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Multivariate Sighed-Rank Tests in Vector
Autoregressive Order Identification

Marc Hallin and Davy Paindaveine

Abstract. The classical theory of rank-based inference is essentially limited
to univariate linear models with independent observations. The objective of
this paper is to illustrate some recent extensions of this theory to time-series
problems (serially dependent observations) in a multivariate setting (mul-
tivariate observations) under very mild distributional assumptions (mainly,
elliptical symmetry; for some of the testing problems treated below, even
second-order moments are not required). After a brief presentation of the
invariance principles that underlie the concepts of ranks to be considered,
we concentrate on two examples of practical relevance: (1) the multivari-
ate Durbin—Watson problem (testing against autocorrelated noise in a linear
model context) and (2) the problem of testing the order of a vector autore-
gressive model, testing VARRo) against VAR pg + 1) dependence. These
two testing procedures are the building blocks of classical autoregressive
order-identification methods. Based either on pseudo-Mahalanobis (Tyler) or
on hyperplane-based (Oja and Paindaveine) signs and ranks, three classes of
test statistics are considered for each problem: (1) statistics of the sign-test
type, (2) Spearman statistics and (3) van der Waerden (normal score) statis-
tics. Simulations confirm theoretical results about the power of the proposed
rank-based methods and establish their good robustness properties.

Key words and phrases:Ranks, signs, Durbin—Watson test, interdirections,
elliptic symmetry, autoregressive processes.

1. RANKS, SIGNS AND sample location, analysis of variance, regression and
SEMIPARAMETRIC MODELS so forth.

The need for non-Gaussian, distribution-free and ro-
bust methods is certainly no less acute in problems that
Univariate to Multivariate Serial involve multivariate and/or serially dependent (time-
Rank-based methods for a long time have beenseries) data. Rank-based methoo_ls fqr muItivariat_e _ob—
essentially limited to statistical models that involve Servations attracted much attention in the late fifties

and the sixties, leading to a fairly complete theory

univariate independent observations. Save a few ex- th hesi 10 based ) K
ceptions (such as testing against bivariate dependence0 ypothesis testing based on componentwise ranks.

tests based on runs, tests for scale or goodness—of—fit?‘] E[Jr?;ﬂ?r?or?gcro;nr: gf tg'sr.“;? d oéerssi%r;r 'chxeg_
methods that do not address any specific alternative),I graph by Furl ( ): P

. . e nentwise ranks, however, are not affine-invariant and
classical monographs mainly deal with single-response ) .
: o hence they crucially depend on the (often arbitrary)
linear models with independent errors: one- and two-

choice of a coordinate system; as a consequence, they
cannot yield distribution-free statistics. The resulting
Marc Hallin and Davy Paindaveine are Professors, tests are permutation tests. However, if invariance and
I.S.R.0., E.C.A.R.E.S. and Département de Mathéma-distribution-freeness” are lost, there is little reason
tique, Université Libre de Bruxelles, Brussels, Belgium to consider permutations of componentwise rank vec-
(e-mail: mhallin@ulb.ac.be, dpaindav@ulb.ac.be). tors rather than permutations of the observations them-

1.1 Rank-Based Methods: From Nonserial
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selves. The resulting theory, therefore, is not entirely and consider the groug = {gén)} of transforma-
satisfactory. tions

Interest in an adequate generalization of ranks and o "
signs for multivariate observations (stillin the indepen- ;) gz, ... Z) e gz, Z)
dent case) was revived in the nineties with a series of — (n) (n)

. . = (8(21"). ... 8(Z;")).
papers by Oja, Randles, Hettmansperger and their col-
laborators: see Oja (1999) for a review. The signs andWhereg:R — R is antisymmetric §(—z) = —g(2)],
ranks we consider herein belong to this vein, and we continuous and order-preserving [< z2 = g(z1) <
refer to Section 1.3 for details. g(z2)]. The vector ofsigned ranks(sy”R{"), ...,

Despite the fact that some of the earliest and most (™ R-(f')n)’ where s = I I stands
classical rank tests (such as runs tests and turningf ’
point tests) were of a genuine serial nature, no system-
atic and coherent theory of serial rank-based statistics|Z,"| among|Z{"|....,|Z{"|, constitutes (up to a
was constructed until the mid-eighties. The reason for factor £1) a maximal invariant forg. This means
this late interest is probably the confusing idea that that, beyond the fact that the signed ranks are in-
since ranks are intimately related with independence Variant statistics [which means they take the same

zM>0 ~ Y1z" <0
or the sign of " and Rff,)t denotes the rank of

or, at least, exchangeability, they are inherently con- value in the transformed sampig” (z{". ..., Z\")
fined to the analysis of independent observations. Thisas in the original samplezi”),...,z,(,")) for all g],

idea, however, does not resist closer examination, sinceany invariant statistic can be expressed as a func-
ranks, whatever their definition, always should be com- tion of the signed ranks. The invariance principle,

puted from a series of residuals that reduce to white Which says one should restrict to invariant test sta-
noise under some null hypothesis to be tested. Serdistics, therefore naturally leads to tests based on the
ial statistics based on the ranks of univariate observa-Signed ranks. Thanks to the fact that the grajip

tions or residuals were considered in a series of papergdenerates the set of all possible symmetric densi-
(Hallin, Ingenbleek and Puri, 1985; Hallin and Puri, ti€s f, the resulting signed-rank tests are distribution-

1988, 1991, 1994); see Hallin and Puri (1992) for a re- free.

i (n) (n)
view of rank-based testing in a (univariate) autoregres-  Similarly, denote byZ;". ..., Z,” an n-tuple of
sive moving average (ARMA) context. k-dimensional i.i.d. random vectors with common den-

The purpose of this paper is to combine these two sity f. The univariate a;sumptiqn of symmetry is re-
extensions of the classical theory: time-series in a mul- Placed by the assumption efliptical symmetry We
tivariate setting. Rather than give a general exposi- S& that a random vectat, with density / = f 5 .,
tion (for which we refer to Hallin and Paindaveine, IS elliptically symmetric if there exist a symmet-
20044, 2005), we concentrate on two important partic- 1iC, Positive definitek x k matrix % and a function
ular problems: (1) a multivariate version of the classi- / :R¢ — Rg satisfying/g° r*~1 f (r) dr < oo, with
cal Durbin—Watson test and (2) the tests that allow for 1
autoregressive order identification, namely, the prob- L5 /@ =Ck,fmf(ll)3
lem of testing VAR po) against VAR po + 1) depen- ~ (2)
dence (which reduces to the Durbin—Watson problem

for po = 0). In both cases, we limit ourselves to con- wherecy, s is a normalizing constant and
stant, linear and normal rank-weighting functions (the

~Y2z)),

zeRK,

: L o 120 oiy—1n1)2
so-calledscore functiong which yield test statistics of 1= = @z )Y
the sign, Spearman and van der Waerden types, respejenotes the norm af in the metric associated with
tively. ¥ [we write ~1/2 for the unique upper-triangular

k x k array with positive diagonal elements satisfying
21 = (=~Y2yx /2], The contours off ; clearly
are a family of ellipsoids centered at the origin, the

1.2 From Classical Univariate Signed Ranks to
Multivariate Signhs and Ranks

Denote byZi”), ..., Z" an n-tuple of univariate  shape of which is characterized by the matiix the
i.i.d. random variables with common densifysatis- nonnegative functiory’ will be called aradial density

fying the symmetry assumptiofi(—z) = f(z), z € Z, although it does not integrate to 1. Note tlaheed not
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be the covariance matrix @f; the rank-based Durbin—-
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ranks of absolute values, respectively. We refer to

Watson tests we are describing in Section 3 do not evenHallin and Paindaveine (2003) for a characterization

require finite second-order moments to exist. In prac-

tice, of course, botlE and f remain unspecified nui-
sance parameters.

of the testing problems for which this invariance ap-
proach makes sense. Of course, wBkis unspecified,
these multivariate signs and ranks cannot be computed

The multivariate generalizations of signed ranks we from the observationg™. In Sections 1.2.1 and 1.2.2,
are now considering are based on arguments of invari-ye describe two differerémpirical reconstructions of

ance with respect to the grogg: of continuous order-
preservingradial transformations—a direct extension
to the multivariate setting of the group above—and
the groupg, of affine transformations acting dRY.
Let d, = dy’ = |Z7Y2Z{"|. Then UY), :=
=~Y2z{" /4 is the unit vector that points in the di-
rection of thesphericized vecto= %2z Clearly,
if 2™ has density (2), then the density Bf+/2z"
is constant over the spheres centere@ éhis is why
we call it sphericized), whiIttaJ(Lf;)t is uniform over the
unit spheres®=1 in R¥, just ass™ in the univariate
setting is uniform over® = {—1, 1}, the unit sphere
in R. For eachx, define thegroup of continuous order-

preserving radial transformatlong(") {g(”)} with
[cf. with (1) above]
g (Z1,....Z,)
9" (21 Zy)
= (sl =20, . g(a))TH2UL),).

whereg:RT — RT is a continuous, strictly increas-
ing function such thag(0) = 0and lim-_, o g(r) = o0
The transformatlorq(”) is radial in the sense that, un-
der the action of ", the residual€, = dy.,£Y/?Us.,
move along a half line running through the origin
in RX. This group is a generating group for the
fixed-X submodel and, quite analogous to the uni-
variate case, a maximal invariant for this group is
the couple (U()?),R(yf)), where the matrixU(yf) =
(U%}l,...,u({;)n) collects the signs of the observa-
tions andRy = (Rg')l, . Rg') ) is the vector of the
ranksRY), of ", amongdg’)l,.. Ay r=1,....n.
Similarly, the group§, of affine transformatlons
of R¥ generates the fixed- submodel. Indeed,
Z1 andZ; have eIIiptical densitiesfz g and fz S

1/2 1/221,Where):l/2):11/2

clearly belongs td, (: denotes equality in distribu-
tion).
In view of this, U(Lf’)t and Rg:”)t can be considered

respectively, Ifsz =35

these multivariate signs and ranks.

1.2.1 Pseudo-Mahalanobis signs and rankBhe
Tyler signs and ranksThe most natural way to deal
with the nonspecification oE consists of replacing

Uy, andRy", with U(”) andR(”) respectively, where

F=3" is somereasonableastlmator ofX: namely,
we requireX to be roots consistent (so that this re-
placement asymptotically has only limited effect) and
affine-equivariant (to ensure the affine invariance of the
resulting test statistics). A possible choice Biis the
empirical covariance matrix of thEﬁ”) 's, but this es-
timate is known to be highly nonrobust and its consis-
tency requires finite moments of order 2. We therefore
suggest using Tyler's (1987) estimator of shape. This
estimator is defined akTy := CT1|CT i» whereCqy
is the unique upper-triangular x k matrlx with non-
negative diagonal and upper left element 1 such that
3) Ez( CryiZs )( CryZs )': =

n. ICTyZ:ll /NN Cry Z: k
(Ix stands for thek x k identity matrix). This es-
timate thus is such that the empirical covariance of
the resulting signi;J%?t coincides with the covariance

matrix %Ik of the uniform distribution over the unit
spherest—1. Itis affine-equivariant and, under the as-
sumption that thé,(”)’s are i.i.d. with density (2), it can
be shown (without making any moment assumption)
that ¥ is rootn consistent foru X, wherea is some
positive constant.

The resultingTyler S|gnsU(”) are strictly equivari-
ant under botlgx andg,, but theTerr ranksR( ) are
invariant undeig, only. However, it can be shown that
U(”) — Uy and R(”) RY) areop(l) asn — oo,

SO that although the ranl@ﬁ’) are not invariant un-

dergsy, they are at Ieastsymptotlcally invarianunder
gy, in the sense that they are asymptotically equiva-

lent to the strictly invariantexactranks R(”) When

the choice ofX is not imposed, we use the some-
what heavier terminologypseudo-Mahalanobis signs

as multivariate generalizations of the usual signs andandpseudo-Mahalanobis ranks
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1.2.2 Hyperplane-based signs and rank&nother
approach to reconstructing the exact sig§), and

the exact rankng’.), is based on counts of hyper-

planes. For the signs, the idea is due to Randles (1989).

For any pairZ{”,Z\%), 1< 11 # 1, < n, consider the
(Z:f) hyperplanes going through the origin ahd- 1
out of then — 2 remainingZ™"’s (11 # t # t2). De-
fine theinterdirectionc”) as the number of such hy-

ni
perplanes that separaﬂeff) and Z,(g’) (see Figure 1

M. HALLIN AND D. PAINDAVEINE

Z, \

Fic. 2. Anillustration for lift interdirections in the bivariate case

for an illustration in the bivariate case). Interdirec- The lift interdirection associated withy is £4 = 2 within this small

tions are invariant under the affine grogp and un-
der the grou » of radial transformations, irrespective
of X. Due to this invariance, it is intuitively clear that

wpi = mepn/(172) is a consistent estimate of the
()

angle arccod)y,., Uy, ) betweerl)y andug’.)tz. In-

terdirections thus allow for a reconstruction of those
angles (equivalently, a reconstruction of their cosines

Us.,Us.,,, since theUs.,'s are unit vectors): quite

sample of sizea = 4 [two separating hyperplanes out of a total of
(g) = 3 hyperplanes to be considefed

i=1, ...,k where(uy,...,u;) forms the canonical
basis of R¥. Then, for the same reasons as above,
wpt == ey /(377) allows for a consistent estima-
tion of the angles arc colsl’z;tui), i=1, ..., k,sothat
the vectorgcoswp;.;),i =1,..., k) are consistent es-
timators of the signdJy., themselves. Absolute in-

remarkably, they do the same job, with the same in- tergirections are invariant under the group of radial

variance properties, as thgyler cosinesU/f,tlUitz,

but require no estimation d&. The respective advan-

transformations; however, they are only asymptotically
affine-equivariant in the sense that they converge to

tages of Tyler angles and Randles interdirections arestrictly equivariant quantities.

discussed in Hallin and Paindaveine (2002c).
The hyperplane-based cosir]@,%,)2 are sufficient for

Along with the hyperplane-based concepts of signs

just described, we propose using a hyperplane-based

the first problem we treat (Section 3). For the second concept of ranks introduced by Oja and Paindaveine

problem (Section 4), we need the slightly more in-

formative concept ofabsolute interdirectiongHallin

and Paindaveine, 2004b, 2005). The basic idea is ex-

(2004). This concept relies on the so-calldinterdi-
rections
For anyZ™, consider the(”;l) hyperplanes going

actly the same and the same hyperplanes are taken intthroughk out of then — 1 remaininng,”)’s (t' #1).
account as before. However, instead of counting the The lift interdirection¢” associated wittz'™ is de-

(m)
by s We

of hyperplanes that sep-
/2
Ui,

number of hyperplanes that separzf? andZ

now count the number"

t;i
arateZﬁ”) and the transformed unit vecto®"

Z4 .\\ Z1

~
~N

23 \\ Z5

Zy

FiG. 1. Anillustration for Randlesinterdirections in the bivari-
ate caseThe interdirection associated withy andZs is c45 =2

in this small sample of size= 5 [two separating hyperplanes out
of a total of(f) = 3to be considered

fined as the number of such hyperplanes that sepa-

rateZ"™ and -z (see Figure 2 for an illustration
in the bivariate case). Lift interdirections can be shown
to converge to some monotone increasing function of

the distanceslg’;)l, so that their ranks converge to the

exact ranksRy",. Again, we are able to reconstruct,
asn — oo, a quantity that depends on the unspecified
shape matrixx without estimating it. When used in
the procedures described below, the lift interdirection
ranks are those associated witsyanmetrizedrersion

of lift interdirections (see Oja and Paindaveine, 2004,
for details).

2. THE GENERAL LINEAR MODEL WITH VECTOR
AUTOREGRESSIVE ERRORS

The model we are considering throughout is the
k-variate general linear model with vector autoregres-
sive (VAR) error terms [the more general case of vector
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autoregressive moving average (VARMA) errors could is the modulus of the smallest root of the characteristic
be treated as well; we restrict to the VAR case for the polynomial associated with (5).

sake of simplicity]. Under this model, the observation
is ann-tuple

Yi1 Y12 Yk Y
Y(n) = e
Yn,l Yn,Z Yn,k Y;
of k-variate random vectors that satisfies
(4) Y™ — X("),B + V(”),
where
X11 X12 X1m X}
X(n) — = .
Xn,1 Xn,2 Xn,m X;’l
and
B11 P12 Bk cBy
B:=| : f : =1 :
,Bm,l IBm,Z ,Bm,k ,B;n

denote am x m matrix of constants (the design ma-
trix) and them x k regression parameter, respectively.

Letting 6 := (vec(B’),vec(Ay),...,veC(A,)) €
Rm %0 —: RK | we write R'y., for the probability
distribution of the observatio¥ ™ under (6).

3. RANK-BASED DURBIN-WATSON TESTS
3.1 The Gaussian Durbin—Watson Test

Consider the first-order versiop & 1) of the gen-
eral model described in Section 2. Writig instead
of A1, (6) takes the form

r—1
(7) Yi=B%+ Z A'e,_, +A'Vo,
u=0
The Durbin—Watson testing problem deals with the null
hypothesis thaV, is white noise, that is, thak = 0.
Under this hypothesis, the observations are serially in-
dependent, of the fornt, = B'x; + &,. The regression
parametep, as well, of course, as the underlying ellip-
tic density (the shape matriX and the radial density
f of &;), remain unspecified.
The multivariate version of the traditional (Gaussian)
Durbin—Watson procedure relies on the following test

t=1,...,n.

Instead of the traditional assumption that the error term giatistic. Denote by[if,) — (X'X)"IX'Y the usual

Vi1t Vi2 Vik V]

\VADES
V/

Vn,l Vn,2 Vn,k

is white noise, we rather assuni¥;, t = 1,...,n)
to be a finite realization (of length) of the VAR(p)
process generated by

P
VIZZAiVI—i+€t9 IGZ’
i=1

(®)

where{e, | t € Z} is ak-dimensional white-noise pro-
cess with elliptical density (2). Under (4) and (5),
t—1

6) Y, =%+ Z Guéi—u + 11,
u=0

t=1,...

7”9

with matricesG,, (the Green’s matrices of the VAR
operator) characterized by the linear recurs@n=
P AiGy_i, u € Z, and initial conditionsGo = I,
G_1=G_2=---=G_,;11=0. The remainder term
r; is related to the influence of the unobserved ini-
tial values Vo,...,V_,;1. It is easy to see that,
under the traditional VAR stationarity assumptions,
lim,_. o Ar, is bounded in probability, where & A

least squares estimate gfand denote by, := Y, —
Bx),x, the corresponding estimated residuals. Write
Ty = 2¥" 17,7 for the empirical residual covari-
ance matrix. The null hypothesis of serially indepen-
dent errors is rejected (at asymptotic lewgwhenever

1 n A_l A_l
— Y ZENZNZ 12 Zim)

s,t1=2

(n) .__
WDW -

(8)

2

1 Ga-12 <—1/2
=2

exceeds thél — ) quantilexkzz. 1, Ofthe chi-squared

distribution with k% degrees of freedom|M| :=

(XF j_1(M;5)®)*? stands for the Euclidean norm of
the k x k matrix M = (M;;)]. Being the sum of all
residual squared cross-correlation coefficients at lag 1,
this test statistic has a clear intuitive interpretation: in
the univariate case, it reduces to the squared residual
autocorrelation coefficient of order 1.

3.2 Multivariate Signed-Rank Durbin—-Watson Tests

The Gaussian test just described requires finite
second-order moments, whereas the signed-rank tests
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we now consider remain valid under arbitrarily heavy . Ok?
tails: only finite radial Fisher informatioty§°[(— f’/ T =D+ 14
DOy dry /(5 rk=2f(rydr) is required.
Any consistent sequence of estimategafan be sub-

Y quence S estmated > RURIUUL
stituted for the Gaussiah,, [consistency here means =2
“consistency under the null hypothesis at the appropri- 3 - A muyltivariate Durbin—Watson statistic of the van
ate (optimal) rate”; the definition of this rate depends  §er \Waerden type
on the asymptotic behavior of the regression constants;

2

n

(n)

see Hallin and Paindaveine, 2005, Section 2.1]. If, W bw:vdw
however, the tests are to remain valid under infinite
second-order moments, robust estimators that resist 1l & RM 1 Rf'i)l
heavy-tailed distributions such as ttlé estimators Ta-1 2. % (n+1>q>k (n+1>
. s, t=2
proposed by Davis and Wu (1997) should be used; de-
note byB(n) such an estimator. . <I>_1< R,(”) )CI)_1< R,('i)l)
The residuals associated wih” are obtained as C\nt+1)7 \nt1
in Section 3.1. Denote bW and R™ the sign (11)
and thg rank (among Z_l,...,Z,,), resp_ectiyely, of -(ULU) (U, _1U,—1)
the residualZ;. In principle, any combination of a
pseudo-Mahalanobis or hyperplane-based sign with i )
: 1 R
a pseudo-Mahalanobis or hyperplane-based rank can — Zq>k—1( ! )
be considered (four possibilities, thus). However, hy- n—1\= n+1
br'id s_tat?stics _that _mix the two types (Tyler signs, e.g., 20 2
with lift-interdirection ranks) are somewhat incoher- ‘(D—l( t—l)UtU/
ent, so we restrict ourselves to combining signs and F\n+1 e

ranks of the same type (either pseudo-Mahalanobis or

hyperplane-based): we use the same notation for both Where, denoting by:;;kzl(”) the quantile function of

cases. the chi-squared variable withdegrees of freedom,
We concentrate on three versions of signed-rank CI>,jl(u) :=\/FX*kzl(u), u <]0, 1.
Durbin-Watson statistics: In all cases, the null hypothesis of serially indepen-

1. A multivariate Durbin—-Watson statistic of the sign- dent errors is rejected whenever the test statistic ex-
ceeds thél — ) quantile of a chi-squared distribution

test type, :
with k2 degrees of freedom.
k> & _ _ o
ngl\iv;signzz — Z (VLU (U, _1U,-1) 3.3 Asymptotic Relative Efficiencies
(9) $.1=2 The asymptotic relative efficiencies (ARE; with re-

n 2 spect to the traditional Gaussian procedure described
ZUzU;_l in Section 3.1) of the signed-rank tests in Section 3.2
1=2 were derived by Hallin and Paindaveine (2005), who

2. A multivariate Durbin-Watson statistic of the Spear- @lS0 established a multivariate serial version of the
classical Chernoff-Savage result. This result shows

k2
n—1

man type,
P that the asymptotic relative efficiency [with respect
m . Ok? to the Gaussian procedure based on (8)] of the van
Wow:sp'= n—Ln+14 der Waerden tests (list item 3) based on (11) is uni-
n formly larger than 1. Some of these ARE values are
. Z RM™ R p) pn) reported in Table 1 for several elliptic Student distribu-
s s—1 t—1 . . . .
s.1=2 tions and several dimensions of the observation space.
Note that the elliptical Student distributions considered
(10) S(ULU)(U. U, 1) have strictly more than 2 degrees of freedom in order

for the Gaussian procedure to be valid.
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TABLE 1
ARESs with respect to the Gaussian procedure of the sign<typeSpearman-typéSp) and
van der Waerden-typ@d W) Durbin—Watson tests under varioksvariate Student
and normal densitiesk =1, 2, 4, 6, 10

Degrees of freedom of the underlying ¢ density

k Test 3 4 5 6 8 10 15 20 o)

1 S 0.657 0563 0519 0.494 0467 0453 0435 0427 0.405
Sp 1299 1139 1.070 1032 0992 0972 0948 0.938 0.912
vdW 1356 1176 1.106 1.071 1038 1.024 1010 1.005 1.000

2 S 1.000 085 0.790 0.752 0.711 0.689 0.662 0.650 0.617
Sp 1.305 1.152 1.089 1.055 1.022 1.006 0.990 0.983 0.970
vdW  1.400 1.204 1.125 1.085 1.047 1.030 1.013 1.007 1.000

4 S 1266 1.084 1.000 0952 0900 0.872 0838 0.823 0.781
Sp 1189 1.050 0.994 0966 0941 0.930 0922 0.920 0.924
vdw  1.458 1242 1153 1106 1061 1.039 1.018 1.010 1.000

6 S 1373 1176 1.085 1.033 0977 0946 0910 0.893 0.847
Sp 1115 0982 0929 0903 0879 0870 0865 0.865 0.880
vdWw 1493 1267 1.172 1122 1071 1.047 1.022 1.013 1.000

10 S 1.467 1.256 1.159 1.104 1.043 1011 0972 0.954 0.905
Sp 1.039 0909 0857 0831 0808 0.799 0.795 0.797 0.823
vdW  1.535 1.299 1.197 1.142 1.086  1.058 1.029 1.017 1.000

3.4 Numerical Study (b1) The sign-test-type Durbin—Watson test based
on (9) with Tyler signs.

(b2) The sign-test-type Durbin—Watson test based
on (9) with hyperplane-based signs (interdirections).

(cl) The Spearman Durbin—Watson test based
on (10) with Tyler signs and ranks.

(c2) The Spearman Durbin—Watson test based
on (10) with hyperplane-based signs and ranks.

3.4.1 Size and powerTo study the size and power
of the Durbin—Watson tests described in Sections
3.1 and 3.2, we generatéd = 1000 independent sam-
ples (e1, ..., egs0) Of sizen = 650 from various bi-
variate spherical densities, with mean zero and identity
covariance matrix (the bivariate normal and bivariate
Student distributions with 1, 3 and 8 degrees of free- (d1) The van der Waerden Durbin-Watson test ba-
dom). From each of the_se samples, we constructed &ed on (11) with Tyler signs and ranks.
series of 650 ‘observationsyy, ..., Yggo Character- (d2) The van der Waerden Durbin—Watson test ba-
ized by the linear models sed on (11) with hyperplane-based signs and ranks.

12) Y = B1li501<1<575 + B2l[s76<1 <650 + V1> In the Gaussian test (a), the least squares estimator
V[—(mA)Vt_]_:st, m:0, 1, 2, n/ 1 is: 1 %
ﬂd\/ = <7—5 Yl‘:ﬁ; Y[)
with initial valueVo =0, 1 = (}), B2= () and =1 =76
:( 0.12 006) was used for8’ = (B,:B5), while in the rank-based
-0.04 010/ procedures, the location center of each group was es-

timated by the multivariate affine-equivariant median
introduced by Hettmansperger and Randles (2002); the
latter is rootn consistent—and, consequently, the re-
sulting rank-based procedures are valigithout any
assumptions on the tails of the underlying densifses
that, unlike the Gaussian test, the rank-based tests are
valid under the distribution). The Tyler estima@m

(a) The Gaussian Durbin—Watson test based on (8).was computed from the algorithm of Randles (2000).

Dropping observation¥; throughYZ,, (thiswarm-
ing up period of 500 observations allows approxi-
mate stationarity to be achieved), we performed on
the remaining: = 150 observationg§Yy, ..., Y150) :=
(YEg --+» Y50 the following seven Durbin—Watson
tests (at asymptotic probability level= 5%):
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TABLE 2
Rejection frequencig®ut of N = 1000replicationg under various valuesA, m =0, 1, 2 [cf. (12)], of the
autoregression matrix and various innovation densities of the Gaussian parametric Durbin—Watspp test
the Tyler signed-rank van der Waerdégpw, Spearmanpsp and signgs Durbin—Watson testsind their

hyperplane-based counterpagt§,,. qbgp andgl; the series length i$50

) Autoregression matrix _ Autoregression matrix

Innovation Innovation
Test density 0 A 2A ARE density 0 A 2A ARE
ON N 0.046 0.264 0.902 1.000 13 0.058 0.238 0.903 1.000
dvdw 0.044 0.253 0.891 1.000 0.041 0.346 0.959 1.400
os 0.046 0.162 0.680 0.617 0.049 0.262 0.865 1.000
#sp 0.051 0.258 0.892 0.970 0.042 0.346 0.965 1.305
qbf,‘dw 0.042 0.258 0.885 1.000 0.039 0.338 0.960 1.400
¢§ 0.050 0.159 0.682 0.617 0.045 0.258 0.860 1.000
¢gp 0.046 0.262 0.887 0.970 0.045 0.336 0.960 1.305
% 1g 0.044 0.264 0.904 1.000 f 0.046 0.264 0.902 Undefined
dvdw 0.041 0.265 0.907 1.047 0.044 0.253 0.891 Undefined
os 0.042 0.189 0.741 0.711 0.046 0.162 0.680 Undefined
bsp 0.051 0.279 0.903 1.022 0.051 0.258 0.892 Undefined
‘/"\}/ldw 0.041 0.266 0.905 1.047 0.042 0.257 0.885 Undefined
gbg 0.043 0.188 0.740 0.711 0.050 0.159 0.682 Undefined
gbép 0.046 0.273 0.905 1.022 0.046 0.262 0.886 Undefined

Iterations were stopped as soon as the Frobenius norm 3.4.2 RobustnessTo investigate the robustness
of the difference between the two members of (3) fell properties of the various Durbin—Watson procedures
below 1076. proposed in Section 3.3, we studied their resistance to

Rejection frequencies are reported in Table 2. The innovationandobservation outliersrespectively. For
corresponding individual confidence intervals (for :gﬂg!‘:'ty' in this section, we consider only Gaussian
N = 1000 replications), at confidence level 0.95, have : . .
half-widths 0.014, 0.025 and 0.031 for frequencies of w;sheuggéneioMSQ:]zrcai?erloas‘k:)?\/earngtssslgriigcg?nlegrig:[ﬁ
the order of 0.05 (0.95), 0.20 (0.80) and 0.50, respec-

: _ n =650 from model (12), with i.i.d. Gaussian inno-
tively. It appears that, under the null hypothesis, none vationses, . .., egso. The resulting serie¥, ..., Yig,

of the rejection frequencies significantly differs from {hen was subjected to the following perturbations (in-
the nominal 5% level. All tests thus apparently are ducing observation outliers):

valid and unbiased—even the Gaussian test under the observation outliers Observationsy’* were re-
Cauchy density, although in principle it is not valid. b E)Iaged with B(’Eat ?ismets— 549 550’ 599. 600
Except for the sign test, the rank-based procedures  ¢,q oc ! ST TTTm T e
yield the same overall performance as the Gaussianyf (obs’ervaﬁon outliers Observations’* were re-
test under the Gaussian density, a slight superiority un- placed with &* at time r = 549, 59t9, 649 and

der rg density and a more marked superiority under with —5Y* at timet = 550, 600, 650.
t3 density. This confirms the ARE values (which we g&* (innovation outliery: The Gaussian innovatioss
also report in the table). Somewhat disappointingly, all were replaced with& at timer = 549, 550, 599,

methods (except again for the sign tests) have more or 600, 649 and 650.

less the same power under the Cauchy density, a fact6~ (innovation outliery: The Gaussian innovatioss
that is not explained by any ARE value, since the lat- were replaced with& and—5¢; at times = 549,

ter is not defined. As a rule, the hyperplane versions of 299, 649 and =550, 600, 650, respectively.

all rank-based tests do slightly better than their Tyler We generatedV = 1000 series of each type. The
counterparts. lastn = 150 observations then were subjected to the
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TABLE 3
Rejection frequencig®ut of N = 1000replicationg for various perturbed GaussiaWAR(1) processes of the
Gaussian parametri¢g,y ), the Tyler signed-rank van der Waerdéfy,qw), Spearmar(¢sp) and sign-test-type
(¢s) Durbin-Watson testsind their hyperplane-based counterpag,. qbgp andglt
at (asymptotig probability level5%; the series length throughoutis= 150

Autoregression matrix Autor egression matrix
Type of Type of

Test outliers 0 A 2A outliers 0 A 2A

N y+ 0.625 0.738 0.902 et 0.508 0.639 0.882
Dvdw 0.073 0.348 0.881 0.057 0.314 0.892
ds 0.057 0.187 0.690 0.046 0.176 0.715
$sp 0.059 0.313 0.898 0.056 0.305 0.892
¢\}/ldw 0.067 0.348 0.885 0.056 0.319 0.880
ol 0.056 0.180 0.692 0.046 0.173 0.714
qbgp 0.057 0.315 0.898 0.052 0.305 0.886
dN y- 0.704 0.670 0.713 & 0.536 0.660 0.877
Pudw 0.085 0.150 0.614 0.072 0.330 0.908
os 0.060 0.151 0.581 0.051 0.185 0.723
bsp 0.076 0.165 0.710 0.069 0.320 0.906
olaw 0.084 0.159 0.610 0.068 0.323 0.901
qbg 0.061 0.149 0.584 0.048 0.185 0.721
$ep 0.072 0.172 0.704 0.063 0.320 0.905

various Durbin—Watson procedures described in Sec-to identify the actual order of the unobserved autore-
tion 3.4.1. The resulting rejection frequencies are re- gressive errors; see Potscher (1983) or Garel and Hallin
ported in Table 3, which thus consists of four parts (one (1999) for the univariate counterpart of the problem.
for each type of outlier), each of which is to be com-  More formally, denote by® ,, the set of all values
pared with the left upper part of Table 2. Inspection of of # € R suchthat\ . 1=---=A, =0, |A,|#0,
the table reveals that, quite significantly, the type I risk and for which the VARpo) model with parameters
of the Gaussian test is exploding (up to a 70% rejection A1, ..., A, is stationary and invertible. The null hy-
rate undery ~). The Gaussian procedure thus is totally pothesis then is of the for € © ,,. Gaussian para-
unreliable in the presence of outliers, whatever their metric optimal tests for this problem can be obtained,
type; the corresponding rejection frequencies under thefor example, by the Lagrange multiplier method; they
alternative thus are meaningless. The rank-based test§equire finite second-order moments.
also are affected, but considerably less so, with arejec- Denote byA;, ..., A, the estimators obtained un-
tion rate under the null that, in general, does not signif- der the assumption that the VAR model in (5) is
icantly differ from the nominal. As expected, the sign of order pg. Write 6 for (veC(Ay),...,vec(A,,),
tests seem to be slightly more robust than the van der0Q’, ..., 0')’. Defining the residuals
Waerden and Spearman tests. . Po
Z,=Z,0)=Y,—Y AiY,;, t=po+1l...n,
4. RANK-BASED SELECTION OF THE ORDER i=1

OF A VAR PROCESS the residual cross-covariance matrix at lagkes the

4.1 Gaussian Parametric VAR Order Selection form

) ._ AT
Going back to the general model described in Sec- 7 i=@m—po—i) Z Z:Z;_;

tion 2, we now turn to the problem of testing a t=pot+lti

VAR (po) dependence in (5) against a VAR + 1) =(m—po—i)t

dependence. For simplicity, we assume tjgat O; "

¥ andf of course are nuisance parameters in this prob- . Z dZ;td):;t—iEl/ZUE;tU/Z‘-;_iE/l/Z-

lem. A sequential application of such tests can be used t=pot1+i
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Write 2 for I§”. The Gaussian test statistic for this

problem then is
) .— T/ - -
(13) ng " nTpo;f,NQENTpo;EN’

where, writingG,, = Gu(é) for the Green’s matrices

associated wittA1, ..., A ),
12+
n Tﬁo;Zw
(n—DY2veqZ ;'T)
n—po—1 1
> (n—w)?vedE TG, ;)
u=2
n—po—1 .
> (n—uw)?vedZ TG, _,)
(14) u=2
n—po—1 1
> m—wvedqT  TIG, )
u=i
n—po—1 1
1/2 s—
Y (n—w?vedz TG, )
u=po
and (forpo = 1, Og2,42(p,—1) IS void)
< -1 -1
05 = (zw ®Ty okzxk2p0>
N
Okzpoxkz W2

e Qi (po-1) W)L
Ikzpo

/
) (lkz Okzxkz(p0—1)>
Ik2p0

with the (k?pg x k?po) matricesw? and W2 having
(i, j) blocks [of dimension(k? x k2)]

n—po—1

(Wz)ij = Z

u=max2.i, j)

(Gu-iZxG,_ ) ® ¥} and

n—po—1 1
> (Gu-iZNG,_ )BT,

u=max, )

(W2);; =

i,j=1,..., po,

respectively. Note thaw? andW? differ only by their

upper left (k2 x k?) block. The structure of this test

M. HALLIN AND D. PAINDAVEINE

The null hypothesis of ARpg) dependence is re-
jected wheneveW,(,’;) exceeds thé€l — «) quantile of
a chi-squared distribution witk? degrees of freedom.
The intuition behind the test statistic (13) is a little bit
less straightforward than in the Durbin—Watson case.
Actually, W,S’;) is a quadratic form that involves all esti-
mated residual cross-correlation matrices, with weights
that neutralize the effect of parameter estimation on the
residuals and optimize the power. For instange= 1
yields (writingA instead ofA1, we haveG, = A¥)

(n—DY2vedE ' T)

nl/le)A: = n-1 ~_1 A
2N (n — u)l/zvec(Z]/ rl(ln)(Aufl)/)
u=2
and
Qs
E,N ® id_vl 0 -1
= = u—1§ u—1y/ -1
0 DATIENATY) @ Xy
u=2
[,2 nl 1a 1 -1 -
() manons
u=1
. (Ik2 |k2).

The order selection procedure then consists of first
running a Durbin—Watson test (reducing to a simple
test for randomness whef = 0). In case this is in-
conclusive, a VAR of order zero (i.e., white noise)
is selected and a traditional regression model is con-
sidered for the analysis. If Durbin—Watson is signifi-
cant, then turn to testing VAR(1) against VAR(2) (i.e.,
the particular case just discussed) and so on. This
procedure as a whole is of a heuristic nature and
no precise risk can be evaluated for the final output.
However, consistency results have been obtained, pos-
sibly with « values varying from step to step; see
Pdtscher (1983, 1985).

4.2 Signed-Rank VAR Order Selection

The procedure runs exactly as in the Gaussian para-
metric case, but is based on multivariate signed-rank
statistics. Here again, we propose three particular test
statistics. Each test can be computed from Tyler signs

statistic is the same as that of the univariate Gaussianand ranks or from hyperplane-based signs and ranks.
Lagrange multiplier test statistic described by Garel In case interdirections are used, they should be “ab-

and Hallin (1999).

solute.” The three statistics are the following:
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1. Atest statistic of the sign-test type,

(n) e 2T ~ - .
Wpo;Sign =k nIpo;Z;signQEIPo;Z;SIQn’

with nY/2T ,..sign @s in (14), but with thesign-test
type cross-covariance matrices

(n)
~i;X;sign

- 1
= 21/2<7,
n—po—i

substituted fol ",
2. Atest statistic of the Spearman type,

i u,u’ .>§/1/2
r—1

t=pot+i+l

m . op2,+ _ _
Wpo;Sp'_ %k nIpo;):;SpQEIpo;E:SD’

with n%/2T ,..sp as in (14), but with theSpearman
cross-covariance matrices

rmn .52 1
~i:3:Sp T _ i _ 1)2
(n—po—i)(n—po+1

n
Z R[Rtfl' UtU;_l>§/1/2
t=po+i+1

substituted fol ",
3. Atest statistic of the van der Waerden type,

(n) e ! - -
W poivaw = nIpo;E;vdWQZIpo;Z:VdW’

with n1/2T ,..vaw as in (14), but with thevan der
Waerden cross-covariance matrices

(n)
[i;f;vdw
-~ 1
= 21/2<—.
n—po—i
k\n—-po+1
t=po+i+1 po

R )
1 !
o (= er)
n—po+1
.U,U;_l)f/l/z

[® is as in (11)] substituted foF .

The null hypothesis of ARpg) dependence is rejected

whenever the test statistic exceeds ¢the- «) quantile

of a chi-squared distribution with? degrees of free-
dom.

We insist upon the fact th&, contrary to the esti-
mateX y appearing in the Gaussian statistic, need no
longer be the empirical marginal covariance matrix.

4.3 Asymptotic Relative Efficiencies

The asymptotic relative efficiencies, with respect to
their Gaussian counterparts, of the rank-based tests
used at each step of the order selection procedure are
the same as in the Durbin—Watson case. The figures
in Table 1 as well as the generalized Chernoff-Savage
result of Hallin and Paindaveine (2005) thus still ap-
ply here. However, a more pertinent assessment of
the respective relative efficiencies of order selection
procedures considered as a whole would be provided
by ratios of correct identification probabilities. Deriv-
ing exact values for such ratios is probably infeasible.
Monte Carlo evaluations, however, are possible; some
numerical values are given in the simulation study be-
low.

4.4 Numerical Study

4.4.1 Efficiency. Here we generated&v =1000 in-
dependent sampleées, ..., eg20) Of size n = 620
from various bivariate spherical densities, with mean
zero and identity covariance matrix: the bivariate nor-
mal and bivariate Student distributions with 1 (in this
case, theshape not the covariance matrix, is identity),

3 and 8 degrees of freedom. These samples were used
in the VAR(1) model

. 030 012
(15) Yl‘ — AY[_]_ =& with A = ( )

—0.06 024

and initial value Yo = O, yielding VAR(1) series
(Y1,..., Y5y of length 620. Of these observations,
the last 120, denoted &% 1, ..., Y120), were subjected
to various sequential order-identification procedures.
Seven versions (Gaussian or rank based) of the
order-identification procedure were performed on each
series. Step one of each procedure consisted of test-
ing for white noise against VAR(1) dependence us-
ing a (degenerate—since no trend has to be estimated)
Durbin—-Watson test which coincides with the tests
for randomness developed by Hallin and Paindaveine
(2002Db). If the hypothesis of randomness cannot be re-
jected, the model is identified as being VAR(0), that is,
white noise (order underidentification). If randomness
is rejected, the tests developed in Sections 4.1 and 4.2
are performed for testing VAR(1) against VAR(2) de-
pendence. If VAR(1) is not rejected, the order= 1)
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is correctly identified; if not, the procedure is pursued was used to estimat&. The Tyler estimatefm was
further, but we simply record overidentification of the computed from the algorithm of Randles (2000) [again,
order. Of course, it is pretty natural to use the same typeiterations were stopped as soon as the Frobenius norm
of test throughout the procedure. The following seven of the difference between the two members of (3) fell
types of identification procedures were considered:  below 10°9].

Under-, correct and overidentification frequencies
are reported in Table 4, along with the corresponding
ARE figures. The corresponding individual confidence
intervals (for N = 1000 replications), at confidence

(a) The parametric Gaussian procedure.
(b1) The sign-test-type procedure based on Tyler’'s
signs and ranks.
(b2) The hyperplane-based sign-test-type proce-

dure. level 0.95, have half-widths 0.014, 0.025 and 0.031 for
(c1) The Spearman-type procedure based on Ty|er-sfrequencies on the order of'0.05 (0.95), 0.20 (0.80) and
signs and ranks. 0.50, respectively. Inspection of the table reveals the
(c2) The hyperplane-based Spearman-type proce_excellen'[ oyerall performance of all rank-based proce-
dure. dures considered:
(d1) The van der Waerden-type procedure based one Hyperplane-based van der Waerden procedures uni-
Tyler’s signs and ranks. formly outperform the Tyler-type van der Waerden
(d2) The hyperplane-based van der Waerden-type ones, which in turn perform at least as well as
procedure. their parametric Gaussian counterpart, even under

All individual tests were performed at nominal (as-  Gaussian innovations.
ymptotic) levele = 5%. In each case, the Yule—Walker ® More generally, hyperplane-based procedures

estimator (van der Waerden, signs, Spearman) do uniformly

120 120 -1 better than their Tyler-type competitors.
A={-L23VYY L3V, 1Y e Although the validity of the tests used at each step
(1192 o l) (ngg S of the identification procedure is not formally estab-

TABLE 4
Underidentificationp = 0), correct identification(p = 1) and overidentificatiorfp > 2) frequenciegout of
N = 1000replicationg for the VAR(1) model(15) under various Gaussian and Student innovation densities
The seven procedures considered are based on the Gaussian parametriigiietite Tyler signed-rank
van der Waerden and Spearman tesfgy and ¢sp, the Tyler sign tespg, and their

hyperplane-based counterpa,. ¢gp andglt

Order identification Order identification

Innovation Innovation
Test density 0 1 >2 ARE density 0 1 >2 ARE
Sy N 42 898 60 1.000 13 41 915 44 1.000
Sudw 54 898 48 1.000 35 914 51 1.400
bs 186 764 50 0.617 139 809 52 1.000
bsp 55 891 54 0.970 37 903 60 1.305
olaw 55 906 39  1.000 40 925 35 1.400
ol 186 771 43 0.617 139 812 49 1.000
¢gp 51 910 39 0.970 42 915 43 1.305
b u 1g 37 903 60 1.000 1 31 919 50 Undefined
Suaw 50 898 52 1.047 9 930 61 Undefined
bs 161 791 48 0.711 84 864 52 Undefined
bsp 48 903 49 1.022 12 925 63 Undefined
olaw 48 911 41 1.047 10 956 34 Undefined
ol 159 794 47 0711 88 873 39  Undefined
¢gp 45 904 51 1.022 12 952 36 Undefined

NoTE. All tests were performed at probability level 5%; the series length throughauti$20 (ARES refer to
individual tests, not to the order identification procedure as a whole).
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TABLE 5
Underidentificationp = 0), correct identification(p = 1) and overidentificatiorfp > 2) frequenciegout of
N = 1000replicationg in various perturbed GaussiaAR(1) series

Order identification Order identification
Type of Type of

Test outliers 0 1 >2 outliers 0 1 >2

oN y+ 428 293 279 &t 88 522 390

dudw 98 822 80 27 909 64
bs 189 762 49 140 819 41
bsp 81 851 68 26 916 58
olaw 95 831 74 29 926 45
ol 197 757 46 141 824 35
¢gp 83 857 60 27 933 40
O Y- 672 180 148 &~ 77 520 403

dvdw 217 708 75 25 911 64
os 290 662 48 133 817 50
bsp 179 749 72 25 916 59
olaw 222 715 63 22 917 61
A 294 663 43 134 827 39
¢gp 185 754 61 26 919 55

NOTE. The various order identification procedures are based on the Gaussian parameipig tetbts Tyler signed-
rank van der Waerde@yqw), Spearmarigsp and sign-test-typéps) tests, and their hyperplane-based counterparts

Puaw: 98, anded at (asymptotic) probability level 5%; the series length throughoitis120.

lished under multivariate Cauchy;) innovations, &€~ (innovation outliery: Gaussian innovation;
the final result under such densities remains ex- were replaced with& for 7 = 538, 578 and 618,
cellent, with a remarkable 95% frequency of cor- and with—5e;, for z = 540, 580 and 620.

rect identification for the hyperplane-based van der The |astn = 120 observations then were subjected to
Waerden and Spearman versions. the seven order identification procedures described in
Section 4.4.1. The resulting under-, correct and over-
identification frequencies are reported in Table 5. This
simulation exercise of course is somewhat limited and
allows only for very general conclusions. The frequen-

4.4.2 RobustnessA robustness investigation also
was conducted on the model in Section 3.4.2 for the
various order identification procedures proposed in

Sections 4.1 ar?d 4.2, Observatior_(y,*,...,Ygzo) cies reported in Table 5, however, very clearly show
were generated in the same way as in the previous sechow fragile the traditional parametric method can be
tion from model (15) with Gaussiag,’s. These ob-  in the presence of a small number of outliers: the

servations then were perturbed, as in Section 3.4.2, toobserved proportion of correct identification (based
produce observation outliers and innovation outliers re- on the parametric tests) drops from 0.898 in the un-
spectively: perturbed case to 0.180 under the observation out-
lier schemey—. Quite on the contrary, the rank-based
Y™ (observation outliers Observationsy; were re-  methods apparently resist quite well, irrespective of the
placed with &} for + = 538, 540, 578, 580, type of outlier.

618 and 620.
Y~ (observation outliers Observationsy; were re- 5. CONCLUSIONS
placed with ¥ for 7 = 538, 578 and 618, and  Rank-based methods have been confined for a long
with —5Y 7 for 7 = 540, 580 and 620. time to problems that involve univariate independent
€* (innovation outliery: Gaussian innovationg;, observations. We show, on the basis of two particular

were replaced with & for + = 538 578, 580, examples (the Durbin—Watson and the autoregressive
618 and 620. order selection problems), that rank methods also apply
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to serial (i.e., time-series) multivariate problems. Two Conditioning on the maximal invariant thus does the
concepts of signs and ranks are considered: pseudosame job as projecting along tangent spaces. Now,
Mahalanobis or Tyler and the hyperplane-based orin most models that involve unobserved white noise
Oja—Paindaveine. Theoretical results establish thatwith unspecified density, residuaranksand/orsigns
these methods are as efficient, locally and asymptot-(their definitions depend on the class of densities
ically, as their everyday-practice parametric competi- provide a maximal invariarR™ (9).

tors based on cross-correlation matrices; the van der Rank-based methods thus, in a sense, allow for by-
Waerden versions even uniformly dominate the compe-passing tangent space calculations in the construction
tition. Simulations moreover show that the rank-based of semiparametrically efficient inference procedures.
procedures successfully resist the presence of observaBesides these semiparametric efficiency features, of
tion as well as innovation outliers, whereas traditional course, they also enjoy their usual properties of distri-
parametric methods literally collapse under such per- bution-freeness (a consequence of invariance), robust-

turbations. ness and so forth.
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For the reader who is familiar with local asymp-
totic normality or tangent spaces, we conclude this pa-
per with a brief theoretical justification for considering
rank-based methods in the analysis of a broad class of
semiparametric models. Details can be found in Hallin REFERENCES
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