
The Annals of Applied Probability
2010, Vol. 20, No. 6, 2022–2039
DOI: 10.1214/09-AAP671
© Institute of Mathematical Statistics, 2010

DIFFUSION LIMIT FOR MANY PARTICLES IN A PERIODIC
STOCHASTIC ACCELERATION FIELD
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The one-dimensional motion of any number N of particles in the field
of many independent waves (with strong spatial correlation) is formulated
as a second-order system of stochastic differential equations, driven by two
Wiener processes. In the limit of vanishing particle mass m → 0, or, equiva-
lently, of large noise intensity, we show that the momenta of all N particles
converge weakly to N independent Brownian motions, and this convergence
holds even if the noise is periodic. This justifies the usual application of the
diffusion equation to a family of particles in a unique stochastic force field.
The proof rests on the ergodic properties of the relative velocity of two parti-
cles in the scaling limit.

1. Introduction. The motion of a particle in the field of many waves [8, 9,
30] is a fundamental process in classical physics, the understanding of which is
a prerequisite to the analysis of many plasma and fluid phenomena. In one space
dimension, it can be described by the Hamiltonian model

H = p2

2m
+

M∑
m=1

Am cos(kmq − ωmt − ϕm),(1.1)

where the particle with mass m has position q and momentum p, while the
force field derives from a potential with time Fourier components Ameiϕm . The
wave field comprises M waves, with a smooth dispersion relation associating a
wavenumber km, a pulsation ωm and a phase velocity vm = ωm/km to each wave—
usually determined by fixed properties of the environment, such as the geometry
of the domain where waves propagate (then wavenumbers km and pulsations ωm

are discrete). The complex amplitudes Ameiϕm are more easily tuned by the exper-
imenter or affected by simple changes in the environment.

The dynamical systems approach to this problem discusses the particle motion
after prescribing a single choice for each wave complex amplitude. As it would
be quite exceptional to control all waves (though this is, e.g., the assumption un-
derlying the standard map, see [3] for a discussion), physicists often turn to a
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probabilistic description of the dynamics, considering an “ensemble” of realiza-
tions (Am,ϕm). Various arguments are then invoked to reduce the particle evolu-
tion equations to a stochastic differential equation, often driven by a “white noise.”
This results in somewhat tractable models (see, e.g., [22] about the validity of such
derivations).

In this paper we focus on two issues. First, a random field characterized by
(Am,ϕm) for a given dispersion relation with discrete frequency spectrum may be
periodic in time: may the force on the particle be considered as independent over
several time periods in a genuine limit? Second, may one consider several particles
subject to the same wavefield as independent in a genuine limit? The latter issue
underlies the frequent application of the Fokker–Planck equation to the evolution
of a family of particles in a single turbulent wavefield—though a priori one can
only grant that the diffusion equation describes the evolution of the distribution of
a single particle for an ensemble of wavefield samples.

From a more general perspective, this work also relates to the issue of “propa-
gation of chaos” in statistical physics [18, 19], an aspect of Hilbert’s 6th problem:
how does chaotic dynamics enable a system, in which initial data are independent
(“random”) but the evolution may generate correlations, to behave as if the evo-
lution regenerated independence (“randomness”) or destroyed correlations? Here,
how do two Wiener processes, fully describing a prescribed “turbulent” environ-
ment, generate N independent Brownian motions for particles?

A further motivation for the present work is that physics literature most often
focuses on the evolution of particle distribution functions, for example, by showing
that they obey a Fokker–Planck equation, and on instantaneous observables such
as p(t1) for given t1 (pointwise in time). However, the notion of a diffusion process
implies rather a measure on the set of trajectories, namely, functions p(·) (globally
in time). Here we shall show how our model implies that an arbitrary number of
trajectories in a single realization of the dynamics do, jointly, admit the Wiener
measure description.

In Sections 2 and 3 we motivate the mathematical model more precisely and
state our main results, which are proved in the subsequent sections. The cru-
cial Theorem 3.2 is an ergodic theorem for a rescaled process, implying that a
process Vt , describing the relative velocity of one particle with respect to another
one (or to its own earlier motion), converges weakly to a Brownian motion. The
difficulty in proving the ergodic theorem is that the invariant measure of the diffu-
sion process is infinite (it is the Lebesgue measure dx dy), and we must estimate a
continuous additive functional generated by a function [namely f (x, y) = sin2 x]
which is not integrable with respect to this measure (it is only locally integrable).
This weak convergence then implies the final many-particle result (Theorem 3.1)
by a straightforward application of the Lévy characterization of Brownian motion.
Section 8 outlines implications and possible extensions to this work.
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2. Physical background. Because the waves have different frequencies and
velocities, it is generally unrealistic to assume their phases to be correlated. Their
intensities are more easily observed, but, both in nature and in the laboratory, the
accumulation of statistical data on waves often involves only their average power
spectra, not the detailed intensity data for each measurement run. We assume here
that these complex amplitudes are random data, and investigate the statistics of the
particle motion in the resulting time-dependent random field. This dynamics is a
“stochastic acceleration problem” for a “passive particle” in weak plasma turbu-
lence [6, 7, 23, 28, 31], and its understanding is a prerequisite to a proper analysis
of the case where the particle motion feeds back on the wave evolution [10, 14].

The Hamiltonian (1.1) generates equations of motion

q̇ = p/m,(2.1)

ṗ = ∑
m

kmAm sin(kmq − ωmt − ϕm).(2.2)

An important observation [5, 15] on the motion of a particle in the field (2.2) is
locality in velocity: the evolution of the particle when it has velocity q̇ = v depends
only weakly on the waves with a Doppler-shifted frequency ωm −kmv much larger
than their trapping oscillation frequency km

√
Am/m. In particular, for a two-wave

system the resonance overlap parameter

s1,2 = 2
√

A1/m + 2
√

A2/m

|ω2/k2 − ω1/k1|
becomes unity when there exists a velocity u = ω2/k2 − 2

√
A2/m = ω1/k1 +

2
√

A1/m (with k1 > 0, k2 > 0, ω2 > ω1). For many waves with overlap parameters
s � 1, the relevant phase velocity range for waves influencing the particle is a
“resonance box,” with a width scaling as (A/m)2/3 [1, 2].

A good approximation to typical wave dispersion relations in the strong overlap
limit, after a Galileo change of reference frame (see, e.g., Section 6.7 in [14]), is

km = k0, ωm = 2π(m − M/2)/T(2.3)

for some k0, T . Then, in the limit M → ∞, the equations of motion yield for
Ameiϕm = A0 (with real A0) the well-known standard map [3]. The case where
phases ϕm are independent random variables uniformly distributed on the circle
[0,2π ], while Am = A0 is given, was investigated notably by Cary et al. [1, 4, 14]
and occurs in the context of the random phase approximation.

To the extent that the phases and amplitudes of the waves are independent ran-
dom variables, the physicist usually views the force (2.2) as a mollification of

a white noise, with amplitude σ =
√

E(k2
mA2

m) = |km|
√

EA2
m, where the relevant

mode m is the one nearest to the current particle velocity (the mathematical expec-
tation E is called ensemble average with respect to wave amplitudes and phases).2

2Phases do not appear in σ (nor in s) because the relative phase of two waves ϕm +ωmt −ϕn −ωnt

varies uniformly over time (hence ϕm − ϕn can be absorbed in the choice of the time origin).
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This is the core of quasilinear theory [11, 25, 27, 32]. With some care, one in-
terprets (2.1) and (2.2) as a stochastic differential equation; this applies in the case
m ∈ Z for dispersion relation (2.3) with Gaussian independent complex amplitudes
such that EA2

m = k−2
0 σ 2. The particle velocity then has a Brownian evolution, so

that for t, t ′ ∈ [0, T ]
E(pt − p0)(pt ′ − p0) = DQL min(t, t ′)(2.4)

with the quasilinear diffusion coefficient DQL = σ 2T /2. However, the particle
evolution for t > T may show a strong correlation to its motion for 0 ≤ t ≤ T
because the waves are periodic in time [12, 13], and the dispersion relation (2.3)
may generate a strong spatial correlation between the motions of two particles
because all waves acting on a particle at any time have the same wavelength.3

Set k0 = 1 and T = 2π by the choice of space and time units. The particle
phase space is T × R, where T is the circle modulo 2π , and the particle equation
of motion reads, with initial data (q(0), q̇(0)) = (q0, q̇0),

q̈ = m−1
μ′−1∑

m=−μ

Am sin(q − mt + ϕm)

(2.5)
= m−1

∑
m

Am cos(mt − ϕm) sinq − m−1
∑
m

Am sin(mt − ϕm) cosq

in a galilean frame moving at a velocity inside the spectrum of wave phase ve-
locities (μ + μ′ = M). We assume μ � 1, μ′ � 1. For Am = A0 given and in-
dependent random phases (uniform on the circle), in the limit A0/m → ∞, with
(m/A0)

2/3M � 10, Bénisti and Escande [1, 2] have shown that the particle mo-
mentum p = mq̇ follows essentially a Brownian motion, with diffusion constant
given by the quasilinear estimate

DQL = πA2
0

as long as the motion does not approach the boundaries of the wave velocity spec-
trum. Then the particle momenta p for an ensemble of independent realizations of
the system will be described by a distribution function verifying the Fokker–Planck
equation

∂tf = DQL

2
∂2
pf(2.6)

even for t > T . Numerical simulations [13] show similar behavior for i.i.d. com-
plex Gaussian random variables Ameiϕm . The present work establishes a rigorous
version of this result in the frame of stochastic processes.

3There is a large body of literature on the case of incoherent waves with no dispersion relation.
Then the sum

∑
m becomes a double sum

∑
m,n and one varies wavenumbers kn independently from

pulsations ωm. This space–time stochastic environment is more noisy than our model and may also
be considered to motivate a quasilinear approximation.
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3. Main results. We first let min(μ,μ′) → ∞ in the model, taking Am ×
cosϕm, Am sinϕm as i.i.d. Gaussian random variables with zero expectation and
E(Am cosϕm)2 = E(Am sinϕm)2 = 1/2 for all m ∈ Z. In particular this implies
that phases ϕm are i.i.d. uniformly on T. To follow earlier practice, we now set
m = 1/A. Then formally (2.5) becomes the Stratonovich stochastic differential
equation for 0 ≤ t ≤ 2π

dQt = APt dt,(3.1)

dPt = sin(Qt) ◦ dCt + cos(Qt) ◦ dSt(3.2)

with initial data Q0 = q0, P0 = p0 = mq̇0 = q̇0/A; here, from [20], π−1/2(C,S)

is a standard two-dimensional Brownian motion. In other words, C and S are mar-
tingales, with C0 = S0 = 0 and

〈C〉t = 〈S〉t = πt, 〈C,S〉t = 0.(3.3)

Note that the Stratonovich and Itô integrals define the same solutions for this sys-
tem, and that the vector fields (sinq)∂p and (cosq)∂p commute.

For 0 ≤ t ≤ 2π , it is clear that P is a Brownian motion for any value of A ≥ 0
(see the first lines of Section 7). However, model (2.5) defines a dynamical system
for all times 0 ≤ t < ∞, and one may wonder how the initial stochastic behavior
over [0,2π ] extends for longer times. Formally, one solves then (3.1) and (3.2)
with the periodized field, that is, with the continuous processes defined by

dCt+2kπ = dCt , dSt+2kπ = dSt(3.4)

for k ∈ Z. In other words, Ct − t
2π

C2π and St − t
2π

S2π are independent Brown-
ian bridges repeated periodically for t ∈ R, while C2π and S2π are independent
Gaussian random variables with expectation 0 and variance 2π2.

For this extended process, the wave field acting on the particle for t /∈ [0,2π ]
is not stochastically independent from the wave field acting during [0,2π ]. There-
fore one does not expect the particle momentum to proceed as a Brownian motion
for all times, and indeed for A small enough the velocity q̇ may remain bounded
in a narrow interval for all times. This is easily seen numerically and can be at-
tributed to the existence of Kolmogorov–Arnold–Moser invariant tori in the three-
dimensional extended phase space with coordinates (t, q, q̇).

On the other hand, for large A, the dynamics viewpoint [1, 2, 14] suggests that
the nonlinearity in the equations of motion (due to trigonometric functions of Q)
may enable a decorrelation of the force over the period T = 2π , so that the long-
time evolution of the velocity would also be close to Brownian. This is what we
shall show.

An intimately related issue is the relative motion of several particles, released in
the same realization of the wave field. Even though each particle velocity diffuses
for t ∈ [0,2π ], their motions are not independent. We shall also show that for large
A the motions of any finite family of particles released at initial data (Q

(ν)
0 ,P

(ν)
0 ),
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1 ≤ ν ≤ N , approaches a family of N independent processes. This can also be
expected from the consideration of the top Lyapunov exponent of the dynamics
(3.1) and (3.2) in the limit A → ∞.

THEOREM 3.1. For any N > 0, the momentum processes P (ν) defined by

dQ
(ν)
t = AP

(ν)
t dt, Q

(ν)
0 = q

(ν)
0 ,(3.5)

dP
(ν)
t = (

sinQ
(ν)
t

)
dCt + (

cosQ
(ν)
t

)
dSt , P

(ν)
0 = p

(ν)
0 ,(3.6)

with N different initial data (q
(ν)
0 ,p

(ν)
0 ) ∈ T×R, 1 ≤ ν ≤ N , converge as A → ∞

to N independent Wiener processes with variance πt , and convergence is in law
in C(R+,R

N ).

The key argument in the proof is the following weak convergence theorem,
where we write now n = π1/2A. Consider the two-dimensional diffusion process
indexed by n ≥ 1, solution of the SDE on R

2,⎧⎨
⎩

dUn
t

dt
= nV n

t , U0 = u,

dV n
t = sin(Un

t ) dWt , V0 = v,
(3.7)

where (u, v) /∈ {(kπ,0), k ∈ Z} and W is a standard Brownian motion. We prove

THEOREM 3.2. As n → ∞,

V n ⇒ v + 1√
2
B,

where {Bt, t ≥ 0} is a standard one-dimensional Brownian motion, and the con-
vergence is in law in C(R+,R).

4. A change of time scale. Note that for any n ≥ 1, the law of {(Un
t ,V n

t ), t ≥
0}, the solution of (3.7), is characterized by the statement⎧⎪⎪⎨

⎪⎪⎩

dUn
t

dt
= nV n

t , U0 = u,

V n is a martingale,
d〈V n〉t

dt
= sin2(Un

t ), V n
0 = v.

Now define (like Bénisti and Escande [1, 2])

Xt = Un
n−2/3t

, Yt = n1/3V n
n−2/3t

.(4.1)

We first note that X0 = u, Y0 = n1/3v, Y is a martingale, and⎧⎪⎪⎨
⎪⎪⎩

dXt

dt
= n−2/3 dUn

dt
(n−2/3t) = n1/3V n

n−2/3t
= Yt ,

〈Y 〉t = n2/3〈V n〉n−2/3t ,
d〈Y 〉t

dt
= sin2(Xt).
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Using a well-known martingale representation theorem, we can pretend that there
exists a standard Brownian motion {Bt, t ≥ 0} such that

⎧⎨
⎩

dXt

dt
= Yt , X0 = u,

dYt = sin(Xt) dBt , Y0 = n1/3v.
(4.2)

Note that the process {(Xt , Yt ), t ≥ 0} still depends upon n, but only through the
value of Y0.

On the other hand, V n
t = n−1/3Yn2/3t . Hence

V n
t = v + n−1/3

∫ n2/3t

0
sin(Xs) dBs,

in other words V n is a martingale such that V n
0 = v and

〈V n〉t = n−2/3
∫ n2/3t

0
sin2(Xn

s ) ds.

Here we recall the fact that the process X depends upon n (through the initial
condition of Y ), unless v = 0. Consequently

lim
n→∞〈V n〉t = t × lim

n→∞
1

n2/3t

∫ n2/3t

0
sin2(Xn

s ) ds,(4.3)

and in order to prove Theorem 3.2 it suffices to show that the above limit is t/2.

5. Qualitative properties of the solution of (4.2). We now consider the two-
dimensional diffusion process

⎧⎨
⎩

dXt

dt
= Yt , X0 = x,

dYt = sin(Xt) dBt , Y0 = y,
(5.1)

with values in the state-space E = [0,2π)× R \ {(0,0), (π,0)}, where 2π is iden-
tified with 0. We first prove that the process {(Xt , Yt ), t ≥ 0} is a conservative
E-valued diffusion. Indeed,

PROPOSITION 5.1. Whenever the initial condition (x, y) belongs to E,

inf
{
t > 0, (Xt , Yt ) ∈ {(0,0), (π,0)}} = +∞ a.s.

PROOF. We define the stopping time

τ = inf{t, (Xt , Yt ) = (0,0)}.
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Let Rt = X2
t + Y 2

t , Zt = logRt , t ≥ 0. A priori, Zt takes its values in [−∞,+∞).
Itô calculus on the interval [0, τ ) yields

dX2
t = 2XtYt dt,

dY 2
t = 2Yt sin(Xt) dBt + sin2(Xt) dt,

dZt = dRt

Rt

− d〈R〉t
2R2

t

= 2YtXt + sin2(Xt)

Rt

dt − 2
Y 2

t sin2(Xt)

R2
t

dt + 2
Yt sin(Xt)

Rt

dBt .

Now clearly |sin(x)| ≤ |x|, sin2(x) ≤ x2, and it follows from the above and stan-
dard inequalities that on the time interval [0, τ ),

Zt ≥ Z0 − 2t +
∫ t

0
ϕs dBs,

where |ϕs | ≤ 1. Hence the process {Zt, t ≥ 0} is bounded from below on any fi-
nite time interval, which implies that τ = +∞ a.s., since τ = inf{t,Zt = −∞}.
A similar argument shows that τ ′ = +∞ a.s., where

τ ′ = inf
{
t, (Xt , Yt ) ∈ {(0,0), (π,0)}}. �

We next prove (here and below BE stands for the σ -algebra of Borel subsets
of E)

PROPOSITION 5.2. The transition probabilities
{
p((x, y); t,A) := Px,y

(
(Xt , Yt ) ∈ A

)
, (x, y) ∈ E, t > 0,A ∈ BE

}

have smooth densities p((x, y); t, (x′, y′)) with respect to Lebesgue’s measure
dx′ dy′ on E.

PROOF. Consider the Lie algebra of vector fields on E generated by X1 =
sin(x) ∂

∂y
, X2 = [X0,X1] and X3 = [X0, [X0,X1]], where X0 = y ∂

∂x
. This Lie

algebra has rank 2 at each point of E. The result is now a standard consequence of
the well-known Malliavin calculus (see, e.g., Nualart [24]). �

PROPOSITION 5.3. The E-valued diffusion process {(Xt , Yt ), t ≥ 0} is topo-
logically irreducible, in the sense that for all (x, y) ∈ E, t > 0, A ∈ BE with non-
empty interior

Px,y

(
(Xt , Yt ) ∈ A

)
> 0.
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PROOF. From Stroock–Varadhan’s support theorem (see, e.g., Ikeda–
Watanabe [17]) the support of the law of (Xt , Yt ) starting from (X0, Y0) = (x, y) is
the closure of the set of points which the following controlled ordinary differential
equation can reach at time t by varying the control {u(s),0 ≤ s ≤ t} in the class of
piecewise continuous functions⎧⎪⎪⎨

⎪⎪⎩

dx

ds
(s) = y(s), x(0) = x,

dy

ds
(s) = sin(x(s))u(s), y(0) = y.

(5.2)

It is not hard to show that the set of accessible points at time t > 0 by the solu-
tion of (5.2) is dense in E. The result now follows from the fact that the transi-
tion probability is absolutely continuous with respect to Lebesgue’s measure (see
Proposition 5.2). �

We next prove:

LEMMA 5.4.

P(|Yt | → ∞, as t → ∞) = 0.

PROOF. The lemma follows readily from the fact that

Yt = W

(∫ t

0
sin2(Xs) ds

)
,

where {W(t), t ≥ 0} is a scalar Brownian motion. Then either
∫ t

0 sin2(Xs) ds is
bounded and Yt is finite, or the integral diverges and Yt is finite anyway because
W is recurrent. �

Hence the topologically irreducible E-valued Feller process {(Xt , Yt ), t ≥ 0}
is recurrent. Its unique (up to a multiplicative constant) invariant measure is the
Lebesgue measure on E, so that in particular the process is null-recurrent. It then
follows from (ii) in Theorem 20.21 from Kallenberg [21].

LEMMA 5.5. For all M > 0, as t → ∞,

1

t

∫ t

0
1{|Ys |≤M} ds → 0 a.s.

6. A path decomposition of the process {(Xt,Yt ), t ≥ 0}. We first define
two sequences of stopping times. Let T0 = 0 and

for 	 odd T	 = inf{t > T	−1, |Yt | ≥ M + 1},
for 	 even T	 = inf{t > T	−1, |Yt | ≤ M}.
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Let now τ0 = T1. We next define recursively {τk, k ≥ 1} as follows. Given τk−1,
we first define

Lk = sup{	 ≥ 0, τk−1 ≥ T2	+1}.
Now let

ηk =
{

τk−1, if τk−1 < T2Lk+2,
T2Lk+3, if τk−1 ≥ T2Lk+2.

We now define

τk = inf{t > ηk, |Xt − Xηk
| = 2π} ∧ inf{t > ηk, |Yt − Yηk

| > 1}.
It follows from the above definitions that∫ t

0
1{|Ys |≥M+1} sin2(Xs) ds ≤

∞∑
k=1

∫ τk∧t

ηk∧t
sin2(Xs) ds ≤

∫ t

0
sin2(Xs) ds,

a statement which will be refined in the proof of Proposition 6.3. Define

K0 = {k ≥ 1, |Yτk
− Yηk

| < 1},
K1 = {k ≥ 1, |Yτk

− Yηk
| = 1},

Kt = {k ≥ 1, ηk < t},
K0

t = K0 ∩ Kt, K1
t = K1 ∩ Kt.

We first prove:

LEMMA 6.1.
1

t

∑
k∈K1

t

(τk − ηk) → 0

in L1(�) as M → ∞, uniformly in t > 0.

PROOF. We shall use repeatedly the fact that since |Yηk
| ≥ M > 2, |Yηk

|− 1 ≥
|Yηk

|/2. We have that (see the Appendix below), since τk − ηk ≤ 4π/|Yηk
|,

P(k ∈ K1|Fηk
) ≤ P

(
sup

ηk≤t≤τk

|Yt − Yηk
| ≥ 1|Fηk

)

≤ 2 exp
(−|Yηk

|/(8π)
)
.

Consequently, using again the inequality τk − ηk ≤ 4π/|Yηk
|, we deduce that

E
[
(τk − ηk)1{k∈K1}|Fηk

] ≤ 8π

|Yηk
| exp

(−|Yηk
|/(8π)

)

≤ 8π

|Yηk
| exp

(−M/(8π)
)
.

On the other hand, whenever k ∈ K0,

τk − ηk ≥ 2π/(|Yηk
| + 1) ≥ π/|Yηk

|.
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Now, provided t ≥ 4π/M ,

2t ≥ t + 4π

M
≥ E

[ ∑
k∈K0

t

(τk − ηk)

]

≥ πE

[ ∑
k∈Kt

1{k∈K0}
1

|Yηk
|
]

≥ π

2
E

[ ∑
k∈Kt

1

|Yηk
|
]
,

since

P(k ∈ K0|Fηk
) = 1 − P(k ∈ K1|Fηk

)

≥ 1 − 2 exp
(−M/(8π)

)
≥ 1/2,

provided M is large enough. Finally

1

t
E

[ ∑
k∈K1

t

(τk − ηk)

]
≤ 32 exp

(−M/(8π)
)E[∑k∈Kt

|Yηk
|−1]

E[∑k∈Kt
|Yηk

|−1]

= 32 exp
(−M/(8π)

)
→ 0,

as M → ∞, uniformly in t . �

Now, for any k ∈ K0,∫ τk

ηk

sin2(Xs) ds = τk − ηk

2π

∫ 2π

0
sin2(x) dx

(6.1)

+
∫ τk

ηk

sin2(Xs)

[
1 − Ys(τk − ηk)

2π

]
ds,

and we have∣∣∣∣
∫ τk

ηk

sin2(Xs)

[
1 − Ys(τk − ηk)

2π

]
ds

∣∣∣∣ =
∣∣∣∣
∫ τk

ηk

∫ τk

ηk

sin2(Xs)
Yr − Ys

2π
dr ds

∣∣∣∣
≤ 1

2π

∫ τk

ηk

∫ τk

ηk

|Yr − Ys |dr ds.

Finally we have:

LEMMA 6.2. Uniformly in t > 0,∑
k∈K0

t

∫ τk
ηk

∫ τk
ηk

|Yr − Ys |dr ds∑
k∈K0

t
(τk − ηk)

→ 0
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a.s., as M → ∞.

PROOF. Since |Yt − Yηk
| ≤ 1 for ηk ≤ t ≤ τk ,∑

k∈K0
t

∫ τk
ηk

∫ τk
ηk

|Yr − Ys |dr ds∑
k∈K0

t
(τk − ηk)

≤ 2 sup
k∈K0

t

(τk − ηk)

≤ 8π/M

→ 0,

as M → ∞, uniformly in t . �

We are now in a position to prove the following ergodic-type theorem, from
which Theorem 3.2 will follow:

PROPOSITION 6.3. As t → ∞,

1

t

∫ t

0
sin2(Xs) ds → 1

2

in probability.

PROOF. We first note that

[0, t] = B0
t ∪ B1

t ∪ Ct,

where

B0
t = [0, t] ∩

( ⋃
k∈K0

t

[ηk, τk]
)
,

B1
t = [0, t] ∩

( ⋃
k∈K1

t

[ηk, τk]
)
,

Ct = [0, t] \ (B0
t ∪ B1

t ).

We have
1

t

∫ t

0
sin2(Xs) ds = 1

t

∫ t

0
1B0

t
(s) sin2(Xs) ds + 1

t

∫ t

0
1B1

t
(s) sin2(Xs) ds

+ 1

t

∫ t

0
1Ct (s) sin2(Xs) ds.

Now Ct ⊂ {s ∈ [0, t], |Ys | ≤ M + 1}, so for each fixed M > 0, it follows
from Lemma 5.5 that the last term can be made arbitrarily small, by choosing t

large enough. The second term goes to zero as M → ∞, uniformly in t , from
Lemma 6.1. Finally the first term equals the searched limit, plus an error term
which goes to 0 as M → ∞, uniformly in t , as follows from Lemma 6.2 and the



2034 Y. ELSKENS AND E. PARDOUX

following fact, which follows from the combination of Lemma 6.1 and Lemma 5.5

1

t

∑
k∈K0

t

(τk − ηk) → 1

in probability, as n → ∞. �

We can finally proceed with:

PROOF OF THEOREM 3.2. All we have to show is that [see (4.3)]

lim
n→∞

1

n2/3t

∫ n2/3t

0
sin2(Xn

s ) ds = 1

2π

∫ 2π

0
sin2(x′) dx′ = 1

2

in probability. In the case v = 0, the process {(Xn
t , Y n

t )} does not depend upon n,
and the result follows precisely from Proposition 6.3. Now suppose that v �= 0. In
that case, the result can be reformulated equivalently as follows. For some x ∈ R,
y �= 0, each t > 0, define the process {(Xt

s, Y
t
s ),0 ≤ s ≤ t} as the solution of the

SDE ⎧⎪⎨
⎪⎩

dXt
s

ds
= Y t

s , Xt
0 = x,

dY t
s = sin(Xt

s) dWs, Y t
0 = √

ty.

We need to show that

1

t

∫ t

0
sin2(Xt

s) ds → 1

2π

∫ 2π

0
sin2(x′) dx′

in probability, as t → ∞. Note that in time t , the process Y t starting from
√

ty can
come back near the origin.

It is easily seen, by introducing the Markov time τ t
M = inf{s > 0, |Y t

s | ≤ M} and
exploiting the strong Markov property, that

1

t

∫ t

0
1{|Y t

s |≤M} ds → 0 a.s.

follows readily from Lemma 5.5. The rest of the argument leading to Proposi-
tion 6.3 is based upon limits as M → ∞, uniformly with respect to t . It thus
remains to check that the fact that Y t

0 now depends upon t does not spoil this
uniformity, which is rather obvious. �

REMARK 6.4. This proof holds uniformly with respect to initial data (u, v)

satisfying |v| ≥ a for any a > 0.

7. Proof of Theorem 3.1. Our Theorem 3.1 now appears as a simple corollary
of Theorem 3.2.
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PROOF OF THEOREM 3.1. We first prove the theorem for t ∈ [0,2π ]. Then
the vector P = (P (1), . . . ,P (N )) is a martingale in R

N , and to prove our claim
it suffices to show that its quadratic variation matrix converges to πt times the
identity matrix. The diagonal elements of the matrix are

〈
P (ν)〉

t =
∫ t

0

(
sin2 Q(ν)

s + cos2 Q(ν)
s

)
π ds = πt

and we only need to compute the cross-variation

〈
P (ν),P (ν′)〉

t =
∫ t

0

(
sinQ(ν)

s sinQ(ν′)
s + cosQ(ν)

s cosQ(ν′)
s

)
π ds

(7.1)

=
∫ t

0
cos

(
Q(ν)

s − Q(ν′)
s

)
π ds.

Now, define (with n = π1/2A)

Un
t = 1

2

(
Q

(ν)
t − Q

(ν′)
t

)
, V n

t = n−1 dUn
t

dt
,

U ′n
t = 1

2

(
Q

(ν)
t + Q

(ν′)
t

)
, V ′n

t = n−1 dU ′n
t

dt
.

These processes solve the stochastic differential equation

dUn
t = nV n

t dt, Un
0 = q

(ν)
0 − q

(ν′)
0

2
,(7.2)

V n
0 = p

(ν)
0 − p

(ν′)
0

2π1/2 ,(7.3)

dV n
t = 1

2
√

π

(
sin(U ′n

t + Un
t ) − sin(U ′n

t − Un
t )

)
dCt

+ 1

2
√

π

(
cos(U ′n

t + Un
t ) − cos(U ′n

t − Un
t )

)
dSt(7.4)

= sinUn
t dWn

t ,

where the process Wn is the martingale defined by Wn
0 = 0 and

dWn
t = π−1/2(cosU ′n

t dCt − sinU ′n
t dSt ).

The quadratic variation of Wn is

〈Wn〉t = π−1
∫ t

0
(cos2 U ′n

s + sin2 U ′n
s )π ds = t

in view of the quadratic and cross variations (3.3) of (C,S), and this result does not
depend on the process U ′n (which follows the center of mass of the two particles
ν and ν′). Thus Wn is a standard Wiener process, and (Un,V n) defined by (7.2),
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(7.3) and (7.4) satisfies the hypotheses of Theorem 3.2. Hence, with X defined by
(4.1),

〈
P (ν),P (ν′)〉

t =
∫ t

0
cos(2Un

s )π ds =
∫ t

0
(1 − 2 sin2 Un

s )π ds

= πt

(
1 − 2

n2/3t

∫ n2/3t

0
sin2 Xn

s′ ds′
)
,

which converges in probability to 0 for n → ∞ as shown in the proof of the theo-
rem.

Now we consider the process over the interval [0,4π ], taking into account that
(C,S) over the whole interval is neither a martingale nor Markov. From the given
initial data, amplitude A and realization of (C,S), we define a subsidiary set of
particles N + 1 ≤ ν ≤ 2N , with initial data

Q
(ν)
0 = Q

(ν−N )
2π , P

(ν)
0 = P

(ν−N )
2π ,

of which a.s. none coincides (modulo 2π for q) with any of the initial data
(Q

(ν)
0 ,P

(ν)
0 ). Recalling that at t = 2π the law of any P

(ν)
2π (for 1 ≤ ν ≤ N ) is

Gaussian with variance 2π2 [so that its probability density is bounded by 1/√
2π2π2 < 1/(2π)], this ensures that, given ε > 0,

P

(
min

1≤ν,ν′≤N

∣∣P (ν)
0 − P

(ν′)
2π

∣∣ < ε or min
1≤ν<ν′≤N

∣∣P (ν)
2π − P

(ν′)
2π

∣∣ < ε
)

≤ 3εN 2
√

2π2π2
< εN 2/2.

For processes such that minν,ν′ |P (ν)
0 − P

(ν′)
2π | ≥ ε and minν<ν′ |P (ν)

2π − P
(ν′)
2π | ≥ ε,

the above proof holds (uniformly with respect to initial data) for the full set of 2N
particles defined here. It follows that a.s. the P

(ν)
t −P

(ν)
0 , t ∈ [0,2π ], 1 ≤ ν ≤ 2N ,

are mutually independent Wiener processes, each with variance πt . This implies
that P

(ν)
t − P

(ν)
0 , t ∈ [0,4π ], 1 ≤ ν ≤ N , are also mutually independent Wiener

processes.
For any interval [0,2kπ] with k ∈ N0 the same argument reduces the N -particle

problem to kN particles over [0,2π ], and the proof is complete. �

REMARK 7.1. Our theorem allows that P
(ν)
0 = P

(ν′)
0 for some ν �= ν′ with

1 ≤ ν, ν′ ≤ N .

8. Perspectives. The implications of Theorem 3.1 are twofold. First, for N =
1, they support the observation [1, 2, 4, 13] that, in systems with finite M � 1 and
A0/m � 1 (with appropriate scaling), the long-time behavior of a single particle
in a periodic wave field exhibits statistical properties approaching those of the
Brownian motion. To complete the connection with physics literature, one must
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now discuss how the finite sums in (2.2) approach the right-hand side of (3.2), and
how this implies that the solutions of the first equation approach the solutions of
the latter equation [29]. This will be discussed separately.

Second, and this is conceptually more fundamental, for a single sample of
the Wiener wavefield (with M = ∞ formally), with strong spatial correlations
(thanks to the single wavevector k0 in the model), the limit A0/m → ∞ leads
to independence of the evolutions of all N particles, which can then be collec-
tively described by the diffusion equation. While such an independence is often
admitted without proof in physics practice, our work provides an explicit jus-
tification to it. We even prove a little more than usual one- or two-time state-
ments, as in our limit p(N ) is independent in law from even the full evolution
data {p(ν)(t),0 ≤ t ≤ T ,1 ≤ ν ≤ N − 1}.

This second implication is an important issue, as the acceleration of a passive
particle is a Hamiltonian process while the diffusion equation is irreversible. While
the key to this irreversibility is clearly the fact that the diffusion process only relates
to the momentum component of particle evolution, we shall further investigate the
interplay of limits N → ∞ and A → ∞, or m → 0, with stochasticity versus
Hamiltonian “conservativeness” in (Q,P ) variables in future work.

Finally, we followed general practice in discussing the stochastic acceleration
problem in only one space dimension [5, 16]. This is rather classical, and it applies,
for example, to particle motion along magnetic field lines in strongly magnetized
plasmas; higher-dimensional motions may call for different elementary models.

APPENDIX

For the convenience of the reader, we prove the following well-known result
(see, e.g., Exercise IV.3.16 in [26]).

PROPOSITION A.1. Let η and τ be two stopping times such that 0 ≤ η ≤ τ ≤
η + T and Mt = ∫ t

0 ϕs dBs , where {Bt, t ≥ 0} is a standard Brownian motion, and
{ϕt , t ≥ 0} is progressively measurable and satisfies

∫ t
0 ϕ2

s ds ≤ k2t for all t ≥ 0.
Then for all b > 0,

P

(
sup

η≤t≤τ
|Mt − Mη| ≥ b

)
≤ 2 exp

(
− b2

2k2T

)
.

PROOF. From the optional stopping theorem, it suffices to treat the case η = 0,
τ = T . We have

P

(
sup

0≤t≤T

|Mt | ≥ b
)

≤ P

(
sup

0≤t≤T

Mt ≥ b
)

+ P

(
inf

0≤t≤T
Mt ≤ −b

)
.

We estimate the first term on the right. The second one is bounded by the same
quantity. Define for all λ > 0

Mλ
t = exp

(
λMt − λ2

2

∫ t

0
ϕ2

s ds

)
.
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Then

P

(
sup

0≤t≤T

Mt ≥ b
)

≤ P

(
sup

0≤t≤T

Mλ
t ≥ exp(λb − λ2k2T/2)

)

≤ exp(λ2k2T/2 − λb)

from Doob’s inequality, since {Mλ
t , t ≥ 0} is a martingale with mean one. Opti-

mizing the value of λ, we deduce that

P

(
sup

0≤t≤T

Mt ≥ b
)

≤ exp
(
− b2

2k2T

)

from which the result follows. �
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