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NUMÉRAIRE-INVARIANT PREFERENCES IN FINANCIAL
MODELING1

BY CONSTANTINOS KARDARAS

Boston University

We provide an axiomatic foundation for the representation of numéraire-
invariant preferences of economic agents acting in a financial market. In a
static environment, the simple axioms turn out to be equivalent to the follow-
ing choice rule: the agent prefers one outcome over another if and only if the
expected (under the agent’s subjective probability) relative rate of return of
the latter outcome with respect to the former is nonpositive. With the addition
of a transitivity requirement, this last preference relation has an extension that
can be numerically represented by expected logarithmic utility. We also treat
the case of a dynamic environment where consumption streams are the ob-
jects of choice. There, a novel result concerning a canonical representation
of unit-mass optional measures enables us to explicitly solve the investment–
consumption problem by separating the two aspects of investment and con-
sumption. Finally, we give an application to the problem of optimal numéraire
investment with a random time-horizon.

0. Introduction. Within the class of expected utility maximization problems
in economic theory, the special case of maximizing expected logarithmic utility
has undoubtedly attracted considerable attention. The major reason for its celebrity
is the computational advantage it offers: the use of the logarithmic function allows
for explicit solutions of the optimal investment–consumption problem in general
semimartingale models (see [10]). Furthermore, in many diverse applications, op-
timal portfolios stemming from expected log-utility maximization are crucial. We
mention, for example, the problem of quantifying the additional utility of a trader
using insider information (see [1] and the references therein), as well as the use
of the log-optimal portfolios as benchmarks in financial theory, as is presented
in [19].

The emergence of expected log-utility maximization dates as back as 1738,
when Daniel Bernoulli offered a solution to the St. Petersburg paradox, which
can be found in the translated manuscript [4]. Bernoulli’s use of the logarithmic
(and, indeed, of any other increasing and concave) utility function was ad-hoc and
lacked any axiomatization based on rational agent’s choice behavior. In the context

Received March 2009; revised November 2009.
1Supported by NSF Grant DMS-09-08461.
AMS 2000 subject classifications. 60G07, 91B08, 91B16, 91B28.
Key words and phrases. Preferences, choice rules, numéraire-invariance, optional measures,

investment–consumption problem, random time-horizon utility maximization.

1697

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/09-AAP669
http://www.imstat.org
http://www.ams.org/msc/


1698 C. KARDARAS

of financial choice, [25] seems to be the first work that has proposed maximizing
growth as a reasonable optimization criterion, which is exactly consistent with ex-
pected log-utility optimization. After Kelly’s information-theoretical justification
of using growth-optimal strategies in [14], there had been further attempts to justify
maximizing expected log-utility, for example, in [15]. Along came heavy criticism
by distinguished scholars, notably by Samuelson (see [21] and [22]). However,
the interest in log-optimality has not ceased, and is even growing. Statistical or
behavioral tests do not seem to uniformly favor one side or the other; for exam-
ple, Long’s work [16], which has inspired some of the recent development, fails to
answer with statistical significance the question whether the log-optimal portfolio
coincides with the market portfolio.

In spite of all the debate that has prolonged over the years, there has been no
attempt in the realms of the theory of choice to investigate the exact behavioral
axioms that, when imposed, would explain the cases where agents act as if they
are maximizing expected logarithmic utility under a subjective probability mea-
sure. Of course, there has been immense work on axiomatizing agent’s prefer-
ences, with [24] being the first example where axioms were imposed ensuring that
agents act like they are maximizing expected utility over lotteries with a known
statistical nature of the uncertain environment. Savage’s work [23] provided an ax-
iomatic framework where both the statistical views and the utility function came
as a byproduct. Since then, there have been numerous successful efforts in relaxing
in some direction the axioms in order to explain agents’ behavior in more depth. In
all these works, the representation of preferences via utilities of logarithmic shape
does not appear to have any form of significance. Naturally, there are descriptive
characterizations aplenty; for example, one could argue that agents that act con-
sistently with maximizing expected log-utility have constant, and equal to unit,
relative risk aversion. However, a normative characterization seems to be absent in
the literature.

The purpose of this paper is to address the aforementioned issue. Certain ax-
ioms are proposed on the choice of agents amongst random outcomes that result in
the following preference representation: agents act as if they were making choices
based on the expected relative rate of return of an outcome with respect to some
alternative based on a subjective probability measure. In particular, an outcome
will be preferred over another if the expected relative rate of return of the latter
with respect to the former outcome is nonpositive. Choices based on the previous
rule are closely connected to preferences stemming from a numerical representa-
tion of expected logarithmic utility, as can be seen using first-order conditions for
optimality. Actually, we shall discuss how one can extend preferences based on ex-
pected relative rates of return to preferences that have a numerical representation
of expected logarithmic utility, by imposing an extra transitivity axiom. However,
working with expected relative rate of return is far more appealing, as the agent is
not forced to express a preference between all pairs of alternatives; in other words,
the preference relation will not be complete. The agent is only required to be able
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to make choices from certain convex bundle sets; in this respect, we take a more
behavioral route in formulating preferences via choice rules.

The key axiom that is imposed to ensure that an agent makes choices according
to the intuitive way described above is the numéraire invariance of preferences—
this simply means that the agent’s comparison of one outcome to another does not
depend on the units that these outcomes are denominated. This is clearly necessary
if we are using expected relative rate of return as a means of comparison, as relative
rates of return do not depend on the denomination. Furthermore, preferences with
expected logarithmic utility representation are also numéraire invariant, as follows
from the simple fact that the logarithmic function transforms multiplication to ad-
dition.

We also consider the extension of the preferences in a dynamic environment
where agents make choices over consumption streams. The theory regarding
choice is more or less a straightforward extension of the previous static case; “sub-
jective probabilities” are now defined on a product space of states and time. The
novel element is a decomposition of unit-mass optional measures on the last prod-
uct space in two parts: one that has the interpretation of subjective views on the
state space (the interpretation being somewhat loose, since it might involve density
processes that are local martingales instead of martingales) and another that acts
as an agent-specific consumption clock. This decomposition, a result that sharp-
ens Doléans’s characterization of optional measures, allows for a solution of the
investment–consumption problem for an agent with numéraire-invariant prefer-
ences that separates the investment and consumption parts of Merton’s problem in
a general semimartingale-asset-price setting. A further application discussed in the
text is a solution to the pure investment log-utility maximization problem with a
time-horizon that is random but not necessarily a stopping time with respect to the
agent’s information flow. Such problems have lately been discussed in the context
of credit risk and defaults (see, e.g., [6] and [5]).

From a mathematical point of view, the results of the present paper concern
geometric and topological properties of L0+ and, in the dynamic case, of the space
of adapted, right-continuous, nonnegative and nondecreasing processes. The rich
structure of the previous very important spaces is still the subject of scrutinized
study (see [7, 27]); this work contributes to this line of research.

The structure of the paper is simple. Section 1 contains all the foundational
results for the static case, which includes in particular the axiomatization of
numéraire-invariant preferences. The dynamic case is treated in Section 2, where
the main focus is on a canonical representation of unit-mass optional measures and
the applications it has for the numéraire-invariant investment–consumption prob-
lem, as well as for the numéraire property under random sampling.

1. Numéraire-invariant preferences: The static case.

1.1. Definitions and notation. Throughout, R+ denotes the nonnegative real
numbers and R++ denotes the strictly positive real numbers. For x ∈ R+ and
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y ∈ R+, x/y is defined as usual when y ∈ R++. When x ∈ R++ and y = 0, we
set x/y = ∞. Finally, if x = y = 0, we set x/y = 1. This last nonconventional
definition will allow for good bookkeeping in the sequel.

On the probability space (�, F ) we consider a family � of all probabilities
that are equivalent to some baseline probability P. All probabilities in � have the
same sets of zero measure which we shall be calling �-null. A set will be called
�-full if its complement is �-null. We write “�-a.s.” to mean P-a.s. with respect
to any, and then all, P ∈ �. All relationships between random variables are to be
understood in the �-a.s. sense: for example, f ≤ g means that {f ≤ g} is �-full.
The indicator function of A ∈ F is denoted by IA; we use simply 1 for I�. Also,
“EP” denotes expectation under the probability P ∈ �.

The vector space of equivalence classes of random variables under �-a.s. equal-
ity is denoted by L0. Following standard practice, we do not distinguish between
a random variable and the equivalence class it generates. We endow L0 with the
usual metric topology: a sequence (f n)n∈N in L0 converges to f ∈ L0 if and only
if for all ε > 0 we have limn→∞ P[|f n − f | > ε] = 0, where P is any probabil-
ity in �. Thus, L0 becomes a topological vector space. Whenever we consider a
topological property (e.g., limits or closedness), it will be understood under the
aforementioned metric topology, unless explicitly noted otherwise. A set C ⊆ L0

is called bounded if lim�→∞(supf ∈C P[|f | > �]) = 0 holds for some, and then for
all, P ∈ �. Furthermore, a set C ⊆ L0 will be called convexly compact if it is con-
vex, closed and bounded. The last terminology is borrowed from [27], where one
can find more information, particularly on explaining the appellation; convexly
compact sets share lots of properties of convex and compact sets of Euclidean
spaces.

We define L0+ := {f ∈ L0+ | f ≥ 0, �-a.s.} and L0++ = {f ∈ L0+ | f > 0, �-
a.s.}. Note that L0++ is the subset of �-a.s. strictly positive random variables and
is not equal to L0+ \ {0}. A set C ⊆ L0+ is called solid if the conditions 0 ≤ f ≤ g

and g ∈ C imply that f ∈ C as well. The set C ⊆ L0+ will be called log-convex if
for all f ∈ C , all g ∈ C and all α ∈ [0,1], the geometric mean f αg1−α belongs to
C as well.

1.2. Preferences induced by expected relative rates of return. In (1.1) below
and all that follows we are using the division conventions explained in the first
paragraph of Section 1.1.

Fix P ∈ � and set

relP(f |g) := EP[f/g] − 1 for all f ∈ L0+ and g ∈ L0+.(1.1)

In words, relP(f |g) is the expected, under P, rate of return of f in units of g; we
therefore call relP(f |g) the expected relative rate of return of f with respect to
g under P. Unless f = g, in which case relP(g|f ) = relP(f |g) = 0, it is straight-
forward to see that the strict inequality relP(g|f ) > −relP(f |g) holds. Also, if
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h ∈ L0++, relP(f/h|g/h) = relP(f |g); the expected relative rate of return opera-
tion is numéraire-invariant.

For P ∈ �, the preference relation �P is defined to be the following binary
relation on L0+:

for f ∈ L0+ and g ∈ L0+ f �P g ⇐⇒ relP(f |g) ≤ 0.(1.2)

By our division conventions, f �P g holds if and only if {f > 0} ⊆ {g > 0} and
EP[f/g | g > 0] ≤ 1.

Given the preference relation �P, the strict preference relation ≺P is defined by
requiring that f ≺P g if and only if f �P g holds and g �P f fails. It is straight-
forward to check that f ≺P g ⇐⇒ relP(f |g) < 0. Note also that if f �P g and
g �P f , then f = g, that is, the equivalence classes for �P are singletons. [In-
deed, if {f �= g} were not �-null, then 0 ≤ −relP(f |g) < relP(g|f ) ≤ 0, which is
impossible.]

We list some important properties of the preference relation of (1.2).

THEOREM 1.1. Fix P ∈ � and simply write � and ≺ for the preference rela-
tion �P on L0+ of (1.2) and the induced strict preference relation ≺P. Then:

(1) f � g holds if and only if {f > 0} ⊆ {g > 0} and (f/g)I{g>0} + I{g=0} � 1.
(2) If f ≤ g, then f � g. Furthermore, if f ≤ g and {f = g} is not �-full, then

f ≺ g.
(3) If h ∈ L0+, {f ∈ L0+ | f � h} is convexly compact and log-convex, and {f ∈

L0+ | h � f } is convex and log-convex. If actually h ∈ L0++, {f ∈ L0+ | h � f }
is further closed.

(4) If C ⊆ L0+ is convexly compact, there exists a unique f̂ ∈ C such that f � f̂

holds for all f ∈ C .

PROOF. The proofs of (1) and (2) are straightforward, so we shall focus on
proving (3) and (4). We hold P ∈ � fixed and drop any subscripts “P” in the sequel.

(3) Call Ch
� := {f ∈ L0+ | f � h}. From the definition (1.1) of rel, it is clear

that Ch
� is convex. Let (f n)n∈N be a sequence in Ch

� such that limn→∞ f n = f .
Since f n � h for all n ∈ N, property (1) implies that {h = 0} ⊆ {f n = 0} for
all n ∈ N. Then, {h = 0} ⊆ ⋂

n∈N{f n = 0} ⊆ {f = 0}. An application of Fatou’s
lemma gives E[f/h | h > 0] ≤ lim infn→∞ E[f n/h | h > 0] ≤ 1 which, in view of
{f > 0} ⊆ {h > 0}, is equivalent to rel(f |h) ≤ 0. Therefore, Ch

� is closed. Now,
E[f/h | h > 0] ≤ 1 for all f ∈ Ch

� gives supf ∈Ch
�

P[f/h > � | h > 0] ≤ 1/� for all

� ∈ R+. In other words, {f I{h>0} | f ∈ Ch
�} ⊆ L0+ is bounded. Since f = f I{h>0}

holds for all f ∈ Ch
�, we get that Ch

� is bounded. We have therefore established the
convex compactness of Ch

�. It remains to establish log-convexity, which is an easy
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application of Hölder’s inequality: for f ∈ Ch
�, g ∈ Ch

� and α ∈ [0,1],

E

[
f αg1−α

h

∣∣∣ h > 0
]

= E

[(
f

h

)α(
g

h

)1−α ∣∣∣ h > 0
]

≤
(

E

[
f

h

∣∣∣ h > 0
])α(

E

[
g

h

∣∣∣ h > 0
])1−α

≤ 1,

which shows that (f αg1−α) ∈ Ch
�.

Continuing, fix h ∈ L0+ and let Ch
� := {f ∈ L0+ | h � f }. The convexity of Ch

�
follows from the definition of rel and the convexity of the mapping R+ � x 
→
1/x ∈ R+ ∪ {∞}. Also, log-convexity of Ch

� follows similarly as log-convexity of
Ch

�. If, furthermore, h ∈ L0++, closedness of Ch
� follows directly by noticing that

Ch
� = {f ∈ L0++ | (1/f ) ∈ C 1/h

� } and that C 1/h
� is closed.

(4) We shall be assuming throughout that C �= {0}; otherwise, trivially, f̂ = 0.
We begin by showing there exists g ∈ C such that {f > 0} ⊆ {g > 0} holds

for all f ∈ C . Indeed, let p := sup{P[f > 0] | f ∈ C} > 0. Using the convexity and
closedness of C , a standard exhaustion argument shows that there exists g ∈ C such
that P[g > 0] = p. If {f > 0}∩{g = 0} were not �-null for some f ∈ C , then, with
h = (f + g)/2 ∈ C , we have P[h > 0] = P[g > 0] + P[{f > 0} ∩ {g = 0}] > p,
which is impossible.

We claim that, in order to show (4), we may assume that C ∩ L0++ �= ∅. Indeed,
with g ∈ C as above, let C̃ := {f + I{g=0} | f ∈ C}. It is straightforward that C̃ is
convexly compact, as well as that C̃ ∩ L0++ �= ∅. Furthermore, f � f̂ holds for all
f ∈ C if and only if f̃ � f̂ + I{g=0} holds for all f̃ ∈ C̃ . Therefore, changing from
C to C̃ if necessary, we may assume that C ∩ L0++ �= ∅.

Since we can assume that C ∩L0++ �= ∅, we may additionally assume that 1 ∈ C .
Indeed, otherwise, we consider C̃ := (1/g)C for some g ∈ C ∩ L0++. Then, 1 ∈ C̃
and C̃ is still convexly compact. Furthermore, f � f̃ holds for f ∈ C̃ , then f̂ :=
gf̃ ∈ C satisfies f � f̂ for all f ∈ C by the numéraire-invariance property (1).

In the sequel, assume that 1 ∈ C and that C is convexly compact. We claim that
we can further assume without loss of generality that C is solid. Indeed, let C′ be
the solid hull of C , that is, C′ := {f ∈ L0+ | 0 ≤ f ≤ h holds for some h ∈ C}. Then,
it is straightforward that 1 ∈ C′, as well as that C′ is still convex and bounded. It
is also true that C′ is still closed. (To see the last fact, pick a C′-valued sequence
(f n)n∈N that converges P-a.s. to f ∈ L0+. Let (hn)n∈N be a C -valued sequence
with f n ≤ hn for all n ∈ N. By Lemma A.1 from [8], we can extract a sequence
(h̃n)n∈N such that, for each n ∈ N, h̃n is a convex combination of hn,hn+1, . . . ,

and such that h := limn→∞ h̃n exists. Of course, h ∈ C and it is easy to see that
f ≤ h. We then conclude that f ∈ C′.) Suppose that there exists f̂ ∈ C′ such that
f � f̂ holds for all f ∈ C′. Then, f̂ ∈ C (since f̂ has to be a maximal element of
C′ with respect to the order structure of L0), and that f � f̂ holds for all f ∈ C
(simply because C ⊆ C′).
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To recapitulate, in the course of the proof of (4), we shall be assuming without
loss of generality that C ⊆ L0+ is solid, convexly compact, as well as that 1 ∈ C .

For all n ∈ N, let Cn := {f ∈ C | f ≤ n}, which is convexly compact and satisfies
Cn ⊆ C . Consider the following optimization problem:

find f n∗ ∈ Cn such that E[log(f n∗ )] = sup
f ∈Cn

E[log(f )].(1.3)

The fact that 1 ∈ Cn implies that the value of the above problem is not −∞. Further,
since f ≤ n for all f ∈ Cn, one can use of Lemma A.1 from [8] in conjunction with
the inverse Fatou’s lemma and obtain the existence of the optimizer f n∗ of (1.3).
For all f ∈ Cn and ε ∈ ]0,1/2], one has

E[�ε(f | f n∗ )] ≤ 0
(1.4)

where �ε(f | f n∗ ) := log((1 − ε)f n∗ + εf ) − log(f n∗ )

ε
.

Fatou’s lemma will be used on (1.4) as ε ↓ 0. For this, observe that �ε(f | f n∗ ) ≥ 0
on the event {f > f n∗ }. Also, the inequality log(y)− log(x) ≤ (y − x)/x, valid for
0 < x < y, gives that, on {f ≤ f n∗ }, the following lower bound holds (remember
that ε ≤ 1/2):

�ε(f | f n∗ ) ≥ − f n∗ − f

f n∗ − ε(f n∗ − f )
≥ − f n∗ − f

f n∗ − (f n∗ − f )/2
= −2

f n∗ − f

f n∗ + f
≥ −2.

Using Fatou’s Lemma on (1.4) gives E[(f − f n∗ )/f n∗ ] ≤ 0, or, equivalently, that
f � f n∗ , for all f ∈ Cn.

Lemma A.1 from [8] again gives the existence of a sequence (f̂ n)n∈N such that
each f̂ n is a finite convex combination of f n∗ , f n+1∗ , . . . , and f̂ := limn→∞ f̂ n

exists. Since C is convex, f̂ n ∈ C for all n ∈ N; therefore, since C is closed,
f̂ ∈ C as well. Fix n ∈ N and some f ∈ Cn. For all k ∈ N with k ≥ n, we have
f ∈ Ck . Therefore, f � f k∗ , for all k ≥ n. Since f̂ n is a finite convex combina-
tion of f n∗ , f n+1∗ , . . . , by part (3) of Theorem 1.1 which we already established,
we have f � f̂ n, that is, E[f/f̂ n] ≤ 1. Then, Fatou’s lemma implies that for all
f ∈ ⋃

k∈N Ck one has E[f/f̂ ] ≤ 1. The extension of the last inequality to all f ∈ C
follows from the solidity of C by an application of the monotone convergence the-
orem. �

Our main point will be to give certain axioms on a preference relation � on
L0+ that will imply the representation given by (1.2) for some “subjective” proba-
bility P ∈ �. This will eventually be achieved in Theorem 1.5, and the properties
obtained in Theorem 1.1 above will serve as guidelines. Before that, we slightly
digress in order to better understand the preference relation given by (1.2), as well
as to discuss a class of subsets of L0+ with a special structure that will prove im-
portant.
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1.3. On the relation �P of (1.2). For the purposes of Section 1.3, fix P ∈ �

and let � denote the binary relation of (1.2), dropping the subscript “P” from �P.
We also simply use “rel” to denote “relP” and “E” to denote expectation under P.
Also, throughout Section 1.3, we tacitly preclude the uninteresting case where L0+
is isomorphic to the nonnegative real line, that is, when F is trivial modulo �.

As shall soon be revealed, the relation � fails to satisfy the fundamental tenets
of a rational preference relation, namely, completeness and transitivity. We shall
try nevertheless to argue that this failure is natural in the present setting.

1.3.1. Quasi-convexity. The convexity of the upper-contour set {f ∈ L0+ | h �
f }, where h ∈ L0+, makes � a so-called quasi-convex preference relation. If �
were complete, the lower-contour sets {f ∈ L0+ | f � h} would fail to be convex
in general. However, lower-contour sets are convex, according to property (3) of
Theorem 1.6—this already points out that � is not complete. The convexity of
{f ∈ L0+ | f � h} is natural when one recalls the definition of the preference rela-
tion: if both f ∈ L0+ and g ∈ L0+ have nonpositive expected relative rate of return
with respect to h, so does any convex combination of f and g.

1.3.2. The relation � is not complete. Pick A ∈ F with 0 < P[A] < 1. With
f = I�\A and g = IA, we have rel(f |g) = ∞ = rel(g|f ); therefore, neither f � g

nor g � f holds. One can find more interesting examples involving elements of
L0++. Let p := P[A], f := (1/p)IA + (1 − p)I�\A and g := 1. Then, rel(f |g) =
(1 − p)2 > 0 and rel(g|f ) = p2 > 0, that is, neither f � g nor g � f holds.

The relation � is really too strong: f � g implies that g is preferred over any
convex combination of f and g. More precisely, statement (3) of Theorem 1.1
implies that, if f � g then, for all α ∈ [0,1] and β ∈ [0,1] with α ≤ β , we have
(1 − α)f + αg � (1 − β)f + βg. A pair of f ∈ L0+ and g ∈ L0+ will be com-
parable if and only if one of f ∈ L0+ or g ∈ L0+ is preferable over the whole set
conv(f, g) := {(1 − α)f + αg | α ∈ [0,1]}. The equivalent of the completeness
property here is the following: if f ∈ L0+ and g ∈ L0+, there exists h ∈ conv(f, g)

that dominates all elements in conv(f, g). In both examples that were given above
(f = I�\A and g = IA, as well as f = (1/p)IA + (1 −p)I�\A and g = 1), one can
actually check that h = (1 − p)f + pg.

1.3.3. The relation � is not transitive. Pick A ∈ F with 0 < P[A] < 1. With
p := P[A], let f := (1/p)IA, g := 1 and h := (2p/(1 + p))IA + 2I�\A. It is
straightforward to check that rel(f |g) = 0, rel(g|h) = 0, as well as rel(f |h) =
(1 − p)/(2p) > 0. In other words, we have f � g and g � h, but f � h fails.

Whereas failure of completeness of preference relations is not considered dra-
matic, and is indeed welcome in certain cases, transitivity is a more or less un-
questionable requirement. The reason for its failure in the present context does not
have to do with irrationality of agents making choices according to �. Recall that
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f � g and g � h mean that g is the best choice from the set conv(f, g) and h the
is best choice amongst conv(g,h). However, when an agent is presented with the
set of alternatives conv(f,h), some strict convex combination of f and h might be
preferable to h, especially when f pays off considerably better on an event where
h does not.

Although f � h fails in the example above, one expects that h � f fails as
well, and this is indeed the case. In general, even though transitivity does not hold,
we have a weaker “chain” property holding. For n ∈ N, let f 0, . . . , f n be ele-
ments of L0+ satisfying f i−1 � f i for i ∈ {1, . . . , n} and f 0 = f n. Then, actually,
f i = f 0 holds for all i ∈ {1, . . . , n}. Indeed, let φi := f i−1/f i for i ∈ {1, . . . , n}.
We wish to show that φi = 1 for all i ∈ {1, . . . , n}. Suppose the contrary. Since
E[φi] ≤ 1 holds for all i ∈ {1, . . . , n}, the strict convexity of the mapping Rn++ �
(x1, . . . , xn) 
→ ∏n

i=1(1/xi), combined with the fact that P[φi = 1] < 1 holds for
some i ∈ {1, . . . , n} and a use of Jensen’s inequality gives E[∏n

i=1(1/φi)] > 1.
However,

∏n
i=1(1/φi) = 1, which is a contradiction.

1.3.4. The relation � does not respect addition. Pick A ∈ F such that 0 <

P[A] ≤ 1/2. With p := P[A], let f := p2IA + (1 + p)2I�\A and g := pIA + (1 +
p)I�\A. Observe that f = g2, f �= g and E[g] = 1. Then, rel(f |g) = 0, so f ≺ g.
However,

rel(1 + g|1 + f ) = E

[
g(1 − g)

1 + g2

]
= p(1 − p)

1 + p2 p + (1 + p)(−p)

1 + (1 + p)2 (1 − p)

= p(1 − p)(p2 + p − 1)

(1 + p2)(1 + (1 + p)2)
< 0,

the last fact following from p2 + p − 1 < 0, which holds in view of p ≤ 1/2.
Therefore, 1 + g ≺ 1 + f . Even though initially g was preferred to f , as soon as
the agent is endowed with an extra unit of account, the choice completely changes.
Note that f pays off very close to zero on A; even though f pays off more than g

on � \ A, a risk-averse agent will prefer g. However, once the risk associated with
the outcome A is reduced by the assurance that a unit of account will be received
in any state of the world, f is preferred.

In fact, regardless of whether f ≺ g holds or not, if the event {g < f } is not
�-null, one can find h ∈ L0+ such that g + h ≺ f + h. The proof of this is based
on the aforementioned simple idea: a sufficiently large “insurance” h on {f ≤ g}
will make f + h better than g + h. Indeed, for n ∈ N,

rel
(
g + ngI{f ≤g}|f + ngI{f ≤g}

) = E

[
g − f

f
I{g<f }

]
+ E

[
g − f

f + ng
I{f ≤g}

]
.

The first summand of the right-hand side is strictly negative and the second
one tends to zero as n → ∞ by the monotone convergence theorem. There-
fore, there exists some large enough N ∈ N such that, with h := NgI{f ≤g},
rel(g + h|f + h) < 0, which completes the argument.
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1.4. Full simplices in L0+. We shall describe here a special class of convexly
compact sets, which are the equivalents of simplices with nonempty interior in
finite-dimensional spaces. These sets will turn out to be crucial in our statement of
Theorem 1.5 on the axiomatic definition of numéraire-invariant preferences. The
results presented here concern the structure of L0+; as such, they are of independent
interest.

For C ⊆ L0+, define C max to be the subset of C containing all the maximal ele-
ments of C , that is, f ∈ C max if and only if f ∈ C and the relationships f ≤ g and
g ∈ C imply that f = g.

For a measure μ on (�, F ), we shall write μ ∼ � if μ[A] = 0 holds for all
�-null A ∈ F .

THEOREM 1.2. Let B ⊆ L0+. Then, the following statements are equivalent:

(1) B is closed and solid, B ∩L0++ �= ∅, Bmax is convex, and B = ⋃
a∈[0,1] aBmax.

(2) For any P ∈ �, there exists f̂ = f̂ (P) ∈ B ∩ L0++ such that B = {f ∈ L0+ |
f �P f̂ }.

(3) There exists a σ -finite measure μ ∼ � such that B = {f ∈ L0+ | ∫
� f dμ ≤ 1}.

PROOF. We first prove the easy implications (2) ⇒ (3) and (3) ⇒ (1); then,
(1) ⇒ (2) will be tackled.

(2) ⇒ (3). Let P ∈ � and f̂ ∈ B ∩ L0++ be such that B = {f ∈ L0+ | EP[f/f̂ ] ≤
1}. Define μ via μ[A] = EP[f̂ IA] for all A ∈ F . With An := {f̂ ≤ n} for n ∈ N we
have μ[An] < ∞ and limn→∞ P[An] = 1; therefore, μ is σ -finite. Furthermore,
f̂ ∈ L0++ implies that μ ∼ �. The equality B = {f ∈ L0+ | ∫

� f dμ ≤ 1} holds by
definition.

(3) ⇒ (1). Suppose that B = {f ∈ L0+ | ∫
� f dμ ≤ 1} for some σ -finite μ ∼ �.

Closedness of B follows from Fatou’s lemma and solidity is obvious from the
monotonicity of the Lebesgue integral. As μ is σ -finite, there exists f ∈ L0++
such that

∫
� f dμ < ∞; therefore, (1/

∫
� f dμ)f ∈ B ∩ L0++, which shows that

B ∩ L0++ �= ∅. It is straightforward that Bmax = {f ∈ L0+ | ∫
� f dμ = 1}, which

implies that Bmax is convex by the linearity of Lebesgue integral. For f ∈ B \ {0},
set a := ∫

� f dμ ∈ (0,1]. Then, f = ag, where g := (1/a)f ∈ Bmax. Therefore,
B = ⋃

a∈[0,1] aBmax.
(1) ⇒ (2). We start by showing that any B ⊆ L0+ satisfying the requirements of

statement (1) of Theorem 1.2 is convexly compact. Since B is closed, only con-
vexity and boundedness of B have to be established. We start with convexity.
Let f ∈ B, g ∈ B, and λ ∈ [0,1]. We know that there exist a ∈ [0,1], b ∈ [0,1],
f ′ ∈ Bmax and g′ ∈ Bmax such that f = af ′ and g = bg′. Then,

(1 − λ)f + λg = (
(1 − λ)a + λb

)( (1 − λ)a

(1 − λ)a + λb
f ′ + λb

(1 − λ)a + λb
g′

)
,
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and the last element belongs to B due to the fact that Bmax is convex and
((1 − λ)a + λb) ∈ [0,1]. We have shown that B ⊆ L0+ is convex, solid and closed.
If it were not bounded, it would follow from Lemma 2.3 in [7] that there ex-
isted a non-�-null A ∈ F such that {xIA | x ∈ R+} ⊆ B. But in that case Bmax

would not contain any element of {xIA | x ∈ R+}, and therefore the property
B = ⋃

a∈[0,1] aBmax would be violated. It follows then that B has to be bounded.
Continuing, fix P ∈ �. Since B is convexly compact and B ∩ L0++ �= ∅, by

Theorem 1.1(4) there exists f̂ ∈ B ∩ L0++ such that EP[f/f̂ ] ≤ 1 holds for all
f ∈ B. Let B̂ := (1/f̂ )B. Then, B̂ also satisfies the requirements of statement (1)
of Theorem 1.2, 1 ∈ B̂max and B̂ ⊆ {f ∈ L0+ | EP[f ] ≤ 1} =: B1

P. We shall argue
that B1

P ⊆ B̂, therefore establishing that B̂ = B1
P and completing the proof. Assume

by way of contradiction that there exists g ∈ B1
P \ B̂. Since B̂ is closed and solid,

it follows that (g ∧ M) /∈ B̂ for large enough M ∈ R+; of course, (g ∧ M) ∈ B1
P

also holds, since B1
P is solid. In other words, we may suppose that there exists

g ∈ (B1
P \ B̂) ∩ L∞+ . Since B̂ = ⋃

a∈[0,1] aB̂max, 1 ∈ B̂, B̂ is solid and g ∈ L∞+
does not belong to B̂, there exists a ∈ (0,1) such that g̃ := ag ∈ B̂max. We shall
now establish the following claim (we use | · |L∞ will denote the usual L∞-norm):
(1+ε−εg̃) ∈ B̂max holds whenever 0 < ε < 1/|g̃|L∞ . First of all, observe that (1+
ε − εg̃) ∈ L∞+ whenever 0 < ε < 1/|g̃|L∞ . Therefore, since B̂ = ⋃

a∈[0,1] aB̂max,

1 ∈ B̂, and B̂ is solid, there exists b ∈ R+ such that b(1 + ε − εg̃) ∈ B̂max. Since
B̂max is convex and g̃ ∈ B̂max, we have

B̂max �
(

bε

1 + bε
g̃ + 1

1 + bε
b(1 + ε − εg̃)

)
= b + bε

1 + bε
.

The last element is a real multiple of 1 ∈ B̂max. Therefore, 1 = (b + bε)/(1 + bε),
which gives b = 1 and establishes that (1 + ε − εg̃) ∈ B̂max whenever 0 < ε <

1/|g̃|L∞ . But then, with fixed ε ∈ R+ such that 0 < ε < 1/|g̃|L∞ , we have EP[1 +
ε − εg̃] = 1 + ε(1 − aEP[g]) > 1, the last strict inequality holding because a ∈
(0,1) and EP[g] ≤ 1. In other words, (1 + ε − εg̃) /∈ B1

P, which is a contradiction
to B̂ ⊆ B1

P. We conclude that B̂ = B1
P, which finishes our argument. �

DEFINITION 1.3. A set B ⊆ L0+ satisfying any of the equivalent statements of
Theorem 1.2 will be called a full simplex in L0+.

The description of a full simplex B of L0+ given by (1) in Theorem 1.2 is
structural. The convex set Bmax is the “outer face” of B, and one can create the
whole set B by contracting this face “inward” toward zero. This way one ac-
tually obtains a convexly compact set, though this is not completely trivial to
show. Note that the idea of maximality in L0+ was utilized in order to describe
the “outer face” Bmax of B. Theorem 1.2 shows immediately why characteri-
zations using topological boundaries would be useless. Indeed, consider the σ -
finite measure μ ∼ � such that B = {f ∈ L0+ | ∫

� f dμ ≤ 1}. Suppose that L0 is
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infinite-dimensional, which is equivalent to the existence of a sequence (hn)n∈N

of elements of L0+ with
∫
� hn dμ > 1 for all n ∈ N and limn→∞ hn = 0. Then,

the closure of L0+ \ B = {f ∈ L0+ | ∫
� f dμ > 1} is actually equal to L0+; this is

straightforward once one notices that f = 0 belongs in this closure. Therefore, the
topological boundary of the closed set B is B itself.

A preference-theoretic characterization of a full simplex in L0+ is provided in
statement (2) of Theorem 1.2. For any probability P ∈ �, there exists an optimal
choice f̂ ∈ B for �P, depending on P, that makes B exactly equal to the lower
contour set of f̂ .

Statement (3) of Theorem 1.2 describes a full simplex B of L0+ in a geometric
way, loosely as the intersection of L0+ with a half-space. Observe, however, that
the mappings L0+ � f 
→ ∫

� f dμ for a σ -finite measure μ ∼ � are in general
extended-real-valued and not continuous in L0+. From the perspective of economic
theory, B is the budget set associated with an agent with unit endowment, when
prices of bundles in L0+ are given in a linear way by μ: the price of f ∈ L0+ is
simply

∫
� f dμ.

The concept of a full simplex naturally incorporates numéraire-invariance. If B
is a full simplex in L0+ and f ∈ L0++, then (1/f )B is also a full simplex in L0+.
In fact, and in view of the characterization given in statement (3) of Theorem 1.2,
starting from a full simplex B in L0+, the class of sets of the form (1/f )B, where f

ranges in L0++, coincides with the class of all the full simplices in L0+. Therefore,
the class of full simplices in L0+ has the same cardinality as L0++.

To further get a feeling for the “fullness” of full simplices, we mention the fol-
lowing result. Apart from its independent interest, it will be crucial in proving the
axiomatic characterization of numéraire-invariant choices given in Theorem 1.5.

PROPOSITION 1.4. Let B be a full simplex in L0+ and C be a convex subset of
L0+ such that B ⊆ C and Bmax ∩ C max ∩ L0++ �= ∅. Then, actually, B = C .

PROOF. Pick h ∈ Bmax ∩ C max ∩ L0++. Replacing B and C with (1/h)B and
(1/h)C , respectively, we may assume that C ⊆ L0+ is convex, B ⊆ C , B is a full
simplex in L0+ and 1 ∈ Bmax ∩ C max. Furthermore, we can assume that C is solid,
replacing it if necessary with {f ∈ L0+ | f ≤ g for some g ∈ C}, since all the above
properties will still hold. By Theorem 1.2, there exists a σ -finite measure μ ∼ �

such that B = {f ∈ L0+ | ∫
� f dμ ≤ 1}. As 1 ∈ Bmax, it is easy to see that μ has

to actually be a probability, which we then denote by P; that is, B = {f ∈ L0+ |
EP[f ] ≤ 1}. All the previous assumptions and notation will be in force in the
sequel. We have to show that B = C .

For n ∈ N, define a convexly compact set En as the closure of C ∩ {f ∈ L0+ |
f ≤ n}. With �P defined via (1.2), for each n ∈ N let hn ∈ En satisfy f �P hn

for all f ∈ En. If hn = 1 for all n ∈ N, then EP[f ] ≤ 1 for all C ∩ L∞+ and, by
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Fatou’s lemma and the solidity of C , EP[f ] ≤ 1 for all C ; therefore, C ⊆ B and
there is nothing left to prove. By way of contradiction, assume that P[hn = 1] < 1
for some n ∈ N; then, a fortiori, n ≥ 2. Note then that EP[hn] > 1, that is, hn /∈ B,
which follows from the facts that EP[1/hn] ≤ 1 (since 1 ∈ En) and P[hn = 1] < 1.
From now onward, fix n ∈ N with n ≥ 2 such that hn has the previous property,
and we drop the superscript “n” from everywhere for typographical convenience.
Let also D := B ∩ {f ∈ L0+ | f ≤ n}. Remember throughout that the elements of
D and E are included in the L∞-ball of radius n, that D ⊆ E, and that h ∈ E \ D.

Let π be the L2(P)-projection of h on D—observe that this is well defined since
all elements of E (and therefore also of D ⊆ E) belong to L∞ ⊆ L2(P) and D is
convex and L2(P)-closed. Also, let ν := h−π . Since h /∈ D, P[ν = 0] < 1. Define
π ′ := πI{ν≥0} + hI{ν<0}. Since h < π on {ν < 0}, we have π ′ ≤ π , which implies
in particular that π ′ ∈ D. Also, since {π ′ < π} = {ν < 0}, P[ν < 0] > 0 would
imply EP[|π ′ − h|2] = EP[|π − h|2I{ν≥0}] < EP[|π − h|2], which contradicts the
fact that π is the L2(P)-projection of h on D. Therefore, ν ∈ L∞+ .

Define

δ := min
{

EP[h] − 1

EP[ν] ,1
}

∈ (0,1]
as well as

ζ := 1 + 1

n
− 1

n
(h − δν) = 1 + 1

n
− 1

n

(
π + (1 − δ)ν

)
.

The above definition of δ ensures that EP[ζ ] ≤ 1. Also, 0 ≤ π = h − ν ≤ h −
δν ≤ h ≤ n, which implies that P[1/n ≤ ζ ≤ 1 + 1/n] = 1, and, therefore, that
ζ ∈ D, since n ≥ 2. If ζ ∈ E, then also 1 + δν/(n + 1) = ((n/(n + 1))ζ + (1/(n +
1))h) ∈ E, which is impossible in view of 1 ∈ Emax (1 ∈ E ⊆ C and 1 ∈ C max). We
obtain that ζ ∈ D \ E, which is a contradiction to the fact that D ⊆ E. The last
contradiction implies that P[h �= 1] > 0 is impossible, which concludes the proof.

�

1.5. Axiomatic characterization of numéraire-invariant choices.

1.5.1. The characterization result. We are ready to give the main result of this
section.

THEOREM 1.5. Let � be a binary relation on L0+ that satisfies the following
properties:

(A1) f � g holds if and only if {f > 0} ⊆ {g > 0} and (f/g)I{g>0} + I{g=0} � 1.
(A2) If f ≤ 1, then f � 1. Furthermore, if f ≤ 1 and {f < 1} is not �-null, then

f ≺ 1.
(A3) The lower-contour set {f ∈ L0+ | f � 1} is convex.
(A4) For some full simplex B of L0+, there exists f̂ ∈ B such that f � f̂ holds for

all f ∈ B.
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Then, there exists a unique P ∈ � that generates �, in the sense that � is exactly
the relation �P of (1.2).

PROOF. For any Q ∈ �, let B1
Q := {f ∈ L0+ | EQ[f ] ≤ 1}. Also let C 1

� :=
{f ∈ L0+ | f � 1}. By the numéraire-invariance axiom (A1), proving Theorem 1.5
amounts to finding P ∈ � such that B1

P = C 1
�.

A combination of (A1) and (A4) imply that for any full simplex B of L0+, there
exists f̂ ∈ B such that f � f̂ holds for all f ∈ B. Fix Q ∈ �. By Theorem 1.2,
B1

Q is a full simplex in L0+; therefore, there exists g ∈ B1
Q such that f � g holds

for all f ∈ B1
Q. We claim that g ∈ L0++, as well as EQ[g] = 1. Indeed, g ∈ L0++

follows from the fact B1
Q � 1 � g, since (A1) implies that in this case � = {1 >

0} ⊆ {g > 0}. Also, if EQ[g] < 1, then h := (EQ[g])−1g ∈ B1
Q with P[g < h] = 1,

which means that g ≺ h by (A2) and contradicts the fact that h � g for h ∈ B1
Q.

Define P ∈ � via P[A] := EQ[gIA] for all A ∈ F . Observe that f ∈ B1
P if

and only if (fg) ∈ B1
Q, and in that case we have fg � g, or f � 1 in view

of axiom (A1). In other words, B1
P ⊆ C 1

�. Since C 1
� is convex by (A3), and

1 ∈ (B1
P)max ∩ (C 1

�)max ∩ L0++, where 1 ∈ (C 1
�)max follows from (A2), an appli-

cation of Proposition 1.4 gives B1
P = C 1

�.
We finally discuss the uniqueness of the representative P ∈ �. If P′ ∈ � also

generates �, then B1
P = C 1

� = B1
P′ should hold, which implies that P = P′, and

completes the proof. �

A comparison with the statement of Theorem 1.1 is in order. Axioms (A1)
and (A2) of Theorem 1.5 are really the same as statements (1) and (2) of The-
orem 1.1—it is enough to deal with the case g = 1 in axiom (A2) of Theorem 1.5
because of the numéraire-invariance axiom (A1). The first surprise comes from the
simplicity of axiom (A3) of Theorem 1.5, where we only require convexity of the
lower contour set. This should be compared to the very rich structure that is given
in statement (3) of Theorem 1.1 for both the lower-contour and upper-contour
sets. The numéraire-invariance axiom (A1) is strong enough so that no closedness
or even risk-aversion axiom is needed. Also, axiom (A4) of Theorem 1.5 is signif-
icantly weaker than statement (4) of Theorem 1.1, as it only asks that an optimal
choice exists for some full simplex of L0+, and not for all convexly compact sub-
sets of L0+. Although, in view of (A1), (A4) actually implies that an optimal choice
exists for all full simplices of L0+; this class is still much smaller than the class of
all convexly compact sets.

1.5.2. Subjective probability and risk aversion. The probability P ∈ � that
generates the relation � satisfying the axioms of Theorem 1.5 should be thought
as the subjective probability of the agent whose choices are represented by �,
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as it corresponds to the idea of “agent risk aversion.” If the agent’s subjective
probability is Q ∈ �, risk aversion would translate into f � EQ[f ] holding for all
f ∈ L∞+ . Let P ∈ � generate �. Then, P[A]/Q[A] = EP[(1/EQ[IA])IA] ≤ 1, that
is, P[A] ≤ Q[A], holds for all nonnull A ∈ F . Therefore, Q = P.

1.5.3. Choice rules. A more behavioral-based alternative to modeling prefer-
ences via binary relations is to model the choice rules of an agent; for a quick intro-
duction and the material we shall need here, see Chapter 1 of [17]. For all C ⊆ L0+,
define ε�(C) := {g ∈ C | f � g, for all f ∈ C}. This way we get a choice function
ε = ε�. Forgetting that ε came from �, we can define the revealed preference �ε

from ε as follows: f �ε g if and only if there exists C ⊆ L0+ such that f ∈ C and
g ∈ ε(C). Then, it can be shown that �ε coincides with � on L0+. Furthermore,
the axioms of Theorem 1.5 can be expressed directly in terms of the choice rule ε;
therefore, this can be viewed as as the starting point of axiomatization, which will
then induce the preference structure �.

1.6. Extending the preference structure. As noted in Section 1.3.3, one of the
“drawbacks” of a preference relation that satisfies the axioms of Theorem 1.5 is
that it fails to be transitive. We shall extend � to a preference relation � that is
transitive and satisfies some extremely weak continuity properties. To avoid un-
necessary technicalities, we shall work on L0++. As it will turn out, � almost has a
numerical representation given by expected logarithmic utility under the probabil-
ity P ∈ � that generates �. We shall discuss the previous use of the word “almost”
after stating and proving Theorem 1.6 below.

As with any preference relation, f � g will mean that f � g holds, whereas
g � f fails to hold. Also, for x ∈ R++, we set log+(x) = max{log(x),0}.

THEOREM 1.6. Let � denote a binary relation on L0+ satisfying the axioms
of Theorem 1.5. Then, there exists a (not necessarily unique) binary relation � on
L0++ such that:

(1) If f ∈ L0++ and g ∈ L0++, f � g holds if and only if (f/g) � 1.
(2) For f ∈ L0++, f ≺ 1 implies f � 1.
(3) � is transitive.
(4) For f ∈ L0++, f � 1 is implied by either of the conditions below:

(a) af � 1 holds for all a ∈ (0,1).
(b) f ≥ ε for some ε ∈ R++, and f ∧ n � 1 holds for all n ∈ N.

In this case, and with P ∈ � generating �, the following holds: for any f ∈ L0++
and g ∈ L0++ with EP[log+(f/g)] < ∞, we have

f � g ⇐⇒ EP

[
log

(
f

g

)]
≤ 0.(1.5)
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As a corollary, the restriction of any binary relation � satisfying (1), (2), (3) and
(4) above on LP := {f ∈ L0++ | EP[| logf |] < ∞} is uniquely defined via the nu-
merical representation

for f ∈ LP and g ∈ LP f � g ⇐⇒ EP[log(f )] ≤ EP[log(g)].
In particular, � is complete on LP.

PROOF. We shall first establish the existence of a binary relation � on L0++
that satisfies the requirements (1), (2), (3) and (4) of Theorem 1.6. We use the
following definition: for f ∈ L0++ and g ∈ L0++, we set f � g if and only if
EP[log+(f/g)] < ∞ and EP[log(f/g)] ≤ 0 hold. The numéraire-invariance prop-
erty (1) and the transitivity property (3) are straightforward. For property (2), note
that if f ≺ 1, that is, EP[f ] < 1, for f ∈ L0++, Jensen’s inequality implies that
EP[log(f )] < 0 = EP[log(1)], that is, f � 1. Finally, property (4a) is trivial to
check, while property (4b) follows from the monotone convergence theorem.

Conversely, consider any binary relation that satisfies all the requirements of
Theorem 1.6. First of all, we claim that f � 1 and g � 1 imply that fg � 1. Indeed,
g � 1 is equivalent to 1 � 1/g by the numéraire-invariance property (1), and then
the transitivity property (3) gives f � 1/g. The numéraire-invariance property (1)
applied once again gives fg � 1.

We now show that f � g and g � h imply f � h. We already know that f � h

from the transitivity property (3). If h � f , then h/f � 1 and g/h � 1 would
imply (h/f )(g/h) � 1, or g/f � 1, or again equivalently that g � f , which is
false. Therefore, f � h.

Pick f ∈ L0++ such that f ≤ M for some M ∈ R+ and EP[log(f )] < 0. Define
�n := n(f 1/n − 1) for all n ∈ N. Then, ↓ limn→∞ �n = log(f ) and �n ≤ �1 ≤
M − 1 for all n ∈ N. Therefore, the monotone convergence theorem gives that
EP[�n] < 0 for some large enough n ∈ N. This means that EP[f 1/n] ≤ 1. As f �= 1
(which follows from EP[log(f )] < 0), we have f 1/n ≺ 1, that is, f 1/n � 1 by
the extension property (2), and therefore, f � 1 by the results of the preceding
paragraphs.

Pick f ∈ L0++ with EP[log(f )] < 0. Choose ε ∈ R++ such that EP[log(f +
ε)] < 0. Then, EP[log((f + ε) ∧ M)] < 0 holds for all M ∈ R++; therefore, (f +
ε) ∧ M � 1 holds for all M ∈ R++ by the result of the preceding paragraph. Since
f + ε ≥ ε, the weak continuity property (4b) gives (f + ε) � 1. Finally, since
f ≺ f + ε, we have f � f + ε by the extension property (2), which combined
with (f + ε) � 1 gives f � 1.

Up to now, we have shown that f ∈ L0++ with EP[log(f )] < 0 implies
f � 1. Pick f ∈ L0++ with EP[log(f )] ≤ 0. Then, for all a ∈ (0,1) we have
EP[log(af )] < 0; therefore, af � 1. The continuity property (4a) gives f � 1.
Therefore, f ∈ L0++ with EP[log(f )] ≤ 0 implies f � 1.

Finally, pick f ∈ L0++ with EP[log+(f )] < ∞, and assume that f � 1.
Then, we claim that we must have EP[log(f )] ≤ 0. Suppose on the contrary
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that EP[log(f )] > 0; this would imply that 1 � f , which is impossible. There-
fore, for f ∈ L0++ with EP[log+(f )] < ∞ we have that f � 1 if and only if
EP[log(f )] ≤ 0, which is exactly what we needed to show. �

The special relation � constructed in the first paragraph of the proof of Theo-
rem 1.6 is the minimal way to construct a binary relation on L0++ that satisfies the
requirements (1), (2), (3) and (4) of Theorem 1.6; any other such relation has to be
an extension of the one described there. Observe that if L0 is finite-dimensional,
LP = L0++ and therefore in this case we obtain the uniqueness of � that satisfies
the requirements (1), (2), (3) and (4) of Theorem 1.6.

Theorem 1.6 remains silent on how to define the relation between f ∈ L0++
and g ∈ L0++ when both EP[log+(f/g)] = ∞ and EP[log+(g/f )] = ∞ hold.
(When L0 is infinite-dimensional, one can always find pairs like this.) Note that,
for f ∈ L0++ such that EP[log+(f )] < ∞, EP[log+(1/f )] = ∞ implies f � 1
by (1.5). One would be tempted to define f � 1 whenever EP[log+(1/f )] = ∞,
claiming that there is too much “downside risk” in f . However, with this under-
standing, if f ∈ L0++ is such that EP[log+(f )] = EP[log+(1/f )] = ∞, we would
get f � 1 and 1/f � 1, or equivalently that f � 1 and 1 � f , which would make
all f ∈ L0++ such that EP[log+(f )] = EP[log+(1/f )] = ∞ belong to the same
equivalence class. This is impossible: if f ∈ L0++ is such that EP[log+(f )] =
EP[log+(1/f )] = ∞, then 2f has the same property, but f � 2f . We may simply
opt to leave the relation of f and g when EP[log+(f/g)] = EP[log+(g/f )] = ∞
undefined, implicitly claiming that they are too risky relatively to each other to
be compared. It remains an open question whether one can extend � to make it
complete on L0++, still having the properties of Theorem 1.6 holding, when L0 is
infinite-dimensional.

2. Numéraire-invariant preferences in a dynamic environment.

2.1. Notation and terminology. All stochastic processes in the sequel are de-
fined on a filtered probability space (�, (Ft )t∈R+,P). Here, the probability P on
(�, F∞), where F∞ := ∨

t∈R+ Ft will be fixed and we shall be using “E” for the
expectation of F∞-measurable random variables under P. The filtration (Ft )t∈R+
is assumed to be right-continuous and F0 is assumed P-trivial. The optional σ -
algebra on � × R+ is denoted by O. A set A ∈ O is called evanescent if the
random set � � ω 
→ {t ∈ R+ | (t,ω) ∈ A} is P-a.s. empty; an optional process V

is evanescent if {V �= 0} ∈ O is an evanescent set. For A ∈ O and t ∈ R+, we set
At := {ω ∈ � | (ω, t) ∈ A} ∈ Ft .

For a càdlàg process X we define the process X− = (Xt−)t∈R+ by X0− = 0,
and Xt being the left-limit of X at t ∈ R++. Also, we let �X := X − X−.
Every predictable process H is supposed to satisfy H0 = 0. Whenever H and
X are d-dimensional processes such that X is a semimartingale to be used as
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an integrator, and H can be used as integrand with respect to X, we denote
by

∫
[0,·]〈Ht, dXt 〉 the integral process, where “〈·, ·〉” is used to (sometimes, for-

mally) denote the usual inner product in Rd . We assume vector stochastic inte-
gration (see, e.g., [12]). Note that

∫
{0}〈Ht, dXt 〉 = 〈H0,�X0〉 = 〈H0,X0〉; there-

fore, if H is predictable,
∫
{0}〈Ht, dXt 〉 = 0. We also define

∫
(0,·]〈Ht, dXt 〉 :=∫

[0,·]〈Ht, dXt 〉 − ∫
{0}〈Ht, dXt 〉 = ∫

[0,·]〈Ht, dXt 〉 − 〈H0,X0〉.

2.2. A canonical representation of unit-mass optional measures. The natural
space to define “subjective probabilities” of agents in the dynamic case is (� ×
R+, O). We begin with a result regarding the structure of nonnegative measures
on (� × R+, O) with unit total mass.

THEOREM 2.1. On (� × R+, O), consider a measure p such that p[� ×
R+] = 1 and p[A] = 0 for every evanescent set A ∈ O. Then, there exists a pair of
processes (L,K) such that:

(1) L is a nonnegative local martingale with L0 = 1.
(2) K is adapted, right-continuous, nondecreasing, and 0 ≤ K ≤ 1.
(3)

∫
�×R+ V dp = E[∫R+ VtLt dKt ] holds for all nonnegative optional process V .

(4) L = ∫
[0,·] I{Kt−<1} dLt and K = ∫

[0,·] I{Lt>0} dKt .

Furthermore, {L∞ > 0} ⊆ {K∞ = 1} holds.
A pair (L,K) that satisfies the above requirements is essentially unique, in the

following sense: if (K ′,L′) is another pair that satisfies the above requirements,
then K = K ′ up to evanescence, while Lt = L′

t for all t ∈ R+ holds on {K∞ > 0}.

DEFINITION 2.2. For a measure p on (� × R+, O) with p[� × R+] = 1 and
p[A] = 0 holding for every evanescent set A ∈ O, a pair of processes (L,K) that
satisfies requirements (1), (2), (3) and (4) of Theorem 2.1 will be called a canonical
representation pair for p.

REMARK 2.3. Let p ∈ � with canonical representation pair (L,K), and sup-
pose that L is the density process of a probability Q with respect to P; for this,
it is necessary that L is a martingale and sufficient that L is a uniformly inte-
grable martingale. For all t ∈ R+ and A ∈ Ft , Q[A] = E[LtIA], that is, Q is
locally absolutely continuous with respect to P. Furthermore, using integration-
by-parts and a standard localization argument, it is straightforward to check that∫
�×R+ V dp = EQ[∫R+ Vt dKt ] holds for all nonnegative optional process V .

Since p[� × R+] = 1 and Q[K∞ ≤ 1] = 1 hold, it must be the case that Q[K∞ =
1] = 1.

As it turns out, however, the above special case is not exhaustive. It may happen
that L is a strict local martingale in the sense of [9], which precludes it from being
a density process of some probability Q with respect to P. (Nevertheless, at least
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in the case of finite time-horizon, one is able to interpret L as the density process
of a finitely additive probability with respect to P, that is only locally countably
additive (for more information, see [26]).) It might also happen that {K∞ < 1}
is not P-null; actually, it can even happen that P[K∞ < 1] = 1. The previous are
illustrated in Example 2.5 later on in the text.

2.3. Existence of a canonical representation pair in Theorem 2.1. Doléans’s
representation of optional measures (see, e.g., Section VI.20 of [20]) implies
the existence of an adapted, right-continuous, nonnegative and nondecreasing
process H such that

∫
�×R+ V dp = E[∫R+ Vt dHt ] for all nonnegative optional

processes V . We shall establish below that any adapted, right-continuous, non-
negative and nondecreasing process H with E[H∞] = 1 can be decomposed as
H = ∫

[0,·] Lt dKt for a pair (L,K) satisfying (1), (2), and (4) of Theorem 2.1. The
question of essential uniqueness of the pair (L,K) satisfying properties (1), (2),
(3) and (4) of Theorem 2.1 will be tackled in Section 2.6.

Consider the nonnegative càdlàg martingale M that satisfies Mt = E[H∞ | Ft ]
for all t ∈ R+. Then, define the supermartingale Z := M − H ; Z is nonnegative
since Zt = E[H∞ − Ht | Ft ] holds for all t ∈ R+. The expected total mass of H

over R+ is M0 = E[H∞] = 1. If P[H∞ > 1] = 0, in which case P[H∞ = 1] = 1,
defining K := H and L := 1 would suffice for the purposes of Theorem 2.1. How-
ever, it might happen that P[H∞ > 1] > 0 as is illustrated in Example 2.5. In this
case, we shall construct the pair (K,L) from H . Before going to the technical
details, we shall provide some intuition on the definition of (K,L). For t ∈ R+,
Zt + �Ht = E[H∞ − Ht− | Ft ] is the expected total remaining “life” of H on
[t,∞[, conditional on Ft ; then, formally, dHt/(Zt + �Ht) is the “fraction of re-
maining life spent” at t . The equivalent “fraction of remaining life spent” for K ,
assuming that K∞ = 1, would be dKt/(1 − Kt−). We shall ask that K formally
satisfies dKt/(1 − Kt−) = dHt/(Zt + �Ht) for t ∈ R+. To get a feeling of how
L should be defined, observe that �K = (1 − K−)�H/(Z + �H) implies that
(1 − K)/Z = (1 − K−)/(Z + �H); therefore, formally, dKt/(1 − Kt) = dHt/Zt

holds for t ∈ R+. Since H = ∫
[0,·] Lt dKt has to hold in view of property (3) in

Theorem 2.1, we obtain L(1 − K) = Z, which will be the defining equation for
L as long as K < 1. We shall use the previous intuition to define the pair (K,L)

rigorously below.
We proceed with our development, first assuming that P[Ht < H∞ | Ft ] = 1

holds for all t ∈ R+—later, this assumption will be removed. Under the previ-
ous assumption on H , it is straightforward to see that Z > 0 (and, since Z is a
supermartingale, also Z− > 0) holds. We define K as the unique solution of the
stochastic integral equation

K = H0 +
∫
(0,·]

(
1 − Kt−

Zt + �Ht

)
dHt ,
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the latter being the rigorous equivalent of “dKt/(1 − Kt) = dHt/(Zt + �Ht).”
The solution to the last equation is given by

K = 1 − (1 − H0) exp
(
−

∫
(0,·]

dHt

Zt + �Ht

)
(2.1)

× ∏
t∈(0,·]

((
1 − �Ht

Zt + �Ht

)
exp

(
�Ht

Zt + �Ht

))
,

which is an adapted, nondecreasing process with 0 ≤ K < 1, the latter strict
inequality holding due to our assumption on H . Set L := Z/(1 − K), which
is well defined in view of K < 1; L is nonnegative and L0 = Z0/(1 − K0) =
(1 − H0)/(1 − H0) = 1. Actually, L is a local martingale. To see this, first observe
that a use of (2.1) in reciprocal form gives

1

1 − K
= 1

1 − H0
+

∫
(0,·]

dHt

(1 − Kt−)Zt

.

Then, the integration-by-parts formula gives

L = Z

1 − K
= 1 +

∫
(0,·]

dZt

1 − Kt−
+

∫
(0,·]

Zt d

(
1

1 − Kt

)

= 1 +
∫
(0,·]

dZt

1 − Kt−
+

∫
(0,·]

Zt

dHt

(1 − Kt−)Zt

= 1 +
∫
(0,·]

dMt

1 − Kt−

= 1 +
∫
(0,·]

Lt−
dMt

Zt−
.

The above string of equalities gives that L is a local martingale, and that it is actu-
ally equal to the stochastic exponential of the local martingale

∫
(0,·](dMt/Zt−).

Now, drop the simplifying assumption P[Ht < H∞ | Ft ] = 1 for all t ∈ R+.
Then, Z > 0 is no longer necessarily true and more care has to be given in the
definition of K and L. For each n ∈ N, consider the stopping time τn := inf{t ∈
R+ | Zt ≤ 1/n}, and define the predictable set � := ⋃

n∈N[[0, τ n]]. Then, � ⊆
{Z− > 0}. Furthermore, with τ∞ := inf{t ∈ R+ | Zt− = 0 or Zt = 0}, we have
↑ limn→∞ τn = τ∞, as well as [[τ∞,∞[[= {Z = 0} ⊇ {H = H∞}.

Define K via (2.1), and observe that K is well defined: our division conven-
tions imply that Z/(Z + �H) = 1 on {Z = 0}, in view of the fact that H is con-
stant on {Z = 0}. It is clear that K is adapted, right-continuous, nondecreasing
and 0 ≤ K ≤ 1. Furthermore, K = ∫

[0,·] I�t dKt and � ⊆ {K− < 1}. We shall also
consider the nonnegative local martingale L that formally satisfies dLt/Lt− =
dMt/Zt− for t ∈ R+; some care has to be given in defining L, since Z− might
become zero. Observe that 1 + �M/Z− = (Z + �H)/Z− ≥ 0 holds on [[0, τ n]]
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for all n ∈ N. As Z− ≥ 1/n on [[0, τ n]], we can define a process Ln as the stochas-
tic exponential of

∫
(0,τn∧·](dMt/Zt−). Then, Ln is a nonnegative local martingale,

and Ln+1 = Ln holds on [[0, τn]] for all n ∈ N. As (Ln
τn) is a discrete-time nonneg-

ative local martingale, Lτ∞ := limn→∞ Ln
τn P-a.s. exists in R+. It follows that we

can define a process L such that L = Ln on [[0, τ n]] for each n ∈ N and L = Lτ∞
on [[τ∞,∞[[. Note that L = ∫

(0,·] I�t dLt = 1 + ∫
[0,·] I�t (Lt−/Zt−) dMt . By the

Ansel–Stricker theorem (see [2]), L, being a nonnegative process that is the sto-
chastic integral of the martingale M , is a local martingale. As � ⊆ {K− < 1},
L = ∫

(0,·] I�t dLt implies that L = ∫
[0,·] I{Kt<1} dLt . Furthermore, since [[0, τ n[[ ⊆

{L > 0} and {Lτn = 0} = {�Mτn/Zτn− = −1} = {Zτn + �Hτn = 0} = {Zτn =
0,�Hτn = 0} = {τn = τ∞,�Hτ∞ = 0} holds for all n ∈ N, K = ∫

[0,·] I�t dKt

implies K = ∫
[0,·] I{Lt>0} dKt .

With the above definitions, we shall establish that L(1 − K) = Z. This re-
sult has already been obtained in a special case; we shall utilize an approxi-
mation argument to show that it holds in general. For any ε ∈ R+, define the
adapted, nonnegative, nondecreasing and right-continuous process Hε via Hε

t =
(Ht + ε(1 − exp(−t)))/(1 + ε) for t ∈ R+. Then, for all ε ∈ R++, E[Hε∞] = 1,
as well as P[Hε

t < Hε∞ | Ft ] = 1 holds for all t ∈ R+. Let Mε , Zε , Kε and Lε

be the equivalents of the processes M , Z, K and L defined with Hε in place
of H = H 0. Then, Lε(1 − Kε) = Zε holds for all ε ∈ R++. It is straightfor-
ward to check that Zε

t = (Zt + ε exp(−t))/(1 + ε), for all t ∈ R+; in particu-
lar, |Zε − Z| ≤ ε(1 + Z)/(1 + ε). In view of P[supt∈R+ Zt < ∞] = 1, we obtain
P[limε↓0 supt∈R+|Zε

t − Zt | = 0] = 1. We shall also show the corresponding con-
vergence of Kε to K and Lε to L on every stochastic interval [[0, τ n]], n ∈ N.
Define a function λ : R 
→ R+ ∪ {∞} via λ(x) = x − log(1 + x) for x ∈ ]−1,∞[
and λ(x) = ∞ for x ∈ ]−∞,−1]. Note that 0 ≤ λ(ax) ≤ λ(x) holds for all x ∈ R

and a ∈ [0,1], which will be used in the limit theorems that will follow. Further, let
μH be the jump measure of H , that is, the random counting measure on R+ × R

defined via μH((0, ·] × E) := ∑
t∈(0,·] IE\{0}(�Ht) for E ⊆ R. A use of (2.1),

coupled with straightforward algebra, allows us to write

1 − Kε·∧τn = 1 − H0

1 + ε
exp

(
−

∫
(0,·∧τn]

dHt

Zt + �Ht + ε exp(−t)

− ε

∫
(0,·∧τn]

exp(−t) dt

Zt + �Ht + ε exp(−t)

)

× exp
(
−

∫
(0,·∧τn]×R

λ

(
x

Zt + �Ht + ε exp(−t)

)
μH [dt, dx]

)
.

By straightforward applications of the monotone convergence theorem as ε ↓ 0 on
the above equality, we obtain P[limε↓0 supt∈[0,τn] |Kε

t −Kt | = 0] = 1 for all n ∈ N.
Furthermore, note that Mε = (M + ε)/(1 + ε); therefore, Lε is the stochastic ex-
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ponential of ∫
(0,·]

dMε
t

Zε
t−

=
∫
(0,·]

dMt

Zt− + ε exp(−t)
.

Let c[M,M] := [M,M] − ∑
t∈[0,·] |�Mt |2 be the continuous part of the quadratic

variation of M , and μM being the jump measure of M defined as μH before with
“H ” replaced by “M” throughout. Using the definition of the stochastic exponen-
tial, we obtain

Lε·∧τn = exp
(∫

(0,·∧τn]
dMt

Zt− + ε exp(−t)
− 1

2

∫
(0,·∧τn]

dc[M,M]t
|Zt− + ε exp(−t)|2

)

× exp
(
−

∫
R×(0,·∧τn]

λ

(
x

Zt− + ε exp(−t)

)
μM [dx, dt]

)
.

The dominated theorem for stochastic integrals and the monotone convergence
theorem for ordinary Lebesgue integrals give P[limε↓0 supt∈[0,τn]|Lε

t −Lt | = 0] =
1 for all n ∈ N. It follows that L(1 − K) = Z holds on � = ⋃

n∈N[[0, τ n]]. As
L = ∫

[0,·] I�t dLt , K = ∫
[0,·] I�t dKt and Z = ∫

[0,·] I�t dZt , we obtain that L(1 −
K) = Z identically holds.

We have thus established that properties (1), (2), (3) and (4) of Theorem 2.1
are satisfied by the pair (L,K) that was constructed. Since L(1 − K) = Z and
Z∞ = 0, the set-inclusion {L∞ > 0} ⊆ {K∞ = 1} is apparent.

REMARK 2.4. When H has continuous paths, K has continuous paths as
well—in particular, K is predictable. The formula Z = L(1 − K) then implies
that L coincides with the local martingale that appears in the multiplicative de-
composition of the nonnegative supermartingale Z.

EXAMPLE 2.5. On (�, (Ft )t∈R+,P), let L be any nonnegative local martin-
gale with L0 = 1, �L ≤ 0 and L∞ = 0. Define L∗ = maxt∈[0,·] Lt ; since �L ≤ 0,
L∗ is continuous. Define also the nonnegative, nondecreasing, continuous and
adapted process H := log(L∗), as well as p via

∫
�×R+ V dp = E[∫R+ Vt dHt ] for

all nonnegative optional process V . It is well known that H∞ = log(L∗∞) has the
standard exponential distribution [see also (2.6) later on]; therefore, P[H∞ > 1] >

0, E[H∞] = 1, and p is a unit-measure optional measure. Define K := 1 − 1/L∗,
which is continuous, adapted, nondecreasing and satisfies 0 ≤ K < 1. Then,∫

[0,·]
Lt dKt =

∫
[0,·]

Lt

|L∗
t |2

dL∗
t =

∫
[0,·]

1

L∗
t

dL∗
t = log(L∗) = H,

where the second equality follows from the fact that the random measure on R+
that is generated by the nondecreasing continuous process L∗ is carried by the
random set {t ∈ R+ | Lt = L∗

t }. It follows that (L,K) is actually a canonical rep-
resentation pair for p. Of course, it may happen that L is a strict local martingale;
for example, L could be the reciprocal of a three-dimensional Bessel process start-
ing from one. Observe also that P[K∞ < 1] = P[L∗∞ < ∞] = 1.
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2.4. Numéraire-invariant preferences on consumption streams. Define � to
be the class of measures on (�×R+, O) with unit mass that are equivalent to some
representative p ∈ �. Then, let I be the class of all adapted, right-continuous,
nonnegative and nondecreasing processes F satisfying the following property: if
A ∈ O is �-null,

∫
[0,·] IAt dFt is an evanescent process. The processes in I model

all cumulative consumption streams that an agent could potentially choose from;
if A ∈ O is �-null, the agent gives no consumption value on A, and therefore will
not consume there. The following result gives a convenient characterization of the
set I .

PROPOSITION 2.6. Fix p ∈ � with canonical representation pair (L,K).
Then, I is the class of all finite processes

∫
[0,·] at dKt , where a ranges though

the nonnegative optional processes.

PROOF. Let p ∈ �, and let (L,K) be a pair of adapted càdlàg processes sat-
isfying properties (1), (2), (3) and (4) of Theorem 2.1. Let also H := ∫

[0,·] Lt dKt ,
so that

∫
�×R+ V dp = E[∫R+ Vt dHt ] holds for all nonnegative optional process V .

For A ∈ O, p[A] = 0 if and only if
∫
[0,·] IAt dHt is evanescent.

By Theorem V.5.14 of [11], for all F ∈ I there exists an nonnegative optional
process b such that F = ∫

[0,·] bt dHt . Letting a := bL, we have F = ∫
[0,·] at dKt .

Now, let A ∈ O. We have p[A] = 0 if and only if
∫
[0,·] IAt Lt dKt is evanes-

cent. As L is a nonnegative local martingale, this is equivalent to saying that∫
[0,·] IAt I{Lt>0} dKt is evanescent. Since K = ∫

[0,·] I{Lt>0} dKt , this is further
equivalent to saying that

∫
[0,·] IAt dKt is evanescent. To recapitulate, A ∈ O is �-

null if and only if
∫
[0,·] IAt dKt is evanescent. We then have K ∈ I , and therefore,∫

[0,·] at dKt also belongs to I for each nonnegative optional process a such that
the last integral is nonexploding in finite time. This completes the argument. �

REMARK 2.7. The essential uniqueness of a canonical representation pair
(L,K) for p ∈ �, which has not been established yet, was not used in the proof
above. Just the existence of a pair (L,K) that satisfies properties (1), (2), (3) and
(4) of Theorem 2.1 was utilized, which was shown in Section 2.3.

In view of the previous result, for p ∈ �, and with (L,K) a canonical repre-
sentation pair for p, each F ∈ I can be written as F = ∫

[0,·] ∂
F |K
t dKt . Then, for

F ∈ I and G ∈ I we define

dF

dG
:= ∂F |K

∂G|K ,(2.2)

where once again we are using the conventions on division discussed in the first
paragraph of Section 1.1. If p′ ∈ � has canonical representation pair (L′,K ′),
then, since K ∈ I and K ′ ∈ I , we have ∂K ′|K > 0 and ∂K|K ′

> 0 holding �-a.e.,
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as well as ∂F |K ′ = ∂F |K∂K|K ′
, �-a.e., for all F ∈ I . Therefore, the definition of

∂F/∂G in (2.2) does not depend on the choice of p ∈ �.
For p ∈ � with canonical representation pair (L,K), and all F ∈ I and G ∈ I ,

we define

relp(F |G) :=
∫
�×R+

(
dF

dG

)
dp − 1 = E

[∫
R+

(
∂

F |K
t

∂
G|K
t

)
Lt dKt

]
− 1(2.3)

and the corresponding preference relation �p on I via F �p G ⇐⇒ relp(F |G) ≤
0 for all F ∈ I and G ∈ I .

Such preference relations can be seen to stem from axiomatic foundations, just
as in the static case that is presented in Theorem 1.5. Since the details of such
generalization are straightforward, we shall not delve into them here. Rather, we
shall focus on novel features appearing in a dynamic environment.

REMARK 2.8. Recall the discussion in Remark 2.3. Let p ∈ � with canonical
representation pair (L,K), and suppose that L is the density process of a proba-
bility Q with respect to P. Then, Q[K∞ = 1] = 1, and

relp(F |G) = EQ

[∫
R+

(
dFt − dGt

dGt

)
dKt

]
= EQ

[∫
R+

(
∂

F |K
t − ∂

G|K
t

∂
G|K
t

)
dKt

]

holds for all F ∈ I and G ∈ I . We interpret Q as the subjective views of an agent
and K as the agent’s consumption clock. As was described in Example 2.5, L might
fail to be the density process of a probability Q with respect to P, and P[K∞ =
1] = 1 might fail. We still “loosely” interpret L as subjective views and K as
consumption clock.

2.5. The investment–consumption problem. The canonical representation pair
for an optional measure with unit mass allows for a very satisfactory solution to an
agent’s investment–consumption problem.

2.5.1. Pure investment. Henceforth, S = (Si)i=1,...,d will be a vector-valued
semimartingale. For each i ∈ {1, . . . , d}, Si should be thought as representing the
discounted, with respect to some baseline security, price of a liquid asset traded in
the market, satisfying Si > 0 and Si− > 0.

Consider a set-valued process K :� × R+ 
→ 2Rd \ {∅}, where 2Rd
denotes

the powerset of Rd , which will represent constraints imposed on the agent on
the percentage of capital-at-hand invested in the liquid assets. The last set-valued
process is assumed to satisfy some natural properties; namely, K(ω, t) is convex
and closed for all (ω, t) ∈ � × R+, K is predictable, in the sense that the set
{(ω, t) ∈ � × R+ | K(ω, t) ∩ A �= ∅} is predictable for all closed A ⊆ Rd , and
finally K large enough as to contain all investments that produce zero wealth. Un-
der a simple nonredundancy condition on the liquid assets, the last requirement
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simply reads 0 ∈ K(ω, t) for all (ω, t) ∈ � × R+. More precise information about
these requirements can be found in [13].

Starting with capital x ∈ R+, and investing according to some d-dimensional,
predictable strategy θ representing the number of liquid assets held in the portfolio,
an economic agent’s discounted wealth is given by

Xx,θ = x +
∫
[0,·]

〈θt , dSt 〉.(2.4)

We define

X (x) := {
Xx,θ | Xx,θ is defined in (2.4),Xx,θ ≥ 0,

and {(θ iSi−)i=1,...,d ∈ X
x,θ
− K} is �-full

}
.

The elements of X (x) are pure-investment outcomes, starting with initial capital
x ∈ R+. We also set X = ⋃

x∈R+ X (x). The next result regards the viability of the
market. Its validity follows from Theorem 4.12 in [13] coupled with a localization
argument; its straightforward proof is omitted.

THEOREM 2.9. With the above notation, the following two conditions are
equivalent:

(1) For all t ∈ R+, the set {Xt | X ∈ X (1)} ⊆ L0+ is bounded.
(2) For any nonnegative local martingale L with L0 = 1, there exists X̂L ∈ X (1)

such that:
(a) L(X/X̂L) is a supermartingale for all X ∈ X .
(b)

∫
(0,·] I{Lt−=0} dX̂L

t is an evanescent process.
With the above specifications, X̂L is unique up to indistinguishability.

Under any of the above equivalent conditions, we have X (0) = {0}.

REMARK 2.10. In the spirit and notation of the discussion of Remark 2.8,
and if L is the density process of a probability Q with respect to P, the process
X̂L of Theorem 2.9 above is simply the numéraire portfolio under Q (see [3, 13,
16]). According to Theorem 2.9, the equivalent of the numéraire portfolio when
the “views” of the agent are given by L exists even in cases where L is a strict
local martingale and does not stem from a change of probability.

2.5.2. Investment and consumption. We now introduce agent’s consumption.
For x ∈ R+, a consumption stream C ∈ I will be called financeable starting from
capital x ∈ R+ if there exists a predictable, d-dimensional and S-integrable η with
the property that Xx,η,C := Xx,η −C is such that Xx,η,C ≥ 0 and {(ηiSi−)i=1,...,d ∈
X

x,η,C
− K} is �-full. The class of all consumption streams that can be financed start-

ing from x ∈ R+ will be denoted by C(x). It is straightforward that C(x) = xC(1)
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for x ∈ R++. Furthermore, under any of the equivalent conditions of Theorem 2.9,
C(0) = {0} holds.

For the solution to the agent’s optimal investment–consumption problem that
will be presented in Theorem 2.11 below, a “multiplicative” representation for ele-
ments of C(x), x ∈ R+ will turn out to be more appropriate. To begin with, let I(1)

be the set of all F ∈ I with F∞ ≤ 1; observe that I(1) corresponds to the set C(1) if
S = 0, that is, if there are no investment opportunities. For x ∈ R++, let C ∈ C(x),
and let η be a strategy that finances C. Then, we can write Xx,η,C = Xx,θ (1 − F),
where F ∈ I(1) formally satisfies dFt/(1 − Ft) = dCt/X

x,θ,C
t [in other words,

dFt/(1 − Ft) is the rate of consumption relative to the capital-at-hand], and
θ := (1/(1 − F−))η. Note also that {(θ iSi−)i=1,...,d ∈ X

x,θ
− K} = {(ηiSi−)i=1,...,d ∈

X
x,η,C
− K}, which is �-full, and therefore Xx,θ ∈ X (x). Conversely, start with

Xx,θ ∈ X (x) and F ∈ I(1) and define C := ∫
[0,·] X

x,θ
t dFt and η := (1 − F−)θ .

Then, Xx,η,C = Xx,θ (1 − F) and {(ηiSi−)i=1,...,d ∈ X
x,η,C
− K} = {(θ iSi−)i=1,...,d ∈

X
x,θ
− K}, which is �-full. Under any of the equivalent conditions of Theorem 2.9,

since X (0) = {0} = C(0), an alternative equivalent description the class of finance-
able consumption streams starting from capital x ∈ R+ is

C(x) =
{∫ ·

0
Xt dFt

∣∣∣ X ∈ X (x) and F ∈ I(1)

}
.(2.5)

THEOREM 2.11. Let p ∈ � with canonical representation pair (L,K). As-
sume any of the equivalent conditions of Theorem 2.9, and let X̂L ∈ X (1) be
defined as in the latter result. Fix x ∈ R+ and define C(x) via (2.5). Then, with
Ĉ := x

∫
[0,·] X̂L

t dKt ∈ C(x), C �p Ĉ holds for all C ∈ C(x).

PROOF. For x ∈ R++, fix X ∈ X(x) and F ∈ I(1) and let C = ∫ ·
0 Xt dFt =∫ ·

0 Xt∂
F |K
t dKt . Let N := (1/x)L(X/X̂L). Then, recalling that

Ĉ := x

∫
[0,·]

X̂L
t dKt ,

we have

relp(C|Ĉ) = E

[∫
R+

Xt∂
F |K
t

xX̂L
t

Lt dKt

]
− 1 = E

[∫
R+

Nt dFt

]
− 1.

For any finite stopping time τ , and in view of N0 = 1, one has∫
[0,τ ]

Nt dFt − 1 = NτFτ − N0 −
∫
[0,τ ]

Ft− dNt ≤ Nτ − N0 −
∫
[0,τ ]

Ft− dNt

=
∫
(0,τ ]

(1 − Ft−) dNt .

Pick an increasing sequence (τn)n∈N of stopping times that P-a.s. converges to
infinity and is such that E[supt∈[0,τn] Nt ] < ∞ for all n ∈ N. Then, E[∫(0,τn](1 −
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Ft−) dNt ] ≤ 0 hold for all n ∈ N because N is a nonnegative supermartingale and
0 ≤ F ≤ 1. Therefore,

relp(C|Ĉ) = lim
n→∞ E

[∫
[0,τn]

Nt dFt

]
− 1 ≤ lim sup

n→∞
E

[∫
(0,τn]

(1 − Ft−) dNt

]
≤ 0,

which completes the proof. �

The result of Theorem 2.11 describes how an agent with numéraire-invariant
preferences generated by p will dynamically invest and consume in an optimal
manner. The canonical representation pair (L,K) of p conveniently separates the
investment and consumption problems. The optimal strategy, when described in
proportions of wealth invested in the assets, is completely characterized by L;
indeed, these proportions will be the same as the ones held in the portfolio that
results in the pure-investment wealth X̂L. On the other hand, the optimal con-
sumption in an infinitesimal interval around t ∈ R+ relative to the capital-at-hand
is dKt/(1 − Kt), which solely depends on K .

As can be seen from its proof, the validity of Theorem 2.9 goes well beyond
the framework of investing in a market with certain finite number of liquid as-
sets. All that is needed is a class of nonnegative “wealth” processes (X (x))x∈R+
with X (x) = xX (1) for x ∈ R+, such that statement (2) of Theorem 2.9 holds;
in other words, the crucial element is the existence of a numéraire portfolio under
the “local change in probability” with the local martingale L acting as a “den-
sity process.” The computational advantage of assuming a semimartingale S that
generates the wealth processes is that the process X̂L appearing in Theorems 2.9
and 2.11 can be completely described by the use of the triplet of predictable charac-
teristics (see [12]) of the (1 +d)-dimensional process (L,S). The formulas appear
in [10], where the closely-related problem of log-utility consumption maximiza-
tion under a random clock is treated. Nevertheless, in the latter paper, the authors
did not utilize the canonical representation pair in the solution; for this reason, un-
less the consumption clock is deterministic, it is not apparent that the two aspects
of investment and consumption can be separated, as was previously pointed out.

REMARK 2.12. Theorem 2.11 solves in particular the pure consumption prob-
lem. Assume that an agent stats with a unit of account, has no access in a market
and needs to choose how this unit of account will be consumed throughout time.
This is modeled by setting C(1) = I(1). Let p ∈ � with (L,K) be its canonical
representation pair. Then, F �p K holds for all F ∈ I(1). Note that the optimal
solution does not depend on L, in par with the discussion that followed Theo-
rem 2.11.

In fact, the same consumption stream K solves the optimization problem for
more general preference structures. Let U : R++ 
→ R be a concave and nonde-
creasing function, and extend the definition of U by setting U(0) = limx↓0 U(x).
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Consider a preference structure on I(1) with numerical representation given via
the utility functional

I(1) � F 
→ U(F ) =
∫
�×R+

U(∂F |K)dp = E

[∫
R+

U(∂
F |K
t )Lt dKt

]
,

where we shall soon see that the above integrals are well defined, in the sense
that the positive part of the integrand is integrable. Let (τn)n∈N be a localizing
sequence such that E[supt∈[0,τn] Lt ] < ∞ for all n ∈ N. Since∫

�×R+
∂F |K dp = E

[∫
R+

Lt dFt

]
= lim

n→∞ E

[∫
[0,τn]

Lt dFt

]

= lim
n→∞ E

[
LτnFτn −

∫
[0,τn]

Ft− dLt

]
≤ 1,

Jensen’s inequality gives U(F ) ≤ U(
∫
�×R+ ∂F |K dp) ≤ U(1) = U(K). Therefore,

K is the optimal consumption plan.

2.6. Essential uniqueness of a canonical representation pair in Theorem 2.1.
Let p ∈ �, and let (L,K) and (L′,K ′) be two pairs of processes having the prop-
erties (1), (2), (3) and (4) in Theorem 2.1. The equality

∫
[0,·] Lt dKt = ∫

[0,·] L′
t dK ′

t

holds due to the uniqueness of Doléans’s representation of p.
Since K ∈ I(1) and K ′ ∈ I(1), Theorem 2.11 implies that K �p K ′ and

K ′ �p K . (In view of Remark 2.7, the result of Theorem 2.11 does not assume
uniqueness of canonical representation pairs; therefore, there is no cyclic argu-
ment.) It follows that ∂K ′|K = 1 holds �-a.e., or, in other words, that K = K ′ in
the sense that K and K ′ are indistinguishable.

Since K = K ′, the equality
∫
[0,·] Lt dKt = ∫

[0,·] L′
t dK ′

t translates to KL −∫
[0,·] Kt− dLt = KL′ −∫

[0,·] Kt− dL′
t . Let (τn)n∈N be a nondecreasing sequence of

stopping times such that, P-a.s., ↑ limn→∞ τn = ∞, as well as E[supt∈[0,τn] Lt ] <

∞ and E[supt∈[0,τn] L′
t ] < ∞ holds for all n ∈ N. Then, E[Kτ∧τnLτ∧τn] =

E[Kτ∧τnL′
τ∧τn] holds for all n ∈ N and stopping times τ . Since L, L′ and K

are all adapted càdlàg processes, it follows that KL and KL′ are indistinguish-
able. This, coupled with the fact that L and L′ are both local martingales, gives
{K∞ > 0} ⊆ {Lt = L′

t ,∀t ∈ R+}.

2.7. A random time-horizon investment problem. We retain all the notation
from Section 2.5.1 for the market description and the investment sets. We shall
also be assuming throughout that the market satisfies the viability requirement of
Theorem 2.9. In particular, recall the notation X̂L ∈ X (1) from the last result. We
are interested in characterizing the equivalent of the numéraire portfolio under P,
sampled at a random, not necessarily stopping, time. Here, by a random time we
simply mean a R+-valued, F∞-measurable random variable T .
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THEOREM 2.13. For any random time T , define the measure p = pT on (�×
R+, O) via

∫
�×R+ V dp = E[VT ] for all nonnegative optional process V . Since

p[� × R+] = 1 and p[A] = 0 holds for all evanescent A ∈ O, let (L,K) be the
canonical representation pair for p. Then, E[XT /X̂L

T ] ≤ X0/X̂
L
0 = X0 holds for

all X ∈ X .

PROOF. For X ∈ X (1), define C := ∫
[0,·] Xt dKt . Define also

Ĉ :=
∫
[0,·]

X̂L
t dKt .

Then, C ∈ C(1), Ĉ ∈ C(1) and E[∫R+(∂
C|K
t /∂

Ĉ|K
t )Lt dKt ] ≤ 1. Therefore,

E

[
XT

X̂L
T

]
=

∫
�×R+

(
X

X̂L

)
dp = E

[∫
R+

(
Xt

X̂L
t

)
Lt dKt

]

= E

[∫
R+

(
∂

C|K
t

∂
Ĉ|K
t

)
Lt dKt

]
≤ 1.

The result follows by simply noting that X (x) = xX (1) holds for all x ∈ R+. �

The next result is a partial converse to Theorem 2.13, in the sense that the
nonnegative local martingale L will be given and the random time T will be
constructed from L. Recall that the jump process of a process L is defined via
�Lt = Lt − Lt− for all t ∈ R+.

THEOREM 2.14. Let L be a nonnegative local martingale with L0 = 1,
�L ≤ 0 and L∞ = 0. Let T be any random time with LT = maxt∈R+ Lt . Then,
E[XT /X̂L

T ] ≤ X0/X̂
L
0 = X0 holds for all X ∈ X .

PROOF. The key to proving Theorem 2.14 is the following version of Doob’s
maximal identity, which can be found for example in Lemma 2.1 of [18]: for all
finite stopping times τ and Fτ -measurable and nonnegative random variables γ ,
one has

P
[

sup
t∈[τ,∞)

Lt > γ
∣∣ Fτ

]
=

(
Lτ

γ

)
∧ 1.(2.6)

The assumption �L ≤ 0 implies that the nondecreasing process L∗ :=
maxt∈[0,·] Lt is continuous. Consider the random times Tsup := sup{t ∈ R+ | Lt =
L∗∞} and Tinf := inf{t ∈ R+ | Lt = L∗∞}. Obviously, Tinf ≤ T ≤ Tsup. A use
of (2.6) gives that for any finite stopping time τ we have P[Tsup > τ | Fτ ] =
P[supt∈[τ,∞) Lt ≥ L∗

τ | Fτ ] = Lτ/L
∗
τ , as well as the equality P[Tinf > τ | Fτ ] =

P[supt∈[τ,∞) Lt > L∗
τ | Fτ ] = Lτ/L

∗
τ .
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Define the measure pT on (� × R+, O) via
∫
�×R+ V dpT = E[VT ] =

E[∫R+ Vt dHt ] for nonnegative optional processes V , where H is the dual op-
tional projection of the process I[[T ,∞[[. Let Z be the nonnegative supermartingale
such that Zt = E[H∞ − Ht | Ft ] = P[T > t | Ft ] holds for all t ∈ R+. Since
Tinf ≤ T ≤ Tsup, it follows that Z = L/L∗. In the notation of Theorem 2.1, and
according to Remark 2.4, L is the local martingale in the canonical representa-
tion pair of pT . Then, it follows from Theorem 2.13 that E[XT /X̂L

T ] ≤ X0 for all
X ∈ X . �

Let S be a one-dimensional semimartingale that generates the wealth-process
class X . Assume that S > 0, �S ≥ 0, 1/S is a local martingale and limt→∞ St =
∞. Define L = S0/S, and let T be any random time such that ST = mint∈R+ St ,
that is, LT = maxt∈R+ Lt . It is straightforward to see that X̂L = 1 and X̂1 =
S/S0 = 1/L. In view of Theorem 2.14, it follows that E[XT ] ≤ X0 for all X ∈ X .
In words, at the random time of the overall minimum of S, which is the time of
the overall minimum the numéraire portfolio, the whole market is at a downturn.
We shall show below that the last fact is always true, regardless of whether S is
a one-dimensional semimartingale with 1/S is a local martingale or not. The next
result adds yet one more remarkable fact to the long list of optimality properties
of the numéraire portfolio, with the loose interpretation of the numéraire portfolio
being an index of market status.

THEOREM 2.15. Suppose that X̂ ≡ X̂1 ∈ X (1) is such that �X̂ ≥ 0 and
limt→∞ X̂t = ∞. Let T be any random time such that X̂T = mint∈R+ X̂t . Then,
E[XT ] ≤ X0 holds for all X ∈ X .

PROOF. Let L := 1/X̂. Since X̂ ∈ X (1), L0 = 1. Also, �X̂ ≥ 0 is equivalent
to �L ≤ 0, as well as limt→∞ X̂t = ∞ is equivalent to limt→∞ Lt = 0. Therefore,
in view of Theorem 2.14, Theorem 2.15 will be proved as long as L is shown to
be a nonnegative local martingale. Note that we already know that L is a super-
martingale with L > 0 and L− > 0, as follows by the definition of X̂.

Since both X̂− > 0 and X̂ > 0 hold, we have X̂ = 1 + ∫
(0,·] X̂t−〈ρt , dSt 〉 for

some d-dimensional predictable and S-integrable process ρ. A straightforward ap-
plication of Lemma 3.4 in [13] shows that L = 1 − ∫

(0,·] Lt−〈ρt , dŜt 〉, where

Ŝ := S −
[

cS,

∫
(0,·]

〈ρt , d
cSt 〉

]
− ∑

t≤·
�X̂t

X̂t

�St

with cS denoting the uniquely defined continuous local martingale part of S (see,
e.g., [12]). Since L− > 0 and L > 0, L is a local martingale if and only if∫
(0,·]〈ρt , dŜt 〉 is a local martingale. The supermartingale property of L already

gives that
∫
(0,·]〈ρt , dŜt 〉 is a local submartingale. We shall show that

∫
(0,·]〈ρt , dŜt 〉
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is also a local supermartingale. Since 〈2ρ,�S〉 = 2(�X̂/X̂−) ≥ 0, the process
X′ defined implicitly via X′ = 1 + ∫

(0,·] X′
t−〈2ρt , dSt 〉 is an element of X with

X′ > 0 and X′− > 0. Therefore, X′/X̂ is a nonnegative supermartingale. Again,
Lemma 3.4 in [13] shows that X′/X̂ = 1 + ∫

(0,·](X′
t−/X̂t−)〈ρt , dŜt 〉. The super-

martingale property of X′/X̂ implies that
∫
(0,·]〈ρt , dŜt 〉 is a local supermartingale.

As
∫
(0,·]〈ρt , dŜt 〉 is a local submartingale, we conclude that

∫
(0,·]〈ρt , dŜt 〉 (and,

therefore, L) is a local martingale. �
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