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The Use of Unlabeled Data in
Predictive Modeling
Feng Liang, Sayan Mukherjee and Mike West

Abstract. The incorporation of unlabeled data in regression and classifi-
cation analysis is an increasing focus of the applied statistics and machine
learning literatures, with a number of recent examples demonstrating the po-
tential for unlabeled data to contribute to improved predictive accuracy. The
statistical basis for this semisupervised analysis does not appear to have been
well delineated; as a result, the underlying theory and rationale may be under-
appreciated, especially by nonstatisticians. There is also room for statisticians
to become more fully engaged in the vigorous research in this important area
of intersection of the statistical and computer sciences. Much of the theoret-
ical work in the literature has focused, for example, on geometric and struc-
tural properties of the unlabeled data in the context of particular algorithms,
rather than probabilistic and statistical questions. This paper overviews the
fundamental statistical foundations for predictive modeling and the general
questions associated with unlabeled data, highlighting the relevance of ven-
erable concepts of sampling design and prior specification. This theory, illus-
trated with a series of central illustrative examples and two substantial real
data analyses, shows precisely when, why and how unlabeled data matter.

Key words and phrases: Bayesian analysis, Bayesian kernel regression, la-
tent factor models, mixture models, predictive distribution, semisupervised
learning, unlabeled data.

1. INTRODUCTION

Recent interest in the use of so-called unlabeled
data in problems of prediction in the machine learn-
ing community has generated a growing awareness
of the potential for incorporation of ancillary design
data in classification and regression problems (Ben-
nett and Demiriz, 1999; Blum and Mitchell, 1998;
Joachims, 1999; Szummer and Jaakkola, 2002; Zhu,
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Ghahramani and Lafferty, 2003; Belkin, Niyogi and
Sindhwani, 2004). This use of unlabeled data is of-
ten referred to as semisupervised learning. Mainstream
probabilistic thinking is relatively underrepresented in
this active and exciting literature, and the theoretical
underpinnings of algorithms that exploit unlabeled data
have received scant attention from statistical scien-
tists. Much of the activity is algorithmic and applied.
Machine learning examples are typically presented
case-by-case, with the semisupervised analysis usually
based on modifications of (fully supervised) optimiza-
tion algorithms for classification or regression predic-
tion, and with the introduction of additional compo-
nents of objective functions that tie in unlabeled sam-
ples. Arguments for these additional components are
made using a combination of structural and intuitive
arguments, including, most recently, asymptotic argu-
ments on the convergence of operators on manifolds
(Belkin and Niyogi, 2005; Coifman et al., 2005a, b).
There has been some work addressing the theoretical
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aspects of unlabeled data (Castelli and Cover, 1995;
Seeger, 2000; Cozman and Cohen, 2002; Ando and
Zhang, 2005) in specific contexts. However, in general,
the foundation and rationale for understanding the rel-
evance, and likely effectiveness, of unlabeled data are
still not well understood.

For currently active application areas and also to un-
derlie growth and development of the unlabeled data
methodology long-term, it is critical that the underly-
ing theoretical basis for the use of unlabeled data is
delineated and more broadly understood among statis-
tical and computational scientists. Our goal here is to
promote broader awareness and interest among statis-
ticians of the nature and importance of this area. We do
this by outlining the conceptual and theoretical bases
for the “when, why and how” in regard to the use of
unlabeled data, and through a complementary series
of illustrations in central statistical modeling contexts
as well as empirical examples in two substantive data
analyses.

Beginning in Section 2 with an articulation of the ba-
sic model framework and discussion of fundamental is-
sues of sampling and design, we discuss the underlying
conceptual and theoretical basis for using unlabeled
data. This is developed in the Bayesian framework for
prediction, in which implications for the incorporation,
or otherwise, of unlabeled data in prediction problems
becomes transparent. Section 3 provides concrete, il-
luminating examples in a series of common statisti-
cal models. This includes examples in regression, pre-
diction using multivariate normal mixture models, and
standard mixture-based classification and discrimina-
tion. These are key contexts that connect intimately
with some of the major areas of interest in machine
learning, and contexts in which the relevance of un-
labeled data is perhaps most transparent and intuitive.
These examples serve to highlight the relevance of un-
labeled data in standard, central areas of statistics. Sec-
tion 4 overviews and exemplifies the issues in a class of
latent factor regression models, with an empirical illus-
tration in analysis of a benchmark data set of handwrit-
ten digit classification. Section 5 concerns our final im-
portant context, that of kernel regression; here we link
statistical and machine learning approaches, illustrate
the theoretical basis for the use of unlabeled data and
provide a further empirical study in discrimination of
cancer and normal tissue samples based on gene ex-
pression data. We close with summary comments in
Section 6.

2. GENERAL FRAMEWORK

2.1 Context, Goals and Models

Interest lies in aspects of the joint distribution of
two random quantities, (y, x), and the core prediction
problem concerns statements about future values of y

based on observing the corresponding x. Both x and y

may be multivariate, in general. In standard regression
problems, y is a continuous or discrete univariate re-
sponse; in problems of classification, y is discrete, of-
ten binary. Using p(·) as generic notation for proba-
bility density functions, all inference problems require
understanding aspects of the joint density p(y, x|�),
where � denotes all parameters—to be described below
in context—that are needed to fully specify the joint
density.

The fundamental problem of prediction—whether
it be couched in terms of regression estimation or
classification—is framed as follows: at a specified “fu-
ture” value of x, make statements about the corre-
sponding value of y. Using ∗ to denote future values of
interest, this implies a directional focus: we want to un-
derstand and evaluate, or estimate, p(y∗|x∗,D) based
on all available data and information D.

Statistical models structure the problem in terms of
parameters (which may be infinite-dimensional in non-
parametric models) that represent all uncertain aspects
of the joint probability distribution for (y, x). By way
of notation, the dominant and generally (our) preferred
specification of the joint density is

p(y, x|φ, θ) = p(y|x,φ)p(x|θ),(1)

where the functional forms of the two densities on the
right-hand side are completely specified by the char-
acterizing parameters (φ, θ). The parameters φ and θ

relate explicitly to the conditional for y given x and
then the marginal for x, respectively. Though φ and θ

are two distinct symbols in notation, they can be struc-
turally dependent in various ways, as we will see later.
From this joint density, we can also deduce the im-
plied marginal density for y, p(y|φ, θ), and the im-
plied conditional density p(x|y,φ, θ) via the comple-
mentary factorization

p(y, x|φ, θ) = p(x|y,φ, θ)p(y|φ, θ),(2)

where the full set of parameters (φ, θ) may be in-
volved, in complicated ways, in the “retrospective”
conditional for x given y, and the corresponding mar-
ginal for y.

The conditional density of y given x is essential for
prediction, of course, and hence we center our develop-
ment on the representation (1), in the knowledge that
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we can move interchangeably between factorizations
(1) and (2) as desired.

2.2 Sampling Designs

The stochastic model of the data generation process,
referred to as the sampling design, leads to likelihood
functions as summaries of the data-based information
on (φ, θ). Typical sampling contexts fall into the fol-
lowing categories:

1. Data from the margins:

• Ym = {ym
i , i = 1 :km} where the ym

i ∼ p(y|φ, θ)

are independent, and/or
• Xm = {xm

i , i = (km + 1) : (km + nm)} where the
xm
i ∼ p(x|θ) are independent,

and with Ym and Xm independent given (φ, θ).
Having the opportunity to observe data Ym pro-
vides information on aspects of the full set of pa-
rameters (φ, θ), while Xm informs on aspects of θ

alone. Xm is the traditional unlabeled data, though
the same term could also be applied to Ym.

2. Full prospective random sampling in which (Yp,

Xp) = {(yp
i , x

p
i ); i = 1 :np} are drawn from the full

joint distribution p(y, x|φ, θ). Here data are paired
and provide information on both θ and φ. This is a
common classification and/or regression design.

3. Data from a prospective design in which the Xp =
{xp

i , i = 1 :np} values above are specified in ad-
vance by design. Then Xp contains no informa-
tion about the parameters and we learn about the
parameter φ (only) through the likelihood based
on (Yp,Xp) that is the product of components
p(y

p
i |xp

i , φ)—this is the venerable and perhaps the
most common regression design in applied sta-
tistics. In machine learning the term transductive
framework, outlined by Vapnik (1998), has been ap-
plied in this setting when the objective is to make
predictions of y on only some specific, prespecified
values of x.

4. Data from a typical retrospective design—or case-
control design—in which we observe the outcomes
Xr = {xr

i , i = 1 :nr} at a chosen set of y values
Y r = {yr

i , i = 1 :nr}. Here too the data are paired,
but Y r provides no information about (φ, θ) since
the y values are chosen by design. The data in Xr

comprise a set of nr independent random draws
from p(x|y,φ, θ) and therefore provide informa-
tion about (φ, θ).

The difference between “prospective” and “retrospec-
tive” is whether the observed y values are random

or not. Since most examples we will discuss come
from a prospective design, for notational simplicity
we will drop the superscript and use (Y,X) to denote
(Yp,Xp). Other sampling schemes arise in statistical
design (e.g., matched case-control designs, repeated
measurement designs), but the above examples are key
and central to much of predictive modeling and to our
main goals of explicating the use of unlabeled data. Fi-
nally we note that the machine learning community has
used the term “sampling” for a somewhat different use,
applying it to different factorizations of the joint dis-
tribution assuming the data were generated by a full
random sampling of (y, x); in that usage, the form (1)
is referred to as “diagnostic sampling” and (2) is re-
ferred to as “generative sampling” (Cozman and Co-
hen, 2002).

2.3 Prediction

We observe data D generated via one or a combi-
nation of the sampling designs mentioned above. We
aim to predict (estimate, classify) a new case y∗ at a
value x∗. The prediction problem is solved from the
Bayesian perspective by evaluating the posterior pre-
dictive distribution

p(y∗|x∗,D)
(3)

=
∫ ∫

p(y∗|x∗, φ)p(φ, θ |x∗,D)dφ dθ

at the value of the future x∗, where p(φ, θ |x∗,D) is the
posterior distribution of the parameters given the data
and x∗. This posterior predictive distribution is the rele-
vant quantity whether x∗ is a random draw from p(x|θ)

or is specified directly. In the former case x∗ arises as
a sample from p(x|θ) and so provides additional infor-
mation about θ ; then p(φ, θ |x∗,D) depends on x∗. In
the latter case x∗ is chosen at a value of interest, often
one of a range of values where we aim to explore po-
tential future outcomes, and so provides no additional
information; then

p(φ, θ |x∗,D) = p(φ, θ |D).(4)

In any example it is important to be aware of the dis-
tinction but, for our development, it is a side issue and
we assume the latter case (4) as it simplifies the nota-
tion.

Our interest focuses on how Xm enters in the evalu-
ation of the predictive density in (3). All forms of in-
formation enter through D, so for Xm (and any other
information) to be relevant in prediction it is necessary
that it play a role in defining the posterior p(φ, θ |D).
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This is the key to understanding, if, and how, any in-
formation in D impacts the prediction problem.

A relatively general framework has observations on
each of Ym, Xm, (Y,X) and (Y r ,Xr). Then Bayes’
theorem under a specified prior p(φ, θ) yields

p(φ, θ |D) ∝ p(φ, θ)p(D|φ, θ)

with

p(D|φ, θ) = p(Y,X|φ, θ)p(Xm|θ)

· p(Ym|φ, θ)p(Xr |Y r,φ, θ).

This posterior will depend in complicated ways on
all aspects of D, including aspects of the unlabeled
data Xm. Investigating this dependence is the key to
understanding the relevance and specific potential uses
of unlabeled data.

2.4 Common Framework of Regression
and Classification

For convenience and clarity, we start our discussion
in the simple regression/classification context where
data arise from a joint random sample D = (X,Y ).
Then

p(φ, θ |D) ∝ p(φ, θ)p(Y |X,φ)p(X|θ).

For example, we may have a linear or nonlinear regres-
sion model for (y|x,φ) in which φ represents the un-
certain regression parameters or regression functions.

Now imagine that we have the opportunity to addi-
tionally observe or measure some unlabeled data Xm.
The modified posterior with D = {Y,X,Xm} is then

p(φ, θ |D) ∝ p(φ, θ)p(Y |X,φ)p(X|θ)p(Xm|θ).

If φ and θ are independent under the prior, p(φ, θ) =
p(φ)p(θ), then

p(φ, θ |D) = p(φ|Y,X)p(θ |Xm,X).

Thus, prior independence leads to posterior indepen-
dence and the unlabeled data Xm is irrelevant in learn-
ing about φ, and hence irrelevant in predicting new y∗,
if φ and θ are a priori independent. This follows from

p(y∗|x∗,D) =
∫ ∫

p(y∗|x∗, φ)p(φ, θ |D)dφ dθ

=
∫

p(y∗|x∗, φ)p(φ|Y,X)dφ

by posterior independence.
In other cases, the posterior for (θ,φ) may—and of-

ten will—involve dependencies. Therefore, additional
information generated from marginal data will have an

impact on the prediction problem via the integration
over the posterior that defines p(y∗|x∗,D). In the gen-
eral framework, data from Ym, Xm and (Y r ,Xr) will
all have an impact on the prediction problem.

It is now evident that, beyond probabilistic/prior de-
pendencies in the Bayesian formulation, any structural
relationship between the “regression component” pa-
rameters φ and the “x-marginal” component parame-
ters θ will also inevitably lead to dependence of pre-
dictions on the unlabeled data. How such dependencies
arise and what forms they take depend on context.

A standard and conceptually simple example is that
of mixture modeling, in which learning about the mar-
ginal distribution for x informs on the relative proba-
bilities of mixture components for the joint distribution
for (y, x), and hence influences predictions. This idea-
fixing example is developed below as the first of a se-
ries of common modeling contexts that illuminate the
issues and theoretical framework.

3. SOME CENTRAL MODELING CONTEXTS
AND EXAMPLES

3.1 Nonlinear Regression Prediction
Using Mixtures

A methodologically central example, and one in
which the relevance of unlabeled data is transparent,
is that of Gaussian mixture modeling for regression.
Consider the case of univariate y and multivariate x,
with joint sampling density

p(y, x) =
m∑

i=1

πifi(y, x),(5)

where 0 ≤ πi ≤ 1,
∑

i πi = 1 and the fi(y, x) are den-
sity functions of distinct multivariate normal distrib-
utions. Transforming the joint distribution (5) to the
prospective parametrization in (1), we have

p(x|θ) =
m∑

i=1

πifi(x),

p(y|x,φ) =
m∑

i=1

wi(x)fi(y|x),

where fi(x) and fi(y|x) are the corresponding mar-
ginal and conditional densities of the multivariate nor-
mal fi(y, x), and

wi(x) = πifi(x)∑
j πjfj (x)

is the conditional mixing probability evaluated at the
conditioning x value.
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In terms of the general theory and notation of Sec-
tion 2, the simplest parameter specification has φ =
{π,α,β} and θ = {π,α}, where π = {πi : i = 1 :m},
β is the full set of linear regression coefficients, in-
tercepts and conditional variances in the set of m nor-
mal linear models fi(y|x) and α is the full set of mean
vectors and variance matrices of the normal distribu-
tions fi(x). This parametrization makes clear the di-
rect structural dependence of φ and θ , and hence the
deductions from the general theory of Section 2 that
unlabeled data will matter in future predictions. This
conclusion is evident by inspection. Observing data on
the margin x provides direct information on the rela-
tive weights πi of the normal components, and hence
provides information relevant to predicting future y∗
values. The unlabeled data also of course inform about
the other parameters α of the margin for x, that is,
the component mean and covariance parameters of the
marginal normal mixture p(x|θ) as well as the compo-
nent weights. These parameters are also involved in the
calculations needed for prediction—through the condi-
tional mixing probabilities wi(x∗)—and so the unla-
beled data play a more intricate role than just advising
on the weights.

An illustrative example. A simple illustrative exam-
ple fixes ideas and shows how unlabeled data may in-
crease predictive accuracy in nonlinear regression via a
mixture model. Consider two-dimensional data (y, x)

modeled using a three-component Gaussian mixture
model in the above framework, setting fi(y, x) to
be the bivariate normal N(µi,�i), for each i = 1 : 3.
From the following prior on model parameters, we sim-
ulated one set of parameters and, given those parame-
ters, drew a sample of 175 observations from the result-
ing three-component Gaussian mixture. Figure 1(a1) is
a scatter plot of the 175 observations.

The prior,

(π1, π2, π3) ∼ Dir(1/3,1/3,1/3),

(µi |�i) ∼ N(0, τ�i), (i = 1,2,3) with τ = 0.2,

�i ∼ IW(d, S0),

(i = 1,2,3) with d = 3 and S0 = (4/3)I2×2,

was used for posterior and predictive analysis of sub-
sets of this full data set. Here Dir denotes a Dirichlet
distribution and IW an inverse Wishart, in standard no-
tation.

The standard Gibbs sampler for mixture models
(Lavine and West, 1992; West, 1992) delivers Monte

FIG. 1. Mixture model regression and prediction example.
(a) Analysis using the full data set: (a1) scatter plot of all 175
data points together with the posterior predictive regression curve
of (y|x) and three contours representing the posterior estimates of
the three Gaussian components; (a2) the estimated predictive den-
sity functions p(y|x) evaluated at three chosen values x = −1.5, 0
and 2. (b) Analysis using only the labeled data. (c) Analysis using
the labeled data and also the unlabeled points (open circles).
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Carlo approximations to posterior and predictive dis-
tributions. In particular, given posterior samples of all
model parameters (including the latent mixture com-
ponent indicators for each sample), the posterior mean
of the regression curve can be approximated pointwise
over a range of values x∗ = [a, b] to deliver the esti-
mated regression function E(y∗|x∗,D) over this range.
This is plotted in Figure 1(a1) for the case in which D

is the full set of 175 observations and x∗ = [−2,2]. The
corresponding estimates of the predictive density func-
tions p(y∗|x∗,D) are plotted for three different values
of x∗ = {−1.5,0,2} in Figure 1(a2). These regression
and density curves can be viewed as the “gold stan-
dards” as they fully utilize all the available data.

Assume now that we can only measure y values for x

in the range [−1,1]. This leaves us with a smaller la-
beled data set and an unlabeled set Xm. We can fit the
model to the labeled data only, or to the labeled and un-
labeled data. The Gibbs sampler can be easily extended
to treat the y values for the unlabeled Xm as missing
data and draw the corresponding labels. Such analysis
results in Monte Carlo estimates of regression curves
and predictive densities that can be compared to those
from the full data analysis: Figure 1(b) presents results
using only the labeled data and Figure 1(c) presents
results using both the labeled and the unlabeled data.
Comparison of these graphs with Figure 1(a) strikingly
illustrates the differences, and highlights the improve-
ments in prediction that can be obtained by incorporat-
ing the unlabeled data.

3.2 Classification and Discrimination
with Mixtures

A related and also methodologically central mix-
ture modeling context is that of classification and dis-
crimination, in which x arises from a mixture distrib-
ution and y indicates the mixture component (Lavine
and West, 1992). For example, in binary classifica-
tion, for each of y = 0,1 the model is specified with
Pr(y = 1) = π , 0 < π < 1, and (x|y) ∼ fy(x) for
some parametrized densities f0 and f1. In the com-
mon Gaussian mixture model, f0 and f1 are mul-
tivariate normal densities parametrized by different
means and variance matrices (Lavine and West, 1992),
fy(x) = N(x|µy,�y) for each y = 0,1. Define ψ =
{µ0,µ1,�0,�1}. Here the scientifically natural speci-
fication of the joint distribution is via the “retrospec-
tive” construction of (2), parametrized as p(x|y,ψ)

and p(y|π).
Relating to the factorization of (1), the implied mar-

ginal for x and conditional for y given x are easily de-
duced; the former is the implied mixture of the two

normal distributions weighted by probabilities π and
1 − π , and the latter is simply the revised outcome
“classification” probability for y = 1 at a point x, com-
puted by Bayes’ theorem. It is transparent that unla-
beled data matter in this setting. Observations from the
marginal distribution for x provide information about
both the mixture weight π and the parameters ψ of
the component normals. Prediction of a new y∗ at a
point x∗ is performed by estimating (whether by for-
mal Bayesian computations or otherwise) the classifi-
cation probability Pr(y∗ = 1|x∗), which is a compli-
cated function of all parameters π and ψ and depends
critically on various nonlinear functions of ψ in partic-
ular. Hence information about (π,ψ) from unlabeled
data, as from any other source, feeds through to impact
on predictions.

To connect with the general notation and theory of
Section 2, we see that for the primary parameters π,ψ

there is no simple reduction or separation of the para-
meters into distinct parameters φ and θ . Each of the
distributions p(y|x,φ) and p(x|θ) depends in compli-
cated ways on all the parameters π and ψ , and consis-
tency with the notation in Section 2 is achieved only
by setting φ ≡ θ = {π,ψ}. Hence, in this key exam-
ple, φ and θ are fundamentally highly structurally re-
lated, and the general theory of Section 2 implies that
predictions will be impacted by the use of unlabeled
data Xm in concordance with our immediate, context-
specific deductions above.

We note that various statistical and algorithmic ap-
proaches have been proposed to take advantage of
the information in Xm and the effectiveness of Xm

has been either implicitly or explicitly well stud-
ied methodologically (Ganesalingam and McLachlan,
1978; O’Neill, 1978; Ganesalingam and McLachlan,
1979; Müller, Erkanli and West, 1996; Nigam et al.,
2000). An interesting theoretical connection in Castelli
and Cover (1995) concerns the asymptotics of predic-
tion errors for y∗ with respect to an increasingly large
unlabeled sample, so that asymptotically all parame-
ters are effectively “known”; the basic conclusion of
this analysis was that labeled samples are exponentially
more valuable than unlabeled samples in classification
problems.

3.3 Normal Linear Regression Models

In the usual normal linear regression model, φ =
(β, τ ) is the set of regression parameters from the
model

y|x,φ ∼ N(β ′x, τ 2),
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where x and β are k-dimensional vectors. One way
such a model can arise is from an assumed joint
multivariate normal distribution for (y, x), namely,
the (k + 1)-dimensional (zero-mean) normal N(0,�)

where

� =
(

σ 2
y ρ′
ρ �x

)
,

for some scalar parameter σy , k-dimensional vector of
covariance parameters ρ and k ×k variance matrix �x .
Under such a model we have β = �−1

x ρ and τ 2 = σ 2
y −

β ′ρ, and the marginal p(x|θ) = N(µx,�x) with the
characterizing parameter θ = (µx,�x).

Some example contexts are as follows:

• A direct specification of the prior p(φ, θ) = p(φ) ·
p(θ) that assumes independence, and so implies that
unlabeled Xm data will be irrelevant to prediction
of future y∗. This would be typical in many applied
regression settings.

• An indirect specification in which the initial prior is
defined for (µ,�), with the prior p(φ, θ) being im-
plied by transformation. A common approach is to
use the conjugate normal-inverse Wishart prior dis-
tribution. Any prior in this class has the property that
the implied prior on (φ, θ) is in fact one in which
φ and θ are independent (Geiger and Heckerman,
2002; Dobra et al., 2004).

• Other indirect specifications of the prior p(φ, θ) by
deduction from a prior on � will induce dependence
between φ and θ and hence lead to relevance of the
unlabeled data since Xm will then provide informa-
tion about φ indirectly through its relevance for θ .

The second example here illustrates a case in which
modeling prior information on parameters of the joint
distribution of y and x using a standard conjugate im-
plies that the unlabeled Xm data will be irrelevant for
predicting y∗. This result arises more generally in ex-
ponential family models. Other priors may, and usually
will, lead to prior and therefore posterior dependence
so the unlabeled data will be relevant.

3.4 Binary Outcomes: Cancer Incidence
and Prognosis

An illuminating example is the case of binary y and
binary x. For thematic context, suppose x = 1/0 repre-
sents the presence/absence of mutation in the BRCA1
breast cancer gene in a woman, and that y = 1/0 rep-
resents occurrence of breast cancer before age 70. The
goal here is to predict the probability of y = 1 given
the presence or absence of the mutation.

In this breast cancer example we define θ as the inci-
dence rate of the BRCA1 mutation; φ0 is the base rate
for breast cancer in the general (wild type) population
of women, and φ1 the (higher) cancer rate among car-
riers of the mutation. The joint density using p(y|x,φ)

and p(x|θ) is then parametrized by the three probabil-
ities, φ = (φ0, φ1) and θ where

• φx = Pr(y = 1|x,φ) for x = {0,1} and
• θ = Pr(x = 1|θ).

For this model, the predictive distribution given the
data is

p∗ = Pr(y∗ = 1|x∗,D) =
∫∫

φx∗p(φ, θ |x∗,D)dφ dθ.

Given the above model, the following are two natural
prior specifications:

• We can directly specify independent priors on θ

and φ. As a result p∗ will not depend on the unla-
beled data.

• We have cell probabilities p(x, y) on the joint space
x = 0,1, y = 0,1 defined as

π = {π00, π01, π10, π11}.
Common approaches utilize Dirichlet priors on π . If
we choose a Dirichlet prior p(π) and find the im-
plied prior p(φ, θ) by transformation, the result is
prior independence of φ and θ , and again the unla-
beled data are irrelevant to prediction.

A more interesting and perhaps natural modeling as-
sumption on the joint space is that the breast cancer
samples come from an inhomogeneous population hav-
ing two genetically and environmentally different sub-
populations in connection with inherited breast cancer-
related characteristics and lifetime cancer risks. In this
case a reasonable prior would be a mixture of two
Dirichlets,

p(π) = ap0(π) + (1 − a)p1(π),

where p0 and p1 are two different Dirichlet priors for
the two subpopulations, though the sampling design
cannot distinguish between the subpopulations. It then
follows by transformation that

p(φ|θ) = w(θ)p0(φ) + (
1 − w(θ)

)
p1(φ),

where p0 and p1 are the implied margins on φ from
each of the two Dirichlets, and the mixing probability
w(θ) is computed conditionally on any value of θ as

w(θ)

1 − w(θ)
= a

(1 − a)

p0(θ)

(1 − p1(θ))
.
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Thus under a mixture prior of this form, θ and φ are
dependent and so the unlabeled data Xm will provide
information about y∗ indirectly via θ and φ. The de-
pendence between φ and θ is reflected in the varia-
tion of the weight w(θ) that provides the “link” for
the unlabeled data information to flow through to im-
pact on inferences about φ, and hence to y∗. Only in
the extreme case of no subpopulation structure, when
p0(·) = p1(·), will the unlabeled data on the mutational
incidence rate play no role in predicting cancer events
for future patients.

4. FACTOR MODELS AND FACTOR REGRESSION

4.1 Statistical Framework

The interest in factor regression has increased due
to the prevalence of problems with high-dimensional
predictors. One common example is principal compo-
nent regression (PCR). In PCR, the singular value de-
composition of the design matrix of original predictor
variables generates principal components—or empir-
ical factors—that become the predictors in a regres-
sion. The resulting orthogonal regression and potential
data reduction are two key benefits of this modeling
approach. However, a key question is raised in connec-
tion with prediction: since we aim to predict y∗ values
at new, future x∗ values, should we not include the fu-
ture design points in the initial analysis and principal
component evaluation? This is evidently just a ques-
tion of whether, and if so, how, to use unlabeled data in
the model development and analysis of existing labeled
data.

The question, and the general discussion of PCR
and empirical factor regression, can be embedded in
the broader theoretical context of (latent) factor re-
gression models. West (2003) formalized the develop-
ment of large-scale, latent factor models coupled with
regression on latent factors, and delineated a compre-
hensive framework for predictive modeling that was
particularly motivated by problems involving larger
numbers of predictors—the “large p, small n” par-
adigm. This elucidated the theory underlying PCR
and modeling using principal component projections
of high-dimensional covariates/predictors as a limit-
ing case of a broader class of regression models where
the predictors are latent variables. This framework and
theory also clarified and justified the use of so-called
g-priors (Zellner, 1986) for Bayesian shrinkage re-
gression, and defined novel classes of multiple shrink-
age methods that are significantly beneficial in predic-
tion problems through the ability to induce differential

shrinkage in different factor–predictor dimensions. Im-
portantly, the framework trivially clarifies the issue of
use of unlabeled data, and how unlabeled samples en-
ter into predictions based on analysis of labeled data,
in general. The special limiting case of principal com-
ponent regression is one important benefit.

The following normal linear model serves as a spe-
cific example to illustrate the more general principles
of factor regression models. A univariate response y is
to be predicted based on a (high-dimensional) p × 1
predictor variable x, and we have

yi = α′λi + εi and xi = Bλi + νi,

where εi ∼ N(0, σ 2), λi ∼ N(0, I ) is a k × 1 multi-
variate normal latent factor for each i, B is an uncertain
p×k matrix of factor loadings of x on λ, νi ∼ N(0,�)

is a vector of idiosyncratic noise terms and � is an un-
certain diagonal variance matrix. Also, the νi and εi

are conditionally (on all model parameters) mutually
independent over i.

4.2 Unlabeled Data in Factor Regression Models

This framework is a key example of when unlabeled
data matter. Fundamentally, the outcomes y to be pre-
dicted are modeled as responses in regressions on la-
tent variables λ, and the observed concomitant x vari-
ables are related to λ, while y and x are conditionally
independent given λ. Thus the predictive relevance of
x is indirect, through λ.

By marginalizing over λ in the joint multivariate nor-
mal distribution of y, x and λ implied by the model
specification, it becomes clear that we can identify
p(y|x,φ) as a normal linear regression of y on x with
regression parameter vector and residual variance mak-
ing up the parameter φ = φ(α,σ,B,�). Also, the im-
plied marginal distribution for x is normal with zero
mean and variance matrix θ = BB ′ + � . Thus, if
{B,�} are known, then θ is known and so the ob-
served, unlabeled data Xm has no influence whatso-
ever in the problem of predicting a future y∗ given data
from either prospective or retrospective designs. How-
ever, typically {B,�} are uncertain and need to be es-
timated. In this setting:

• Unlabeled data Xm provides information relevant
to estimation of the latent factor model parameters
{B,�}, and hence of relevance to predicting fu-
ture y∗ values via the transfer of information through
inferences on the future λ∗ related to x∗.

• φ is dependent on aspects of θ indirectly through
their functional associations with the factor model
parameters, so that any relevant prior p(B,�,α,σ )

will induce dependencies between φ and θ .
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4.3 Digit Classification Example

The MNIST data set (Y. LeCun, http://yann.lecun.
com/exdb/mnist/) is a standard data set used exten-
sively in the machine learning community to bench-
mark binary regression models. The data set contains
60,000 images of handwritten digits {0,1,2, . . . ,9},
where each image consists of p = 28 × 28 = 784 gray-
scale pixel intensities. As an example, we consider
what is generally regarded as one of the most difficult
pairwise comparisons, that of discriminating a hand-
written “6” from a “9.” We frame this as a binary re-
gression problem. The predictor space x is transformed
via singular value decomposition of the initial design
matrix of 784 primary pixel values (after centering),
and the first two factors are used for predictive discrim-
ination of unlabeled samples.

The data set contains 5918 handwritten “6”s and
5949 handwritten “9”s. Following Belkin, Niyogi and
Sindhwani (2004), we take the first 400 observations
from each class as a training sample and use the re-
maining samples as test cases to be predicted. The stan-
dard MCMC analysis of the probit regression model
produces approximate posterior predictive probabili-
ties of “6” versus “9” for each of the several thousand
test samples, and we record empirical prediction error
rates based on whether or not the predictive probability
of the true digit (true label) lies below or above 0.5. For
the labeled/unlabeled evaluation, our analysis is most
extreme: we randomly select just two “6”s and two “9”s

to treat as labeled, the remaining 398 in each of the two
classes being regarded as unlabeled. To give an initial
indication of the relevance of unlabeled data, Figure 2
plots the projections of the full sets of training and test
data onto the two factors (first two principal compo-
nents) of the labeled and unlabeled data together; the
separation of digits is quite strong and clear for both
the training and test data. Repeating the factorization
and projection of the training data, but now using only
four labeled samples (randomly selected with two of
each digit), produces the graph in Figure 3(a); frames
(b), (c) and (d) of Figure 3 show similar plots for dif-
ferent random draws of the four samples treated as la-
beled. The relevance of unlabeled samples is quite ev-
ident from comparison of these plots with those based
on the labeled and unlabeled data together.

In the probit factor regression models using the first
two principal components as predictors, and with a
simple, standard normal/inverse gamma prior on re-
gression parameters (West, 2003), repeated analysis of
labeled data alone in the above framework yields an
average prediction error rate on the test samples of ap-
proximately 31.2%. Repeating this analysis but now
including the unlabeled data in defining the empiri-
cal factors yields a semi-supervised average error rate
of approximately 9.5%. This gives some indication of
the potential improvements in raw predictive accuracy
that may accrue from the appropriate use of unlabeled
data.

FIG. 2. MNIST handwritten digit data example, with samples of handwritten “6” (+) and “9” (♦). The axes are the first two principal
components computed from a singular value decomposition of the centered data, using the full data set of over 11,000 samples (5918 “6”s
and 5949 “9”s). Scatter plotted on these empirical factors are (a) the training data of 800 samples (400 of each digit), and (b) the remaining
test data. The two factors evidently carry strongly discriminating information.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
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FIG. 3. MNIST handwritten digit data example, in a format similar to that of Figure 2. In these frames the two principal components were
evaluated on only four samples selected as labeled, two of each digit, and the scatter plots are of the training data of 800 samples. The
four labeled samples were randomly drawn from the training data set, and the four frames here represent four different draws of the labeled
samples. Though there is evidence of discriminatory information to distinguish the handwritten “6”s (+) from the “9”s (♦), it is quite clear
that discriminatory power will be very limited.

5. KERNEL REGRESSION FOR PREDICTION
AND CLASSIFICATION

5.1 Kernel Regression Models

An interesting class of examples, which is central
to the methodological interfaces of statistics and ma-
chine learning, arises in models based on kernel re-
gression. Kernel and related smoothing spline methods
have a long history in applied statistics and have seen a

tremendous amount of development at the interfaces of
machine learning and statistics in the last several years
(Poggio and Girosi, 1990; Wahba, 1990; Vapnik, 1998;
Schölkopf and Smola, 2002; Shawe-Taylor and Cris-
tianini, 2004; Liang et al., 2007).

The context is nonparametric, nonlinear regression
with y ∈ R, x ∈ R

k , and a model of the form

y = f (x) + ε,(6)
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where ε is a zero-mean noise term and f is an uncer-
tain regression function. As an example, the class of
Bayesian radial basis (RB) models (Liang et al., 2007)
deals with questions of proper probability models—
and the resulting proper inference and predictive re-
sults that then arise—for uncertain knots in a kernel
model. This framework, and other approaches, begin
with the interest in a representation of the form

f (x) =
∫

w(u)K(x,u) dG(u)(7)

for some weight function w(u) over k-dimensional u,
and some specified kernel function K(·, ·). The el-
ement G(·) is the unknown probability distribution
function for X. The key to the model is to note that,
if G is discrete and puts masses gi at support points (or
“knots”) ui , then the expression for f (·) is simply

f (x) = ∑
i

giw(ui)K(x,ui),

that is, a radial basis function representation. The
analysis of Liang et al. (2007) describes approxima-
tions to a model in which uncertainty about G is
expressed using a Dirichlet process prior (Ferguson,
1973; Escobar and West, 1995). One implication of
such a model for G is that, since Dirichlet processes
are discrete with probability 1, the formal mathemati-
cal model for f (x) is the sum above with a countably
infinite number of knots ui . From the methodological
viewpoint, both labeled and unlabeled x values pro-
vide information about G directly. In fact, with a sam-
ple of n labeled and/or unlabeled x values x1, . . . , xn

(whether from X, Xm or some combination of the two),
this Dirichlet process model implies that f may be ap-
proximated by

f̂n(x) =
n∑

i=1

wn,iK(x, xi),(8)

where wn,i ∝ w(xi). The key methodological rele-
vance of this approach is that this is true for all n,
providing consistency as sample size increases and ad-
ditional design points are observed. This leads to the
practical model in which each y∗ is linearly regressed
on the set of kernel predictors {K(x∗, xi)}ni=1 based on
whatever set of design points is observed. A complete
model now involves a prior distribution over the in-
duced regression coefficients wn,i and we note that this
explicitly depends on n and the realized xi . Hence, in
both the structure of the regression model and in the
requirements for a prior over coefficients, we see the
dependence on all values observed in the x space; this
is therefore a perfect example of when, why and how
unlabeled Xm data matters. In particular, we note that:

• θ = G(·) so that p(x|θ) dx = dG(x)—the parame-
ter is the full distribution function itself.

• Equations (6) and (7) show explicitly how p(y|x,φ)

depends intimately on θ = G as defining the non-
linear kernel regression; in fact, θ ⊆ φ in this case.
Thus prior and posterior dependence of θ and φ is
central to the model.

• As a result, unlabeled Xm provides direct, imme-
diate and critically relevant information in predict-
ing y∗.

This specific example of a kernel regression model
derived within a coherent probabilistic framework,
taken from Liang et al. (2007), is presented for its sim-
plicity and also because it represents a fully specified
probabilistic model in which the kernel weights wn,i

are related coherently as sample sizes change. Some
additional connections and related kernel regression
formulations are now mentioned.

5.2 Relation to Machine Learning Kernel
Regression Algorithms

Other constructions of kernel regression models, in-
cluding those utilizing Gaussian processes and spline
smoothing, non-Bayesian uses of radial basis functions
and others (Poggio and Girosi, 1990; Wahba, 1990;
Schölkopf and Smola, 2002; Vapnik, 1998; Shawe-
Taylor and Cristianini, 2004), exhibit the same struc-
ture and consequent dependence on unlabeled data.
One interesting connection with recent theoretical de-
velopments in machine learning approaches arises by
noting that the central model of (7) also corresponds
to the solution of the nonlinear manifold regularization
formulation of Belkin, Niyogi and Sindhwani (2004).
This approach, motivated by geometric arguments, is
an optimization algorithm that minimizes

f∗ = arg min
f ∈HK

[
1

n

n∑
i=1

V (f (xi), yi)

+ γA‖f ‖2
K + γI‖f ‖2

I

]
,

where {(yi, xi)}ni=1 are the labeled data, HK is a re-
producing kernel Hilbert space (RKHS), V (f (x), y)

is a loss function, ‖f ‖2
K is the RKHS norm, γA, γI

are regularization parameters and ‖f ‖2
I is a norm that

reflects the smoothness of the function on the mar-
ginal p(x). If the marginal is concentrated on a man-
ifold, x ⊂ M ∈ R

k , then a natural choice for ‖f ‖2
I is

the Laplacian on the manifold. The marginal p(x) is
generally unknown; with unlabeled data Xm from the
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FIG. 4. Kernel regression example using synthetic data. Frame (b) displays a scatter plot of the 50 observations on the x2 versus x1 axes,
with cases yi = 1 as “+” (blue) and yi = 0 as “◦” (red). The binary kernel regression model analysis of the full set of 50 labeled observations
produces approximate posterior predictive probabilities Pr(y = 1|x,D) at any point x in the plane; the green “∗” points in frame (b) are
points at which Pr(y = 1|x,D) = 0.5, that is, represent points on the separating contour. Frame (a) displays a color image of the contours of
Pr(y = 1|x,D) as x varies; red corresponds to the conditional probability being near 0 and blue near 1.

marginal, the Laplacian on the manifold may be ap-
proximated by a Laplacian on the graph defined by the
observed data (labeled and unlabeled)

f̂n(x) = arg min
f ∈HK

[
1

n

n∑
i=1

V (f (xi), yi)

+ γA‖f ‖2
K + γI

(n + nm)2 fT Lf

]
,

where L is the graph Laplacian on all the data (given
a weight matrix on the graph) and f = {f (x1), . . . ,

f (xn), f (xm
1 ), . . . , f (xm

nm
)}. The above optimization is

achieved by

f̂ (x) =
n∑

i=1

wn,iK(x, xi) +
nm∑
i=1

wn+nm,n+iK(x, xm
i ),

which takes the same form as (8). This formulation
as an optimization problem from a statistical ma-
chine learning viewpoint generates precisely the same
functional form of the model as that derived from a
nonparametric regression in the Bayesian framework
above, and the consequences for the use of unlabeled
data in model formulation are the same.

5.3 Illuminating the Potential Impact of
Unlabeled Data

A simple but illuminating synthetic example pro-
vides an initial illustration. A data set of 50 points
{(xi, yi), i = 1 : 50} is plotted in Figure 4(b); here
xi ∈ R

2 and yi = 0/1. This data set can be easily clas-
sified according to y = 0 versus y = 1 by a Gaussian

kernel model, and we fit such a model using the
Bayesian model completion—in terms of prior spec-
ification for the kernel weights and observational vari-
ance parameters—and the resulting MCMC method
for model fitting as described in Liang et al. (2007).
Though the details of the prior specification and com-
putation are not central here, we note that the model
involves use of a generalized shrinkage prior, termed
generalized g-prior by West (2003), on the kernel re-
gression coefficients. This is a method of importance
when dealing with large numbers of regression para-
meters, and its use in these kernel models where the
number of regression parameters exceeds the number
of labeled observations is particularly apt.

The analysis leads to the computation of posterior
predictive probabilities for y = 1 versus y = 0 at any
chosen new x value, that is, the class predictions based
on any data set. Using the fully labeled 50 data points
for such an analysis yields results displayed and de-
scribed in Figure 4(a).

The analysis is repeated using only four labeled
points, two each with y = 0 and y = 1; the four ran-
domly selected points are marked in Figure 5. The
resulting class prediction contours and summaries of
predictions for the 46 unlabeled points are then com-
puted in two separate analyses: (i) using only the la-
beled data—just the four points; and (ii) using the la-
beled and unlabeled data. Figure 5 presents the results
of these two analyses. This exercise was repeated using
a total of eight labeled points, resulting in the displays
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FIG. 5. Kernel regression example with displays as in Figure 4: (a) using only four selected data points; (b) using the same four selected
data points but also including the unlabeled Xm data.

in Figure 6. From the figures the major impact of un-
labeled data is clearly apparent, and its relevance with
very small numbers of labeled samples highlighted. We
also see that the semisupervised analysis using only
eight labeled samples results in predictions that are
very similar to those obtained if all 50 samples were
labeled. Unlabeled data can dramatically impact upon
and improve prediction accuracy.

5.4 Kernel Regression for Cancer Classification
Using Genomic Data

A substantive example involves analysis of a gene
expression data set consisting of DNA microarray ex-
pression profiles from 190 tissue samples representing
a variety of different primary tumors (breast, prostate,
lung, lymphoma, etc.) and 90 noncancerous, “normal”
samples from the corresponding tissue of origin (Ra-
maswamy et al., 2001; Mukherjee et al., 2003). Fol-
lowing standard processes of data normalization and

screening for genes showing nontrivial variation, the
data analyzed consists of p = 2800 gene expression
variables, or “genes,” on the set of 280 samples. The
analysis setup aims to use the gene expression data
as predictors (x) in a binary kernel regression model
with outcome y = 1 representing “cancer,” that is, any
of the cancer types, and y = 0 representing normals.
As in the synthetic example above, the analysis uses
a Gaussian kernel model fitted using Bayesian shrink-
age priors, as in Liang et al. (2007). Our interest is to
compare predictions of cancer versus normal under this
given model and prior specification applied to differing
selections of data—selections that allow us to examine
the impact of unlabeled data.

We do this as in the synthetic example above—
randomly selecting a fraction of the data to be re-
garded as unlabeled, fitting the model and then pre-
dicting the status (cancer versus normal) of the selected
unlabeled cases in terms of posterior predictive proba-
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FIG. 6. Kernel regression example: (a) using eight labeled data points; (b) using the eight labeled data points together with the remaining
unlabeled samples. Notice that the use of the 42 unlabeled samples is sufficient to produce predictive probability contours that are very
similar to those using the full set of labeled observations, as in Figure 4, though with evident and justifiably greater uncertainty, even though
the y values are labeled on only eight data points.

bilities. We repeat this analysis twice—first, using only
the labeled data; second, using both the labeled and un-
labeled data—and are then able to compare predictions
between the two analyses to assess the changes due to
use of the unlabeled data. For a given fraction of un-
labeled data, we repeated this 50 times, each time ran-
domly selecting the cases to be labeled/unlabeled, and
computing the average (across the 50 repeats) empir-
ical prediction error rate in classifying the unlabeled
cases. The prediction of an unlabeled sample is re-
garded as “correct” if the predictive probability of the
true state (cancer or normal) exceeds 0.5. Figure 7 sum-
marizes the resulting empirical error rates for a series
of such analyses in which we progressively increased
the percentage of labeled data from 10% to 90%. The
figure clearly shows the differences between analysis

using only labeled data and that using labeled and un-
labeled data.

Additional insight into the impact of including unla-
beled samples is given in Figure 8. From one analysis
with 80% of the data unlabeled, we select 10 each of
the cancer and normal samples that were unlabeled in
the analysis, and graph the estimated predictive proba-
bilities of cancer versus normal with approximate 95%
credible interval. This shows the impact of the unla-
beled x data on the predictions, in terms of the impact
on estimates of prediction uncertainty as well as em-
pirical accuracy.

6. SUMMARY COMMENTS

Beginning with an articulation of the basic sampling
and design specifications underlying statistical formu-
lations of prediction problems, we have delineated the



USE OF UNLABELED DATA IN PREDICTIVE MODELING 203

FIG. 7. Results from predictions of cancer versus normal tissue (y = 0,1) based on gene expression data (x), showing empirical prediction
error rates from the analysis ignoring the unlabeled data (solid line) compared to those from the analysis including the unlabeled data
(dashed line). These results were developed by repeating the analyses with varying percentages of the data (horizontal axis) randomly
designated as unlabeled. The selection of unlabeled cases and model analysis was rerun 50 times for each chosen unlabeled percentage. The
graph represents the average prediction error in predicting the true status (y = 1 versus y = 0 with predictive probability thresholded at 0.5).
The uniform improvement in empirical predictive accuracy when including the unlabeled data is clear.

conceptual and theoretical issues underlying the use
and relevance, or irrelevance, of unlabeled data in clas-
sification and prediction problems. This, coupled with
a series of examples in central statistical modeling con-

texts, and empirical illustrations and evaluations in two
substantive data analyses, provides an overview and
synthesis of the ideas underlying the emerging method-
ology of semisupervised learning in the machine learn-

FIG. 8. Cancer versus normal predictions using kernel model. The figure displays estimated predictive probabilities of cancer versus
normal for 10 cancers (∗) and 10 normal tissues (◦) that were unlabeled in the data analysis. This analysis involved only 20% of the data
being labeled. The frames also provide estimated 95% credible intervals associated with each of the predictions. This shows the impact of
the unlabeled x data on the predictions, in terms of the impact on estimates of prediction uncertainty as well as empirical accuracy.
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FIG. 9. Graphical models of the basic structure relevant to understanding the role of unlabeled data in predictive modeling. The figure
shows the directed (acyclic) graph (a) and undirected graph (b) of the joint distribution of data and parameters in cases of independence
of φ, θ . In contrast, if φ, θ are dependent, then (a) would have an edge between φ and θ , and (b) would be a fully connected graph.

ing and statistics literatures.
Graphical model representations of the joint sam-

pling model context aid in this interpretation. The rel-
evance, or otherwise, of the unlabeled Xm data can
be deduced essentially by inspection of the implied
(undirected) graphical representation of any full model
structure. For example, the full distribution assum-
ing joint sampling, and in cases for which p(φ, θ) =
p(φ)p(θ), is illustrated in graphical terms in Figure 9.
The joint density exhibited here is

p(y∗, x∗, Y,X,Xm,φ, θ)

= p(y∗|x∗, φ)p(Y |X,φ)p(X|θ)p(x∗|θ)

· p(Xm|θ)p(φ)p(θ).

Figure 9(a) is a directed acyclic graph of the joint dis-
tribution structured in terms of composition of sam-
pling distributions. Figure 9(b) displays the corre-
sponding undirected graph in which the lack of an
edge between Xm and y∗ indicates conditional inde-
pendence given all other quantities, hence the irrele-
vance to prediction of the unlabeled data in this case.
In contrast, were φ, θ to be a priori dependent, then the
five nodes of the undirected graph would be fully con-
nected, exhibiting the relevance of the unlabeled data
to prediction of y∗.

In addition to clarifying and exemplifying the struc-
ture of models and the prediction problem with unla-
beled data, one aim of this work has been to review the
area to provide a link across the mainstream statisti-
cal and machine learning communities. We hope that
this will entice more statistical researchers into a very
active, productive and exciting research milieu, while
also founding the discussion in venerable, simple and

unambiguous terms arising from the direct and clas-
sical probabilistic formulation. This view directly, we
believe, addresses and answers the questions of “when,
why and how” unlabeled data help in predictive mod-
eling.
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