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Multivariate Signed-Rank Tests in Vector
Autoregressive Order Identification
Marc Hallin and Davy Paindaveine

Abstract. The classical theory of rank-based inference is essentially limited
to univariate linear models with independent observations. The objective of
this paper is to illustrate some recent extensions of this theory to time-series
problems (serially dependent observations) in a multivariate setting (mul-
tivariate observations) under very mild distributional assumptions (mainly,
elliptical symmetry; for some of the testing problems treated below, even
second-order moments are not required). After a brief presentation of the
invariance principles that underlie the concepts of ranks to be considered,
we concentrate on two examples of practical relevance: (1) the multivari-
ate Durbin–Watson problem (testing against autocorrelated noise in a linear
model context) and (2) the problem of testing the order of a vector autore-
gressive model, testing VAR(p0) against VAR(p0 + 1) dependence. These
two testing procedures are the building blocks of classical autoregressive
order-identification methods. Based either on pseudo-Mahalanobis (Tyler) or
on hyperplane-based (Oja and Paindaveine) signs and ranks, three classes of
test statistics are considered for each problem: (1) statistics of the sign-test
type, (2) Spearman statistics and (3) van der Waerden (normal score) statis-
tics. Simulations confirm theoretical results about the power of the proposed
rank-based methods and establish their good robustness properties.

Key words and phrases:Ranks, signs, Durbin–Watson test, interdirections,
elliptic symmetry, autoregressive processes.

1. RANKS, SIGNS AND
SEMIPARAMETRIC MODELS

1.1 Rank-Based Methods: From Nonserial
Univariate to Multivariate Serial

Rank-based methods for a long time have been
essentially limited to statistical models that involve
univariate independent observations. Save a few ex-
ceptions (such as testing against bivariate dependence,
tests based on runs, tests for scale or goodness-of-fit
methods that do not address any specific alternative),
classical monographs mainly deal with single-response
linear models with independent errors: one- and two-
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sample location, analysis of variance, regression and
so forth.

The need for non-Gaussian, distribution-free and ro-
bust methods is certainly no less acute in problems that
involve multivariate and/or serially dependent (time-
series) data. Rank-based methods for multivariate ob-
servations attracted much attention in the late fifties
and the sixties, leading to a fairly complete theory
of hypothesis testing based on componentwise ranks.
A unified account of this line of research is given
in the monograph by Puri and Sen (1971). Compo-
nentwise ranks, however, are not affine-invariant and
hence they crucially depend on the (often arbitrary)
choice of a coordinate system; as a consequence, they
cannot yield distribution-free statistics. The resulting
tests are permutation tests. However, if invariance and
“distribution-freeness” are lost, there is little reason
to consider permutations of componentwise rank vec-
tors rather than permutations of the observations them-
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selves. The resulting theory, therefore, is not entirely
satisfactory.

Interest in an adequate generalization of ranks and
signs for multivariate observations (still in the indepen-
dent case) was revived in the nineties with a series of
papers by Oja, Randles, Hettmansperger and their col-
laborators: see Oja (1999) for a review. The signs and
ranks we consider herein belong to this vein, and we
refer to Section 1.3 for details.

Despite the fact that some of the earliest and most
classical rank tests (such as runs tests and turning
point tests) were of a genuine serial nature, no system-
atic and coherent theory of serial rank-based statistics
was constructed until the mid-eighties. The reason for
this late interest is probably the confusing idea that
since ranks are intimately related with independence
or, at least, exchangeability, they are inherently con-
fined to the analysis of independent observations. This
idea, however, does not resist closer examination, since
ranks, whatever their definition, always should be com-
puted from a series of residuals that reduce to white
noise under some null hypothesis to be tested. Ser-
ial statistics based on the ranks of univariate observa-
tions or residuals were considered in a series of papers
(Hallin, Ingenbleek and Puri, 1985; Hallin and Puri,
1988, 1991, 1994); see Hallin and Puri (1992) for a re-
view of rank-based testing in a (univariate) autoregres-
sive moving average (ARMA) context.

The purpose of this paper is to combine these two
extensions of the classical theory: time-series in a mul-
tivariate setting. Rather than give a general exposi-
tion (for which we refer to Hallin and Paindaveine,
2004a, 2005), we concentrate on two important partic-
ular problems: (1) a multivariate version of the classi-
cal Durbin–Watson test and (2) the tests that allow for
autoregressive order identification, namely, the prob-
lem of testing VAR(p0) against VAR(p0 + 1) depen-
dence (which reduces to the Durbin–Watson problem
for p0 = 0). In both cases, we limit ourselves to con-
stant, linear and normal rank-weighting functions (the
so-calledscore functions), which yield test statistics of
the sign, Spearman and van der Waerden types, respec-
tively.

1.2 From Classical Univariate Signed Ranks to
Multivariate Signs and Ranks

Denote byZ
(n)
1 , . . . ,Z

(n)
n an n-tuple of univariate

i.i.d. random variables with common densityf satis-
fying the symmetry assumptionf (−z) = f (z), z ∈ Z,

and consider the groupG = {g(n)
g } of transforma-

tions

g(n)
g :

(
Z

(n)
1 , . . . ,Z(n)

n

) �→ g(n)
g

(
Z

(n)
1 , . . . ,Z(n)

n

)
(1)

:= (
g
(
Z

(n)
1

)
, . . . , g

(
Z(n)

n

))
,

whereg :R → R is antisymmetric [g(−z) = −g(z)],
continuous and order-preserving [z1 < z2 ⇒ g(z1) <

g(z2)]. The vector of signed ranks(s
(n)
1 R

(n)
+;1, . . . ,

s
(n)
n R

(n)
+;n), where s

(n)
t := I[Z(n)

t >0] − I[Z(n)
t <0] stands

for the sign of Z(n)
t and R

(n)
+;t denotes the rank of

|Z(n)
t | among |Z(n)

1 |, . . . , |Z(n)
n |, constitutes (up to a

factor ±1) a maximal invariant forG. This means
that, beyond the fact that the signed ranks are in-
variant statistics [which means they take the same
value in the transformed sampleg(n)

g (Z
(n)
1 , . . . ,Z

(n)
n )

as in the original sample(Z(n)
1 , . . . ,Z

(n)
n ) for all g],

any invariant statistic can be expressed as a func-
tion of the signed ranks. The invariance principle,
which says one should restrict to invariant test sta-
tistics, therefore naturally leads to tests based on the
signed ranks. Thanks to the fact that the groupG
generates the set of all possible symmetric densi-
tiesf , the resulting signed-rank tests are distribution-
free.

Similarly, denote byZ(n)
1 , . . . ,Z(n)

n an n-tuple of
k-dimensional i.i.d. random vectors with common den-
sity f . The univariate assumption of symmetry is re-
placed by the assumption ofelliptical symmetry. We
say that a random vectorZ, with densityf = f

�,f
,

is elliptically symmetric if there exist a symmet-
ric, positive definitek × k matrix � and a function
f :R+

0 → R
+
0 satisfying

∫ ∞
0 rk−1f (r) dr < ∞, with

f
�,f

(z) = ck,f

1

(det�)1/2f (‖�−1/2z‖),
(2)

z ∈ R
k,

whereck,f is a normalizing constant and

‖�−1/2z‖ := (z′�−1z)1/2

denotes the norm ofz in the metric associated with
� [we write �−1/2 for the unique upper-triangular
k × k array with positive diagonal elements satisfying
�−1 = (�−1/2)′�−1/2]. The contours off

�,f
clearly

are a family of ellipsoids centered at the origin, the
shape of which is characterized by the matrix�; the
nonnegative functionf will be called aradial density,
although it does not integrate to 1. Note that� need not
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be the covariance matrix ofZ; the rank-based Durbin–
Watson tests we are describing in Section 3 do not even
require finite second-order moments to exist. In prac-
tice, of course, both� andf remain unspecified nui-
sance parameters.

The multivariate generalizations of signed ranks we
are now considering are based on arguments of invari-
ance with respect to the groupG� of continuous order-
preservingradial transformations—a direct extension
to the multivariate setting of the groupG above—and
the groupGa of affine transformations acting onRk .

Let dt = d
(n)
�;t := ‖�−1/2Z(n)

t ‖. Then U(n)
�;t :=

�−1/2Z(n)
t /d

(n)
�;t is the unit vector that points in the di-

rection of thesphericized vector�−1/2Z(n)
t . Clearly,

if Z(n)
t has density (2), then the density of�−1/2Z(n)

t

is constant over the spheres centered at0 (this is why
we call it sphericized), whileU(n)

�;t is uniform over the

unit sphereSk−1 in R
k , just ass

(n)
t in the univariate

setting is uniform overS0 = {−1,1}, the unit sphere
in R. For each�, define thegroup of continuous order-
preserving radial transformationsG(n)

� = {g(n)
g } with

[cf. with (1) above]

g(n)
g : (Z1, . . . ,Zn)

�→ g(n)
g (Z1, . . . ,Zn)

:=
(
g
(
d

(n)
�;1

)
�1/2U(n)

�;1, . . . , g
(
d

(n)
�;n

)
�1/2U(n)

�;n
)
,

whereg :R+ → R
+ is a continuous, strictly increas-

ing function such thatg(0) = 0 and limr→∞ g(r) = ∞.
The transformationg(n)

g is radial in the sense that, un-

der the action ofg(n)
g , the residualsZt = d�;t�1/2U�;t

move along a half line running through the origin
in R

k . This group is a generating group for the
fixed-� submodel and, quite analogous to the uni-
variate case, a maximal invariant for this group is
the couple (U(n)

� ,R(n)
� ), where the matrixU(n)

� =
(U(n)

�;1, . . . ,U(n)
�;n) collects the signs of the observa-

tions andR(n)
� = (R

(n)
�;1, . . . ,R

(n)
�;n) is the vector of the

ranksR(n)
�;t of d

(n)
�;t amongd(n)

�;1, . . . , d
(n)
�;n, t = 1, . . . , n.

Similarly, the groupGa of affine transformations
of R

k generates the fixed-f submodel. Indeed,
Z1 andZ2 have elliptical densitiesf

�1,f
andf

�2,f
,

respectively, iffZ2
d= �

1/2
2 �

−1/2
1 Z1, where�1/2

2 �
−1/2
1

clearly belongs toGa ( d= denotes equality in distribu-
tion).

In view of this, U(n)
�;t and R

(n)
�;t can be considered

as multivariate generalizations of the usual signs and

ranks of absolute values, respectively. We refer to
Hallin and Paindaveine (2003) for a characterization
of the testing problems for which this invariance ap-
proach makes sense. Of course, when� is unspecified,
these multivariate signs and ranks cannot be computed
from the observationsZ(n)

t . In Sections 1.2.1 and 1.2.2,
we describe two differentempirical reconstructions of
these multivariate signs and ranks.

1.2.1 Pseudo-Mahalanobis signs and ranks: The
Tyler signs and ranks.The most natural way to deal
with the nonspecification of� consists of replacing
U(n)

�;t andR
(n)
�;t with U(n)

�̂;t andR
(n)

�̂;t , respectively, where

�̂ = �̂
(n) is somereasonableestimator of�: namely,

we require�̂ to be root-n consistent (so that this re-
placement asymptotically has only limited effect) and
affine-equivariant (to ensure the affine invariance of the
resulting test statistics). A possible choice for�̂ is the
empirical covariance matrix of theZ(n)

t ’s, but this es-
timate is known to be highly nonrobust and its consis-
tency requires finite moments of order 2. We therefore
suggest using Tyler’s (1987) estimator of shape. This
estimator is defined aŝ�Tyl := C−1

TylC
′−1
Tyl , whereCTyl

is the unique upper-triangulark × k matrix with non-
negative diagonal and upper left element 1 such that

1

n

n∑
t=1

(
CTylZt

‖CTylZt‖
)(

CTylZt

‖CTylZt‖
)′

= 1

k
Ik(3)

(Ik stands for thek × k identity matrix). This es-
timate thus is such that the empirical covariance of
the resulting signsU(n)

�̂;t coincides with the covariance

matrix 1
k
Ik of the uniform distribution over the unit

sphereSk−1. It is affine-equivariant and, under the as-
sumption that theZ(n)

t ’s are i.i.d. with density (2), it can
be shown (without making any moment assumption)
that �̂ is root-n consistent fora�, wherea is some
positive constant.

The resultingTyler signsU(n)

�̂;t are strictly equivari-

ant under bothG� andGa , but theTyler ranksR(n)

�̂;t are
invariant underGa only. However, it can be shown that
U(n)

�̂;t − U(n)
�;t and R

(n)

�̂;t − R
(n)
�;t are oP (1) as n → ∞,

so that, although the ranksR(n)

�̂;t are not invariant un-
derG� , they are at leastasymptotically invariantunder
G� , in the sense that they are asymptotically equiva-
lent to the strictly invariantexact ranksR

(n)
�;t . When

the choice of�̂ is not imposed, we use the some-
what heavier terminologypseudo-Mahalanobis signs
andpseudo-Mahalanobis ranks.
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1.2.2 Hyperplane-based signs and ranks.Another
approach to reconstructing the exact signsU(n)

�;t and

the exact ranksR(n)
�;t is based on counts of hyper-

planes. For the signs, the idea is due to Randles (1989).
For any pairZ(n)

t1
,Z(n)

t2
, 1 ≤ t1 	= t2 ≤ n, consider the(n−2

k−1

)
hyperplanes going through the origin andk − 1

out of then − 2 remainingZ(n)
t ’s (t1 	= t 	= t2). De-

fine theinterdirectionc
(n)
t1t2

as the number of such hy-

perplanes that separateZ(n)
t1

and Z(n)
t2

(see Figure 1
for an illustration in the bivariate case). Interdirec-
tions are invariant under the affine groupGa and un-
der the groupG� of radial transformations, irrespective
of �. Due to this invariance, it is intuitively clear that
πp

(n)
t1t2

:= πc
(n)
t1t2

/
(n−2
k−1

)
is a consistent estimate of the

angle arc cos(U′
�;t1U�;t2) betweenU(n)

�;t1 andU(n)
�;t2. In-

terdirections thus allow for a reconstruction of those
angles (equivalently, a reconstruction of their cosines
U′

�;t1U�;t2, since theU�;t ’s are unit vectors): quite
remarkably, they do the same job, with the same in-
variance properties, as theTyler cosinesU′̂

�;t1U�̂;t2,
but require no estimation of�. The respective advan-
tages of Tyler angles and Randles interdirections are
discussed in Hallin and Paindaveine (2002c).

The hyperplane-based cosinesp
(n)
t1t2

are sufficient for
the first problem we treat (Section 3). For the second
problem (Section 4), we need the slightly more in-
formative concept ofabsolute interdirections(Hallin
and Paindaveine, 2004b, 2005). The basic idea is ex-
actly the same and the same hyperplanes are taken into
account as before. However, instead of counting the
number of hyperplanes that separateZ(n)

t1
andZ(n)

t2
, we

now count the numberc(n)
t;i of hyperplanes that sep-

arateZ(n)
t and the transformed unit vectorŝ�1/2ui ,

FIG. 1. An illustration for Randles’ interdirections in the bivari-
ate case. The interdirection associated withZ4 and Z5 is c45 = 2
in this small sample of sizen = 5 [two separating hyperplanes out
of a total of

(3
1
) = 3 to be considered].

FIG. 2. An illustration for lift interdirections in the bivariate case.
The lift interdirection associated withZ4 is �4 = 2 within this small
sample of sizen = 4 [two separating hyperplanes out of a total of(3
2
) = 3 hyperplanes to be considered].

i = 1, . . . , k, where(u1, . . . ,uk) forms the canonical
basis of Rk . Then, for the same reasons as above,
πp

(n)
t;i := πc

(n)
t;i /

(n−1
k−1

)
allows for a consistent estima-

tion of the angles arc cos(U′
�;tui ), i = 1, . . . , k, so that

the vectors(cos(πpt;i ), i = 1, . . . , k) are consistent es-
timators of the signsU�;t themselves. Absolute in-
terdirections are invariant under the group of radial
transformations; however, they are only asymptotically
affine-equivariant in the sense that they converge to
strictly equivariant quantities.

Along with the hyperplane-based concepts of signs
just described, we propose using a hyperplane-based
concept of ranks introduced by Oja and Paindaveine
(2004). This concept relies on the so-calledlift interdi-
rections.

For anyZ(n)
t , consider the

(n−1
k

)
hyperplanes going

throughk out of then − 1 remainingZ(n)
t ′ ’s (t ′ 	= t).

The lift interdirection�
(n)
t associated withZ(n)

t is de-
fined as the number of such hyperplanes that sepa-
rate Z(n)

t and −Z(n)
t (see Figure 2 for an illustration

in the bivariate case). Lift interdirections can be shown
to converge to some monotone increasing function of
the distancesd(n)

�;t , so that their ranks converge to the

exact ranksR(n)
�;t . Again, we are able to reconstruct,

asn → ∞, a quantity that depends on the unspecified
shape matrix� without estimating it. When used in
the procedures described below, the lift interdirection
ranks are those associated with asymmetrizedversion
of lift interdirections (see Oja and Paindaveine, 2004,
for details).

2. THE GENERAL LINEAR MODEL WITH VECTOR
AUTOREGRESSIVE ERRORS

The model we are considering throughout is the
k-variate general linear model with vector autoregres-
sive (VAR) error terms [the more general case of vector
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autoregressive moving average (VARMA) errors could
be treated as well; we restrict to the VAR case for the
sake of simplicity]. Under this model, the observation
is ann-tuple

Y(n) :=


Y1,1 Y1,2 · · · Y1,k

...
...

...

Yn,1 Yn,2 · · · Yn,k

 :=


Y′

1
...

Y′
n


of k-variate random vectors that satisfies

Y(n) = X(n)β + V(n),(4)

where

X(n) :=


x1,1 x1,2 · · · x1,m

...
...

...

xn,1 xn,2 · · · xn,m

 :=


x′

1
...

x′
n


and

β :=


β1,1 β1,2 · · · β1,k

...
...

...

βm,1 βm,2 · · · βm,k

 :=


cβ ′

1
...

β ′
m


denote ann × m matrix of constants (the design ma-
trix) and them × k regression parameter, respectively.
Instead of the traditional assumption that the error term

V(n) :=


V1,1 V1,2 · · · V1,k

...
...

...

Vn,1 Vn,2 · · · Vn,k

 :=


V′

1
...

V′
n


is white noise, we rather assume(Vt , t = 1, . . . , n)

to be a finite realization (of lengthn) of the VAR(p)

process generated by

Vt =
p∑

i=1

AiVt−i + εt , t ∈ Z,(5)

where{εt | t ∈ Z} is ak-dimensional white-noise pro-
cess with elliptical density (2). Under (4) and (5),

Yt = β ′xt +
t−1∑
u=0

Guεt−u + rt , t = 1, . . . , n,(6)

with matricesGu (the Green’s matrices of the VAR
operator) characterized by the linear recursionGu =∑p

i=1 AiGu−i , u ∈ Z, and initial conditionsG0 = Ik ,
G−1 = G−2 = · · · = G−p+1 = 0. The remainder term
rt is related to the influence of the unobserved ini-
tial values V0, . . . ,V−p+1. It is easy to see that,
under the traditional VAR stationarity assumptions,
limt→∞ �trt is bounded in probability, where 1< �

is the modulus of the smallest root of the characteristic
polynomial associated with (5).

Letting θ := (vec′(β ′),vec′(A1), . . . ,vec′(Ap))′ ∈
R

km+k2p =: R
K , we write P(n)

θ,�,f for the probability

distribution of the observationY(n) under (6).

3. RANK-BASED DURBIN–WATSON TESTS

3.1 The Gaussian Durbin–Watson Test

Consider the first-order version (p = 1) of the gen-
eral model described in Section 2. WritingA instead
of A1, (6) takes the form

Yt = β ′xt +
t−1∑
u=0

Auεt−u + AtV0, t = 1, . . . , n.(7)

The Durbin–Watson testing problem deals with the null
hypothesis thatVt is white noise, that is, thatA = 0.
Under this hypothesis, the observations are serially in-
dependent, of the formYt = β ′xt + εt . The regression
parameterβ, as well, of course, as the underlying ellip-
tic density (the shape matrix� and the radial density
f of εt ), remain unspecified.

The multivariate version of the traditional (Gaussian)
Durbin–Watson procedure relies on the following test

statistic. Denote byβ̂
(n)

N := (X′X)−1X′Y the usual
least squares estimate ofβ and denote byZt := Yt −
β̂

(n)′
N xt the corresponding estimated residuals. Write

�̂N := 1
n

∑n
t=1 ZtZ′

t for the empirical residual covari-
ance matrix. The null hypothesis of serially indepen-
dent errors is rejected (at asymptotic levelα) whenever

W
(n)
DW := 1

n − 1

n∑
s,t=2

(Z′
s�̂

−1
N Zt )(Z′

s−1�̂
−1
N Zt−1)

(8)

= (n − 1)

∥∥∥∥∥ 1

n − 1

n∑
t=2

�̂
−1/2
N ZtZ′

t−1�̂
′−1/2
N

∥∥∥∥∥
2

exceeds the(1−α) quantileχ2
k2;1−α

of the chi-squared

distribution with k2 degrees of freedom [‖M‖ :=
(
∑k

i,j=1(Mij )
2)1/2 stands for the Euclidean norm of

the k × k matrix M = (Mij )]. Being the sum of all
residual squared cross-correlation coefficients at lag 1,
this test statistic has a clear intuitive interpretation: in
the univariate case, it reduces to the squared residual
autocorrelation coefficient of order 1.

3.2 Multivariate Signed-Rank Durbin–Watson Tests

The Gaussian test just described requires finite
second-order moments, whereas the signed-rank tests
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we now consider remain valid under arbitrarily heavy
tails: only finite radial Fisher information(

∫ ∞
0 [(−f ′/

f )(r)]2rk−1f (r) dr)/(
∫ ∞
0 rk−1f (r) dr) is required.

Any consistent sequence of estimates ofβ can be sub-

stituted for the Gaussian̂β
(n)

N [consistency here means
“consistency under the null hypothesis at the appropri-
ate (optimal) rate”; the definition of this rate depends
on the asymptotic behavior of the regression constants;
see Hallin and Paindaveine, 2005, Section 2.1]. If,
however, the tests are to remain valid under infinite
second-order moments, robust estimators that resist
heavy-tailed distributions such as theM estimators
proposed by Davis and Wu (1997) should be used; de-

note byβ̂
(n)

such an estimator.

The residuals associated witĥβ
(n)

are obtained as
in Section 3.1. Denote byU(n)

t and R
(n)
t the sign

and the rank (among Z1, . . . ,Zn), respectively, of
the residualZt . In principle, any combination of a
pseudo-Mahalanobis or hyperplane-based sign with
a pseudo-Mahalanobis or hyperplane-based rank can
be considered (four possibilities, thus). However, hy-
brid statistics that mix the two types (Tyler signs, e.g.,
with lift-interdirection ranks) are somewhat incoher-
ent, so we restrict ourselves to combining signs and
ranks of the same type (either pseudo-Mahalanobis or
hyperplane-based); we use the same notation for both
cases.

We concentrate on three versions of signed-rank
Durbin–Watson statistics:

1. A multivariate Durbin–Watson statistic of the sign-
test type,

W˜ (n)
DW;sign := k2

n − 1

n∑
s,t=2

(U′
sUt )(U′

s−1Ut−1)

(9)

= k2

n − 1

∥∥∥∥∥
n∑

t=2

UtU′
t−1

∥∥∥∥∥
2

.

2. A multivariate Durbin–Watson statistic of the Spear-
man type,

W˜ (n)
DW;Sp := 9k2

(n − 1)(n + 1)4

·
n∑

s,t=2

R(n)
s R

(n)
s−1R

(n)
t R

(n)
t−1

· (U′
sUt )(U′

s−1Ut−1)(10)

= 9k2

(n − 1)(n + 1)4

·
∥∥∥∥∥

n∑
t=2

R
(n)
t R

(n)
t−1UtU′

t−1

∥∥∥∥∥
2

.

3. A multivariate Durbin–Watson statistic of the van
der Waerden type,

W˜ (n)
DW;vdW

:= 1

n − 1

n∑
s,t=2

�−1
k

(
R

(n)
s

n + 1

)
�−1

k

(
R

(n)
s−1

n + 1

)

· �−1
k

(
R

(n)
t

n + 1

)
�−1

k

(
R

(n)
t−1

n + 1

)
(11)

· (U′
sUt )(U′

s−1Ut−1)

= 1

n − 1

∥∥∥∥∥
n∑

t=2

�−1
k

(
R

(n)
t

n + 1

)

· �−1
k

(
R

(n)
t−1

n + 1

)
UtU′

t−1

∥∥∥∥∥
2

,

where, denoting byFχ2
k

−1(u) the quantile function of
the chi-squared variable withk degrees of freedom,

�−1
k (u) :=

√
Fχ2

k

−1(u), u ∈]0,1[.
In all cases, the null hypothesis of serially indepen-

dent errors is rejected whenever the test statistic ex-
ceeds the(1−α) quantile of a chi-squared distribution
with k2 degrees of freedom.

3.3 Asymptotic Relative Efficiencies

The asymptotic relative efficiencies (ARE; with re-
spect to the traditional Gaussian procedure described
in Section 3.1) of the signed-rank tests in Section 3.2
were derived by Hallin and Paindaveine (2005), who
also established a multivariate serial version of the
classical Chernoff–Savage result. This result shows
that the asymptotic relative efficiency [with respect
to the Gaussian procedure based on (8)] of the van
der Waerden tests (list item 3) based on (11) is uni-
formly larger than 1. Some of these ARE values are
reported in Table 1 for several elliptic Student distribu-
tions and several dimensions of the observation space.
Note that the elliptical Student distributions considered
have strictly more than 2 degrees of freedom in order
for the Gaussian procedure to be valid.
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TABLE 1
AREs with respect to the Gaussian procedure of the sign-type(S), Spearman-type(Sp) and

van der Waerden-type(vdW) Durbin–Watson tests under variousk-variate Student
and normal densities, k = 1,2,4,6,10

Degrees of freedom of the underlying t density

k Test 3 4 5 6 8 10 15 20 ∞
1 S 0.657 0.563 0.519 0.494 0.467 0.453 0.435 0.427 0.405

Sp 1.299 1.139 1.070 1.032 0.992 0.972 0.948 0.938 0.912
vdW 1.356 1.176 1.106 1.071 1.038 1.024 1.010 1.005 1.000

2 S 1.000 0.856 0.790 0.752 0.711 0.689 0.662 0.650 0.617
Sp 1.305 1.152 1.089 1.055 1.022 1.006 0.990 0.983 0.970

vdW 1.400 1.204 1.125 1.085 1.047 1.030 1.013 1.007 1.000

4 S 1.266 1.084 1.000 0.952 0.900 0.872 0.838 0.823 0.781
Sp 1.189 1.050 0.994 0.966 0.941 0.930 0.922 0.920 0.924

vdW 1.458 1.242 1.153 1.106 1.061 1.039 1.018 1.010 1.000

6 S 1.373 1.176 1.085 1.033 0.977 0.946 0.910 0.893 0.847
Sp 1.115 0.982 0.929 0.903 0.879 0.870 0.865 0.865 0.880

vdW 1.493 1.267 1.172 1.122 1.071 1.047 1.022 1.013 1.000

10 S 1.467 1.256 1.159 1.104 1.043 1.011 0.972 0.954 0.905
Sp 1.039 0.909 0.857 0.831 0.808 0.799 0.795 0.797 0.823

vdW 1.535 1.299 1.197 1.142 1.086 1.058 1.029 1.017 1.000

3.4 Numerical Study

3.4.1 Size and power.To study the size and power
of the Durbin–Watson tests described in Sections
3.1 and 3.2, we generatedN = 1000 independent sam-
ples (ε1, . . . ,ε650) of size n = 650 from various bi-
variate spherical densities, with mean zero and identity
covariance matrix (the bivariate normal and bivariate
Student distributions with 1, 3 and 8 degrees of free-
dom). From each of these samples, we constructed a
series of 650 “observations”Y∗

1, . . . ,Y∗
650 character-

ized by the linear models

Yt = β1I[501≤t≤575] + β2I[576≤t≤650] + Vt ,
(12)

Vt − (mA)Vt−1 = εt , m = 0,1,2,

with initial valueV0 = 0, β1 = ( 1
0

)
, β2 = ( 0

1

)
and

A =
(

0.12 0.06

−0.04 0.10

)
.

Dropping observationsY∗
1 throughY∗

500 (thiswarm-
ing up period of 500 observations allows approxi-
mate stationarity to be achieved), we performed on
the remainingn = 150 observations(Y1, . . . ,Y150) :=
(Y∗

501, . . . ,Y∗
650) the following seven Durbin–Watson

tests (at asymptotic probability levelα = 5%):

(a) The Gaussian Durbin–Watson test based on (8).

(b1) The sign-test-type Durbin–Watson test based
on (9) with Tyler signs.

(b2) The sign-test-type Durbin–Watson test based
on (9) with hyperplane-based signs (interdirections).

(c1) The Spearman Durbin–Watson test based
on (10) with Tyler signs and ranks.

(c2) The Spearman Durbin–Watson test based
on (10) with hyperplane-based signs and ranks.

(d1) The van der Waerden Durbin–Watson test ba-
sed on (11) with Tyler signs and ranks.

(d2) The van der Waerden Durbin–Watson test ba-
sed on (11) with hyperplane-based signs and ranks.

In the Gaussian test (a), the least squares estimator

β̂
′
N :=

(
1
75

75∑
t=1

Yt

... 1
75

150∑
t=76

Yt

)

was used forβ ′ = (β1
...β2), while in the rank-based

procedures, the location center of each group was es-
timated by the multivariate affine-equivariant median
introduced by Hettmansperger and Randles (2002); the
latter is root-n consistent—and, consequently, the re-
sulting rank-based procedures are valid—without any
assumptions on the tails of the underlying densities(so
that, unlike the Gaussian test, the rank-based tests are
valid under thet1 distribution). The Tyler estimatê�Tyl
was computed from the algorithm of Randles (2000).
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TABLE 2
Rejection frequencies(out ofN = 1000replications) under various valuesmA, m = 0,1,2 [cf. (12)],of the
autoregression matrix and various innovation densities of the Gaussian parametric Durbin–Watson testφN ,

the Tyler signed-rank van der WaerdenφvdW, SpearmanφSp and signφS Durbin–Watson tests, and their

hyperplane-based counterpartsφh
vdW, φh

Sp andφh
S; the series length is150

Autoregression matrix Autoregression matrix
Innovation Innovation

Test density 0 A 2A ARE density 0 A 2A ARE

φN N 0.046 0.264 0.902 1.000 t3 0.058 0.238 0.903 1.000
φvdW 0.044 0.253 0.891 1.000 0.041 0.346 0.959 1.400
φS 0.046 0.162 0.680 0.617 0.049 0.262 0.865 1.000
φSp 0.051 0.258 0.892 0.970 0.042 0.346 0.965 1.305

φh
vdW 0.042 0.258 0.885 1.000 0.039 0.338 0.960 1.400

φh
S 0.050 0.159 0.682 0.617 0.045 0.258 0.860 1.000

φh
Sp 0.046 0.262 0.887 0.970 0.045 0.336 0.960 1.305

φN t8 0.044 0.264 0.904 1.000 t1 0.046 0.264 0.902 Undefined
φvdW 0.041 0.265 0.907 1.047 0.044 0.253 0.891 Undefined
φS 0.042 0.189 0.741 0.711 0.046 0.162 0.680 Undefined
φSp 0.051 0.279 0.903 1.022 0.051 0.258 0.892 Undefined

φh
vdW 0.041 0.266 0.905 1.047 0.042 0.257 0.885 Undefined

φh
S 0.043 0.188 0.740 0.711 0.050 0.159 0.682 Undefined

φh
Sp 0.046 0.273 0.905 1.022 0.046 0.262 0.886 Undefined

Iterations were stopped as soon as the Frobenius norm
of the difference between the two members of (3) fell
below 10−6.

Rejection frequencies are reported in Table 2. The
corresponding individual confidence intervals (for
N = 1000 replications), at confidence level 0.95, have
half-widths 0.014, 0.025 and 0.031 for frequencies of
the order of 0.05 (0.95), 0.20 (0.80) and 0.50, respec-
tively. It appears that, under the null hypothesis, none
of the rejection frequencies significantly differs from
the nominal 5% level. All tests thus apparently are
valid and unbiased—even the Gaussian test under the
Cauchy density, although in principle it is not valid.
Except for the sign test, the rank-based procedures
yield the same overall performance as the Gaussian
test under the Gaussian density, a slight superiority un-
der t8 density and a more marked superiority under
t3 density. This confirms the ARE values (which we
also report in the table). Somewhat disappointingly, all
methods (except again for the sign tests) have more or
less the same power under the Cauchy density, a fact
that is not explained by any ARE value, since the lat-
ter is not defined. As a rule, the hyperplane versions of
all rank-based tests do slightly better than their Tyler
counterparts.

3.4.2 Robustness.To investigate the robustness
properties of the various Durbin–Watson procedures
proposed in Section 3.3, we studied their resistance to
innovationandobservation outliers, respectively. For
simplicity, in this section, we consider only Gaussian
series.

The same Monte Carlo scheme as in Section 3.4.1
was used to generate a bivariate series of length
n = 650 from model (12), with i.i.d. Gaussian inno-
vationsε1, . . . ,ε650. The resulting seriesY∗

1, . . . ,Y∗
650

then was subjected to the following perturbations (in-
ducing observation outliers):

Y+ (observation outliers): ObservationsY∗
t were re-

placed with 5Y∗
t at time t = 549, 550, 599, 600,

649, 650.
Y− (observation outliers): ObservationsY∗

t were re-
placed with 5Y∗

t at time t = 549, 599, 649 and
with −5Y∗

t at timet = 550, 600, 650.
E+ (innovation outliers): The Gaussian innovationsεt

were replaced with 5εt at timet = 549, 550, 599,
600, 649 and 650.

E− (innovation outliers): The Gaussian innovationsεt

were replaced with 5εt and−5εt at timet = 549,
599, 649 andt = 550, 600, 650, respectively.

We generatedN = 1000 series of each type. The
last n = 150 observations then were subjected to the
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TABLE 3
Rejection frequencies(out ofN = 1000replications) for various perturbed GaussianVAR(1) processes of the

Gaussian parametric(φN ), the Tyler signed-rank van der Waerden(φvdW), Spearman(φSp) and sign-test-type

(φS) Durbin–Watson tests, and their hyperplane-based counterpartsφh
vdW, φh

Sp andφh
S

at (asymptotic) probability level5%; the series length throughout isn = 150

Autoregression matrix Autoregression matrix
Type of Type of

Test outliers 0 A 2A outliers 0 A 2A

φN Y+ 0.625 0.738 0.902 E+ 0.508 0.639 0.882
φvdW 0.073 0.348 0.881 0.057 0.314 0.892
φS 0.057 0.187 0.690 0.046 0.176 0.715
φSp 0.059 0.313 0.898 0.056 0.305 0.892

φh
vdW 0.067 0.348 0.885 0.056 0.319 0.880

φh
S 0.056 0.180 0.692 0.046 0.173 0.714

φh
Sp 0.057 0.315 0.898 0.052 0.305 0.886

φN Y− 0.704 0.670 0.713 E− 0.536 0.660 0.877
φvdW 0.085 0.150 0.614 0.072 0.330 0.908
φS 0.060 0.151 0.581 0.051 0.185 0.723
φSp 0.076 0.165 0.710 0.069 0.320 0.906

φh
vdW 0.084 0.159 0.610 0.068 0.323 0.901

φh
S 0.061 0.149 0.584 0.048 0.185 0.721

φh
Sp 0.072 0.172 0.704 0.063 0.320 0.905

various Durbin–Watson procedures described in Sec-
tion 3.4.1. The resulting rejection frequencies are re-
ported in Table 3, which thus consists of four parts (one
for each type of outlier), each of which is to be com-
pared with the left upper part of Table 2. Inspection of
the table reveals that, quite significantly, the type I risk
of the Gaussian test is exploding (up to a 70% rejection
rate underY−). The Gaussian procedure thus is totally
unreliable in the presence of outliers, whatever their
type; the corresponding rejection frequencies under the
alternative thus are meaningless. The rank-based tests
also are affected, but considerably less so, with a rejec-
tion rate under the null that, in general, does not signif-
icantly differ from the nominal. As expected, the sign
tests seem to be slightly more robust than the van der
Waerden and Spearman tests.

4. RANK-BASED SELECTION OF THE ORDER
OF A VAR PROCESS

4.1 Gaussian Parametric VAR Order Selection

Going back to the general model described in Sec-
tion 2, we now turn to the problem of testing a
VAR(p0) dependence in (5) against a VAR(p0 + 1)

dependence. For simplicity, we assume thatβ = 0;
� andf of course are nuisance parameters in this prob-
lem. A sequential application of such tests can be used

to identify the actual order of the unobserved autore-
gressive errors; see Pötscher (1983) or Garel and Hallin
(1999) for the univariate counterpart of the problem.

More formally, denote by�p0 the set of all values
of θ ∈ R

K such thatAp0+1 = · · · = Ap = 0, |Ap0| 	= 0,
and for which the VAR(p0) model with parameters
A1, . . . ,Ap0 is stationary and invertible. The null hy-
pothesis then is of the formθ ∈ �p0. Gaussian para-
metric optimal tests for this problem can be obtained,
for example, by the Lagrange multiplier method; they
require finite second-order moments.

Denote byÂ1, . . . , Âp0 the estimators obtained un-
der the assumption that the VAR model in (5) is
of order p0. Write θ̂ for (vec′(Â1), . . . ,vec′(Âp0),

0′, . . . ,0′)′. Defining the residuals

Zt = Zt (θ̂) = Yt −
p0∑
i=1

ÂiYt−i , t = p0 + 1, . . . , n,

the residual cross-covariance matrix at lagi takes the
form

�
(n)
i := (n − p0 − i)−1

n∑
t=p0+1+i

ZtZ′
t−i

= (n − p0 − i)−1

·
n∑

t=p0+1+i

d�;t d�;t−i�
1/2U�;tU′

�;t−i�
′1/2.
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Write �̂N for �
(n)
0 . The Gaussian test statistic for this

problem then is

W(n)
p0

:= nT′
p0;�̂N

Q�̂N
Tp0;�̂N

,(13)

where, writingGu = Gu(θ̂) for the Green’s matrices
associated with(Â1, . . . , Âp0),

n1/2Tp0;�̂N

(14)
:=



(n − 1)1/2 vec
(
�̂

−1
N �

(n)
1

)
n−p0−1∑

u=2

(n − u)1/2 vec
(
�̂

−1
N �(n)

u G′
u−1

)
n−p0−1∑

u=2

(n − u)1/2 vec
(
�̂

−1
N �(n)

u G′
u−2

)
...

n−p0−1∑
u=i

(n − u)1/2 vec
(
�̂

−1
N �(n)

u G′
u−i

)
...

n−p0−1∑
u=p0

(n − u)1/2 vec
(
�̂

−1
N �(n)

u G′
u−p0

)


and (forp0 = 1, 0k2×k2(p0−1) is void)

Q�̂N
:=

(
�̂N ⊗ �̂

−1
N 0k2×k2p0

0k2p0×k2 w2

)−1

−
(

Ik2 0k2×k2(p0−1)

Ik2p0

)
(W2)−1

·
(

Ik2 0k2×k2(p0−1)

Ik2p0

)′
,

with the (k2p0 × k2p0) matricesw2 and W2 having
(i, j) blocks [of dimension(k2 × k2)]

(w2)ij :=
n−p0−1∑

u=max(2,i,j)

(Gu−i�̂N G′
u−j ) ⊗ �̂

−1
N and

(W2)ij :=
n−p0−1∑

u=max(i,j)

(Gu−i�̂N G′
u−j ) ⊗ �̂

−1
N ,

i, j = 1, . . . , p0,

respectively. Note thatw2 andW2 differ only by their
upper left (k2 × k2) block. The structure of this test
statistic is the same as that of the univariate Gaussian
Lagrange multiplier test statistic described by Garel
and Hallin (1999).

The null hypothesis of AR(p0) dependence is re-
jected wheneverW(n)

p0 exceeds the(1 − α) quantile of
a chi-squared distribution withk2 degrees of freedom.
The intuition behind the test statistic (13) is a little bit
less straightforward than in the Durbin–Watson case.
Actually,W(n)

p0 is a quadratic form that involves all esti-
mated residual cross-correlation matrices, with weights
that neutralize the effect of parameter estimation on the
residuals and optimize the power. For instance,p0 = 1
yields (writingÂ instead ofÂ1, we haveGu = Âu)

n1/2T1;�̂N
:=


(n − 1)1/2 vec

(
�̂

−1
N �

(n)
1

)
n−1∑
u=2

(n − u)1/2 vec
(
�̂

−1
N �(n)

u (Âu−1)′
)


and

Q�̂N

:=


�̂N ⊗ �̂

−1
N 0

0
n−1∑
u=2

(
Au−1�̂N (Au−1)′

) ⊗ �̂
−1
N


−1

−
(

Ik2

Ik2

)(
n−1∑
u=1

(
Au−1�̂N (Au−1)′

) ⊗ �̂
−1
N

)−1

· (Ik2 Ik2 ).

The order selection procedure then consists of first
running a Durbin–Watson test (reducing to a simple
test for randomness whenβ = 0). In case this is in-
conclusive, a VAR of order zero (i.e., white noise)
is selected and a traditional regression model is con-
sidered for the analysis. If Durbin–Watson is signifi-
cant, then turn to testing VAR(1) against VAR(2) (i.e.,
the particular case just discussed) and so on. This
procedure as a whole is of a heuristic nature and
no precise risk can be evaluated for the final output.
However, consistency results have been obtained, pos-
sibly with α values varying from step to step; see
Pötscher (1983, 1985).

4.2 Signed-Rank VAR Order Selection

The procedure runs exactly as in the Gaussian para-
metric case, but is based on multivariate signed-rank
statistics. Here again, we propose three particular test
statistics. Each test can be computed from Tyler signs
and ranks or from hyperplane-based signs and ranks.
In case interdirections are used, they should be “ab-
solute.” The three statistics are the following:
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1. A test statistic of the sign-test type,

W˜ (n)
p0;sign := k2nT˜ ′

p0;�̂;signQ�̂T˜ p0;�̂;sign,

with n1/2T˜ p0;sign as in (14), but with the “sign-test”

type cross-covariance matrices

�˜ (n)

i;�̂;sign

:= �̂
1/2

(
1

n − p0 − i

n∑
t=p0+i+1

UtU′
t−i

)
�̂

′1/2

substituted for�(n)
i .

2. A test statistic of the Spearman type,

W˜ (n)
p0;Sp := 9k2nT˜ ′

p0;�̂;SpQ�̂T˜ p0;�̂;Sp,

with n1/2T˜ p0;Sp as in (14), but with theSpearman

cross-covariance matrices

�˜ (n)

i;�̂;Sp
:= �̂

1/2
(

1

(n − p0 − i)(n − p0 + 1)2

·
n∑

t=p0+i+1

RtRt−iUtU′
t−i

)
�̂

′1/2

substituted for�(n)
i .

3. A test statistic of the van der Waerden type,

W˜ (n)
p0;vdW := nT˜ ′

p0;�̂;vdWQ�̂T˜ p0;�̂;vdW,

with n1/2T˜ p0;vdW as in (14), but with thevan der

Waerden cross-covariance matrices

�˜ (n)

i;�̂;vdW

:= �̂
1/2

(
1

n − p0 − i

·
n∑

t=p0+i+1

�−1
k

(
Rt

n − p0 + 1

)

· �−1
k

(
Rt−i

n − p0 + 1

)

· UtU′
t−i

)
�̂

′1/2

[�k is as in (11)] substituted for�(n)
i .

The null hypothesis of AR(p0) dependence is rejected
whenever the test statistic exceeds the(1− α) quantile

of a chi-squared distribution withk2 degrees of free-
dom.

We insist upon the fact that̂�, contrary to the esti-
mate�̂N appearing in the Gaussian statistic, need no
longer be the empirical marginal covariance matrix.

4.3 Asymptotic Relative Efficiencies

The asymptotic relative efficiencies, with respect to
their Gaussian counterparts, of the rank-based tests
used at each step of the order selection procedure are
the same as in the Durbin–Watson case. The figures
in Table 1 as well as the generalized Chernoff–Savage
result of Hallin and Paindaveine (2005) thus still ap-
ply here. However, a more pertinent assessment of
the respective relative efficiencies of order selection
procedures considered as a whole would be provided
by ratios of correct identification probabilities. Deriv-
ing exact values for such ratios is probably infeasible.
Monte Carlo evaluations, however, are possible; some
numerical values are given in the simulation study be-
low.

4.4 Numerical Study

4.4.1 Efficiency. Here we generatedN =1000 in-
dependent samples(ε1, . . . ,ε620) of size n = 620
from various bivariate spherical densities, with mean
zero and identity covariance matrix: the bivariate nor-
mal and bivariate Student distributions with 1 (in this
case, theshape, not the covariance matrix, is identity),
3 and 8 degrees of freedom. These samples were used
in the VAR(1) model

Yt − AYt−1 = εt with A =
(

0.30 0.12

−0.06 0.24

)
(15)

and initial value Y0 = 0, yielding VAR(1) series
(Y∗

1, . . . ,Y∗
620) of length 620. Of these observations,

the last 120, denoted as(Y1, . . . ,Y120), were subjected
to various sequential order-identification procedures.

Seven versions (Gaussian or rank based) of the
order-identification procedure were performed on each
series. Step one of each procedure consisted of test-
ing for white noise against VAR(1) dependence us-
ing a (degenerate—since no trend has to be estimated)
Durbin–Watson test which coincides with the tests
for randomness developed by Hallin and Paindaveine
(2002b). If the hypothesis of randomness cannot be re-
jected, the model is identified as being VAR(0), that is,
white noise (order underidentification). If randomness
is rejected, the tests developed in Sections 4.1 and 4.2
are performed for testing VAR(1) against VAR(2) de-
pendence. If VAR(1) is not rejected, the order (p = 1)
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is correctly identified; if not, the procedure is pursued
further, but we simply record overidentification of the
order. Of course, it is pretty natural to use the same type
of test throughout the procedure. The following seven
types of identification procedures were considered:

(a) The parametric Gaussian procedure.
(b1) The sign-test-type procedure based on Tyler’s

signs and ranks.
(b2) The hyperplane-based sign-test-type proce-

dure.
(c1) The Spearman-type procedure based on Tyler’s

signs and ranks.
(c2) The hyperplane-based Spearman-type proce-

dure.
(d1) The van der Waerden-type procedure based on

Tyler’s signs and ranks.
(d2) The hyperplane-based van der Waerden-type

procedure.

All individual tests were performed at nominal (as-
ymptotic) levelα = 5%. In each case, the Yule–Walker
estimator

Â :=
(

1
119

120∑
t=2

YtY′
t−1

)(
1

119

120∑
t=2

Yt−1Y′
t−1

)−1

was used to estimateA. The Tyler estimatê�Tyl was
computed from the algorithm of Randles (2000) [again,
iterations were stopped as soon as the Frobenius norm
of the difference between the two members of (3) fell
below 10−6].

Under-, correct and overidentification frequencies
are reported in Table 4, along with the corresponding
ARE figures. The corresponding individual confidence
intervals (for N = 1000 replications), at confidence
level 0.95, have half-widths 0.014, 0.025 and 0.031 for
frequencies on the order of 0.05 (0.95), 0.20 (0.80) and
0.50, respectively. Inspection of the table reveals the
excellent overall performance of all rank-based proce-
dures considered:

• Hyperplane-based van der Waerden procedures uni-
formly outperform the Tyler-type van der Waerden
ones, which in turn perform at least as well as
their parametric Gaussian counterpart, even under
Gaussian innovations.

• More generally, hyperplane-based procedures
(van der Waerden, signs, Spearman) do uniformly
better than their Tyler-type competitors.

• Although the validity of the tests used at each step
of the identification procedure is not formally estab-

TABLE 4
Underidentification(p = 0), correct identification(p = 1) and overidentification(p ≥ 2) frequencies(out of
N = 1000replications) for theVAR(1) model(15)under various Gaussian and Student innovation densities.

The seven procedures considered are based on the Gaussian parametric testsφN , the Tyler signed-rank
van der Waerden and Spearman testsφvdW andφSp, the Tyler sign testφS, and their

hyperplane-based counterpartsφh
vdW, φh

Sp andφh
S

Order identification Order identification
Innovation Innovation

Test density 0 1 ≥ 2 ARE density 0 1 ≥ 2 ARE

φN N 42 898 60 1.000 t3 41 915 44 1.000
φvdW 54 898 48 1.000 35 914 51 1.400
φS 186 764 50 0.617 139 809 52 1.000
φSp 55 891 54 0.970 37 903 60 1.305

φh
vdW 55 906 39 1.000 40 925 35 1.400

φh
S 186 771 43 0.617 139 812 49 1.000

φh
Sp 51 910 39 0.970 42 915 43 1.305

φN t8 37 903 60 1.000 t1 31 919 50 Undefined
φvdW 50 898 52 1.047 9 930 61 Undefined
φS 161 791 48 0.711 84 864 52 Undefined
φSp 48 903 49 1.022 12 925 63 Undefined

φh
vdW 48 911 41 1.047 10 956 34 Undefined

φh
S 159 794 47 0.711 88 873 39 Undefined

φh
Sp 45 904 51 1.022 12 952 36 Undefined

NOTE. All tests were performed at probability level 5%; the series length throughout isn = 120 (AREs refer to
individual tests, not to the order identification procedure as a whole).
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TABLE 5
Underidentification(p = 0), correct identification(p = 1) and overidentification(p ≥ 2) frequencies(out of

N = 1000replications) in various perturbed GaussianVAR(1) series

Order identification Order identification
Type of Type of

Test outliers 0 1 ≥ 2 outliers 0 1 ≥ 2

φN Y+ 428 293 279 E+ 88 522 390
φvdW 98 822 80 27 909 64
φS 189 762 49 140 819 41
φSp 81 851 68 26 916 58

φh
vdW 95 831 74 29 926 45

φh
S 197 757 46 141 824 35

φh
Sp 83 857 60 27 933 40

φN Y− 672 180 148 E− 77 520 403
φvdW 217 708 75 25 911 64
φS 290 662 48 133 817 50
φSp 179 749 72 25 916 59

φh
vdW 222 715 63 22 917 61

φh
S 294 663 43 134 827 39

φh
Sp 185 754 61 26 919 55

NOTE. The various order identification procedures are based on the Gaussian parametric testsφN , the Tyler signed-
rank van der Waerden(φvdW), Spearman(φSp) and sign-test-type(φS) tests, and their hyperplane-based counterparts

φh
vdW, φh

Sp andφh
S at (asymptotic) probability level 5%; the series length throughout isn = 120.

lished under multivariate Cauchy (t1) innovations,
the final result under such densities remains ex-
cellent, with a remarkable 95% frequency of cor-
rect identification for the hyperplane-based van der
Waerden and Spearman versions.

4.4.2 Robustness.A robustness investigation also
was conducted on the model in Section 3.4.2 for the
various order identification procedures proposed in
Sections 4.1 and 4.2. Observations,(Y∗

1, . . . ,Y∗
620)

were generated in the same way as in the previous sec-
tion from model (15) with Gaussianεt ’s. These ob-
servations then were perturbed, as in Section 3.4.2, to
produce observation outliers and innovation outliers re-
spectively:

Y+ (observation outliers): ObservationsY∗
t were re-

placed with 5Y∗
t for t = 538, 540, 578, 580,

618 and 620.
Y− (observation outliers): ObservationsY∗

t were re-
placed with 5Y∗

t for t = 538, 578 and 618, and
with −5Y∗

t for t = 540, 580 and 620.
E+ (innovation outliers): Gaussian innovationsεt

were replaced with 5εt for t = 538, 578, 580,
618 and 620.

E− (innovation outliers): Gaussian innovationsεt

were replaced with 5εt for t = 538, 578 and 618,
and with−5εt for t = 540, 580 and 620.

The lastn = 120 observations then were subjected to
the seven order identification procedures described in
Section 4.4.1. The resulting under-, correct and over-
identification frequencies are reported in Table 5. This
simulation exercise of course is somewhat limited and
allows only for very general conclusions. The frequen-
cies reported in Table 5, however, very clearly show
how fragile the traditional parametric method can be
in the presence of a small number of outliers: the
observed proportion of correct identification (based
on the parametric tests) drops from 0.898 in the un-
perturbed case to 0.180 under the observation out-
lier schemeY−. Quite on the contrary, the rank-based
methods apparently resist quite well, irrespective of the
type of outlier.

5. CONCLUSIONS

Rank-based methods have been confined for a long
time to problems that involve univariate independent
observations. We show, on the basis of two particular
examples (the Durbin–Watson and the autoregressive
order selection problems), that rank methods also apply
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to serial (i.e., time-series) multivariate problems. Two
concepts of signs and ranks are considered: pseudo-
Mahalanobis or Tyler and the hyperplane-based or
Oja–Paindaveine. Theoretical results establish that
these methods are as efficient, locally and asymptot-
ically, as their everyday-practice parametric competi-
tors based on cross-correlation matrices; the van der
Waerden versions even uniformly dominate the compe-
tition. Simulations moreover show that the rank-based
procedures successfully resist the presence of observa-
tion as well as innovation outliers, whereas traditional
parametric methods literally collapse under such per-
turbations.

APPENDIX: RANKS, SIGNS AND
SEMIPARAMETRIC EFFICIENCY

For the reader who is familiar with local asymp-
totic normality or tangent spaces, we conclude this pa-
per with a brief theoretical justification for considering
rank-based methods in the analysis of a broad class of
semiparametric models. Details can be found in Hallin
and Werker (2003).

Rank-based methods apply whenever the data are
generated, through some model involving a parameter
θ ∈ � ⊆ R

K , by some unobserved white noise (here
k-dimensional) with unspecified densityf belonging
to some classF of densities. The statistical models we
are considering are thus, typically,semiparametric, of
the form(

X(n),A(n),P := {
P(n)

θ ,f , θ ∈ �, f ∈ F
})

.(16)

Assume thatθ is the parameter of interest, whereas
f plays the role of a nuisance parameter. Whenever
the fixed-f parametric submodels of (16) are locally

asymptotically normal withcentral sequence�(n)
f (θ)

and provided that some other regularity assumptions
are met, the theory of semiparametric efficiency (see
Bickel, Klaassen, Ritov and Wellner, 1993) stipulates
that semiparametrically efficient (atθ andf ) inference

can be based on the projection�(n)∗
f (θ) of �

(n)
f (θ)

along the so-calledtangent spaces.
Another way to reach semiparametric efficiency

(still at θ andf ) is possible when the fixed-θ submod-
els of (16) are generated by some group of transfor-
mationsG(n)

θ acting over(X(n),A(n)), with maximal
invariantR(n)(θ). Hallin and Werker (2003) showed
that, under quite general conditions, the difference
between�(n)∗

f (θ) and�˜ (n)
f (θ) := E[�(n)

f (θ)|R(n)(θ)]
tends to zero asn → ∞, in probability, under P(n)

θ,f .

Conditioning on the maximal invariant thus does the
same job as projecting along tangent spaces. Now,
in most models that involve unobserved white noise
with unspecified densityf , residualranksand/orsigns
(their definitions depend on the class of densitiesF )
provide a maximal invariantR(n)(θ).

Rank-based methods thus, in a sense, allow for by-
passing tangent space calculations in the construction
of semiparametrically efficient inference procedures.
Besides these semiparametric efficiency features, of
course, they also enjoy their usual properties of distri-
bution-freeness (a consequence of invariance), robust-
ness and so forth.
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