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Abstract. A fundamental problem of Internet traffic engineering is band-
width estimation: determining the bandwidth (bits per second) required to
carry traffic with a specific bit rate (bits per second) offered to an Internet link
and satisfy quality-of-service requirements. The traffic is packets of varying
sizes that arrive for transmission on the link. Packets can queue up and are
dropped if the queue size (bits) is bigger than the size of the buffer (bits)
for the queue. For the predominant traffic on the Internet, best-effort traffic,
quality metrics are the packet loss (fraction of lost packets), a queueing de-
lay (seconds) and the delay probability (probability of a packet exceeding
the delay). This article presents an introduction to bandwidth estimation and
a solution to the problem of best-effort traffic for the case where the qual-
ity criteria specify negligible packet loss. The solution is a simple statistical
model: (1) a formula for the bandwidth as a function of the delay, the delay
probability, the traffic bit rate and the mean number of active host-pair con-
nections of the traffic and (2) a random error term. The model is built and
validated using queueing theory and extensive empirical study; it is valid for
traffic with 64 host-pair connections or more, which is about 1 megsbit

of traffic. The model provides for Internet best-effort traffic what the Erlang
delay formula provides for queueing systems with Poisson arrivals and i.i.d.
exponential service times.

Key words and phrases: Queueing, Erlang delay formula, nonlinear time
series, long-range dependence, QoS, statistical multiplexing, Internet traffic,
capacity planning.

1. INTRODUCTION: CONTENTS OF THE PAPER across the Internet that consists of links and nodes.
The first node is the sending host: a packet exits the

. . host and travels along a link (fiber, wire, cable or air)
At any given moment, a vast number of pairs of hostst first rout de. th link t d rout
are transferring files to one other. Each transferred file 0 afirstrouter node, then overa fink fo a second router

is broken up into packets that are sent along a pa,[hnode and so forth until the last router sends the packet
to a receiving host node over a final link.

The packet traffic arriving for transmission on an
_ _ Internet link is a stream: a sequence of packets with
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buffer onto the link. If the buffer is full, the packet is certain load that satisfies the delay and the delay prob-
dropped. ability.

A link has a bandwidth (bits per second), the rate  Section 4 describes fractional sum—difference (FSD)
at which the bits of a packet are put on the link. Over time series models, which are used to generate the syn-
an interval of time during which the traffic is station- thetic streams for the queueing simulations. The FSD
ary, the packets arrive for transmission at a certain models—a new class of non-Gaussian, long-range de-
rate—the traffic bit rate (bits per second), which is pendent time series models—provide excellent fits to
defined formally to be the mean of the packet sizes packet size time series and to packet interarrival time
(bits) divided by the mean packet interarrival time (sec- series. The validation of the FSD models is critical to
onds); this is approximately the mean number of arriv- this study. The validity of our solution to the bandwidth
ing bits over the interval divided by the interval length estimation problem depends on having traffic inputs to
(seconds). Over the interval there is a mean simultane-the queueing that reproduce the statistical properties of
ous active connection load, which is the mean numberbest-effort traffic. Of course, the live data have these
of source—destination pairs of hosts actively sending properties, but we need assurance that the synthetic
packets over the link. The utilization of the link is the data do as well.
traffic bit rate divided by the bandwidth; it measures  Section 5 describes the live packet arrivals and sizes,
the traffic rate relative to the capacity of the link. and the synthetic packet arrivals and sizes that are gen-

This article presents results on a fundamental prob-erated by the FSD models. Section 6 gives the details
lem of engineering the Internet. What link bandwidth of the simulations and the resulting delay data: values
is needed to accommodate traffic with a certain bit rate of the QoS bandwidth, delay, delay probability, mean
and ensure that the transmission on the link maintainsnumber of active host-pair connections of the traffic
quality-of-service (QoS) criteria? The QoS bandwidth and traffic bit rate.
must be found for every link set up on the Internet, Model building, based on the simulation delay data
from the low-bandwidth links connected to the com- and on queueing theory, begins in Section 7. To do the
puters of home users to the high-bandwidth links of a model building and diagnostics, we exploit the struc-
major Internet service provider. Our approach to solv- ture of the delay data—utilizations for all combinations
ing the bandwidth estimation problem is to use queue- of delay and delay probability for each stream, live
ing theory and queueing simulations to build a model or synthetic. We develop an initial model that relates,
for the QoS bandwidth. The traffic inputs are live for each stream, the QoS utilization (bit rate divided
streams from measurements of live links and syntheticby the QoS bandwidth) to the delay and delay proba-
streams from statistical models for traffic streams. bility. We find a transformation for the utilization for

Section 2 describes transmission control protocol/ which the functional dependence on the delay and de-
Internet protocol (TCP/IP) transmission technology, lay probability does not change with the stream. There
which governs almost all computer networking today; is also an additive stream coefficient that varies across
for example, the networks of Internet service providers, streams, characterizing the statistical properties of each
universities, companies and homes. Section 2 also destream. This stream-coefficient delay model cannot be
scribes the buffer queueing process and its effect on theused for bandwidth estimation because the stream co-
QoS of file transfer. efficient is not known in practice.

Section 3 formulates the particular version of the Next we add two variables to the model that mea-
bandwidth estimation problem that is addressed here,sure the statistical properties of the streams and that
discusses why the statistical properties of the packetcan be specified or measured in practice—the traffic bit
streams are so critical to bandwidth estimation and out-rate and the number of simultaneous active host-pair
lines how we use queueing simulations to study the connections on the link—and drop the stream coeffi-
problem. We study best-effort Internet traffic streams cients. In effect we have modeled the coefficients. The
because they are the predominant type of traffic onresultis the best-effort delay model: a best-effort delay
Internet links today. The QoS criteria for best-effort formula for the utilization as a function of (1) the de-
streams are the packet loss (fraction of lost packets),lay, (2) the delay probability, (3) the traffic bit rate and
the queueing delay (seconds) and the delay probabil-(4) the mean number of active host-pair connections of
ity (probability of a packet exceeding the delay). We the traffic, plus a random error term.
suppose that the link packet loss is negligible and find Section 8 presents a method for bandwidth estima-
the QoS bandwidth required for a packet stream of ation that starts with the value from the best-effort delay
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formula and then uses the error distribution of the best- 2.1 Packet Communications
effort delay model to find a tolerance interval whose
minimum value provides a conservative estimate with
a low probability of being too small.

When afile is sent, it is broken up into packets whose
sizes are 1460 bytes or less. The packets are sent from
. . . : the source host to the destination host, where they are

_ Se;tlon 9 dlscus_ses_ previous work on bandwidth €S reassembled to form the original file. They travel along
timation and how it differs from the work here. Sec- , naih across the Internet that consists of transmission
tion 10 is an extended abstract. Readers who seek jusfinks and routers. The source computer is connected
results can proceed to this section; those not famil- g 5 first router by a transmission link, the first router
iar with Internet engineering technology might wantto is connected to a second router by another transmis-

read Section_s 2 and?,.firs.t. ~sion link and so forth. A router has input links and
The following notation is used throughout the arti- output links. When it receives a packet from one of
cle: its input links, it reads the destination address on the

Packet §tream _ _ packet, determines which of the routers connected to it
v arrival numbers (numberp = 1 is the first  py output links gets the packet and sends out the packet

packety = 2 is the second packet, etc. over the output link connected to that router. The flight
ay arrival times (seconds) across the Internet ends when a final router receives the
t, interarrival imes (seconds); = ay1 — @y packet on one of its input links and sends the packet to
qv  sizes (bytes or bits). the destination computer over one of its output links.
Traffic load The two hosts establish a connection to carry out one
¢ mean number of simultaneous active connec- or more file transfers. The connection consists of soft-
tions (number) ware running on the two computers that manage the
7 traffic bit rate (bits per second) sending and receiving of packets. The software exe-
yp connection packet rate (packets per secondcutes an Internet transport protocol, a detailed prescrip-
per connection) tion for how the sending and receiving should work.
yp connection bit rate (bits per second per con- The two major transport protocols are the user data-
nection). gram protocol (UDP) and the transmission control pro-
Bandwidth tocol (TCP). UDP just sends the packets out. With TCP,

the two hosts exchange control packets that manage the
connection. TCP opens the connection, closes it, re-
transmits packets not received by the destination and

B bandwidth (bits per second)
u utilization (fraction)z/p.

Queueing controls the rate at which packets are sent based on
§ packet delay (seconds) the amount of retransmission that occurs. The transport
w  delay probability (fraction). software adds a header to each packet that contains in-

formation about the file transfer. The header is 20 bytes
2. INTERNET TECHNOLOGY for TCP and 8 bytes for UDP.

Software running on the two hosts implements an-

) - other network protocol, the Internet protocol (IP) that
a pair of host computers can transfer one or more f'lesmanages the involvement of the two hosts in rout-

(Stevens, 1994). Consider the downloading of a Webjny 5 nacket across the Internet. The software adds
page, which is often made up of more than one file. 5 50.pyte |P header to the packet with information

One host—the client—sends a request file to start theneeded for the routing such as the source host IP ad-
downloading of the page. Another host—the server— gress and the destination host IP address. IP epito-
receives the request file and sends back a first responsgizes the conceptual framework that underlies Internet
file. This process continues until all of the response packet transmission technology. The networks that
files necessary to display the page are sent. The clieninake up the Internet—for example, the networks of

passes the received response files to a browser such gsternet service providers, universities, companies and
Netscape, which then displays the page on the screenhomes—are often referred to as IP networks, although
This section gives information about some of the Inter- today it is unnecessary because almost all computer
net engineering protocols involved in such file transfer. networking is IP, a public-domain technology that

The Internet is a computer network over which
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defeated all other contenders, including the propri- The bit rate of all traffic on the link is = c¢y;. Of
etary systems of big computer and communications course,r < 8 because bits cannot be put on the link
companies. at a rate faster than the bandwidth. A larger traffic
bit rate r requires a larger bandwidtf. Let us re-
turn to the path across the Internet for the Web page
The links along the path between the source and thedownload discussed earlier. Starting from the link that
destination hosts each have a bandwidtm bits per connects the client computer to the Internet and pro-
second. The bandwidth refers to the speed at which theceeding though the linksy tends to increase and,
bits of a packet are put on the link by a computer or therefore, so doeg. We start with a low-bandwidth
router. For the link connecting a home computer to a link, say 1.5 megabifs, then move to a link at the edge
first router, 8 might be 56 kilobitgs if the computer  of a service provider network, say 156 megafsis
uses an internal modem or 1.5 megatstH there is  and then move to the core links of the provider, say
a broadband connection, a cable or DSL link. The link 10 gigabitgs. As we continue further, we move from
connecting a university computer to a first router might the core to the service provider edge to a link con-
be 10 megabits, 100 megabiis or 1 gigabits. The nected to the destination computer, sand g tend
links on the core network of a major Internet service to decrease.
provider have a wide range of bandwidths; typical val-
ues range from 45 megabjitsto 10 gigabitgs. For a
40-byte packet, which is 320 bits, it takes 5.714 ms A packet arriving for transmission on a link is pre-
to put the packet on a 56-kilobg link and takes sented with a queueing mechanism. The service time
0.032 us to put it on a 10-gigabifs link, which is for a packet is the time it takes to put the packet on
about 180,000 times faster. Once a bit is put on thethe link, which is the packet size divided by the band-
link, it travels down the link at the speed of light. width 8. If there are any packets whose transmission is
not completed, then the packet must wait until these
packets are fully transmitted before its transmission
can begin. This is the queueing delay. The packets
At any given moment, an Internet link has a number waiting for transmission are stored in a buffer, a region
of simultaneous active connections; this is the numberin the memory of the computer or router. The buffer
of pairs of computers connected with one another thathas a size. If a packet arrives and the buffer is full,
are sending packets over the link. The packets of thethen the packet is dropped. As we will see, the arrival
different connections are intermingled on the link; for process for packets on a link is long-range dependent:
example, if there are three active connections, the ar-at low loads, the traffic is very bursty, but as the load
rival order of 10 consecutive packets by connection increases, the burstiness dissipates. For a fixat 3,
number mightbe 1, 1,2, 3, 1, 1, 3, 3, 2 and 3. The inter- bursty traffic results in a much larger queue-height dis-
mingling is referred to as statistical multiplexing. On a tribution than traffic with Poisson arrivals.
link that connects a local network with about 500 users  The predominant protocol for managing file trans-
there might be 300 active connections during a peakfers, TCP, changes the rate at which it sends packets
period. On the core link of an Internet service provider with file contents. TCP increases the rate when all goes
there might be 60,000 active connections. well, but reduces the rate when a destination computer
During an interval of time when the traffic is station- indicates that a packet has not been received; the as-
ary, there are a mean number of active connections sumption is that congestion somewhere on the path
and a traffic bit rater in bits per second. Let ) in has led to a buffer overflow and the rate reduction is
seconds be the mean packet interarrival time and letneeded to help relieve the congestion. In other words,
(g In bits be the mean packet size. Then the packetTCP is closed loop because there is feedback; UDP

2.2 Link Bandwidth

2.4 Queueing, Best-Effort Traffic and QoS

2.3 Active Connections, Statistical Multiplexing
and Measures of Traffic Loads

arrival rate per connection ig, = c*lu(j)l packetgs is not aware of dropped packets and does not respond
per connection. The bit rate per connectionyjs= to them.
u(q)c‘lu(‘t)l = tc~1 bits/s per connection. The vari- When traffic is sent across the Internet using TCP or

ablesy, andy, measure the average host-to-host speedUDP and this queueing mechanism, with no attempt to
of Internet connections (e.g., the rate at which the file add additional protocol features to improve QoS, then
of a page is downloaded) for the pairs of hosts that usethe traffic is referred to as best effort. The IP networks
the link. are a best-effort system because the standard protocols
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make an effort to get packets to their destination, but degradations of QoS, it is preferable to separate loss
packets can be delayed, lost, or delivered out of order.and delay control, using the softer probabilistic control
Queueing delay and packet drops degrade the QoS ofor delay. Stipulating that packet loss is negligible on
best-effort traffic. For example, for Web page transfers, the link means that for a connection that uses the link,
the result is a longer wait by the user, partly becauseanother link is the loss bottleneck; that is, if packets of
the packets sit in the queue and partly because TCRhe connection are dropped, it will be on another link. It

reduces its sending rate when retransmission 0ccursg|so means that TCP feedback can be ignored in study-
Best-effort traffic contrasts with priority traffic, which  jg the bandwidth estimation problem.

when it arrives at a router, goes in front of best-effort
packets. Packets for voice traffic over the Internet are 3.2 Packet Stream Statistical Properties

often given priority. A packet stream consists of a sequence of arriving

packets, each with a size. Letbe the arrival number:

3. THE BANDWIDTH ESTIMATION PROBLEM: : : .
v = 1is the first packety = 2 is the second packet and

FORMULATION AND STREAM

STATISTICAL PROPERTIES SO forth_. Leta, _be th_e arrival times, let, = ayt1— dy
. be the interarrival times and let, be the size of the
3.1 Formulation packet arriving at timer,,. The statistical properties of

Poor QoS that results from delays and drops on anthe packet stream can be described by the statistical
Internet link can be improved by increasing the link Properties of, andg, as time series in.
bandwidthB. The service time decreases, soifthe traf- The QoS bandwidth for a packet stream depends
fic rater remains fixed, the queueing delay distribution critically on the statistical properties af and g,.
decreases, and delay and loss are reduced. Loss and d&irectly, the bandwidth depends on the queue-length
lay are also affected by the buffer size; the larger the time process, but the queue-length time process de-
buffer size, the fewer the drops, but then the queueingpends critically on the stream statistical properties.
delay has the potential to increase because the maxiHere we consider best-effort traffic. It has persis-
mum queueing delay is the buffer size dividedhy tent, long-range dependent and g, (Ribeiro, Riedi,

The bandwidth estimation problem is to chogst® Crouse and Baraniuk, 1999; Gao and Rubin, 2001;
satisfy QoS criteria. The resulting valueffs the Q0S  Cao, Cleveland, Lin and Sun, 2001). Persistent, long-
bandwidth. The QoS utilization is the valuewt /8 range dependentj and Qv have dramatica”y |arger
that corresponds to the QoS bandwidth. When a localgueue-size distributions than those for independent
network, such as a company or university, purchases; andg, (Konstantopoulos and Lin, 1996; Erramilli,
bandwidth from an Internet service prowder_, adeC|s_|on Narayan and Willinger, 1996; Cao, Cleveland, Lin and
on g must be made. When an Internet service provider g,n 5001). The long-range dependent traffic is burstier
o_IeS|gns its ”e?W_O”" it must choogefor each Of_ S than the independent traffic, so the QoS utilization is
links. The decision must be based on the trafiic load smaller because more headroom is needed to allow for

and QoS criteria. A :
Here we address the bandwidth estimation problem.the bursts. This finding demonstrates quite clearly the

specifically for links with best-effort traffic. We take Impact of the statistical properties, but a corollary of

the QoS criteria to be delay and loss. For delay we the finding is that the results here are Iimite_d to. bgst-
use two metrics: a delayand the delay probability, effo_rt t'rafflc streams (or any other streams with similar
the probability that a packet exceeds the delay. For lossStatistical properties). Results for other types of traf-
we suppose that the decision has been made to choosi¢ With quite different statistical properties (e.g., links
a buffer size large enough that drops will be negligi- C&Tying voice traffic using current Internet protocols)
ble. This is, for example, consistent with the current are different.

practice of service providers on their core links lyer, ~Best-effort traffic is not homogeneous. As the traffic
Bhattacharyya, Taft and Diot (2003). Of course, a large connection load: increases, the arrivals tend toward
buffer size allows the possibility of a large delay, but Poisson and the sizes tend toward independent (Cao,
setting QoS values far andw allows us to control de-  Cleveland, Lin and Sun, 2003; Cao and Ramanan,
lay probabilistically. The alternative is to use the buffer 2002). The reason for this is the increased statistical
size as a hard limit on delay, but because dropped pack:multiplexing of packets from different connections; the
ets are an extreme remedy that causes more seriousitermingling of the packets of different connections is
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a randomization process that breaks down the corre-fitted by parsimonious Gaussian time series, that is,
lation of the streams. In other words, the long-range a very simple class of fractional autoregressive inte-
dependence dissipates. This means that in our bandgrated moving average (ARIMA) models (Hosking,
width estimation study, we can expect a changing es-1981) with a small number of parameters. In other
timation mechanism as increases. In particular, we words, the transformations and the Gaussian mod-
expect multiplexing gains, that is, greater utilization els account for the complex multifractal properties of
due to the reduction in dependence. Because of ther, andg, in a simple way.

change in properties with, we must be sure to study

streams with a wide range of valuescof 4.2 The FSD Model Class

Supposex, for v =1,2,... is a stationary time
4. FSD TIME SERIES MODELS FOR PACKET series with marginal cumulative distribution func-
ARRIVALS AND SIZES tion F(x;¢), where¢ is a vector of unknown para-

This section presents FSD time series models, a newNeters. Letr, = H(x.”; ) pe a tr_ansform_atlon afy
class of non-Gaussian, long-range dependent model$tch that the marginal distribution of; is normal
(Cao, Cleveland, Lin and Sun, 2003; Cao, Cleveland W'Eq mean O and variance 1. We havé(x,; ¢) =
and Sun, 2004). The two independent packet-streamC ~(F (x: ¢)), whereG(z) is the cumulative distribu-
time series—the interarrivals and the sizeg,—are tion fungtlon of a normal random \_/arlable W|t_h m(_aan 0
each modeled by an FSD model, and the models are?d variance 1; Next we suppasgis a Gaussian time
used to generate synthetic best-effort traffic streams forSe/ies and c*abtv the Gaussian image af,.
the queueing simulations in our study. Supposer; has the form

There are a number of known properties,0éndg, xF = 1= 0s, + v/on,,
that have to be accommodated by the FSD models.

First, these two time series are long-range dependentWheres, andn, are independent of one another and
This is associated with the important discovery of €ach has mean 0 and variance:ljs Gaussian white
long-range dependence of packet arrival counts andnoise, that is, an independent time series ant a

of packet byte counts in successive equal-length inter-Gaussian fractional ARIMA (Hosking, 1981)

vals of time, such as 10 ms (Leland, Tagqu, Willinger (I — B) s,
and Wilson, 1994; Paxson and Floyd, 1995). Second,

t, and g, are non-Gaussian. Complex non-GaussianWhere Bs, = s,_1, 0 < d < 0.5 ande¢, is Gaussian
behavior was demonstrated clearly in important work White noise with mean 0 and variance

that showed that highly nonlinear multiplicative mul- , (1-— dT2(1—d)

tifractal models can account for the statistical proper- 0y = 2T (1— 2d)

ties oft, andg, (Riedi, Crouse, Ribeiro and Baraniuk, ] ) ) ] )
1999; Gao and Rubin, 2001). These nonparametric 1he above time series, is a fractional sum-dif-

models utilize many coefficients and a complex cas- ference (FSD) time se.ries. lts Gaussian image;,
cade structure to explain these properties. Third, theNas two componentsi/1—6s, is the long-range-

statistical properties of the two time series change asdependent (Ird) component, which has varianeed,
¢ increases (Cao, Cleveland, Lin and Sun, 2003). The@nd+/@ is the white-noise component, which has vari-

arrivals tend toward Poisson and the sizes tend toward®NCe?-
independent; there are always long-range dependent L€t p.+(f) be the power spectrum of the. Then

=&y + &1,

components present in the series, but the contributions 4cod(rf)
of the components to the variances of the series go to P (f)=(1A— 9)082.7
zero. (4sirt(zf))4

for 0 < f <05. As f — 0.5, p«(f) decreases
monotonically tad. As f — 0, p.+(f) goes to infinity
The challenge in modeling, and g, is their com- like sin(zf) ~ f~%, one outcome of long-range
bined non-Gaussian and long-range dependent propdependence. For nonnegative integer lagst ry« (k),
erties, a difficult combination that does not, without r,(k) andr, (k) be the autocovariance functionsxf,
a simplifying approach, allow parsimonious character- s, andn,, respectively. Because the three series have
ization. We discovered that monotone nonlinear trans-variance 1, the autocovariance functions are also the
formations of the interarrivals and sizes are very well autocorrelation functions, (k) is positive and falls off

4.1 Solving the Non-Gaussian Challenge
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like k2?1 ask increases, another outcome of long- e 7, marginal distribution: shape and scalex
range dependence. For- 0, r,, (k) = 0 and e ¢ time dependence: fractional difference coeffi-
i (@) ite-noi i q)
ro (k) = (1= 0)ry (k). cien_td and white-noise ve}rlan(fé_ _
e 17 time dependence: fractional difference coeffi-

As 6 — 1, x} goes to white noisep,«(f) — 1 and cientd® and white-noise variana&®) .

rex(k) — 0 for k > 0. The changes in the autocovari-

ance function and power spectrum are instructive. As We found that the/> andd ") do not depend ou; this

6 gets closer to 1, the rise @f.«(f) nearf =0 is al- is based on empirical study and supported by theory.

ways to orderf ~2¢ and the rate of decay of+ (k) for The estimated values are 0.410 and 0.411, respectively.

largek is alwaysk??—1, but the ascent b« (f) at the We take the value of each of these two parameters to

origin begins closer and closer yo= 0 and the .« (k) be 0.41. We found that asincreases, estimates bf

get uniformly smaller by the multiplicative factor16. 0@ ando® all tend toward 1. This means thgtend

to independent exponentials (a Poisson process) and

the ¢, tend toward independence. In other words, the
We model the marginal distribution of, by a  statistical models account for the change,iandg,,

Weibull with shaper and scalex, a family with two  and the increase inthat was discussed earlier. We es-

unknown parameters. Estimatesiodre almost always  timated these three parameters andly partial like-

less than 1. The Weibull provides an excellent approxi- |ihood methods withd@ and4® fixed to 0.41. The

mation of the sample marginal distribution of theex-  marginal distribution ofg, on a given link does not

cept that the smallest 3-5% of the sample distribution change withe, but it does change from link to link. To

is truncated to a nearly constant value due to Certaingenerate traffic, we must specify the atom and interval

network transmission properties. . . ) :
; S . probabilities. This provides a mean packet sizg),
The marginal distribution ofy, is modeled as fol- | hihis measured in bits per packet.

lows. While packets less than 40 bytes can occur, it
is sufficiently rare that we ignore this and suppose
40 < g, < 1500. First, we provide foA atoms at sizes

¢§S)’_”,¢S) such as 40, 512, 576 and 1500 bytes, We use packet-stream data, that is, values of packet

which are Commomy Occurring sizes; the atom prob- arrivals and sizes, to StUdy the bandwidth estimation

4.3 Marginal Distributions of g, and ¢,

5. PACKET-STREAM DATA: LIVE AND SYNTHETIC

abilities are¢§“),...,¢§,“). For the remaining sizes, p_roblerr_1. They are used as input traffic for qu_eueing
we divided the interval [40, 1500] bytes into inter-  Simulations. There are two types of streams: live and
vals usingC — 1 distinct breakpointaﬁf’), . ¢g)ll synthetic. The live streams are from packet traces, that

H‘s, data collection from live Internet links. The syn-

with values that are greater than 40 bytes and less tha .
thetic streams are generated by the FSD models.

1500 bytes. For each of tlgintervals, the size distrib-
ution is uniformly distributed (excluding the atoms) in 5.1 Live Packet Streams
the interval; the total probabilities for the intervals are

f),...,qjg). Typically, with just three atoms at 40,
576 and 1500 bytes, and with just two breakpoints at
50 and 200 bytes, we get an excellent approximation
of the marginal distribution.

A commonly used measurement framework for em-
pirical Internet studies results in packet traces (Claffy,
Braun and Polyzos, 1995; Paxson, 1997; Caceres et al.,
2000). The arrival time of each packet on a link is
recorded and the contents of the headers are captured.
4.4 Gaussian Images of g, and t, The vast majority of packets are transported by TCP,

The transformed time Serie§ andq;’}‘ appear to be so this means most headers have 40 bytes, 20 for TCP

quite close to Gaussian processes. Some small amourind 20 for IP. The live packet traffic is measured by this
of non-Gaussian behavior is still present, but it is mi- mechanism over an interval. Time stamps provide live
nor. The autocorrelation structure of these Gaussianinterarrival timest,, and headers contain information
images is very well fitted by the FSD autocorrelation that provides live sizeg,, so for each trace there is a
structure. stream of live arrivals and sizes.

The parameters of the FSD model are the following:  The live stream data base used in this presentation

_ o L (a) consists of 349 streams, 90 s or 5 min in duration, from

* qu marginal distribution:A atom probabilities); six Internet links that we name BELL, NZIX, AIX1,

atA sizesp|”; C —1 breakpointgy” andC interval  AIx2, MFN1 and MFN2. The measured streams have

probabilities¢§” negligible delay on the link input router. The mean



BANDWIDTH ESTIMATION FOR INTERNET TRAFFIC 525

number of simultaneous active connectiansanges  sampling plan at these sites consisted of noncontiguous
from 49 connections to 18,976 connections. The traffic 90-s intervals.
bit rater ranges from 1.00 to 348 megabits

Link BELL is a 100-megabjts link in Murray
Hill, New Jersey that connects a Bell Labs local The synthetic streams are arrivals and sizes gener-
network of about 3000 hosts to the rest of the Inter- ated by the FSD models foy andg,. Each of the live
net. The transmission is half-duplex, so both direc- streams is fitted by two FSD models, one for thand
tions (in and out) are multiplexed and carried on the one for theg,, and a synthetic stream of 5 min is gen-
same link, and a stream comprises the multiplexing erated by the models. The generatedre independent
of both directions, but to keep the variabtlecom-  of the generated,, which is what we found in the live
mensurate for all six links, the two directions for data. The resultis 349 synthetic streams that match the
each connection are counted as two. In this presentastatistical properties collectively of the live streams.
tion we use 195 BELL traces, each 5 min in length.
Link NZIX is the 100-megabjts New Zealand In- 6. QUEUEING SIMULATION

ternet exchange hosted by the TS department at the e study the bandwidth estimation problem through
University of Waikato, Hamilton, New Zealand, that qyeyeing simulation with an infinite buffer and a first-
served as a peering point among a number of ma-in_first-out (FIFO) queueing discipline. The inputs to
jor New Zealand Internet service providers at the the queues are the arrivals and sizes of the 349 live and
time of data collection (NZIX trace data available 349 synthetic packet streams described in Section 5.
at http://wand.cs.waikato.ac.nz'wand/wits/nzix/2). All For each live or synthetic stream, we carry out
arriving packets from the input—output ports on the 25 yyns, each with a number of simulations. For each
switch are mirrored, multiplexed and sent to a port ryn we pick a delay and a delay probability. Sim-
where they are measured. Because all connectiong)|ations are carried out to find the QoS bandwigdth
have two directions at the exchange, like BELL, each the pandwidth that results in delay probabilityfor
connection counts as two. In this presentation we the delays. This also yields a QoS utilization= /8.

use 84 NZIX traces, each 5 min in length. Links e use five delays (0.001, 0.005, 0.010, 0.050 and
AIX1 and AIX2 are two separate 622-megaisiOC12  0.100 s) and five delay probabilities (0.001, 0.005,
packet-over-sonet links, each carrying one direction of 0.01, 0.02 and 0.05), employing all 25 combinations
traffic between NASA Ames and the MAE-West In-  of the two delay criteria. For each simulation of a col-
ternet exchange. In this presentation we use 23 AlX1 |ection, § is fixed a priori. We measure the queueing
and 23 AIX2 traces, each 90 s in length. The AIX1 and delay at the arrival times of the packets, which deter-
AIX2 streams were collected as part of a project at the mines the simulated queueing delay process. From the
National Laboratory for Applied Network Research, simulated process we find the delay probability for the
where the data are collected in blocks of 90 s (available chosens. We repeat the simulation, changing the trial
athttp://pma.nlanr.net/PMA). Links MFN1 and MFN2 QoS bandwidth, until the attained delay probability ap-
are two separate 2.5-gigatstOC48 packet-over-sonet proximately matches the chosen delay probabitity
links on the network of the service provider MFN; each The optimization is easy becausedecreases as the
link carries one direction of traffic between San Jose, trial QoS bandwidth increases for fixéd

California and Seattle, Washington. In this presenta- In the optimization we do not allow the utilization
tion we use 12 MFN1 and 12 MFN2 traces, each 5 min to go above 0.97; in other words, if the true QoS uti-

5.2 Synthetic Packet Streams

in length. lization is above 0.97, we set it to 0.97. The reason is
The statistical properties of streams, as we havethat we use the logit scale 16g/(1 — u)) in the model-
stated, depend on the connection laadso it is im- ing, and above about 0.97 the scale becomes very sen-

portant that the time interval of a live stream be small sitive to model misspecification and the accuracy of the
enough that does not vary appreciably over the in- simulation, even though the utilizations above 0.97 for
terval. For any link, there is diurnal variation, that is, practical purposes are nearly equal. Similarly, we limit

¢ changes with the time of day due to changes in the the lower range of the utilizations to 0.05.

number of users. We chose 5 min to be the upper The result of the 25 runs for each of the 349 live and
bound of the length of each stream to ensure station-349 synthetic streams is 25 measurements, one per run,
arity. The BELL, NXI1Z, MFN1 and MFN2 streams are of each of five variables: QoS utilization delays, de-

5 min; the AIX1 and AlIX2 traces are 90 s because the lay probabilityw, mean number of active connectians
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and bit rater. The first three variables vary fromrunto Thes;;; are a sample from a distribution with mean O,
run; the last two variables are the same for the 25 runs f is a monotone function af, andg; is a function of
for a stream because they measure the stream statistical andw. We want to choos¢ to makeg; as simple as
properties. By design, the range &dfs 0.001-0.100 s  possible, that is, to vary as little as possible with

and the range ofv is 0.001-0.05. The range of the
QoS utilizations is 0.05-0.97. The two additional vari-
ablest andc, which measure the statistical properties ~We start our exploration of the data by taking
of the streams, are constant across the 25 runs for eactf («) = u and suppose that a logical scale fois the
stream. Variable: ranges from 49 to 18,976 connec- log. In all cases we use log base 2 and indicate this

7.2 Conditional Dependence of u on §

tions andr ranges from 1.00 to 348 megabiss by writing log, in our formulas. We do not necessar-
ily believe that this identity function foy is the right
7. MODEL BUILDING: A BANDWIDTH FORMULA transformation, but it is h8|pr| to study the data ini-
PLUS RANDOM ERROR tially on the untransformed utilization scale.

Our first step is to explore the conditional depen-
This section describes the process of building the dence Ofuijk on |ng(5j) givenwy and the streamby
best-effort delay model, which is the best-effort delay trellis display (Becker, Cleveland and Shyu, 1996). For
formula plus random error. The model describes the each combination of the delay probability and the
dependence of the utilizationon the delays, the de- streami, we graphu;j; against log(s,). We did this
lay probabilityw, the traffic bit rater and the expected  once for all 349 live streams and once for all 349 syn-
number of active connectiors The modeling process  thetic streams. Figure 1 illustrates this by a trellis dis-
involves both theory and empirical study, and estab- play for 16 of the live streams. The 16 streams were
lishes a basis for the model. chosen to nearly cover the range of values of the
The theoretical basis is queueing theory. The empir- Let t(,, for v = 1-349 be the values ordered from
ical basis is the delay data from the queueing simula- smallest to largest, and take,, to be the quantile of
tions, the measurements of the five variables describedhe empirical distribution of the values of ordef349.
in Section 6. The following notation is used for the val- Then we chose the 16 streams whose rankield or-
ues of these five variables for either the live delay data ders closest to the 16 equally spaced orders from 0.05
or the synthetic delay data. Tldg for j = 1-5 are the  to 0.95. On the figure, there are 80 panels divided into
five values of the delay in increasing order andéhe 10 columns and 8 rows. On each pang} is graphed
for k = 1-5 are the five values of the delay probability against log(é;) for one value ofw; and one stream.

in increasing order. The variablg;, is the QoS uti-  The strip labels at the top of each panel give the value
lization for delays ;, delay probabilityw;, and streana, of wx and the rank of the stream. There are five points
wherei = 1-349. For stream, 7; is the traffic bit rate  per panel, one for each value of |4g;).

andc; is the mean number of active connections. Figure 1 shows a number of overall effectswfs

andw onu. For each pair of values @ andzt, there
is an increase im with §, a strong main effect in the
data. In addition, there is an increase witlior fixed

The structure of the data provides an opportunity for ¢ and w, another strong main effect. There is also a
careful initial study of the dependence of thg; on main effect forw, but smaller in magnitude than for the
5; andwy. We have 25 measurements of each of theseOther two variables. The dependenceuobn log,(8)
variables for each streaimand for these measurements 1S nonlinear, and changes substantially with the value
bothz; ande; are constant. We start our model building ©f 7 ast increases, the overall slopeuras a function
by exploiting this opportunity. of log,(§) first increases and then decreases. In other

We consider modeling each stream separately, butWords, there is an interaction betweenjag andz.
hope to get model consistency across streams that alSUCh an interaction complicates the dependence, so we
lows simplification. If such simplicity occurs, it is Searchfurther for a transformatighof u that removes
likely to require a monotone transformation of g the interaction. This pattern occurs when all of the_ live
because they vary between 0 and 1. So we begin, conStréams or all of the synthetic streams are plotted in the

ceptually, with a model of the form sameway. _ _
There is an interaction between lgg) andr in part

fuijr) =gi(8j, wr) + &jk- because when is close to 1, there is little room for

7.1 Strategy: Initial Modeling of Dependence
on § and
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change as a function of lg¢). For this reason, we
tried expanding the scale at 1 by taking the function
f(u) =10g,(1 — u). This did not achieve appreciably
greater simplicity because nonlinearity and an interac-
tion are still strongly present, but the interaction cause
is behavior for smaller values of
The nature of the remaining interaction f@fu) =
log,(1 — u) suggests that a logit transformation might
do better:
u
)

7 @) = logity(w) = logy (1
Figure 2 plots logi(u;;x) against log(s;) using

the same streams and method as Figure 1. The Iogitt
function greatly simplifies the dependence. The depen-

dence on log(d) is linear. There does not appear to be
any remaining interaction among the three variables:
log,(8), T andw. To help show this, 16 lines with dif-
ferent intercepts but the same linear coefficient have
been drawn on the panels. The method of fitting is de-
scribed shortly. The lines provide an excellent fit.

7.3 Theory: The Classical Erlang Delay Formula

The packet arrivala; are not Poisson, although they
do tend toward Poisson asandz increase. The packet
sizes, and therefore the service times, are not indepen

dent exponential; they have a bounded discrete distrib-

J. CAO, W. S. CLEVELAND AND D. X. SUN

much more statistically complex packet streams. In
both cases logjtu) is additive in functions ofr, &
andw, and the dependence is linear in Jod).

7.4 Conditional Dependence of u on

The approximate Erlang delay formula suggests that
we try the term—log,(—log,(w)), the negative com-
plementary log ofw, in the model. In addition, as
we see in Section 9, certain asymptotic results sug-
gest this term as well. We studied the dependence of
logit, (1) on—log,(— log,(1—w)) for all synthetic and
live streams using trellis display in the same way that
we studied the dependence onJ@Y. Figure 3 is a
rellis plot using the same 16 live streams as in Fig-
ure 2. On each panel, logit:;;x) is graphed against
—log,(—log,(wy)) for one value of; and one stream.

Figure 3 shows that the guidance from the Erlang
formula is on target: logju) is linear in
—log,(—10g,(w)) and the slope remains constant
across streams and across different values.ofo
help show this, lines with the same linear coefficient
but different intercepts have been drawn on the pan-
els. The lines provide an excellent fit except for the
errant points for high utilizations observed earlier. The
method of fitting is described shortly. This pattern oc-
curs when all of the live streams or all of the synthetic

ution and are long-range dependent, although they tendStréams are plotted in the same way.

to independence as and t increase. Still, we use,

A stream-coefficient delay model. The empirical

as a suggestive case, the results for Poisson arrivalsﬁndings in Figures 2 and 3 and the guidance from the

and i.i.d. exponential service times to provide guidance
for our model building. Erlang showed that for such
a model the following equation holds (Cooper, 1972):

w=ue WA

Substituting for = t/u and taking the negative log of
both sides we have
1-—

M -

Becausev, which ranges from 0.001 to 0.05, is small
in the majority of our simulations compared withwe
have, approximately,

u
oT.

—logy(w) = —logy(u) + log,(e)

1—
u
Taking logs of both sides and rearranging we have

logit, (1) = log,(logy(e)) + 10g,(7)

u
oT.

—log,(w) = log,(e)

+10g5(8) — l0g,(— logy (w)).

So certain aspects of the simplicity of this classical
Erlang delay formula occur also in the pattern for our

Erlang delay formula led to a very simple model that
fits the data,

logity (u;jx) = i + 05109,(3;)

+ 00 (—10gy(—l0g, (wi))) + €ijk

where thee; ;. are realizations of an error random vari-
able with mean 0 and median absolute deviatiga).
The u; are stream coefficients, which change with the
packet streani and characterize the statistical proper-
ties of the stream.

We fitted the stream-coefficient delay model of (3)
twice: once to the 349 live streams and once to the
349 synthetic streams. In other words, we estimated the
coefficientsu;, o5 ando,, twice. Data exploration sug-
gests that the error distribution has longer tails than the
normal, so we used the bisquare method of robust esti-
mation (Mosteller and Tukey, 1977). The estimates of
o5 ando,, are

Live: o5 =0.411,
Synthetic: 65 = 0.436,

0, =0.868
0, =0.907.
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The two sets of estimates are very close in the sensewith 7, u increases witle as well. Howeverg andc
that the fitted equation is very close, that is, results in measure different aspects of the load, which is impor-
very similar fitted QoS utilizations. For the 16 streams tant to the modeling. The bit rate is equal tocy;,
shown in Figures 2 and 3 the lines are drawn using thewhere y;, the connection bit rate in bits per con-
formula in (3) with the bisquare parameter estimates nection, measures the end-to-end speed of transfers,
05, 0p ANA[1; . and ¢ measures the amount of multiplexing. An in-
Because of the long-tailed error distribution, we use crease in either increases
the median absolute deviatiefn(¢) as a measure of the First we introduce fast forwarding. Consider a gen-
spread. The estimates from the residuals of the two fitseralized packet stream with bit rateinput to a queue
are without any assumptions about the statistical proper-
Live: si(e) =0.210 ties. The packet sizes can be any sequence of posit'ive
Synthetic: 7i(e) = 0,187 random variables and the mterarr_lvals can be any p_qlnt
' U process. Suppose we are operating at the QoS utiliza-
The estimates are very small compared with the varia-tion u = 7 /8 for QoS delay criteridd andw. Now for
tion in logit,(«). In other words, the stream-coefficient 7 > 1 we speed up the traffic by dividing all inter-

delay model provides a very close fit to the lggit; ). arrival timesr, by k. The packet stream has a rate
Of course, this was evident from Figures 2 and 3 be- change: the statistical properties of thechange only
cause the fitted lines are quite close to the data. by a multiplicative constant. A rate increase/oin-

creasesy, by the factoris but notc. The bit rater
changes toit. Suppose we also multiply the band-
width 8 by A, so that the utilizatiom is constant. Then
The coefficientu; in the stream-coefficient delay the delay process of the rate-changed packet stream is
model of (3) varies with the packet stream and reflects the delay process for the original packet stream divided
how the changing statistical properties of the streamsby %. That is, if we carried out a simulation with a live
affect the QoS utilization. Part of the simplicity of the or synthetic packet stream and repeated the simulation
model is that a single number characterizes how thewith the rate change, then the delay of each packet in
statistical properties of a stream affect the QoS band-the second simulation would be the delay in the first di-
width. However, the model cannot be used as a practi-vided by#%. The traffic bit rate, the bandwidth and the
cal matter for bandwidth estimation because it requiresdelay process are speeded up by the faktdwut the
a value ofu, which would not typically be known. variation of the packet stream and the queueing other-
If we knew the traffic characteristics in detail for the wise remain the same. If we changed our delay criter-
link, for example, if we had FSD parameters, we could ion from § to §/k, then the QoS utilizatiom would
generate traffic and run simulations to determinand be the same, which means the QoS bandwidthgis
therefore the bandwidth. This might be possible in cer- It is as if we videotaped the queueing mechanism in
tain cases, but in general is not feasible. the first simulation and then produced the second by
What we must do is start with (3) and find readily watching the tape on fast forward with the clock on
available variables that measure stream statistical propthe tape player running faster by the facioas well.
erties and can replagein the stream-coefficient delay We call this phenomenon fast-forward invariance.
model. We carry out this task in the remainder of this Let us now reduce some of the speedup of the fast
section. Two variables replage the bit rater and the  forwarding. We divide the, by %, which increases,
mean number of active connectianswith their values by the factorz, but we holds fixed and do not decrease
of t; and¢; for each of our packet streams. We use by the factor ¥ 4. What is the new Qo3& that satisfies
both theory and empirical study, as we did for the the delay criteridd andw? Sinceu satisfies the criteria
stream-coefficient delay model, to carry out the model for delays/ k, we have room for more delay, socan
building. increase. In other words, a rate increase results in uti-
lization gains for the sam& This is the rate gain.
Now suppose we hold fixed but increase by the
factor h > 1. This means thag, must be reduced by
Figures 2 and 3 show that the QoS utilizatiomn- the factor ¥ 2. Now the statistical properties change in
creases withr. There are two causes: rate gains and other ways due to the increased multiplexing. As we
multiplexing gains. Becauseis positively correlated  saw in Section 4, the, tend toward Poisson and the

7.5 Strategy: Incorporating Dependence on
T and c for Practical Estimation

7.6 Theory: Fast-Forward Invariance, Rate Gains
and Multiplexing Gains
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six Internet links. logit utilization using only the bit rate ¢ to characterize stream sta-

tistical properties.
g, tend toward independence. The dissipation of the

long-range dependence of the packet streams, as wellhe median absolute deviation of thgjx by ms, (),

as the tendency of the marginal distributionzpfto- allowing it to change witls ;.

ward exponential, tends to decrease the queueing delay we fitted the model to the live data and to the syn-
d|Str|bUt|On and thereby Increase the QOS Ut|I|Zat|On. thetlc data using the bisquare and also accommodating

These theoretical considerations lead us to two im- of the six medians of the residuals for the six links.

portant conclusions about modeling. First, we want to There is a clear link effect, mimicking the behavior
be sure that whatever model results, it must obey the;, Figure 4: The two links with the largest and small-
principle of fast-forward invariance. Second, it is un- et residual medians are the two with the largest and
likely to be enough to model with just. If y, were  gmgajlest median connection bit rates. The behavior of
constant across the Internet,and ¢ would measure  {hese extremes is what we would expect. For example,
exactly the same thing for our purposes and we would \7|x has the smallest mediam, so its bit rate under-
have no need for beyondz, but if y, changes sub-  regicts the utilization because a stream at NZIX with
stantially, as seems likely, then we will needs well. 3 ceraing has more than average multiplexing than
Figure 4 shows '_[he six medians from th_e 349 values of streams at other links with the samewhich means
log, () for our live streams broken up into Six groups  yhe fayorable statistical properties push the utilization

by the link. The range of the medians is about 4 109 pjgher than expected under the model. The same plot
base 2 bitgs per connection, which means that the me- for the synthetic streams shows the same effect.

dians ofy, change by a factor of 16. One link, NZIX, In addition, there is another inadequacy of this first

is appreciably slower than the others. model. Because, is changing, we want the model
7.7 Modeling with T and ¢ to obey the principle of fast-forward invariance, but
it does not because the estimatesogfand os are
not equal.

We enlarge the bandwidth model by adding the vari-
able log(c). Because log(r) is used in the initial
model, adding log(c) is equivalent to addings;. In
doing this we want an equation that obeys fast-forward
logity(u;jx) = 0 + 07 10gx(7;) + 05 109,(8 ) invariance: If we holdc fixed, multiply = by # and

divide § by &, then we do not want a change in the
+ 0w(—10gy(—l0gy(wi))) + ¥ijk, QoS utilization. This is achieved by the best-effort de-
lay model

We begin by modeling just with to see if this can
explain the observed utilizations without The ap-
proximate Erlang delay formula in (2) suggests that the
dependence of the stream coefficientsran linear in
log, (7). This means the model for logitt; j«) is

where the/; ;. are realizations of an error random vari-
able with mean 0. In our initial explorations for the fit l0Qit, (u: 1) = . 8

. ! Gita(uiji) = 0 + 010Gy (ci) + 015 1005(7:8 )
and the residuals we discovered that the spread of thgs) 2 R i S
residuals increased with increasidg So we model + 04, (—10g,(— l0gy (wi))) + Vijk,
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where they,; x are error variables with mean 0 and me- 7.8 Alternative Forms of the Best-Effort
dian absolute deviatioms, (y). Fast-forward invari- Bandwidth Formula
ance is achieved by enteringands as a product.
IS achiev y A + produl The best-effort delay formula of the best-effort delay
We fitted the enlarged (5) to the live streams and . .
. . . model in (5) is
to the synthetic streams using the bisquare because

our exploration showed that the error distribution has logity(u; k) = 0 + 0c10gy(c;) + 07510g,(1:8;)
longer tails than normal. The estimation included a nor- (6)
malization to adjust for the:s; (v). The bisquare esti- + 00 (—10g(—logy (1))

mates ob, o., 0,5 ando,, are . .
AL @ Sincet = cy,, the formula can be rewritten

Live: 6=-8933 6. = 0420
brs=0444 5, =0893
Synthetic: 6= —8.227, 4, =0.353
605 = 0457, 6, =00952 +00(=10g3(— l0gy(@))).

logity (1) = 0 + (0¢ 4 015) l0g,(c)
(7) + 075 |092()/b3)

The two sets of estimates are very close in the senselr; this forfm we see the action of the amounrt] of multi-
that the fitted equations are close. The estimates of?/€XINg of connections as measureddgnd the end-

ms; (), the median absolute deviations, (), of the to-end gonpectlon Spe‘?d as_measure_dypyAn n-
residuals are crease in either results in an increase in the utilization

of a link.

Delay: 1ms 5ms 10ms ) S
7.9 Modeling the Error Distribution

50ms 100 ms
Live: 0211 0312 0.372 As we have discussed, our study of the residuals
0406  0.484 from the fit of the best-effort delay model showed

. that the scale of the residual error distribution in-
Synthetic: 0169 0322 0.356 creases with the delay. The study also showed that
0.380, 0.457. log,(me, (¥)) is linearly related to log(s). From the
least squares estimates for the live data, the estimate of
the intercept of the regression line+g.481, the es-
timate of the linear coefficient of the line is 0.166 and
the estimate of the standard error is 0.189. (Results are
similar for the synthetic data.)
We also found that when we normalized the residuals
by the estimatesis, (), the resulting distribution of
. . . values is very well approximated by a constant times a
predictor variables except log) are graphed against ¢ distribution with 15 degrees of freedom. Because the

the standardized residuals from regressingogon normalized residuals have a median absolute deviation

f[he same varla_lbles. The p_artlal regressions are fltteql USor 1 andrs has a median absolute deviation of 0.691,
ing the final bisquare weights from the full model fit,

o L ) the constant is 89171, We use this modeling of the
and the standardization is a division of the residuals by error distribution for the bandwidth prediction in Sec-

the estimatei%gj (). Figure 6 shows that lggc) has tion 8.
explanatory power for each link separately and not just
across links. We can also see from the plot that there is

a remaining small link effect, but a minor one. This is

also demonstrated in Figure 7, which is the same plot The best-effort delay model in (5) can be used to es-
as Figure 5, but for the enlarged model. The horizontal timate the bandwidth required to meet QoS criteria on
scales on the two plots have been made the same to fadelay for best-effort Internet traffic. We describe here a
cilitate comparison. The major link effect is no longer conservative procedure in the sense that the estimated
present in the enlarged model. The result is the samebandwidth is unlikely to be too small. In doing this we
for the same visual display for the synthetic data. use the coefficient estimates from the live delay data.

Again, the two sets of estimates are close.

It is important to consider whether the added vari-
ablec contributes in a significant way to the variability
in logit,(u; %) and does not depend fully on the single
link NZIX. We used the partial standardized residual
plotin Figure 6 to explore this. The standardized resid-
uals of regressing the logit utilization, logjt:), on the

8. BANDWIDTH ESTIMATION



534 J. CAO, W. S. CLEVELAND AND D. X. SUN

-10 -3 o -1 10 L

HELL KIFRA

N
\\“x
el

st

. FE

Al AIXZ

Partial Residual Logit Utilization (logit base 2 fraction)
g =ul g U
N,
o RRE --4‘
o .r.—--\;l!:

Partial Residual Connection Load (log base 2 number of connections)

FiG. 6. Apartial residual plot for the explanatory variable log,(c) for the best-effort delay model given each of the six Internet links.



BANDWIDTH ESTIMATION FOR INTERNET TRAFFIC 535

9. OTHER WORK ON BANDWIDTH ESTIMATION
| ¥ AND COMPARISON WITH THE RESULTS HERE

Bandwidth estimation has received much attention
in the literature. The work focuses on queueing be-
Lo » cause the issue driving estimation is queueing. Some
o | - work is fundamentally empirical in nature in that it uses

live streams as inputs to queueing simulations or syn-

| thetic streams from models that have been built with

@4 ai s wr o4 w live streams, although theory can be invoked as well.

Median Residual Logit Utilization (logit base 2 fraction) Other work is fundamentally theoretical in nature in
that the goal is to derive properties of queues math-

Fic. 7. Dot plot of link median residuals for the best-effort delay ematically, although live data are sometimes used to
model. provide values of parameters so that numerical results
can be calculated. Most of this work uses derivations
of the delay exceedance probability as a function of
an input source to derive the required bandwidth for
a given QoS requirement. The delay exceedance prob-

First, we estimate the expected logit utilization
¢ =logit,(u) by

/= —8.933+0.420 logy(c) + 0.444 logy(8) ability is equivalent to our delay probability, where the
buffer size is related to the delay by a simple multipli-
+ 0.893(— log, (— l0gy())). cation of the link bandwidth. Since exact calculations

of the delay probability are only feasible in special

On the utilization scale this is cases, these methods seek an approximate analysis, for

ol example, using asymptotic methods, stochastic bounds
0= - or, in some cases, simulations. There has been by far
1+2 much more theoretical than empirical work.
Next we compute a predicted median absolute devia- The statistical properties of the traffic stream, which
tion from the above linear regression: have an immense impact on the queueing, receive at-
tention to varying degrees. Investigators who carry out
sig () = 27 0-481+0.166106:5 empirical studies with live streams do so as a guaran-
tee of recreating the properties. Those who carry out
Let 115(p) be the quantile of probability of ar dis-  studies with synthetic traffic from models must argue
tribution with 15 degrees of freedom. Then the lower for the validity of the models. Much of the theoretical
limit of a 100(1 — p)% tolerance interval fo is work takes the form of assuming certain stream proper-
R . ties and then deriving the consequences, so the problem
U(p) =€ —ms(Y)ns(p)/0.691 is solved for any traffic that might have these proper-

ties. Sometimes, though, the problem is minimized by

_ _ Ol
For p =0.05,115(p) = 1.75, so the lower 95% limit is deriving asymptotic results under general conditions.

£(0.05) = £ — 2.53m5 (V). 9.1 Empirical Study
The lower 95% limit on the utilization scale is Our study here falls in the empirical category, but
A with substantial guidance from theory. To estimate ex-
. 2t(0.09 ceedance probabilities, we run simulations of an in-
14(0.09 = 1+ 20(0.05) finite buffer, FIFO queue with fixed utilization using

live packet streams or synthetic streams from the FSD
This process is illustrated in Figure 8. For the figure, model as the input source.
v» Was taken to be’2 bits/s per connection. On each  The tradition for using live Internet streams in a
panel the values ot and w are fixed to the values queueing simulation began early in the study of Inter-
shown in the strip labels at the tops of the panels, andnet traffic. In a very important study it was shown that
u and 1(0.05) are both graphed against lag) for long-range dependent traffic results in much greater
8 varying from 0.001 to 0.1 s. queue-length distributions (Erramilli, Narayan and
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Willinger, 1996) than Poisson traffic. This was an im- as the properties of the traffic with which the source
portant result because it showed that the long-rangeis multiplexed. Subsequently we discuss the effective
dependence of the traffic would have a large impact bandwidth approach to bandwidth estimation based on
on Internet engineering. In other studies, queueingapproximating the delay probability in the asymptotic
simulations of both live and altered live traffic are regime of many sources.
used to study the effect of dependence properties and Consider the delay exceedance probability for a
multiplexing on performance using the average queueFIFO queue on a link with constant bit rate. In the
length as the performance metric (Erramilli, Narayan, asymptotic regime of many sources, we are con-
Neidhardt and Saniee, 2000; Cao, Cleveland, Lin andcerned with how the delay probability decays as
Sun, 2001). the size of the system increases. Suppose there are
In Mandjes and Boots (2004), queueing simulations » sources and the traffic generated by theources
of multiplexed on-off sources are used to study the in- js identical, independent and stationary. The number
fluence of on and off time distributions on the shape of of sourcesn grows large at the same time that re-
the loss curve and on performance. To improve the ac-sources such as the link bandwigghand buffer sizes
curacy of the delay probabilities based on simulations, scale proportionally, so the deldystays constant. Let
techniques such as importance sampling are also cong — 8, for somegy and letQ, be the queueing de-
sidered (Boots and Mandjes, 2002). lay. Under very general conditions, it can be shown
One study (Fraleigh, Tobagi and Diot, 2003) first that (Botvich and Duffield, 1995; Courcoubetis and
used live streams (Internet backbone traffic) to validate weper, 1996: Simonian and Guibert, 1995: Likhanov

a traffic model: an extension of fractional Brownian and Mazumdar, 1998; Mandjes and Kim, 2001)
motion (FBM) known as a two-scale FBM process.

They did not model the packet process, but rather (9)  lim —n"togP(Qy > 8) =1 (8, Po),
modeled bit rates as a continuous function. Then they
) AR where

derived approximations of the delay exceedance prob-
ability from the model, which served as the basis for (10) 1(8, Bo) = inf sup(sBo(8 + 1) — sta(s, 1)),
their bandwidth estimation. Parameters in the two- >0 s
scale FBM model that appear in the formula are relatedand is sometimes referred to as the loss curve in the
to the bit rater using the data. This is similar to our literature. Let(s*, t*) be an extremizing pair in (10).
process here where we relate the stream coefficients tarhen «(s*, t*) is the effective bandwidth for the sin-
¢ andr. Fraleigh, Tobagi and Diot also used queueing gle source as defined in (8) andx(s*, t*) is the
simulations to determine delay exceedance probabili- effective bandwidth for the: sources. For a QoS
ties as a method of validation. We compare their resultsrequirement of a delay and a delay probabilityw,
and ours at the end of this section. approximating the delay probability (B, > §) us-
ing exp(—nli (8, Bo)) [equation (9)], the bandwidth re-
quired for thern sources can be found by solving the

A very large number of publications have been writ- following equation forg:
ten in an area of bandwidth estimation that is referred . . ‘s .
to as effective bandwidth. The effective bandwidth of (11) s"B( +17) — s na(s™, ") = —logw.
an input source provides a measure of its resource ushjs gives
age for a given QoS requirement, which should lie o |
somewhere between the mean rate and the peak ratq12) g = Lna(s*, ) — &,
Let A(t) be the total workload (e.qg., bytes) generated §*(8 +1%) s*(8 +1%)
by a source in the interva0, ]. The mathematical de-  which is the effective bandwidth solution to the band-
finition of the effective bandwidth of the source (Kelly, width estimation problem. If the delay — oo, then
1996) is the extremizing value of* approacheso and the
bandwidth in (12) reduces to

9.2 Mathematical Theory: Effective Bandwidth

8) a(s,t)= 1 log E[eSA(’)], O<s,t <00,
st n lim a(s*, %),
for some space parameteand time parametet. For =00
the purpose of bandwidth estimation, the appropriate and we recover the classical effective bandwidth de-
choice of parameters depends on the traffic character{inition of a single source lipa_ o a(s*, t*) for the
istics of the source and the QoS requirements, as welllarge buffer asymptotic model (Elwalid and Mitra,
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1993; Guerin, Ahmadi and Naghshineh, 1991; Kesidis, (2001) is to numerically evaluate the loss curve
Walrand and Chang, 1993; Chang and Thomas, 1995)./ (8, Bo). First, these authors evaluated the effective
If the delay§ — 0, then the extremizing pai* — 0 bandwidth functionx (s, ) [equation (8)] empirically
ands*r* — § for somes, the bandwidth in (12) re- based on measurements of traffic byte counts in fixed
duces to size intervals. Then they obtained the loss curve [equa-
) logw tion (10)] using numeric optimizing procedures with

= respect to the space parameteand the time para-

9
t*—00 t* s

n lim a(i t*
] _ . meterr. As examples, they applied this approach to
and we recover the effective bandwidth definition estimate bandwidth where the input source is a Bell-
im0 a(5/1%,1%) for the bufferless model (Hui, core Ethernet WAN stream or streams of incoming IP
1988). traffic over the University of Crete’s wide area link.
As we can see, the effective bandwidth solution Thejr empirical approach is model-free in the sense
requires evaluation of the loss curves, fo) [equa-  that it does not require a traffic model for the input
tion (10)]. However, an explicit form of the loss curve goyrce and all evaluations are based on traffic mea-
is generally not available. One approach is to derive syrements. However, their approach is computation-
approximations of the loss curve under buffer asymp- ajly intensive, not only because the effective bandwidth
totic models, that is, the large buffer asymptotic model functiona (s, ) has to be evaluated for all time parame-
(6 — o0) or the bufferless models(— 0), for some  terss, but also because the minimization with respect
classes of input source arrivals. For example, if the to 1 is nonconvex (unlike the maximization in the space
source arrival process is Markovian, then for some parameter) and thus difficult to perform numerically
n > 0 andv (Botvich and Duffield, 1995), (Gibbens and Teh, 1999; Kontovasilis, Wittevrongel,
lim 1(5, Bo) — 16 = v. Bruneel, Van Houdt and Blondia, 2002). '
500 In the effective bandwidth approach, one typically
If the source arrival is fractional Brownian motion with approximates the buffer exceedance probability based

Hurst parametet, then for somev > 0 (Duffield, on its logarithmic asymptote. For example, in the as-
1996) ymptotic regime of many sources, using (9), one can

approximate

(13) P(Qn > &) ~ exp(—nl (8, o).

An improved approximation can be found by incorpo-
rating a prefactor, that is,

lim 18, Bo)/8° 2 =v.
§—>00

For an on—off fluid arrival process, it is shown that as
3 — 0 for some constantg(8g) andv(Bp) (Mandjes

and Kim, 2001),
: P(Qn > 8) = K (n, 3§, Bo) exp(—nl (8, Bo))-

1(8, Bo) ~ +v(Bo)VE + 0(),

(6. Fo) ~ 1(Fo) (Po) ©) _ Using the Bahadur—Rao theorem, such approximation
and as’ — oo for some constart(fo) (Mandjes and  has been obtained for the delay exceedance probabil-
Boots, 2002), ity in the infinite buffer case as well as the cell loss

165, Bo) ~ 6 (Bo)v(8), ratio in the finite buffer case that has the same logarith-

mic asymptote but a different prefactor (Likhanov and
where v(8) = — log P(residual on period> §). How- Mazumdar, 1998).

ever, it is found that bandwidth estimation based on
buffer asymptotic models suffers practical problems.
For the large buffer asymptotic model, the estimated Some authors have investigated service disciplines
bandwidth could be overly conservative or optimistic other than FIFO, such as general processor shar-
because it does not take into account the statistical mul-ing (Zhang, Towsley and Kurose, 1994) and priority
tiplexing gain (Choudhury, Lucantoni and Whitt, 1994; queueing (Berger and Whitt, 1998). Although TCP is
Knightly and Shroff, 1999). For the bufferless model, the most dominant protocol in today’s Internet, we do
there is a significant utilization penalty in the estimated not consider the effect of the TCP feedback control
bandwidth (Knightly and Shroff, 1999) since results in- mechanism since the link we sought for estimating
dicate that there is a significant gain even with a small a bandwidth is not a bottleneck link. To account for
buffer (Mandjes and Kim, 2001). the TCP feedback control, other authors have studied
Another approach proposed by Courcoubetis, Siris characteristics of bandwidth sharing for elastic traf-
and Stamoulis (1999) and Courcoubetis and Siris fic and investigated the bandwidth estimation prob-

9.3 Theory: Other Service Disciplines
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lem for such traffic (de Veciana, Konstantopoulos our analysis is 0.52 for the real data and 0.42 for the
and Lee, 2001; Ben Fred, Bonald, Proutiere, Régnié synthetic data, which is quite different from the shape
and Roberts, 2001). Again other authors have con-parameter computed from2H = 0.18. If the bit rate
sidered regulated input traffic such as that from a per connectiony, is a fixed constant, the best-effort de-
leaky bucket (Elwalid, Mitra and Wentworth, 1995; lay formula in (5) implies that for some constarit

Lo Presti, Zhang, Kurose and Towsley, 1999; Kesidis

and Konstantopoulos, 2000; Chang, Chiu and Song, w~ PP(Qi>9)

2001) ~ "0y . (0ct078) /0w
~exp<— log 2. 20 /0wy 00w
9.4 Theory: Direct Approximations of the

Delay Probability < u >_l/0w(305/ow)

Besides approximating the delay exceedance proba- 1-u
bility using the effective bandwidth approach, some au- If o, + 0,5 = 0, and the traffic bit rate; is a multi-
thors have considered direct approximations for someple of r (i.e., r; = n;7), then the above approximation
special classes of input traffic models. For example, is consistent with the effective bandwidth result with
for a Markov modulated fluid source, the delay prob- many sources of asymptotics [equation (9)]. In our em-
ability can be more accurately expressed as a singlepirical analysis we found.s + o. ando,, to be quite
exponential with a prefactok determined from the  close; the ratiqo.s + 00)0;1 is 0.97 for real data and
loss probability in a bufferless multiplexer as estimated 0.85 for synthetic data. One of the reasons that this ra-

by Chernoff's theorem (Elwalid, Heyman, Lakshman, tio is not 1 is possibly because (9) is an asymptotic
Mitra and Weiss, 1995). For an aggregate Markov formula.

modulated fluid source, the delay probabilities can be _
approximated by a sum of exponentials (Shroff and 9.6 Cpmparlson of the Results Presented Here
Schwartz, 1998). For a Gaussian process, a tight lower ~ With Other Work

bound of the delay probability can be obtained using  The work presented in this article resulted in a sim-
maximum-variance based approaches (Norros, 1994,e formula for bandwidth estimation. At the same
Knightly, 1997, Choe and Shroff, 1998; Fraleigh, {ime, validation has been extensive, permeating all ar-
Tobagi and Diot, 2003). These expressions can be used 55 of the work. Validation is carried out in two ways:
in place of (13) to derive the required bandwidth for a empirically and theoretically.

QoS requirement. Re_aders are referred to Knig_htly and The large number of papers in the area of effec-
Shroff (1999) for a nice overview and comparison of e handwidth and other theoretical work cited above
these approaches as well as the aforementioned effecr e yielded much insight. This work has posited traf-
tive bandwidth approach for bandwidth estimation. ¢ stream models and investigated the resulting math-

9.5 Theory: Queueing Distributions ematical properties. However, for best-effort Internet
traffic there has been no extensive study to deter-
mine whether some posited model accurately describes
the stream statistical properties nor has there been
extensive work in the form of empirical queueing sim-
ulations to determine whether queueing results for

We now discuss implications of our stream-coeffi-
cient delay formula and best-effort delay formula, and
their relationship to some previous work. The stream-
coefficient delay model in (3) implies that for each

stream, best-effort traffic fit the theory. Consequently, the sim-
w ~ P(Q; > §) ple best-effort delay formula, which is not readily
—1/0y derivable without a hint of the final results, was not
R exp(— log 2. 2ti/ow (%) 506/%) discovered.
—u

The interesting paper cited above that used the two-
for stream coefficienf; and regression coefficients scale FBM model surely took great pains to validate the
ow, 05. This suggests that the tail distribution of queue- model (Fraleigh, Tobagi and Diot, 2003). One prob-
ing delay is Weibull with shape parametgo;,*. The lem with this approach—modeling traffic bit flow as
Weibull form is consistent with the FBM traffic model a fluid rather than the packet process as it appears
(and also the two-scale FBM model), but there the on the link—is that the Gaussian assumption does not
shape parameter is-2 2H. Notice thatto(;o;1 from take hold until the level of aggregation is quite high.
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Consequently, the FBM model is not a good approxi- based on simulations with packet stream inputs from
mation until the traffic rate is 50 megabitssand above, = measurements on live links or from models for traffic.
so their bandwidth estimation model is not validated The classical Erlang delay formula provides a simple
below 50 megabits. By contrast, our best-effort de- formula that can be used to estimate traffic streams that
lay model is valid to as low as 1 megatst However,  in theory have Poisson arrivals and i.i.d. exponential
the ensuing methods used by Fraleigh, Tobagi and Diotsjzes. Best-effort traffic is much more complex: It is

(2003) to find the QoS bandwidth require a series of ap- nonlinear, long-range dependent and, to date, has no
proximations and a worst-case empirical method in the simple, validated formula to describe it.

estimation of parameters. There appears to have been

little checking of these approximations. The bandwidth 10-3 Principal Result: The Best-Effort Delay Model
results appear to us to be inaccurate, possibly aris- The principal result of this paper is a statistical
ing from some of the approximations. First, as the bit qqe| that provides a simple, validated formula for the
rate increases up to 1 gigats{ the utilization appears  oqtimation of bandwidth for best-effort traffic that per-
to stabilize at values less than 1 and substantially SOtorms in the same way that the Erlang delay formula
in some cases. As our theoretical discussion of rate .« for the Poisson-exponential case. The model has

?_alns an? _mult|pIeX|tng lgaln?hderb??ns:ra_tes, the um%?.' been validated through extensive empirical study and
ton must increase fo 1 as e bit rate increases. ISthrough consistency with certain theoretical properties
is the case for our best-effort delay model. For exam-

L . of queueing.
ip::/e;)]:[hoeoultlgzn%tlgnb}‘:):aatledgflaly ;;;;En?ss’ggo/g r;_.)rg?nb”- The model consists of the best-effort delay formula

Figure 8 of Fraleigh, Tobagi and Diot (2003), but is plus random variation,

98% for our model. In addition, the model in Fraleigh, logit, (1) = 0 + 0c109,(c) + 015 100(T8)
Tobagi and Diot (2003) works simply with the bit rate
rather than decomposing into the number of active con- + 00 (— 109z (= 10gy (w))) + ¥,

Pectlon_s tt)llmes th_e g't raf[e tﬁerbco?n(:fctl?g ?nd us('jngljwherew is a random error variable with mean 0 and
WO variables, as IS don€ In (n€ best-etiort delay moael 0 ji5 1 apsolute deviations (1) which depends o#;

here. As we have demonstrated theoretically and em-Iogz is the log base 2; and logit) = log,(u/ (1 — u)).

pirically, the bit rate is not sufficient to account for The distribution of 0691y /my (v) is a distribution

the utilization since a fast network and a network with . : ,
. . ) o with 15 degrees of freedom. Estimates of the coeffi-
a high traffic connection load must be distinguished. .
cients of the model are

10. RESULTS AND DISCUSSION 0= —8.933 5c =0.420,
10.1 Problem Formulation 015 = 0.444 0w =0.893

Suppose the packet stream—packet arrival times andl'he expressiom:; () is modeled as a function df
sizes—arriving for transmission on an Internet link is 10g,(ms(3)) is a linear function of log(s) plus ran-
best-effort traffic with bit rater bits/s and number of  dom variation. The estimate of the intercept of the line
simultaneous active connectionsSuppose the linkin-  is —0.481, the estimate of the linear coefficient of the
put buffer is large enough that packet loss is negligible. line is 0.166 and the estimate of the standard error
Our goal is to estimate the QoS bandwigthn bits/s is 0.189. The bit rate is equal tocy,, wherey, is
or, equivalently, the QoS utilizatiom= t/8, that sat-  the connection bit rate in bits per connection. So the
isfies QoS criteria for the packet queueing delay in the best-effort delay formula can also be written
link input buffer. The criteria are a deldyin seconds _
and the probability» that the delay for a packet ex-  109it2(u) =0 + (0 + 015)10g5(¢) + 015 10G,(y56)

ceedss. + 04 (—l0gy(—logy(@))).

10.2 Other Work on the Problem In this form we see the action of the amount of multi-

There is a wide literature on the bandwidth esti- plexing of connections as measureddsnd we see the
mation problem. Much of it is theoretical, that is, end-to-end connection speed as measureg, b&n in-
mathematical results that derive properties of queue-crease in either results in an increase in the utilization
ing systems. A smaller literature is empirical in nature, of a link.
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The best-effort delay model is used to estimate the The generated interarrivals are independent of the gen-
bandwidth required to carry best-effort traffic given  erated sizes, which is what we found in the live data.
w, T andc. The QoS logit utilization is estimated by The result is 349 synthetic streams that match the sta-

A tistical properties collectively of the live streams. For

¢ =—8933+0.420l0g(c) + 0.444l0gy(75) each live or synthetic stream, we carried out 25 runs,
+ 0.893(— logy(— logy(w))), each with a number of simulations. For each run we
picked a delay and a delay probability; simulations
were carried out to find the QoS bandwidthwhich is

ol the bandwidth that results in delay probabilityfor 5.
1400 This also yields a QoS utilization = t/8. We used

five delays (0.001, 0.005, 0.010, 0.050 and 0.100 s)

The corresponding estimated bandwidthzi§i. For  and five delay probabilities (0.001, 0.005, 0.01, 0.02

such an estimate there is a 50% chance of being tooand 0.05), and employed all 25 combinations of the

large and a 50% chance of being too small. We could, two delay criteria. The queueing simulation results in

however, use a more conservative estimate that pro-delay data, that is, values of five variables: QoS utiliza-
vides a much smaller chance of too little bandwidth. tion u, delays, delay probabilityw, the mean number
Let of active connections of the trafficand the traffic bit

s (y) = 2~0-481+0.166 logy(8) rater. The delay data were used in the model building.

so the QoS utilization is estimated by

U=

be the estimate of. (). Lets15(p) be the lower 10p% 10.5 Validity and Applicability

percentage point of adistribution with 15 degrees of ~ Extensive data exploration with visualization tools
freedom, where is small, say 0.05. Let (some shown here) demonstrates that the best-effort
; ;o delay model fits the simulation delay data. This, of
L(p) =L —m(d)t 0.691 ) . '
(P) m(9)ns(p)/ course, is necessary for the model to be valid. In ad-

Then dition, validity is supported by the model reproducing
ol(p) the theoretical queueing properties as just discussed.

u(p)=——— The validity of the best-effort delay model depends

1+2¢w on the validity of the traffic streams used as inputs

is a conservative utilization estimate, the lower limit of to the queueing simulation; that is, the packet streams
a 10»% tolerance interval for the QoS utilization. The must reproduce the statistical properties of best-effort
corresponding estimated bandwidthrigi(p). streams. Of course, the live streams of the study do so
because they are best-effort traffic. Extensive valida-
tion has shown that the FSD models used to generate

The best-effort delay model was built, in part, from the packet streams here provide excellent fits to best-
gueueing theory. Certain predictor variables were sug-effort packet streams whanis above about 64 con-
gested by the Erlang delay formula. Theory prescribesnections, which for a link wherg;, is about 2* bits/s
certain behavior as, ¢ or y, increases, resulting in  per connection means is above about 1 megapg.
rate gains, multiplexing gains or fast-forward invari- For this reason, only traffic streams witlgreater than
ance, and the model was constructed to reproduce thehis rate are used in the study, and the best-effort delay
behavior. model is valid above this rate.

The best-effort delay model was built, in part, from  The results are only valid for links with a buffer large
results of queueing simulations with traffic stream in- enough that the packet loss is negligible. We have used
puts of two types: live and synthetic. The live streams open-loop study, which does not provide for the TCP
are measurements of packet arrivals and sizes forfeedback that occurs when loss is significant. This re-
349 intervals, 90 s or 5 min in duration, from six Inter- striction also holds for the other work on bandwidth
net links. The synthetic streams are arrivals and sizesestimation cited here.
generated by recently developed FSD time series mod- There is also a practical restriction on applicability.
els for the arrivals and sizes of best-effort traffic. Each We have taken the range of our study to include traffic
of the live streams was fitted by two FSD models (one bit rates as low as about 1 megabit We have done
for the interarrivals and one for the sizes) and a syn- this simply because we can do so and achieve valid
thetic stream of 5 min was generated by the models.results, but even for the least stringent of our delay

10.4 Methods
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criteria ¢ = 0.1-s delay andv = 0.05 delay probabil-
ity), the utilizations are low for rates in the range of
1-5 megabitss. This utilization might well be judged
to be too small to be practical. If so, it might mean
that the negligible packet loss must be sacrificed, which
means that a QoS study at very low traffic bit rates
needs to take account of TCP feedback.

One outcome of the dependence of the bandwidth es-
timation on the traffic statistics is that our solution for
best-effort traffic would not apply to other forms of In-
ternet traffic that do not share the best-effort statistical
properties. One example is voice traffic.

J. CAO, W. S. CLEVELAND AND D. X. SUN

Ca0, J., QEVELAND, W. S., LN, D. and ®N, D. X. (2003).

Internet traffic tends toward Poisson and independent as the
load increasedNonlinear Estimation and Classification. Lec-
ture Notes in Statist. 171 83—109. Springer, New York.

Cao, J., Q.EVELAND, W. S. and &N, D. X. (2004). Fractional

sum-difference models for open-loop generation of Internet
packet traffic. Technical report, Bell Labs, Murray Hill, NJ.

CA0, J. and RMANAN, K. (2002). A Poisson limit for buffer

overflow probabilities. InProc. IEEE INFOCOM 2002 2
994-1003. IEEE Press, New York.

CHANG, C.-S., QGdIu, Y.-M. and NG, W. T. (2001). On the

performance of multiplexing independent regulated inputs.
In Proc. ACM SGMETRICS 2001 184-193. ACM Press,
New York.

Finally, the best-effort delay model provides an es- CHANG, C.-S. and FomAs, J. (1995). Effective bandwidth in

timation of bandwidth in isolation without considering
other network factors. A major factor in network de-
sign is link failures. Redundancy needs to be built into
the system. An estimate of bandwidth from the model

high-speed digital network$EEE J. Selected Areas in Com-
munications 13 1091-1100.

CHOE, J. and $IROFF, N. (1998). A central-limit-theorem-based

approach analyzing queue behavior in high-speed networks.
IEEE/ACM Transactions on Networking 6 659—671.

for a link based on the normal link traffic may be re- choubHury, G. L., LUCANTONI, D. M. and WHITT, W. (1994).

duced to provide this redundancy. However, the model
still plays a role because the bandwidth must be chosen
based on link traffic, but now it is traffic in the event of
a failure elsewhere.
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