now describe the behavior of μt .

Theorem 1.2. Suppose (H). For any probability measure μ on Rd , let Π(μ) := e−2(V +W∗μ)/Z(μ), where Z(μ) is
the normalization constant:

(1) Px,r,μ-a.s., the ω-limit set (i.e., the accumulation points) of (μt , t ≥ 0) is weakly compact, invariant by the flow
generated by μ̇ = Π(μ) − μ and admits no other (sub-)attractor than itself.
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(2) If W is symmetric, then Px,r,μ-a.s., the ω-limit set of (μt , t ≥ 0) is a connected subset of the set of fixed points
of the application μ �→ Π(μ).

Even if the model studied could at a first glance seem restrictive (because of V ), the drift term competes with the
Brownian motion. The evolution is non-trivial and strongly depends on the drift.

Theorem 1.3. Consider the diffusion (1.4) on R2, with V (x) = V (|x|) and W(x,y) = (x,Ry), where R is the rotation
matrix of angle θ . For ρ ≥ 0, define the probability measure γ (dρ) := e−2V (ρ) dρ/Z. Then one of the following holds:

(1) If V is such that
∫ ∞

0 ρ2γ (dρ) cos θ > −1, then a.s. μt → γ (weakly);
(2) Else, we get two different cases:

(a) if θ = π, then there exists a random measure μ∞ such that a.s. μt → μ∞ (weakly),
(b) if θ 
= π, then μt circles around.

1.3. Outline of contents

As mentioned earlier, the main difficulty here stems from the non-compactness of the state space. The way to get
around it is first to introduce, in Section 2, the V -norm (also named “dual weighted norm”), compatible with non-
bounded functions, controlled by V . The family of measures (μt , t ≥ 0) will then prove being (uniformly) bounded
(for t large enough) for the dual V -norm in Section 5.1. Second, the dynamical system involved induces only a
local semiflow and not necessarily a global one. The last important property is the following. Consider the Feller
diffusion Xμ, corresponding to the SDE (1.4) where μt is fixed to μ. Its fundamental kernel (i.e. the inverse of the
infinitesimal generator) is denoted by Qμ. In order to study the ergodicity (in the limit-quotient sense) of X, one has
to find a (uniform in μ) upper bound for the operator Qμ. More precisely, we will prove the ultracontractivity of the
semigroup in Section 4.1.1.

The organization of this paper is as follows. In the next section, we introduce some notations and prove the existence
and uniqueness of X. Section 3 is devoted to the presentation of the main results and is divided in three parts. First,
we recall the former results and ideas of Benaïm et al. [5]. Then, we state the tightness of (μt )t and introduce the
uniform estimates on the Feller semigroup. We finally end by describing the behavior of μt . Section 4 prepares
the proofs of the main results by computing some useful estimates. First, we study in details the family of Markov
semigroups, corresponding to Xμ, for which we prove the uniform ultracontractivity property and the regularity of
the operators Aμ and Qμ. After that, we analyze, in Section 4.2, the deterministic semiflow associated to the self-
interacting diffusion and show its local existence. The proofs of the main results are given in Section 5, which heavily
relies on the spectral analysis of Section 4.1. We first show the tightness of (μt )t . Then, Section 5.2 deals with the
approximation of the normalized occupation measure (μt , t ≥ 0) by a deterministic semiflow. In Section 5.3, we prove
Theorem 1.2. Finally, Section 6 is devoted to the illustration in dimension d = 2 and the proof of Theorem 1.3.

2. Preliminaries and tools

2.1. Some useful spaces and results

In all the following, (Ω, F , (Ft )t ,P) will be a filtered probability space satisfying the usual conditions.

2.1.1. Spaces and topology
We begin to introduce the weighted supremum norm (or V -norm)

‖f ‖V := sup
x∈Rd

|f (x)|
V (x)

, (2.1)

and the space of continuous V -bounded functions

C 0(Rd ;V ) := {
f ∈ C 0(Rd

)
: ‖f ‖V < ∞}

. (2.2)
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Similarly let Ck(Rd ;V ) := Ck(Rd) ∩ C 0(Rd ;V ) for all k ≥ 1.
We denote by M(Rd) the space of signed (bounded) Borel measures on Rd and by P (Rd) its subspace of proba-

bility measures. We will need the following measure space:

M
(
Rd;V ) :=

{
μ ∈ M

(
Rd

);∫
Rd

V (y)|μ|(dy) < ∞
}
, (2.3)

where |μ| is the variation of μ: |μ| := μ+ +μ− with (μ+,μ−) the Hahn–Jordan decomposition of μ. This space will
enable us to always check the integrability of V (and of W and its derivatives thanks to the domination condition (1.6))
with respect to the measures to be considered. For example, it contains the measure

γ (dx) := e−2V (x) dx. (2.4)

We endow M(Rd;V ) with the following dual weighted supremum norm (or dual V -norm) defined by

‖μ‖V := sup
ϕ∈C 0(Rd ;V );‖ϕ‖V ≤1

∣∣∣∣
∫

Rd

ϕ dμ

∣∣∣∣, μ ∈ M
(
Rd;V )

. (2.5)

This norm naturally arises in the approach of ergodic results for time-continuous Markov processes by Meyn and
Tweedie [16]. It makes M(Rd;V ) a Banach space. Since we will mainly consider probability measures in the fol-
lowing, we set P (Rd;V ) := M(Rd;V ) ∩ P (Rd). The strong topology on P (Rd;V ) is the trace topology of the one
defined on M(Rd ;V ). It makes P (Rd;V ) a complete metric space.

In order to study the dynamical system in Section 4.2, we need to endow the space P (Rd ;V ) with two different
topologies. When nothing else is stated, we will consider that it is equipped with the strong topology defined by the
dual weighted supremum norm ‖ · ‖V . But, as the reader will notice, we will frequently need to switch from the strong
topology to the weak topology of convergence of measures. We adopt here a non-standard definition compatible with
possibly unbounded functions (yet dominated by V ). For any sequence of probability measures (μn,n ≥ 1) and any
probability measure μ (all belonging to P (Rd;V )), we define the weak convergence as

μn
w→ μ if and only if

∫
Rd

ϕ dμn −→
n→∞

∫
Rd

ϕ dμ ∀ϕ ∈ C 0(Rd;V )
. (2.6)

We point out that our definition of the weak convergence is stronger than the usual one. We recall that P (Rd;V ),
equipped with the weak topology, is a metrizable space. Since C 0(Rd;V ) is separable, we exhibit a sequence (fk)k
dense in {f ∈ C 0(Rd ;V ); ‖f ‖V ≤ 1}, and set for all μ,ν ∈ P (Rd ;V ):

d(μ, ν) :=
∞∑

k=1

2−k
∣∣μ(fk) − ν(fk)

∣∣. (2.7)

Then the weak topology is the metric topology generated by d.
Finally, for any β > 1, we introduce the subspace

Pβ

(
Rd;V ) :=

{
μ ∈ P

(
Rd;V );∫

Rd

V (y)μ(dy) ≤ β

}
. (2.8)

Proposition 2.1. Let β > 1. The set Pβ(Rd;V ) is a weakly compact subset of P (Rd;V ).

Proof. Straightforward. �

2.1.2. Preliminary results
Through this paper, we will use (many times) some easy results. First, to illustrate the need of the space M(Rd;V ),
we state
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Lemma 2.2. For any μ ∈ M(Rd;V ), the function W ∗ μ belongs to C 2(Rd;V ) and∣∣W ∗ μ(x)
∣∣ ≤ 2κ‖μ‖V V (x).

There exists D > 0 such that for all μ ∈ M(Rd ;V ),∣∣�(
V (x) + W ∗ μ(x)

)∣∣ ≤ D
(
V (x) + W ∗ μ(x)

)
. (2.9)

Proof. It results from the growth (1.5) and domination (1.6) conditions. �

Corollary 2.3. Let β > 1. For μ ∈ Pβ(Rd;V ), we get

Z(μ) =
∫

Rd

e−2W∗μ(x)γ (dx) ≥ e−2κβ

∫
Rd

e−2κV (x)γ (dx) ≥
∫

Rd

e−4κβV (x)γ (dx). (2.10)

The following function will also prove being very useful, as a Lyapunov function

Eμ(x) := V (x) + W ∗ μ(x). (2.11)

Lemma 2.4. Let β > 1. For any μ ∈ Pβ(Rd ;V ), we have the following upper bound:

Eμ(x) ≤ 3κβV (x). (2.12)

Proof. It follows from the domination (1.6) condition. �

For any probability measure μ ∈ P (Rd;V ), let (X
μ
t , t ≥ 0) be the Feller diffusion defined by the SDE

dX
μ
t = dBt − (∇V

(
X

μ
t

) + ∇W ∗ μ
(
X

μ
t

))
dt, X

μ
0 = x. (2.13)

Suppose that Xμ a.s. never explodes. We denote by (P
μ
t ; t ≥ 0) the associated Markov semigroup. Its infinitesimal

generator is then the differential operator Aμ defined on C∞(Rd) by

Aμf := 1

2
�f − (∇V + ∇W ∗ μ,∇f ). (2.14)

We emphasize that Xμ is a positive-recurrent (reversible) diffusion. Denote by Π(μ) ∈ P (Rd ;V ) its unique invariant
probability measure:

Π(μ)(dx) := e−2W∗μ(x)

Z(μ)
γ (dx), (2.15)

where Z(μ) := ∫
Rd e−2W∗μ(x)γ (dx) < +∞ is the normalization constant.

Proposition 2.5. The diffusion X
μ
t a.s. never explodes.

Proof. It is enough to check with Itô’s formula and (2.9) that Eμ, defined in (2.11), is a Lyapunov function: AμEμ ≤
DEμ. As a by-product we get the naive estimate

EEμ

(
X

μ
t

) ≤ Eμ(x)eDt . (2.16)
�

The classical ergodic (limit-quotient) theorem is true for Xμ: a.s. we have, for all f ∈ C 0(Rd;V ),

lim
t→∞

1

t

∫ t

0
f

(
Xμ

s

)
ds = Π(μ)f =:

∫
Rd

f dΠ(μ). (2.17)
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To end this part, for any μ ∈ P (Rd;V ), let L2(Π(μ)) be the Lebesgue space of Borel square-integrable functions
with respect to the measure Π(μ). We remark that this space depends on μ, but we will consider mainly the subspace

C 0(Rd ;V ) ⊂ L2(Π(μ)). We denote the inner product on this space by

(f, g)μ :=
∫

Rd

f (x)g(x)Π(μ)(dx)

and ‖ · ‖2,μ is the associated norm. We introduce two operators: Qμ (sometimes called the “fundamental kernel” as
in Kontoyiannis and Meyn [12]) is the solution to Poisson’s equation, that is the “inverse” of Aμ, defined for any
function f ∈ C∞(Rd ;V ) by

Qμf :=
∫ ∞

0

(
P

μ
t f − Π(μ)f

)
dt (2.18)

and Kμ is the orthogonal projector defined by

Kμf := f − Π(μ)f. (2.19)

These operators are linked together by the Poisson equation: ∀f ∈ C∞(Rd ;V ),

Aμ ◦ Qμ(f ) = Qμ ◦ Aμ(f ) = −Kμf.

Remark 2.6. The existence of Qμf comes from the uniform spectral gap obtained in Corollary 3.4.

2.2. The self-interacting diffusion

We recall the self-interacting diffusion considered here:{
dXt = dBt − (∇V (Xt) + ∇W ∗ μt(Xt )

)
dt, X0 = x,

dμt = (δXt − μt)
dt

r+t
, μ0 = μ.

Proposition 2.7. For any x ∈ Rd , μ ∈ P (Rd;V ) and r > 0, there exists a unique global strong solution (Xt ,μt ,

t ≥ 0).

Proof. Let us introduce the increasing sequence of stopping times, τ0 = 0, and

τn := inf

{
t ≥ τn−1; Eμt (Xt ) +

∫ t

0

∣∣∇Eμs (Xs)
∣∣2 ds > n

}
.

In order to show that the solution never explodes, we use again the Lyapunov functional (x,μ) �→ Eμ(x) defined in
(2.11). As the process (t, x) �→ Eμt (x) is of class C 2 (in the space variable) and is a C 1-semi-martingale (in the time
variable), the generalized Itô formula (or Itô–Ventzell formula, see [13]), applied to (t, x) �→ Eμt∧τn

(x) implies

Eμt∧τn
(Xt∧τn) = Eμ(x) +

∫ t∧τn

0

(∇Eμs (Xs),dBs

) −
∫ t∧τn

0

∣∣∇Eμs (Xs)
∣∣2 ds

+ 1

2

∫ t∧τn

0
�Eμs (Xs)ds +

∫ t∧τn

0

(
W(Xs,Xs) − W ∗ μs(Xs)

) ds

r + s
. (2.20)

We note that
∫ t∧τn

0 (∇Eμs (Xs),dBs) is a true martingale. Letting k = a + 2κ/r + D, we then get, similarly to (2.9),

EEμt∧τn
(Xt∧τn) ≤ Eμ(x) + k log(1 + t)

∫ t

0
EEμs∧τn

(Xs∧τn)ds.
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So, Gronwall’s lemma leads to the same kind of estimate as for Xμ:

EV (Xt∧τn) ≤ EEμt∧τn
(Xt∧τn) ≤ Eμ(x)ekt log(1+t).

As lim|x|→∞V (x) = ∞, the process (Xt , t ≥ 0) does not explode in a finite time and there exists a global strong
solution. �

3. Main results

3.1. Former tools and general idea

We remind how Benaïm et al. [5] handled the asymptotic behavior of μt in a compact space. Indeed, we sketch here
the general idea and explain why the tools introduced in Section 2 arise quite naturally.

First, suppose that the empirical measure appearing in the drift is “frozen” to some fixed measure μ. We obtain
the Feller diffusion Xμ, for which there exists a spectral gap. The associated semigroup (P

μ
t ; t ≥ 0) is exponentially

V -uniformly ergodic:∥∥P
μ
t f − Π(μ)f

∥∥
V

≤ c(μ)‖f ‖V e−c(μ)t , f ∈ C 0(Rd;V )
. (3.1)

To get, as a by-product, the almost sure convergence of the empirical measure of Xμ (as defined in (2.17)), a standard
technique is to consider the operator Qμ defined by (2.18). Then, it is enough to apply Itô’s formula to Qμf (X

μ
t ) and

divide both members by t to get the desired result. Indeed, one has

Qμf
(
X

μ
t

) = Qμf (x) +
∫ t

0

(∇Qμf
(
Xμ

s

)
,dBs

) +
∫ t

0
Aμ ◦ Qμf

(
Xμ

s

)
ds.

Thanks to some easy bounds on the semigroup (P
μ
t ), one proves that the martingale term is negligible compared to t

and then, one recognizes the last term since Aμ ◦ Qμf = Π(μ)f − f .
Now when μt changes in time, we still can write a convenient extended form of Itô’s formula, which let appear

the time derivative of Qμt f , but we need to improve the remainder of the argument. Intuitively, as for stochastic
approximation processes, one expects the trajectories of μt to approximate the trajectories of a deterministic semiflow.
This very last remark conveyed to Benaïm et al. [5] the idea to compare the asymptotic evolution of (μt ; t ≥ 0) with
a semiflow.

Definition 3.1. A continuous function ξ : R+ → P (Rd;V ) is an asymptotic pseudotrajectory (or asymptotic pseudo-
orbit) for the semiflow Φ if for all T > 0,

lim
t→+∞ sup

0≤s≤T

d
(
ξt+s ,Φs(ξt )

) = 0. (3.2)

The notion of asymptotic pseudotrajectory has been introduced by Benaïm and Hirsch [4]. It is particularly use-
ful to analyze the long-term behavior of stochastic processes, considered as approximations of solutions of ordinary
differential equation (the “ODE method”). In Section 5, we prove that the empirical measure is an asymptotic pseudo-
trajectory for the semiflow Φ induced by Π(μ) − μ.

3.2. New tools: Tightness and ultracontractivity

The paper of Benaïm et al. [5] crucially relies on the compactness of the manifold where the diffusion lives. It readily
implies that the measure μt is close to Π(μt). On the contrary, if the state space is Rd and V ≡ 0, then X will escape
from any compact set. Indeed, the confinement potential V forces the process (μt , t ≥ 0) to remain in a (weakly)
compact space of measures, for t large, and X is then positive-recurrent.

Theorem 3.2. Px,r,μ-a.s., β := sup{∫ V dμt ; t ≥ 0} < +∞.
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The proof is postponed to Section 5 and we emphasize that β is a random variable.
We also need some precise bounds on the family of semigroups (P

μ
t , t ≥ 0) where μ ∈ P (Rd;V ). A priori, it is

not obvious that the semigroup (P
μ
t ) admits a (uniform) spectral gap. Indeed, we will prove a stronger result: (P

μ
t ) is

uniformly bounded as an operator from L2(Π(μ)) to L∞. Section 4.1 will be devoted to those uniform properties. In
the following, define ‖P μ

t f ‖∞ := essupx∈Rd |P μ
t f (x)|.

Proposition 3.3. The family of semigroups (P
μ
t , t ≥ 0,μ ∈ P (Rd;V )) is uniformly ultracontractive: there exists

c > 0 independent of μ such that for all 1 ≥ t > 0 and μ ∈ P (Rd;V ), we have

sup
f ∈C∞(Rd ;V )\{0}

‖P μ
t f ‖∞

‖f ‖2,μ

≤ exp
(
ct−δ/(δ−1)

)
. (3.3)

The proof is postponed to Section 4.1.

Corollary 3.4. The family of measures (Π(μ),μ ∈ P (Rd;V )) satisfies a uniform (in μ) logarithmic Sobolev inequal-
ity and admits a uniform spectral gap. So, there exists C > 0, independent of μ, such that for all f ∈ C∞(Rd ;V ), for
all t ≥ 0:∥∥P

μ
t (Kμf )

∥∥
2,μ

≤ e−t/C‖Kμf ‖2,μ.

Proof. When a semigroup is ultracontractive, then it is hypercontractive. As being hypercontractive is equivalent
to satisfy a logarithmic Sobolev inequality, we conclude (see, for instance, Bakry [1]). The given inequality is a
consequence of the logarithmic Sobolev one. �

3.3. The ω-limit set

First, let us define an ω-limit set:

Definition 3.5. For every continuous function ξ : R+ → P (Rd;V ), the ω-limit set of ξ , denoted by ω(ξt , t ≥ 0), is the
set of limits of weak convergent sequences ξ(tk), tk ↑ ∞, that is

ω(ξt , t ≥ 0) :=
⋂
t≥0

ξ
([t,∞)

)
, (3.4)

where ξ([t,∞)) stands for the closure of ξ([t,∞)) according to the weak topology.

Let Φ : R+ × P (Rd;V ) → P (Rd;V ) be the semiflow generated by

Φt(μ) = e−tμ + e−t

∫ t

0
esΠ

(
Φs(μ)

)
ds, Φ0(μ) = μ. (3.5)

We will prove the local existence of the semiflow in Section 4.2, and for W symmetric or bounded, we will show
it never explodes. In other cases, we will assume the global existence of the semiflow. Section 5 is devoted to the
study of μt . Indeed, the time-changed process μh(t) (and not μt ) is an asymptotic pseudotrajectory for Φ , where
h : R+ → R+ is defined by

h(t) := r
(
et − 1

)
. (3.6)

This deterministic time-change h comes from the normalization of the occupation measure μt . The factor (r + t)−1

disappears while considering

d

dt
μh(t) = δXh(t)

− μh(t).
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Theorem 3.6. Under Px,r,μ, the function t �→ μh(t) is almost surely an asymptotic pseudotrajectory for the semi-
flow Φ .

The proof is given in Section 5. This result enables us to describe the ω-limit set of (μt , t ≥ 0):

Corollary 3.7. Px,r,μ-a.s., ω(μt , t ≥ 0) is weakly compact, invariant by Φ and the flow restricted to ω(μt , t ≥ 0)

contains no attractor (other than itself). The convex hull of the image of Π contains ω(μt , t ≥ 0).

In some cases, we state and prove a more precise description of ω(μt , t ≥ 0) in Section 5.

Theorem 3.8. Assume that W is symmetric. Then, Px,r,μ-a.s., ω(μt , t ≥ 0) is a connected subset of the fixed points
of Π .

Corollary 3.9. Suppose that W is symmetric. If Π admits only finitely many fixed points, then Px,r,μ-a.s., (μt ; t ≥ 0)

converges to one of them.

4. Estimates on the semigroups and dynamical system

4.1. The family of semigroups

In this part, we exhibit the ultracontractivity (implying the existence of a spectral gap) for the family of semigroups
(P

μ
t ,μ ∈ P (Rd;V )). Since we consider these semigroups altogether for all the measures μ ∈ P (Rd;V ), we will prove

that the constants involved are uniform in μ. The need for ultracontractivity will impose some kind of boundedness
on the convolution term in the SDE that cannot be easily removed. Finally, we compute several estimates preparing
Section 5.

4.1.1. Uniform ultracontractivity
The notion of ultracontractivity and its relation to the analysis of Markov semigroups were first studied by Davies and
Simon [9] and recently by Röckner and Wang [20] for more general diffusions. To prove that the family of semigroups
(P

μ
t , t ≥ 0,μ ∈ P (Rd;V )) is uniformly ultracontractive, we will rely on the following result of Röckner and Wang:

Lemma 4.1 ([20], Corollary 2.5). Let (Pt , t ≥ 0) be a Markov semigroup, with infinitesimal generator A := 1
2� −

(∇U,∇), and ∇2U ≥ −K with K > 0. Assume that there exists a continuous increasing map χ : R+ �→ R+ \ {0} such
that:

(1) limr→∞ χ(r)
r

= ∞,
(2) the mapping gχ(r) := rχ(m log r) is convex on [1,∞) for any m > 0,
(3) A|x|2 ≤ b − χ(|x|2) for some b > 0.

Then Pt admits a unique invariant probability measure. If
∫ ∞

2
dr

rχ(m log r)
< ∞, m > 0, then Pt is ultracontractive.

If, moreover, χ(r) = χrδ , with χ > 0, δ > 1, then there exists c = c(b,χ) > 0 such that for all t ∈ (0,1],
supf ∈C∞(Rd )\{0}

‖Ptf ‖∞
‖f ‖2

≤ exp (ct−δ/(δ−1)).

Proof of Proposition 3.3. First, we prove that there exist c1, c2 independent of μ such that |P μ
t f (x)| ≤ e(c1+c2|x|2)/t

for all t ∈ (0,1). Let M be the constant involved in the curvature condition (1.8) and denote mt := M

1−e−2Mt . By Wang

[24], Lemma 2.1, it appears that for all x, y ∈ Rd ,

∣∣P μ
t f (x)

∣∣2 ≤ P
μ
t f 2(y) exp

{
mt |x − y|2}.
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As Π1(μ) := e−2(V +W∗μ)/Z1, where Z1 := ∫
|y|≤1 e−2(V +W∗μ)(y) dy, is an invariant measure for the process Xμ, we

have that
∫
|y|≤1 e−mt |y|2Π1(μ)(dy) ≥ e−mt . So, we get

∫
Rd

e−mt |x−y|2Π1(μ)(dy) ≥ e−2mt (|x|2+1).

It remains to choose f ∈ C∞(Rd;V ) such that Π1(μ)f = 1 to conclude that

∣∣P μ
t f (x)

∣∣2e−2mt (|x|2+1) ≤ ∣∣P μ
t f (x)

∣∣2
∫

Rd

e−mt |x−y|2Π1(μ)(dy) ≤ 1.

Now, we apply Lemma 4.1 with U := V + W ∗ μ to show that each (P
μ
t )t≥0 is ultracontractive. Indeed, the curvature

condition (1.8) implies that there exist a, b > 0 such that for any μ ∈ P (Rd;V ),

Aμ|x|2 = d − 2
(
x,∇V (x) + ∇W ∗ μ(x)

) ≤ b − a|x|2δ.

As χ(r) = rδ with δ > 1, the constant c is uniform in μ. �

We are now able to derive some useful bounds on the operator Qμ. As we need these bounds being uniform (in μ),
and depending on x only through V (x), the ultracontractivity is essential.

Proposition 4.2. For all ε > 0, there exists a positive constant K(ε) such that for all μ ∈ Pβ(Rd ;V ), x ∈ Rd , f ∈
C 0(Rd ;V ):∣∣Qμf (x)

∣∣ ≤ (
εV (x) + K(ε)

)‖f ‖V . (4.1)

Proof. Let t0 ∈ (0,1] (we will choose it precisely later). We have

∣∣Qμf (x)
∣∣ ≤

∫ ∞

0

∣∣P μ
t (Kμf )(x)

∣∣dt =
∫ t0

0

∣∣P μ
t (Kμf )(x)

∣∣dt +
∫ ∞

t0

∣∣P μ
t (Kμf )(x)

∣∣dt.

We begin to work with the second right-hand term. Using the composition property of the semigroup, the uniform
ultracontractivity and uniform spectral gap, we have∫ ∞

t0

∣∣P μ
t (Kμf )(x)

∣∣dt ≤ exp
(
ct

−δ/(δ−1)

0

)∫ ∞

0
e−t/C dt‖Kμf ‖2,μ.

As Kμ is an orthogonal projector, ‖Kμf ‖2,μ ≤ ‖f ‖2,μ ≤ (
∫

V 2 dΠ(μ))1/2‖f ‖V , and we get

∫ ∞

t0

∣∣P μ
t (Kμf )(x)

∣∣dt ≤ C‖f ‖V exp
(
ct

−δ/(δ−1)

0

)(∫
V 2 dΠ(μ)

)1/2

.

We now have to work with the first right-hand term. We get∣∣P μ
t f (x)

∣∣ ≤ ‖f ‖V P
μ
t V (x) ≤ ‖f ‖V EEμ

(
X

μ
t

) ≤ Eμ(x)eDt‖f ‖V .

By Proposition 5.1, we get that
∫ t

0 EEμ(X
μ
s )ds = O(t) and so, we choose t0 small enough such that

∫ t0
0 EEμ(X

μ
s )ds ≤

ε to conclude. �

Proposition 4.3. For all ε > 0, there exists K1(ε) > 0 such that for all μ ∈ Pβ(Rd ;V ), x ∈ Rd, f ∈ C∞(Rd ;V ), we
have Qμf ∈ C 1(Rd) and∣∣∇Qμf (x)

∣∣ ≤ (
εV (x) + K1(ε)

)‖f ‖V . (4.2)
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Proof. We introduce the operator Γ
μ

2 (f ) := |∇2f |2 + (∇f,∇2(V +W ∗μ)∇f ). Using the curvature condition (1.8),
the Γ2-criterion (Γ μ

2 (f ) ≥ M|∇f |2), due to Bakry and Emery [2], is satisfied and implies (see Ledoux [14], p. 22)

∣∣∇P
μ
t (Kμf )

∣∣2 ≤ M

e2Mt − 1

∣∣P μ
t (Kμf )2

∣∣ ∀f ∈ C∞(
Rd;V )

,∀t > 0. (4.3)

Indeed, the previous inequality, together with the ultracontractivity, shows

∫ ∞

t0

∣∣∇P
μ
t (Kμf )(x)

∣∣dt ≤ 2C

√
M

e2Mt0 − 1
ect

−δ/(δ−1)
0 ‖f ‖V

(∫
V 4 dΠ(μ)

)1/4

.

Finally, one concludes by using again Proposition 5.1. �

4.1.2. Regularity with respect to the measure μ

We endow the space P (Rd ;V ) with a structure of infinite-dimensional differentiable manifold. This structure is
used only for differentiating functions defined on P (Rd ;V ), which is also needed in the study of the semiflow in
Section 4.2.

For any μ ∈ P (Rd;V ) we consider the set Ck(μ) (k ≥ 1) of (germs of) curves defined on some neighborhood of
zero (−ε, ε) with values in P (Rd;V ), passing through μ at time zero and that are of class Ck when they are considered
as functions with values in the Banach space M(Rd;V ). Now we say that a function φ : P (Rd;V ) → R is of class
Ck if for any μ ∈ P (Rd;V ) and any curve f ∈ Ck(μ) the real function φ ◦ f is of class Ck . This enables to define
the differential of such a function φ. For any μ the tangent space at μ to P (Rd;V ) can be identified with the space
M0(R

d ;V ) of zero-mass measures in M(Rd ;V ), that is ν(Rd) = 0. The differential is then the linear operator

Dφ(μ) · ν = d

dt
φ(μ + tν)

∣∣∣∣
t=0

, ν ∈ M0
(
Rd ;V )

. (4.4)

The same definition applies to functions with values in a Banach space or even in P (Rd ;V ). As an example, the maps
μ �→ W ∗ μ(x) (for any point x) and Π (applying Lebesgue’s theorem) are C∞.

First, consider the Banach space B of bounded linear operators from C∞(Rd ;V ) ⊂ L2(γ ), endowed with the norm
‖f ‖2,μ,1 := ‖f ‖2,μ + ‖Aμf ‖2,μ, to the same space equipped with the standard quadratic norm. We endow B with
the operator norm. Then, Aμ obviously belongs to the closed subset of B consisting in operators A such that A1 = 0.

Proposition 4.4. The mappings μ �→ Aμ and μ �→ Kμ are C∞. For any function f ∈ C∞(Rd ;V ), the application
μ �→ Qμf is C∞ for the strong topology and the differentials are (for any μ ∈ P (Rd ;V ), ν ∈ M0(R

d ;V )):

D(Aμf ) · ν = −(∇W ∗ ν,∇f ),

D(Kμf ) · ν = −(
DΠ(μ) · ν)

(f ),

D(Qμf ) · ν = (
DΠ(μ) · ν)

(Qμf ) + Qμ(∇W ∗ ν,∇Qμf ).

Proof. Consider measures μ ∈ P (Rd;V ). As μ �→ W ∗ μ and Π are C∞, there is nothing to prove in case of Aμ

or Kμ. To look at Qμ, we need to consider the resolvent operator of P
μ
t :

R
μ
λ :=

∫ ∞

0
e−λtP

μ
t dt = (λ − Aμ)−1 ∀λ > 0. (4.5)

For λ > 0, we define the approximation of Qμ,

Qμ(λ) :=
∫ ∞

0
e−λtP

μ
t Kμ dt = Kμ(λ − Aμ)−1. (4.6)

As μ �→ Kμ and μ �→ Aμ are C∞, the map μ �→ Qμ(λ)f is C∞ by composition.



630 A. Kurtzmann

The uniform spectral gap shows the existence of C,C1 > 0 such that

∥∥Qμf − Qμ(λ)f
∥∥

V
≤

∫ ∞

0

(
1 − e−λt

)∥∥P
μ
t Kμf

∥∥
V

dt ≤ λC‖f ‖V

∫ ∞

0
te−tC1 dt.

Hence the convergence of Qμ(λ) towards Qμ is uniform with respect to μ. As a by-product, μ �→ Qμf is continuous.
The differential of Qμ(λ) is

DQμ(λ) · ν = (DKμ · ν)(λ − Aμ)−1 + Kμ(λ − Aμ)−1(DAμ · ν)(λ − Aμ)−1.

Replacing DKμ and DAμ by their expressions, we will prove that each right-hand side term of the equality converges
uniformly. For the first one, as (DΠ(μ) · ν)((λ − Aμ)−1f ) = (DΠ(μ) · ν)(Kμ(λ − Aμ)−1f ), we have uniformly

lim
λ→0

(
DΠ(μ) · ν)(

(λ − Aμ)−1f
) = (

DΠ(μ) · ν)
(Qμf ).

To prove the convergence of the second term, remark that

Kμ(λ − Aμ)−1(∇W ∗ ν,∇)
(
(λ − Aμ)−1f

) = Qμ(λ)
(∇W ∗ ν,∇Qμ(λ)f

)
.

It remains now to show that ∇Qμ(λ)f converges (uniformly in μ) to ∇Qμf . By definition of Qμ(λ), we find

∣∣∇Qμf − ∇Qμ(λ)f
∣∣ ≤

∫ ∞

0

∣∣∇(
P

μ
t Kμf

)∣∣(1 − e−λt
)

dt.

We use the inequality (4.3) to prove that this family of differentials converges uniformly with respect to μ; so
μ �→ Qμf is actually C 1 with the stated differential. �

Remark 4.5. Looking at the differential D(Qμf ), we see that it is itself a C 1 function of μ, so by induction one proves
that μ �→ Qμf is C∞ and also that μ �→ P

μ
t f is C∞.

Corollary 4.6. For every f ∈ C∞(Rd;V ), we have the uniform inequality∣∣(DQμ · ν)(f )(x)
∣∣ ≤ (

εV 2(x) + K2(ε)
)‖f ‖V ‖ν‖V .

Proof. We easily get the inequality∣∣(DQμ · ν)(f )(x)
∣∣ ≤ ∣∣(DΠ(μ) · ν)

(Qμf )(x)
∣∣ + ∣∣Qμ

(∇W ∗ ν(x),∇Qμf (x)
)∣∣.

If we consider the second right-hand term, we find (using Cauchy’s inequality)∣∣Qμ

(∇W ∗ ν(x),∇Qμf (x)
)∣∣ ≤ (

εV 2(x) + K(ε)
)∥∥(∇W ∗ ν,∇Qμf

)∥∥
V 2

≤ (
εV 2(x) + K ′(ε)

)‖f ‖V ‖ν‖V .

We work now with the other member of the inequality:

∣∣(DΠ(μ) · ν)
(Qμf )

∣∣ ≤ 2
∫ ∣∣Qμf (x)

∣∣∣∣∣∣W ∗ ν(x) −
∫

W ∗ ν dΠ(μ)

∣∣∣∣Π(μ)(dx)

≤ C‖f ‖V ‖ν‖V

∫
V 2(x)Π(μ)(dx) = C′‖f ‖V ‖ν‖V . �

4.2. The dynamical system

Define the semiflow Φ : R+ × P (Rd ;V ) → P (Rd;V ) by

Φt(μ) = e−tμ + e−t

∫ t

0
esΠ

(
Φs(μ)

)
ds, Φ0(μ) = μ. (4.7)
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4.2.1. Existence of the semiflow
We first prove the local existence of the semiflow and then give sufficient conditions on the potentials for non-
explosion. To show the local existence of a solution, since P (Rd;V ) is not a vector space, we will proceed directly
by approximation. The following lemma is helpful in order to find a good security cylinder.

Lemma 4.7. For any β > 1, the application Π restricted to Pβ(Rd ;V ) is bounded and Lipschitz.

Proof. By equation (2.10), we have the following bound for Π(μ):

∥∥Π(μ)
∥∥

V
≤

(∫
Rd

e−4κβV (x)γ (dx)

)−1 ∫
Rd

V (x)γ (dx) =: Cβ. (4.8)

Remind, that Π is C∞ on P (Rd;V ) equipped with the strong topology. Its differential (at μ) is the continuous linear
operator DΠ(μ) : M0(R

d ;V ) → M0(R
d ;V ) defined by

DΠ(μ) · ν(dx) := −2

(
W ∗ ν(x) −

∫
Rd

W ∗ ν(y)Π(μ)(dy)

)
Π(μ)(dx). (4.9)

Fix ν ∈ M0(R
d ;V ). Lemma 2.2 implies that

∥∥DΠ(μ) · ν∥∥
V

≤ 4κ(1 + Cβ)‖ν‖V

∫
Rd

V 2(x)Π(μ)(dx).

For μ ∈ Pβ(Rd;V ), the computation used for the bound of Π(μ) enables to control the last integral, hence we get a
bound (call it C′

β ) on the differential and Π is Lipschitz as stated. �

Proposition 4.8. For all μ ∈ P (Rd;V ), the Eq. (4.7) admits a local solution. This defines a C∞ semiflow Φ for the
strong topology.

Proof. Let μ belong to P (Rd;V ) and choose β > 2‖μ‖V (so that μ ∈ Pβ(Rd;V )). We introduce the classic Picard
approximation scheme{

μ
(0)
t := μ,

μ
(n)
t := e−tμ + ∫ t

0 es−tΠ
(
μ

(n−1)
s

)
ds.

We set ε small enough such that ‖μ‖V + (1 − e−ε)Cβ ≤ β and εC′
β < 1 where both constants were defined in

Lemma 4.7. Then, for all n, μ
(n)
t is defined and belongs to Pβ(Rd ;V ), which makes [0, ε) × Pβ(Rd ;V ) a good

security cylinder. We have, for t < ε,∥∥μ
(n+1)
t − μ

(n)
t

∥∥
V

≤ (
1 − e−ε

)
C′

β sup
t<ε

∥∥μ
(n)
t − μ

(n−1)
t

∥∥
V
.

Now the series with general term supt<ε ‖μ(n+1)
t − μ

(n)
t ‖V converges and thus the sequence of functions μ(n) is

Cauchy for the topology of uniform convergence. Since P (Rd ;V ) is complete, we have successfully built a solution
on [0, ε). As the map Π is C∞ for the strong topology, every Picard approximation μ �→ μ

(n)
t is C∞ by induction, and

it is enough to take the limit uniformly in μ on Pβ(Rd ;V ) to conclude that the semiflow is smooth. �

Definition 4.9. A subset A of P (Rd;V ) is positively invariant (negatively invariant, invariant) for Φ provided
Φt(A) ⊂ A (A ⊂ Φt(A), Φt(A) = A) for all t ≥ 0.

For a symmetric W , we introduce the free energy (up to a multiplicative constant) for any μ ∈ P (Rd;V ) absolutely
continuous with respect to Lebesgue’s measure:

F (μ) :=
∫

Rd

log

(
dμ

dγ

)
dμ +

∫
Rd×Rd

W(x, y)μ(dx)μ(dy), (4.10)
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and F (μ) = +∞ if μ has a singular part with respect to Lebesgue. This functional is the sum of an entropy and
an interacting energy term. Under some convexity, the competition between them implies the existence of a unique
minimizer for F (see [23]).

Proposition 4.10. Whenever that W is either symmetric or uniformly bounded in the second variable (W(x,y) ≤
κV (x)), the semiflow Φ does not explode.

Proof. Suppose that W(x,y) is bounded in y: W(x,y) ≤ κV (x). Mimicking the proof of Lemma 4.7, we show that
Π is globally bounded (call C the upper bound). This means that Φt(μ) remains in the space PC(Rd ;V ), so it cannot
explode.

Let us now assume that W is symmetric. We point out that the free energy F is not a Lyapunov function for the
semiflow Φ because, in general, the measure Φt(μ) is not absolutely continuous with respect to Lebesgue’s measure
and so, F (Φt (μ)) = ∞. Consider the Lyapunov function I(μ) := F (Π(μ)), which can be viewed as F restricted
to absolutely continuous probability measures, is a C∞ function for the strong topology. We compute (thanks to the
symmetry of W ) for ν ∈ M0(R

d ;V )

DF (μ) · ν =
∫

Rd

[
log

(
dμ

dγ
(x)

)
+ 2W ∗ μ(x)

]
dν(x). (4.11)

But Π is C∞ and its differential is given by (4.9). Computing the differential of I(μ) by composition, we obtain

DI(μ) · ν = −4
∫

Rd

(
W ∗ Π(μ) − W ∗ μ

)(
W ∗ ν −

∫
Rd

W ∗ ν dΠ(μ)

)
dΠ(μ).

We choose ν = Π(μ) − μ and get

1

4

d

dt
I
(
Φt(μ)

) = −
∫

Rd

(W ∗ ν)2 dΠ(μ) +
(∫

Rd

W ∗ ν dΠ(μ)

)2

≤ 0.

So, for all c > 0, the sets {μ; I(μ) ≤ c} are positively invariant. As they are (weakly) compact, the semiflow cannot
explode. �

We have defined the smooth dynamical system Φ , with respect to the strong topology. But, in order to study the
asymptotic behavior of (μt , t ≥ 0), it is technically easier to work with the weak topology. Therefore, we will also
consider the semiflow Φ with the weak topology:

Proposition 4.11. Φ induces a continuous semiflow with respect to the weak topology.

Proof. Since μ �→ W ∗ μ(x) is readily weakly continuous (by the domination condition again), Π is weakly contin-
uous. Now, going back to the Picard approximation scheme, it results that μ �→ μ

(n)
t is weakly continuous for every n

and t . Passing to the limit, we conclude. �

4.2.2. The free energy
We show how the free energy functional F helps to find the fixed points of Π . From now on, we restrict ourselves to
the set of absolutely continuous measures.

Lemma 4.12. Suppose that W is symmetric. Then the fixed points of Π are the minima of F .

Proof. Equation (4.11) readily implies that DF (μ) · ν = 0 for all ν ∈ M0(R
d ;V ) if and only if μ = Π(μ). So, the

fixed points of Π are the critical points of F . Indeed, F is a C∞ functional, with second differential D2 F (μ). Let
ν1, ν2 ∈ M0(R

d ;V ). We have:

D2 F (μ) · (ν1, ν2) =
∫

Rd

ν1(x)ν2(x)μ(x)−1γ (x)dx + 2
∫

Rd

∫
Rd

W(x, y)ν1(dx)ν2(dy) ≥ 0.
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It then implies that μ = Π(μ) is a minimum for F . �

Corollary 4.13. Suppose that W is symmetric and for all y ∈ Rd , the function x �→ V (x)+W(x,y) is strictly convex.
Then, F admits a unique minimizer μ∞ and this probability measure μ∞ satisfies limt→∞Φt(μ) = μ∞.

Proof. Under strict convexity, McCann [15] has proved that F admits a unique critical point μ∞, which is a unique
global minimum and also the unique fixed point of Π . �

Proposition 4.14. Whenever that W is either symmetric or bounded in the second variable, then the set {μ ∈
P (Rd;V );Π(μ) = μ} is a nonempty compact (for the weak topology) subset of P (Rd;V ).

Proof. Suppose first that W is bounded in y: W(x,y) ≤ κV (x) and let β :=
∫
Rd V (x)γ (dx)∫

Rd e−2κV (x)γ (dx)
. By Lemma 4.7, Π maps

(weakly) continuously the compact convex space Pβ(Rd ;V ) into itself. The Leray–Schauder fixed point theorem then
ensures that the set {μ ∈ Pβ(Rd ;V );Π(μ) = μ} is nonempty.

Suppose now that W is symmetric. We use again the free energy I = F ◦ Π . Let m := inf{I(μ);μ ∈ P (Rd ;V )}.
There exists a sequence of probability measures (μn) absolutely continuous with respect to Lebesgue’s measure such
that m ≤ I(μn) ≤ m + 1/n. As for any c > 0, the set {μ; I(μ) ≤ c} is compact, we extract a subsequence (μnk

)

converging (weakly) to μ∞. As μ �→ W ∗ μ and μ �→ Π(μ) are continuous, μ �→ I(μ) is also weakly continuous
and so I(μ∞) = m. Lemma 4.12 permits to conclude. �

5. Behavior of the occupation measure

5.1. Tightness of (μt , t ≥ 0)

Thanks to the potential V , we manage to obtain a weak form of compactness for the empirical measure, the tightness.

Proof of Theorem 3.2. Set φ(t) := ∫ t

0 V (Xs)ds. All we need to prove is that φ(t) = O(t) a.s. We use again the
Lyapunov functional Eμ(x) = V (x) + W ∗ μ(x) and remind Itô’s formula (2.20) for Eμt (Xt ). Moreover, Eq. (1.7)
implies that for all ε > 0, there exists η > 0 such that for any |x| ≥ η, we have that V (x) + W(x,y) ≤ ε(|∇V (x)|2 +
2(∇V (x),∇xW(x, y))). So, for all ε > 0, there exists kε such that Eμs (x) ≤ kε + ε|∇Eμs (x)|2. On one hand, if∫ ∞

0 |∇Eμs (Xs)|2 ds < ∞ a.s., then the strong LLN for martingales asserts that
∫ ∞

0 (∇Eμs (Xs),dBs) converges a.s.
to M∞ and the proof is then similar to the following. (Indeed the ergodic theorem implies that this case does not
happen). On the other, if

∫ ∞
0 |∇Eμs (Xs)|2 ds = ∞ a.s., then a.s. there exists T (ω) such that for all t ≥ T , we have∫ t

0 (∇Eμs (Xs),dBs) ≤ 1
2

∫ t

0 |∇Eμs (Xs)|2 ds. So, we get the a.s. inequality for t (random) large enough:

∫ t

0

∣∣∇Eμs (Xs)
∣∣2 ds ≤ 2Eμ(x) +

∫ t

0
�Eμs (Xs)ds + 2

r

∫ t

0
W(Xs,Xs)ds.

The domination condition (1.6) leads to W(Xs,Xs) ≤ 2κV (Xs) ≤ 2κ(kε + ε|∇Eμs (Xs)|2). Moreover, it also im-
plies:

�Eμs ≤ DEμs ≤ D
(
kε + ε

∣∣∇Eμs (Xs)
∣∣2)

.

So, putting all the pieces together, we get

(
1 − (D + 4κ/r)ε

) ∫ t

0

∣∣∇Eμs (Xs)
∣∣2 ds ≤ 2Eμ(x) + (D + 4κ/r)kεt.

It remains to choose ε = (D + 4κ/r)−1/2 and then we obtain the desired inequality: for some C > 0,

φ(t) ≤
∫ t

0
Eμs (Xs)ds ≤ C(1 + t).
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We finally conclude that β(ω) := sup{μt(V ); t ≥ 0} < +∞ a.s. �

Proposition 5.1. For all n ∈ N, we have that
∫ t

0 Ex,r,μ(V n(Xs))ds = O(t).

Proof. We drop the subscripts x, r,μ in the following. We prove the result for the Lyapunov function Eμ(x) instead
of V . For n = 1, it suffices to adapt the previous proof to show that for all t > 0∫ t

0
E

∣∣∇Eμs (Xs)
∣∣2

ds ≤ Eμ(x) +
∫ t

0
E�Eμs (Xs)ds + 2

r

∫ t

0
EW(Xs,Xs)ds.

The result follows.
We conclude the general case n ≥ 1 by induction. Indeed, we have for all ε > 0:

E n
μ(x) ≤ kε E n−1

μ (x) + εE n−1
μ (x)

∣∣∇Eμ(x)
∣∣2

.

Moreover, by Itô’s formula, we also find for all s < t that∫ t

s

EE n−1
μu

(Xu)
∣∣∇Eμu(Xu)

∣∣2 du

≤
∫ t

s

2κ

r + u
EE n

μu
(Xu)du + (n − 1)

∫ t

s

EE n−2
μu

(Xu)
∣∣∇Eμu(Xu)

∣∣2 du

+ k

∫ t

s

EE n
μu

(Xu)du +
∫ t

s

κ

r + u
E

(
E n−1

μu
(Xu)

∫ u

0
Eμv (Xv)dv

)
du.

Young’s inequality: xn−1y ≤ n−1
n

xn + 1
n
yn, with x = E n−1

μu
(Xu) and y = Eμv (Xv), yields to the existence of α,A > 0

such that∫ t

s

EE n−1
μu

(Xu)
∣∣∇Eμu(Xu)

∣∣2 du ≤ α

∫ t

s

EE n
μu

(Xu)du + A

∫ t

s

du

r + u

∫ u

0
EE n

μv
(Xv)dv.

We thus obtain:∫ t

s

EE n
μu

(Xu)du

≤ kε

∫ t

s

EE n−1
μu

(Xu)du + ε

(
α

∫ t

s

EE n
μu

(Xu)du + A

∫ t

s

du

r + u

∫ u

0
EE n

μv
(Xv)dv

)

≤ k(t − s) +
∫ t

s

du

r + u

∫ u

0
EE n

μv
(Xv)dv.

Let x(t) := ∫ t

0 EE n
μs

(Xs)ds. Solving the preceding inequality boil down to solve ẋ ≤ M + x/(r + t). The solution
satisfies x(t) = O(t) and we finally conclude. �

Corollary 5.2. For all n ∈ N, we have that Ex,r,μ(V n(Xt )) = O(t).

5.2. Asymptotic behavior

Define the family of measures {εt,t+s; t ≥ 0, s ≥ 0} by

εt,t+s :=
∫ t+s

t

(
δXh(u)

− Π(μh(u))
)

du. (5.1)

This family will be essential for proving that t �→ μh(t) is an asymptotic pseudotrajectory for Φ .
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Proposition 5.3. For all T > 0 and all f ∈ C∞(Rd;V ), we have Px,r,μ-a.s.,

lim
t→∞ sup

0≤s≤T

|εt,t+sf | = 0.

Proof. First, we need the uniform estimates on the family of semigroups (P
μ
t ) proved in Section 4.1. Let f ∈

C∞(Rd ;V ). We begin to rewrite

εt,t+sf =
∫ h(t+s)

h(t)

Aμu ◦ Qμuf
du

r + u
.

We consider the C 2-valued process (t, x) �→ Qμh(t)
f (x), which is of class C 2 and a C 1-semimartingale. Indeed, it

is easy to see that t �→ μh(t) is a.s. a bounded variation process with values in M(Rd ;V ) (since Proposition 4.3
shows that μ �→ Qμf is also C 1, the claim follows by composition). So, we apply the generalized Itô formula to
(t, x) �→ h(t)−1Qμh(t)

f (x) and decompose εt,t+s in four parts:

εt,t+sf = ε
(1)
t,t+sf + ε

(2)
t,t+sf + ε

(3)
t,t+sf + ε

(4)
t,t+sf

with

ε
(1)
t,t+sf = − 1

h(t + s)
Qμh(t+s)

f (Xh(t+s)) + 1

h(t)
Qμh(t)

f (Xh(t)),

ε
(2)
t,t+sf = −

∫ h(t+s)

h(t)

Qμuf (Xu)
du

(r + u)2
,

ε
(3)
t,t+sf =

∫ h(t+s)

h(t)

∂

∂u
Qμuf (Xu)

du

r + u
,

ε
(4)
t,t+sf = M

f

h(t+s)
− M

f

h(t)
,

where M
f
t is the local martingale M

f
t := ∫ t

0 ∇Qμuf (Xu)
dBu

r+u
.

Before controlling each term separately, we remind the estimates of Propositions 4.2 and 4.3: ∀ε > 0, f ∈
C∞(Rd ;V ),

∣∣Qμh(t)
f (Xh(t))

∣∣ ≤ ‖f ‖V

(
εV (Xh(t)) + K(ε)

)
,∣∣∇Qμh(t)

f (Xh(t))
∣∣ ≤ ‖f ‖V

(
εV (Xh(t)) + K1(ε)

)
.

We also remind that
∫ t

0 V (Xs)ds = O(t) a.s. and
∫ t

0 EV (Xs)ds = O(t). Now, we are able to find for all ε > 0:

∣∣ε(1)
t,t+sf

∣∣ ≤ h(t)−1(∣∣Qμh(t+s)
f (Xh(t+s))

∣∣ + ∣∣Qμh(t)
f (Xh(t))

∣∣)
≤ h(t)−1‖f ‖V

(
ε
(
V (Xh(t+s)) + V (Xh(t))

) + Kε

)
,

and so limt→∞sup0≤s≤T |ε(1)
t,t+sf | ≤ ε‖f ‖V a.s. As the latter is true for all ε > 0, we deduce that a.s.

limt→∞sup0≤s≤T |ε(1)
t,t+sf | vanishes. Similarly, with ε = 1, there exists C2 such that

∣∣ε(2)
t,t+sf

∣∣ ≤
∫ h(t+s)

h(t)

(
V (Xu) + K

) du

(r + u)2
‖f ‖V ≤ C2‖f ‖V

h(t)2

∫ h(t+s)

h(t)

V (Xu)du,

and so sup0≤s≤T |ε(2)
t,t+sf | ≤ C2h(t)−1‖f ‖V a.s.
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By Markov’s inequality and using the bound on the differential of Qμ given in Corollary 4.6, we get:

P

(
sup

0≤s≤T

∣∣ε(3)
t,t+sf

∣∣ ≥ δ
)

≤ δ−2
∫ h(t+T )

h(t)

E
∣∣(DQμu · μ̇u)(f )(Xu)

∣∣2 du

r + u

≤ C

δ2
‖f ‖2

V

∫ h(t+T )

h(t)

E
(
V 6(Xu)

) du

(r + u)3
.

As for all ε > 0 and n ∈ N we have
∫ t

0 EV n(Xs)ds = O(t), there exists C3 > 0 such that

P

(
sup

0≤s≤T

∣∣ε(3)
t,t+sf

∣∣ ≥ δ
)

≤ C3

δ2
h(t)−1‖f ‖2

V .

Since the quadratic variation of M
f

h(t+s) −M
f

h(t) is bounded by ‖f ‖2
V

∫ h(t+T )

h(t)
(εV (Xu)+K1(ε))

2 du

(r+u)2 , Burkholder–
Davis–Gundy’s inequality (BDG) implies

Px,r,μ

(
sup

s∈[0,T ]
∣∣ε(4)

t,t+sf
∣∣ ≥ δ

)
≤ C4

δ2
h(t)−1‖f ‖2

V . (5.2)

It only remains to prove that a.s.

lim
t→∞ sup

0≤s≤T

∣∣ε(4)
t,t+sf

∣∣ = lim
t→∞ sup

0≤s≤T

∣∣ε(3)
t,t+sf

∣∣ = 0.

First, for all ε > 0, we have by Doob’s inequality together with BDG’s inequality that

Px,r,μ

(
sup

n≤t<n+1
sup

s∈[0,T ]

∣∣ε(4)
t,t+sf

∣∣ ≥ δ
)

≤ C

δ2
‖f ‖2

V sup
n≤t<n+1

h(t)−1 = C

δ2
‖f ‖2

V h(n)−1.

Since the series
∑

n h(n)−1 converges, we conclude by Borel–Cantelli’s lemma that a.s.

lim
n→∞ sup

n≤t<n+1
sup

0≤s≤T

∣∣ε(4)
t,t+sf

∣∣ = 0.

The same argument for |ε(3)
t,t+sf | permits to conclude. �

Lemma 5.4. If for all T > 0, all f ∈ C∞(Rd;V ), we have

lim
t→∞ sup

0≤s≤T

|εt,t+sf | = 0 a.s.,

then the time-changed process, given by R+ → P (Rd;V ), t �→ μh(t) is a.s. an asymptotic pseudotrajectory for Φ (for
the weak topology of measures).

Proof. The family (μt , t ≥ 0) is a.s. tight and by Prokhorov’s theorem (because P (Rd;V ) is a Polish space), it
is equivalent to the relative compactness of (μt , t ≥ 0). Benaïm [3], Theorem 3.2, asserts that a continuous map
ν : R+ → P (Rd;V ) is an asymptotic pseudotrajectory for the semiflow Φ if and only if ν is (weakly) uniformly
continuous and every limit point of {ν(t + ·); t ≥ 0} is an orbit of Φ . We first show that μh(t) is uniformly continuous.
By definition of μt , we have

|μh(t+s)f − μh(t)f | ≤
∫ t+s

t

(|μh(u)f | + ∣∣f (Xh(u))
∣∣)du.

As asymptotically μt ∈ Pβ(Rd ;V ) a.s., we get for all t large enough

|μh(t+s)f − μh(t)f | ≤ 2βs‖f ‖V . (5.3)
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We put these estimates in (2.7) and the uniform continuity follows. As a.s. μh(t) belongs to a compact set (for t

large enough), Ascoli’s theorem implies that there exist an increasing sequence (tn)n and μ̃ ∈ P (Rd;V ) such that
(μh(tn+s), s ≥ 0) converges weakly to (μ̃s, s ≥ 0). Then, we have μh(tn+s) = μh(tn) + εtn,tn+s + ∫ tn+s

tn
(Π(μh(u)) −

μh(u))du. As μh(tn+·) converges weakly to μ̃ and εtn,tn+· goes to 0, the limit μ̃ satisfies (4.7).
Suppose that μh(t) is not an asymptotic pseudotrajectory for Φ . It means that:

∃T > 0,∃ε0 > 0,∃tn ↑ ∞,∃sn ∈ [0, T ] such that d
(
μh(tn+sn),Φsn(μh(tn))

) ≥ ε0.

It implies, denoting by s the limit of sn and μ̃ the limit of μh(tn), that d(μ̃s,Φs(μ̃)) ≥ ε0, which contradicts that μ̃ is
an orbit of Φ . �

Remark 5.5. Combine Proposition 5.3 with Lemma 5.4 to deduce Theorem 3.6: Px,r,μ-a.s., the function t �→ μh(t) is
an asymptotic pseudotrajectory for Φ .

5.3. Back to the dynamical system: A global attractor for the semiflow

As explained in Section 4.2, we will consider from now on the semiflow Φ with the weak topology. A good candidate
to be an attractor of the semiflow is the ω-limit set of (μt ),

ω(μt , t ≥ 0) :=
⋂
t≥0

{μs; s ≥ t} (5.4)

which is (a.s.) weakly compact, since it is contained in Pβ(Rd ;V ) a.s.
We introduce here a crucial set to analyse the dynamical system Φ . Let

Im(Π) := {
Π(μ);μ ∈ P

(
Rd;V )}

, (5.5)

and denote its convex hull by Îm(Π).

Proposition 5.6. Îm(Π) is a positively invariant set for the semiflow Φ and contains every negatively invariant
bounded subset of P (Rd ;V ).

Proof. By Jensen’s inequality applied to the convex combination Φt(μ) = e−tμ + e−t
∫ t

0 esΠ(Φs(μ))ds and to the

convex map μ �→ dV (μ, Îm(Π)), we show, for every μ ∈ P (Rd ;V ) and every t ≥ 0, that

dV

(
Φt(μ), Îm(Π)

) ≤ e−tdV

(
μ, Îm(Π)

)
, (5.6)

where dV (μ,X) := inf{‖μ− ν‖V ;ν ∈ X}. So, for any negatively invariant bounded subset A of P (Rd;V ), we get for
all t ≥ 0: dV (A, Îm(Π)) ≤ dV (Φt (A), Îm(Π)) ≤ e−tdV (A, Îm(Π)). �

Now, we need to recall a short list of important definitions coming from the theory of Dynamical Systems.

Definition 5.7. (a) A subset A of P (Rd;V ) is an attracting set (respectively attractor) for Φ provided:

(1) A is nonempty, weakly compact and positively invariant (respectively invariant) and
(2) A has a neighborhood N ⊂ P (Rd;V ) such that d(Φt (μ),A) → 0 as t → +∞ uniformly in μ ∈ N .

(b) The basin of attraction of an attractor K ⊂ A for Φ|A = (Φt |A)t is the positively invariant open set (in A)
comprising all points whose orbits are asymptotically in K :

B(K,Φ|A) :=
{
μ ∈ A; lim

t→∞ d
(
Φt(μ),K

) = 0
}
.

(c) A global attracting set (respectively global attractor) is an attracting set (respectively attractor) whose basin
is the whole space P (Rd ;V ).
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(d) An attractor-free set is a nonempty compact invariant set A such that Φ|A has no attractor except A itself.

Our aim is now to describe the limit set of μt and find a global attracting set for Φ . The natural candidate is the set
ω(μt , t ≥ 0). First, we describe it dynamically.

Theorem 5.8. The ω-limit set of {μt , t ≥ 0} is Px,r,μ-almost surely an attractor-free set of Φ .

Proof. It results from Theorem 3.6 and [4]. �

Corollary 5.9. Px,r,μ(limt→+∞|Xt | = +∞) = 1.

Proof. Let A be a open subset of Rd such that γ (A) > 0. Since the measure γ is diffusive, for all ν ∈ Îm(Π) ∩
ω(μt , t ≥ 0), there exist m,M > 0 such that mγ ≤ ν ≤ Mγ. If we consider a sequence (νtn , n ≥ 0) in P (P (Rd;V )),

the limits of its convergent subsequences will belong to Îm(Π)∩ω(μt , t ≥ 0), because ω(μt , t ≥ 0) is a.s. an attractor-
free set of Φ . Thus, there exists a subsequence (νtnk

) such that a.s. νtnk
converges (weakly) to ν: for any smooth

function ϕ of compact support, we have that νtn(ϕ) converges to ν(ϕ). If we consider a function ϕ such that ϕ(x) = 1
for x ∈ A and ϕ(x) = 0 for x /∈ B , A ⊂ B , we find that ν(ϕ) ≥ ν(A) > 0. Thus

ν(B) ≥ lim supνt (ϕ) ≥ lim infνt (ϕ) ≥ ν(A) ≥ mγ (A).

So,
∫ tn

0 δXs (A)ds is asymptotically equivalent to tnmγ (A), which in turn gives
∫ ∞

0 δXs (A)ds = ∞ a.s. Then, for all
K > 0,

∫ ∞
0 δXs (R

d \ BK)ds = ∞ a.s., where BK is the closed ball of radius K . Finally,

Px,r,μ

(⋂
K

{∫ ∞

0
1{|Xs |≥K} ds = ∞

})
= 1.

�

Second, we consider the (nonempty) set Îm(Π) ∩ ω(μt , t ≥ 0).

Theorem 5.10. The set Îm(Π) ∩ ω(μt , t ≥ 0) is a.s. a global attracting set for Φ .

Proof. We begin to notice that Îm(Π) ∩ ω(μt , t ≥ 0) is weakly compact a.s. and by definition, it is also posi-
tively invariant. Let μ ∈ ω(μt , t ≥ 0). Since ω(μt , t ≥ 0) is an attractor-free set for Φ , for all s ≥ 0, we have
Φs(μ) ∈ ω(μt , t ≥ 0). By Proposition 5.6, we know that lims→∞d(Φs(μ), Îm(Π)) = 0 (uniformly in μ). So,
d(Φs(μ),ω(μt , t ≥ 0) ∩ Îm(Π)) converges to 0 uniformly in μ. Using again Jensen’s inequality, we show that the
basin of attraction of Φ is the whole space. �

Corollary 5.11. ω(μt , t ≥ 0) is a.s. a subset of Îm(Π).

Proof. As ω(μt , t ≥ 0) is attractor-free, Theorem 5.10 implies that ω(μt , t ≥ 0) is the only attractor of Φ restricted
to this set. So, Îm(Π) ∩ ω(μt , t ≥ 0) = ω(μt , t ≥ 0). �

When W is symmetric, we can give a better description of ω(μt , t ≥ 0). Let begin with the following:

Theorem 5.12 (Tromba [22]). Let B be a C∞ Banach manifold, F a C∞ vector field on B and I : B → R a C∞
function. Assume that:

(1) DI(μ) = 0 if and only if F(μ) = 0;
(2) F−1(0) is compact;
(3) for each μ ∈ F−1(0), DI(μ) is a Fredholm operator.

Then I(F−1(0)) has an empty interior.
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Proposition 5.13 ([3], Proposition 6.4). Let � be a compact invariant set for a semiflow Φ on a metric space E.
Assume that there exists a continuous function V :E → R such that:

(1) V (Φt (x)) < V (x) for x ∈ E\� and t > 0;
(2) V (Φt (x)) = V (x) for x ∈ � and t > 0.

If V has an empty interior, then every attractor-free set A for Φ is contained in �. Furthermore, V restricted to A is
constant.

Proof of Theorem 3.8. The fixed points of Π form a nonempty compact subset of P (Rd;V ) thanks to Proposi-
tion 4.14. Let F(μ) := Π(μ) − μ. We already know that F−1(0) is compact for the weak topology. If we show that

I(F−1(0)) has an empty interior, then the result is a consequence of Proposition 5.13 with the Lyapunov function
I = F ◦ Π . Let μ ∈ F−1(0) and prove that DF(μ) is a Fredholm operator. Let ν ∈ Pβ(Rd ;V ). By Lemma 2.2, there
exists a constant C(β) such that ‖DF(μ) · ν‖V ≤ C(β)‖ν‖V . So, the set {DF(μ) · ν; ‖ν‖V ≤ 1} is a.s. bounded. For
x, y ∈ Rd , we get∣∣DF(μ) · ν(x) − DF(μ) · ν(y)

∣∣ ≤ 2
∣∣W ∗ ν(x)Π(μ)(x) − W ∗ ν(y)Π(μ)(y)

∣∣
+ 2

∫
W ∗ ν dΠ(ν)

∣∣(Π(μ)(x) − Π(μ)(y)
)∣∣

≤ M
[∣∣V (x) − V (y)

∣∣ + ∣∣μ(x) − μ(y)
∣∣

+ ‖μ‖V

(|x − y| + ∥∥W(y, ·) − W(x, ·)∥∥
V

)]
.

So, the map DF(μ) · ν(‖ν‖V ≤ 1) is equicontinuous and by Ascoli’s theorem, we conclude that the preceding set is
relatively compact in C 0(Rd ;V ) and thus the operator DF(μ) is compact. Moreover, it is self-adjoint. It follows from
the spectral theory of compact self-adjoint operators that DF has at most countably many real eigenvalues and the set
of nonzero eigenvalues is either finite or can be ordered as |λ1| > |λ2| > · · · > 0 with limn→∞λn = 0. So, by Tromba,
I(F−1(0)) has an empty interior. �

6. Illustration in dimension d = 2

When W is not symmetric, it can happen that no Lyapunov function exists and that the ω-limit set is a non-trivial
orbit. Suppose for instance that (for d = 2) W(x,y) = (x,Ry) where R is a rotation matrix and V (x) = V (|x|) ≥
a|x|4 + b|x|2 + 1 (with a, b ≥ 1). Note, that the measure γ (dx) = e−2V (x) dx/Z is invariant by rotation. Then, one
expects, depending on R and V , that either the unique invariant set for the semiflow is {γ } and so a.s. μt converges
to γ ; or a.s. μt converges to a random measure, related to the critical points of the free energy; or ω(μt , t ≥ 0) is
a periodic orbit related to γ . Remark that, equivalently considering W(x,y) + 1

2 (b|x|2 + |y|2/b) or W , the set of

conditions (H) is satisfied. Denote p := (1
0

)
.

Lemma 6.1 ([5], Lemma 4.6). For all continuous ϕ : R → R, for all y ∈ S1 we have∫
R2

[
ϕ
(
(x, y)

) − ϕ
(
(x,p)

)]
γ (dx) =

∫
R2

ϕ
(
(x, y)

)(
x − (x, y)y

)
γ (dx) = 0.

Proof. For all y ∈ S1, there exists g ∈ O(2) such that y = gp. We show the first equality by a change of variable
in the integral (because V (x) = V (|x|)). Define φ(y) := ∫

R2 ϕ((x, y))(x − (x, y)y)γ (dx). We have (φ(y), y) = 0
and the rotation-invariance of γ implies for the antisymmetry matrix j , that φ(p) = jφ(p). So, φ(p) = 0 and thus
φ(y) = 0. �

For any μ ∈ P (R2;V ), define its mean by μ̄ := ∫
R2 xμ(dx). Let the probability measure

Π̄(μ̄)(dx) := e−2(x,Rμ̄)

Z(μ̄)
γ (dx). (6.1)
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Here, Π̄(μ̄) = Π(μ). If we let Π(μ) := ∫
R2 xΠ̄(μ)(dx), then Φ̄t (μ) is readily the semiflow

Φ̄t (μ) = e−t μ̄ + e−t

∫ t

0
esΠ

(
Φ̄s(μ)

)
ds, Φ̄0(μ) = μ̄. (6.2)

Lemma 6.2. Let m = ρv with ρ ≥ 0 and v ∈ S1. Then, we get

Π(m) =
∫

R2
xΠ̄(m)(dx) = −1

2

d

dρ
log

(∫
R2

e−2ρ(x,v)γ (dx)

)
Rv.

Proof. It follows from differentiating the function α �→ log (
∫

R2 e−2α(x,v)γ (dx)) and Lemma 6.1. �

Let m = ρv be the solution to ṁ = Π(m) − m, with ρ = |m| and v ∈ S1. Then, Lemma 6.2 implies that v̇ = 0. If
we let α = 2ρ, then α satisfies the one-dimensional ODE

α̇ = J (α) = −α + 2 ∂α log

(∫
R2

e−α(x,Rp)γ (dx)

)
. (6.3)

The problem expressed in polar coordinates becomes J (α) = −α(1 − 2 H̃ (α)
H(α)

), where

H(α) :=
∫ ∞

0
dρ γ (ρ)

∫ 2π

0
dv e−αρ cosv,

H̃ (α) :=
∫ ∞

0
dρ γ (ρ)ρ2

∫ 2π

0
dv sin2 ve−αρ cosv.

Remark 6.3. The function t �→ ∫ 2π
0 e−t cosv dv is the Bessel function I0(t).

6.1. The case R = −Id

Here, W is a symmetric function.

Proposition 6.4. If
∫ ∞

0 ρ2γ (ρ)dρ ≤ 1, then 0 is the unique equilibrium of (6.3) and 0 is stable. Its basin of attraction
is R+.

If
∫ ∞

0 ρ2γ (ρ)dρ > 1, then 0 is linearly unstable and there is another stable equilibrium α1, whose basin of attrac-
tion is R∗+.

Proof. Remark, that J is C∞. A computation yields to

J (3)(α) = 2
H(4)(α)

H(α)
− 8

H(3)H ′(α)

H 2(α)
+ 24

H ′′(α)

H(α)

(
H ′(α)

H(α)

)2

− 12

(
H ′(α)

H(α)

)4

.

The point is to determine the sign of J (3). This function corresponds to (twice) the kurtosis of the projection on
the first coordinate of a random variable X (expressed in polar coordinates) having the law γ . As the graph of the
symmetric part of the density function cuts exactly twice the graph of the corresponding Gaussian variable (with same
mean and variance), the kurtosis of X is negative: J (3)(α) < 0 for α > 0 and J (3)(0) = 0. So, for all α ≥ 0, we have
J ′′(α) ≤ J ′′(0) = 0. Similarly, we find

J ′(α) ≤ J ′(0) = −1 +
∫ ∞

0
ρ2γ (ρ)dρ.

So, if J ′(0) ≤ 0, then J decreases and, as J (0) = 0, the first result follows. Else J ′(0) > 0. As J ′ is monotonic
and limα→∞J ′(α) = −1, by continuity of J ′, there exists α0 > 0 such that J ′(α0) = 0. Moreover, we have
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limα→∞J (α) = −∞. Finally, there exists a positive solution to J (α) = 0 if and only if
∫ ∞

0 ρ2γ (ρ)dρ > 1. In that
case, 0 is unstable and there exists a stable equilibrium. �

The next result shows that we can reduce the problem in studying the semiflow generated by (6.2) and then deduce
the same (asymptotic) statements for μ.

Lemma 6.5 ([5], Proposition 3.9–Corollary 3.10).

(1) Let L ⊂ Pβ(Rd ;V ) be an attractor-free set for Φ and A ⊂ Pβ(Rd ;V ) an attractor for Φ , with basin of
attraction B(A). If L ∩ B(A) 
= ∅, then L ⊂ A.

(2) Let (E,d) be a metric space, Φ̄ :E ×R → E a semiflow on E and G : Pβ(Rd ;V ) → E a continuous function.
Assume that G ◦ Φt = Φ̄t ◦ G. Then, almost surely G(ω(μt , t ≥ 0)) is attractor-free for Φ̄ .

We can now state and prove the following:

Theorem 6.6. Consider the self-interacting diffusion on R2, where W(x,y) = −(x, y). Then, we have two different
cases:

(1) If
∫ ∞

0 dρ γ (ρ)ρ2 ≤ 1, then a.s. μt
w→ γ ;

(2) If
∫ ∞

0 dρ γ (ρ)ρ2 > 1, then there exists a random variable v ∈ S1 such that a.s. μt
w→ μv∞ with

μv∞(dx) = eα1(x,v)

Z1
γ (dx),

where α1 is the unique positive solution to J (α) = −α + 2H ′(α)
H(α)

= 0.

Proof. Let G : Pβ(R2;V ) → R2 be the mapping defined by G(μ) = μ̄. By Lemma 6.5, the limit set of μ̄t is a.s.
attractor-free for Φ̄ . If

∫ ∞
0 dρ γ (ρ)ρ2 ≤ 1, then 0 is a global attractor for the semiflow generated by Φ̄ . So, each

attractor-free set of Φ̄ reduces to 0, and a.s. μ̄t → 0 and ω(μt , t ≥ 0) ⊂ G−1(0). The definitions of Π̄(μ̄) and J imply
that G−1(0) is invariant for Φ and, as Π(Φt |G−1(0)(μ)) = γ , we have

Φ|G−1(0)(μ) = e−t (μ − γ ) + γ.

So, γ is a global attractor for Φ|G−1(0) and each attractor-free set reduces to γ . By Theorem 5.8, we conclude that
ω(μt , t ≥ 0) = {γ }.

Suppose now that 0 is unstable for Π − Id . For all f ∈ C∞(R2;V ), it holds

d

dt
μh(t)f = −μh(t)f + Π(μh(t))f + d

ds
εt,t+s

∣∣∣∣
s=0

f.

If we consider the projection map Pi(x) = xi , then ∂t μ̄h(t) = Π(μ̄h(t)) − μ̄h(t)) + ηt where ηt is the random vec-
tor ηt = d

ds
εt,t+s |s=0(P1,P2)

T . As 0 is an unstable linear equilibrium for Π − Id , by Tarrès [21] we get that
P(limt→∞ μ̄h(t) = 0) = 0. Using Theorem 3.6, we obtain that limt→∞ sup0≤s≤T |μ̄h(t+s) − Φ̄s(μ̄h(t))| = 0. Denote by

α1 the unique positive solution to −α + 2H ′(α)
H(α)

= 0 and consider the Φ̄-invariant set A := {m = ρv;ρ = α1
2 , v ∈ S1}.

By Lemma 6.5, the limit set of μ̄h(t) is attractor-free, so ω(μ̄h(t), t ≥ 0) either reduces to {0}, or is included in A. But,
as P(limt→∞μ̄h(t) = 0) = 0, it is a.s. a subset of A. Finally, as v̇ = 0, we have Φ̄t |A = Id|A and so, μ̄h(t) is a Cauchy
sequence in A. Then, there exists v ∈ S1 such that

lim
t→∞|μ̄h(t) − α1v| = 0.

To conclude, on one side, ω(μt , t ≥ 0) is an attractor-free set for Φ|G−1(α1v) and on the other side, the semiflow
Φ|G−1(α1v) admits μv∞ as a global attractor. This leads to ω(μt , t ≥ 0) = μv∞. �
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6.2. When R is a rotation

We assume that R is the rotation matrix R =
(

cos θ sin θ

− sin θ cos θ

)
, with 0 ≤ θ < 2π. We emphasize that (unless θ = 0,π) W

is not a symmetric function. We state and prove a more precise version of Theorem 1.3.

Theorem 6.7. Consider the self-interacting diffusion on R2 associated with W(x,y) = (x,Ry). Then one of the
following holds:

(1) If V is such that
∫ ∞

0 ρ2γ (ρ)dρ (cos θ) > −1, then a.s. μt
w→ γ ;

(2) If V is such that
∫ ∞

0 ρ2γ (ρ)dρ (cos θ) ≤ −1, then:

(a) if θ = π, then there exists a random variable v ∈ S1 such that a.s. μt
w→ μv∞ with μv∞(dx) = eα1(x,v)

Z1
γ (dx),

where α1 is the unique positive solution to −α + 2H ′(α)
H(α)

= 0,

(b) if θ 
= π, then ω(μt , t ≥ 0) = {ν(δ),0 ≤ δ < 2π} a.s., where ν(δ) = 1
eTθ −1

∫ Tθ

0 esμ
v,θ∞ ds, with Tθ =

2π(tan θ)−1 and μ
v,θ∞ is the unique positive solution to −α + 2 cos θ

H ′(α)
H(α)

= 0.

Proof. Let v = gp with g ∈ O(2) and m = αv/2. We remind the equations

α̇ = −α − 2
H ′(α)

H(α)
(Rv, v); v̇ = − 2

α

H ′(α)

H(α)

(
(Rv, v)v − Rv

)
.

By definition of R and v = (− sinσ
cosσ

)
, a simple computation yields to

α̇ = −α − 2H ′(α)

H(α)
cos θ; σ̇ = −2H ′(α)

αH(α)
sin θ. (6.4)

We recall that H ′(α)
H(α)

> 0 for α > 0. By Proposition 6.4, we have a bifurcation: if cos θ
∫ ∞

0 γ (dρ)ρ2 ≥ 1, then the set
{(σ,α); α̇ = 0} is a global attracting set for the semiflow generated by (6.4) and so a.s. μt → γ . Let αθ be such that
α̇θ = 0. If cos θ

∫ ∞
0 γ (dρ)ρ2 < 1, then Ã := {(σ,α);α = αθ } is a global attracting set. On Ã, the dynamics is given

by

σ̇ = − 2H ′(αθ )

αθH(αθ )
sin θ = tan θ.

By Theorem 6.6, there exists a random variable σ0 such that a.s.

lim
t→∞

∣∣∣∣μ̄h(t) − αθ

2
v(t tan θ + σ0)

∣∣∣∣ = 0. (6.5)

At that point, we know the dynamics on the set Ã. But, we need to study the system defined on M(R2;V ) × R2 by

ṁ = −m + Π̄(m); ν̇ = −ν + Π̄(m).

By Lemma 6.5, ω(μt , t ≥ 0) × Ã is attractor-free for the preceding semiflow restricted to P (R2;V ) × R2. The dy-
namics on ω(μt , t ≥ 0) × Ã is given by

σ̇ = tan θ; ν̇ = −ν + f (σ ) = −ν + μv,θ∞ . (6.6)

As the set ω(μt , t ≥ 0) × Ã is (weakly) compact and invariant in P (R2;V ) × R2, we conclude similarly to [5],
Theorem 4.11. �
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