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Strong, Weak and False Inverse
Power Laws
Richard Perline

Abstract. Pareto, Zipf and numerous subsequent investigators of inverse
power distributions have often represented their findings as though their data
conformed to a power law form for all ranges of the variable of interest. I refer
to this ideal case as astrong inverse power law (SIPL). However, many of the
examples used by Pareto and Zipf, as well as others who have followed them,
have been truncated data sets, and if one looks more carefully in the lower
range of values that was originally excluded, the power law behavior usu-
ally breaks down at some point. This breakdown seems to fall into two broad
cases, called here (1)weak and (2)false inverse power laws (WIPL and FIPL,
resp.). Case 1 refers to the situation where the sample data fit a distribution
that has an approximate inverse power form only in some upper range of
values. Case 2 refers to the situation where a highly truncated sample from
certain exponential-type (and in particular, “lognormal-like”) distributions
can convincinglymimic a power law. The main objectives of this paper are
(a) to show how the discovery of Pareto–Zipf-type laws is closely associated
with truncated data sets; (b) to elaborate on the categories of strong, weak
and false inverse power laws; and (c) to analyze FIPLs in some detail. I con-
clude thatmany, butnot all, Pareto–Zipf examples are likely to be FIPL finite
mixture distributions and that there are few genuine instances of SIPLs.

Key words and phrases: Pareto–Zipf laws, Pareto distribution, lognormal
distribution, extreme value theory, mixture distributions, Gumbel distribu-
tions.

1. INTRODUCTION

Empirical distributions that conform approximately
to an inverse power form are now widely recognized
as common occurrences in numerous scientific disci-
plines. Probably the first examples of this type came
from Pareto’s (1897) investigations of personal in-
come distributions. It is also fitting to acknowledge
the significant contribution of the philologist George
Kingsley Zipf (1949), whose compilation of many ex-
amples published in his book,Human Behavior and the
Principle of Least Effort, was called by Kendall (1961)
“one of the most fascinating quantitative studies ever
done.”
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Yet even from the beginning, certain considerations
suggested that the story behind Pareto–Zipf laws is
more complicated. In particular, questions with re-
gard to how well an inverse power form fits the data
have frequently been raised, and I believe much mis-
understanding and controversy stem from the poorly
appreciated role that truncation and some associated
difficulties have played. To explain this, I have or-
ganized this paper around the ideas ofstrong, weak
andfalse inverse power laws, abbreviated SIPL, WIPL
and FIPL. Briefly, the term SIPL refers to the case
where an inverse power law fits the full, untruncated
range of the distribution of interest; the term WIPL
refers to the case where only some upper portion of the
distribution follows an approximate inverse power law;
and the term FIPL refers to the poorly understood case
where the largest observations (extremes) of samples
drawn from certain exponential-type—and especially,
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“lognormal-like”—distributions can closely mimic an
inverse power law in a way that will be made clear.

In Section 2, I discuss the historical significance of
truncation and, more generally, some problems with
the casual treatment of data in relation to longstand-
ing confusion regarding the exact form of Pareto–Zipf
laws. In particular, I observe that when researchers
look more carefully in the lower range of values that
were originally excluded from their data sets, they al-
most always abandon the idea of an SIPL.

In Section 3, I study three FIPLs (the lognormal, fi-
nite mixtures of lognormals and the Poison–lognormal)
in detail using simulations, empirical examples and
analytical results. This material seems to be not well
known in the literature, so I have devoted the great-
est part of this paper to focus on it. Indeed, except
for Parr and Suzuki (1973) and Perline (1982), the key
simulations I present that show power law mimicry in
truncated samples drawn from the lognormal and finite
mixtures of the lognormal (as distinct from looking at
the parent distribution itself ) have not, to the best of my
knowledge, appeared elsewhere. Power law mimicry
in the truncated Poisson–lognormal distribution (Sec-
tion 3.3) has not been noted anywhere before, and the
proof that the Poisson–lognormal has the same asymp-
totic extreme value behavior as its underlying mixing
lognormal distribution was first given in Perline (1998)
and independently, but less directly, in Asumussen,
Klüppelberg and Sigman (1999). Very surprisingly, as
basic as it is, except for my own work (Perline, 1982),
I have never seen the classic asymptotic approximation
E(Xi : n) ≈ (an + bnγ ) − bnHi−1, i � n (as discussed
in Section 3), mentioned in connection with power law
mimicry. In fact, as noted below, there have been strong
statements that seem to deny what the eyes see in Fig-
ures 6, 8, 9 and 10 and what this asymptotic approxi-
mation begins to help account for. [On the other hand,
someone familiar with the broad view of extreme value
theory in terms of the generalized Pareto distribution
(Embrechts, Klüppelberg and Mikosch, 1997) would
probably not be too surprised by anything in Section 3.]

My concluding section (Section 4) also, very briefly,
touches upon why I donot think that all Pareto–
Zipf examples can be explained in terms of power
law mimicry. This article emphasizes how oversimpli-
fication and overstatement in the literature of inverse
power laws have produced a confused picture of things,
and I certainly do not want to add another layer to
the problem. The references in Section 4 to Montroll
and Shlesinger (1982, 1983), Reed (2001) and Perline

(1996) point to a connected body of work that can be
viewed as naturally related to, and an extension of, the
discussion of finite mixtures of lognormal distributions
in Section 3.2. Details of these connections will be pre-
sented elsewhere, but my closing questions/challenges
in Section 4 indicate my overall view.

2. COMPLICATIONS AND CONFUSION—
SEVERAL EXAMPLES

The distribution Pareto (1895)first proposed as
a good representation of the distribution of observed
personal incomes within a country in modern nota-
tion has a probability density function (p.d.f.)f (y) =
(αAα/yα+1) for y ≥ A > 0, α > 0, with cumula-
tive distribution function (c.d.f.)F(y) = 1 − (A/y)α .
Pareto presented his results a little differently and
stated them in terms of the sample tail probability—
actually, he used the sample ranks—writing his law
in the form (I am changing the notation slightly)
Ny = B/yα , whereNy is the number of people with
income greater than or equal toy (i.e., the rank from
the top of an individual with incomey) and where his
constantB was not explicitly related to a lower bound
on y. This form has an obvious problem at thelow
end of the income distribution where incomes can ap-
proach zero (or, indeed, be negative!). This has led to
comments such as by Stamp (1914, page 203), who re-
marked that “. . . strict applications of Pareto’s law fail,
otherwise there would be an enormous population far
below the subsistence level.” As a matter of fact, Pareto
(1897) proposed a more general distribution with a tail
probability (or survival function or complementary
c.d.f.), which is written today (Johnson, Kotz and
Balakrishnan, 1994) as 1− F(y) = Ce−βy/(y + C)α

(C,α,β, y > 0), that avoids this difficulty. He also as-
serted (Pareto, 1897, pages 305–306) that theβ term is
usually negligible; it seems to have been needed in only
one case in the empirical income statistics he analyzed.

Using the language of the title of this article, I say
that Pareto modified his concept of the theoretical form
of income distributions from astrong inverse power
law—the simpler, first distribution given above—to
a false inverse power law, which corresponds to his
more general distribution. I use the termfalse be-
cause in today’s nomenclature for statistical distribu-
tions, Pareto’s general form is “exponential type,” not
a “power law type.” Roughly speaking (for now), by
this I mean that the dominant characteristic of the tail
behavior is driven by thee−βy term for large values
of y. However, withβ close to 0, which he asserted was
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usually the case for his data, in samples wherey � C

andβy remains small, the upper tail behavior approx-
imates an inverse power closely for a significant range
of y. Ultimately, of course, asy → ∞, the exponen-
tial character of the distribution reveals itself. Ifβ = 0
is taken identically, the distribution takes the form of
what I call aweak inverse power law, where the up-
per tail behavior becomes, asy → ∞, asymptotically
equivalent to an inverse power law.

Note that, at least implicitly, the three categories,
SIPL, WIPL and FIPL, were introduced by Pareto him-
self. It is now universally acknowledged that income
distributions can be described as approximate power
laws only in the upper range of incomes and that they
deviate substantially from this form in the lower ranges
(Arnold, 1983). Mandelbrot (1960) referred to a “weak
Pareto law” precisely to describe this situation.

Examining one of Pareto’s (1897) original data sets
is instructive. Table 1 gives the income statistics for
England in 1893–1894 that he used for one of his
analyses. For graphical investigations, it is natural to
linearize the representation of power laws using log–
log plots, as most researchers have been doing since
Pareto. If the relationshipNy = B/yα holds approx-
imately, then logy ≈ logB/α − logNy/α, so a plot
of logy against logNy looks linear with slope−1/α.
The log–log plot of the data in Table 1 is shown in Fig-
ure 1 and indicates that an approximate inverse power
law holds. However, looking more closely at the data,
which are based on tax statistics for shop owners and

TABLE 1
One of Pareto’s (1897)original data sets: the distribu-
tion of incomes in Great Britain in 1893–1894 based
on tax statistics for shop owners and professionals

whose income exceeded £150

Income £ Frequencies

150 400,648
200 234,185
300 121,996
400 74,041
500 54,419
600 42,072
700 34,269
800 29,311
900 25,033

1,000 22,896
2,000 9,880
3,000 6,069
4,000 4,161
5,000 3,081

10,000 1,104

FIG. 1. A log–log plot of Pareto’s original income data shown
in Table 1. The income statistics are based on approximately
1,000,000individuals in the commercial and professional class
whose annual income exceeded £150 in the year 1893–1894. The
population of Great Britain was around 30,000,000at that time
and £150 was a relatively high income, so this is a substantially
truncated distribution.

the professional classes, a lower cutoff is observed on
income of£150 based on a total count of approximately
1,000,000 individuals, and it is easy to prove that this
was a relatively high income threshold. For example,
the average annual income for agricultural workers in
England and Wales was about£40 in 1893 (Bowley,
1899). Furthermore, the population of England at that
time exceeded 30,000,000. How would the distribution
look if accurate income data for the lower classes be-
low the £150 threshold were available? The universal
income tax in many countries, as well as survey data,
have greatly enlarged our view of the matter and con-
firm that the strong form of Pareto’s law does not hold
for income distributions collected by modern methods
aimed at properly counting all income classes. [Fig-
ure 7(a) shows an example that is discussed in the next
section.]

This historical example of Pareto’s power law is sim-
ilar in two essential ways to many others that have been
discovered: (1) initial research on a truncated data set
reveals what is thought to be an SIPL and (2) subse-
quent investigation deeper into the lower ranges shows
that the power law breaks down. As a second exam-
ple of this sort, consider the city-size law first reported
by Auerbach (1913), who showed a good power law fit
to the rank ordered populations of the 94 largest Ger-
man cities from a 1910 census. His article suggests that
he viewed his results as supporting an SIPL, but his
data fell far short of proving one. By his own estimate,
there were something like 100,000 small villages in
Germany during this period, yet he explicitly reported
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population data only for the top 94 cities. He did ob-
serve that the power law still held down to rank 481 for
a town with a population of only 10,000 (certainly in-
tending to demonstrate the wide range of validity of the
power law), but what about the roughly 99,500 remain-
ing communities? Again, as in Pareto’s case, modern
studies examining population data for the tens of thou-
sands of small villages existing in a large country have
conclusively shown that the power law breaks down
beyond the upper tail (Parr and Suzuki, 1973). Note
also the switch in the frame of reference here: a town
of 10,000 individuals usually is considered small, yet
from the wider perspective, it falls in the upper tail.

Most, and perhaps all, of the other well-known
power laws also seem to be associated with highly
truncated data. Consider, for example, Korc̆ák’s (1938)
island-area law that asserts that the areas of individ-
ual islands in an island chain follow an inverse power
law. However, what is an island and what is a rocky
outcrop or a little reef? Again, we see a truncation ef-
fect that leads to the exclusion of myriad smaller val-
ues. Lake systems also follow an inverse power law

(Korc̆ák, 1938; Mandelbrot, 1982, page 272), but what
is a lake and what is a pond or even a puddle? Sim-
ilarly, the Gutenberg–Richter (Bak, 1996) power law
of earthquake magnitudes involves cutoffs that are as
arbitrary as the distinction between a lake and a pond.
Inevitably, studies of earthquakes begin from the top
down, eliminating some unknown, but vast, proportion
of lower energy seismic events.

Figure 2 is another informative example of how
researchers can be led astray by truncation. The log–
log rank-size graph on the left of Figure 2 plots ingot
capacities for U.S. and Canadian steel manufacturing
plants in 1954. Simon and Bonini (1958) presented
only the first 10 values (enclosed in the rectangle) us-
ing published data from a list that gave statistics for the
10 largest U.S. and Canadian steel plants. These same
10 values were then also presented by Kendall (1961)
as the first of his several examples of power law dis-
tributions in his presidential address before the Royal
Statistical Society, and they have been used as an illus-
trative data set by others, as well. I obtained the remain-
ing 75 values fromall the listings in the 28th edition

FIG. 2. Comparison of log–log rank-size plot (left) versus lognormal probability plot (right) for 1954 ingot capacity data. Only the first
10 observations were originally presented by Simon and Bonini (1958) and Kendall (1961).The departure from the Pareto fit becomes
obvious when the rest of the available data are shown. The fit to the lognormal appears reasonably good except for the smallest observation.
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of theDirectory of Iron and Steel Works of the United
States and Canada (American Iron and Steel Institute,
1957, pages 437–439). Looking at the full data set, the
inverse power law breaks down, although the lognor-
mal probability plot on the right-hand side of Figure 2
shows an approximate lognormal fit over the entire dis-
tribution, except for the smallest data point.

This example shows that Simon was unaware of the
significance of truncation in much the same way as
Pareto. Simon’s (1955) seminal theoretical work on
power law distributions (Ijiri and Simon, 1977) carried
the parallel even further and illustrated how the three
categories of models (SIPL, WIPL, FIPL), implicitly
introduced by Pareto (1897), continued to be used ca-
sually in a way that invites confusion. First, Simon
(1955) stated that the tails of these types of distribu-
tions “. . . can generally be approximated by a function
of the form f (i) = (a/i)κbi , wherea, b, and κ are
constants; and whereb is so close to unity that in first
approximation the final factor has a significant effect
on f (i) only for large values ofi.” [In his notation,
f (i), i = 1,2, . . . , is the sample histogram function
that represents counts of the entities of interest, such
as words, publications, town populations and personal
income.] The convergence factorb is understood to be
less than 1, and Simon gave one estimate of its value
from a particular data set as 0.999667. The constantb

serves the same role, of course, as Pareto’sβ noted
above, and rendersf (i) an FIPL. Taken as stated,
Simon could be interpreted as meaning that the empir-
ical data fit a power law in approximately some upper,
but not-too-upper, part of the distribution.

After suggesting this FIPL approximation, Simon
then specified a theoretical model based on a sto-
chastic process that has as its stationary solution the
Yule distribution, f (i) = ρ

�(i)�(ρ+1)
�(i+ρ+1)

, i = 1,2, . . . ,

for some constantρ > 0, where�(i) is the standard
gamma function. (Note that this is a one-parameter
model and it is truncated ati ≥ 1.) As Simon re-
marked,�(i)/�(i +ρ + 1) is asymptotic toi−(ρ+1) as
i → ∞, so that the Yule distribution has an asymptotic
power law form and is, therefore, a WIPL. However, he
never addressed the problem thatf (i) = (a/i)κbi and
f (i) = ρ

�(i)�(ρ+1)
�(i+ρ+1)

, i = 1,2, . . . , ultimately have very
different tail behavior.

To make things more confusing, the Yule distribu-
tion is, as a practical matter, approximately an SIPL.
Ijiri and Simon (1977, page 72, Figure 3.1) showed this

themselves in one of their own log–log plots, but they
did not comment on its consequences. I have gener-
ated a similar plot in Figure 3. In this figure, the tail
probability 1− F(i) is plotted againsti on a log–log
scale. [See page 67 of Ijiri and Simon, 1977, for the cal-
culation of 1− F(i) = ρB(i, ρ).] As their graph and
mine make clear, for 0.3 ≤ ρ ≤ 3, the distribution is
very close to an SIPL. This results in a cloudy state
of affairs where, when confronted with empirical data
that do not fit an SIPL, Simon and others who have
used this model have been forced to ignore or down-
play the bottom portion of the distribution. Often, there
is some appeal to how the model assumptions are likely

FIG. 3. A plot similar to that of Ijiri and Simon (1977,page 73)
that shows the complement of the Yule c.d.f., 1 − F(i), plotted
against i in log–log coordinates for different values of the para-
meter ρ. Although it is true that the Yule distribution is only as-
ymptotically an inverse power law, the strongly linear character of
the curves makes it clear that, practically speaking, it approximates
an SIPL very closely in the range of values of ρ likely to be encoun-
tered with empirical data.
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TABLE 2
Distribution of lengths of one-way trips extending beyond city limits for truck data used by Zipf (1949,

page 401).The raw data are taken from Paddock and Rodgers (1939,page 50,Table 9)

Length of one-way Number of Standardized Mid value of trip Mid value of ranks
trip (miles) trips frequencies length interval in interval

0–4.99 184,952 184,952.00 2.5 452,068.5
5–9.99 138,916 138,916.00 7.5 290,134.5

10–19.99 113,521 56,760.50 15.0 163,916.0
20–29.99 41,855 20,927.50 25.0 86,228.0
30–39.99 20,030 10,015.00 35.0 55,285.5
40–49.99 10,262 5,131.00 45.0 40,139.5
50–99.99 23,908 2,390.80 75.0 23,054.5

100–249.99 9,911 330.37 175.0 6,145.0
250–499.99 1,034 20.68 375.0 672.5
500–999.99 110 1.10 750.0 100.5

1000+ 45 — — —

to fail below an arbitrary threshold value, as in Simon’s
(1955) comment that for the city-size law, the Yule
distribution “. . . could only be expected to hold down
to some minimum size—say, 5000 or 10,000.” This
floating, arbitrary threshold is determined ad hoc after
examining the data and frequently leads to excluding
90% or more of the observations.

In short, Simon derived a theoretical WIPL, which
actually approximates a SIPL, to represent empirical
data that he believed conformed to a vaguely specified
FIPL. It is of course much easier to see these incon-
sistencies with hindsight, but even current researchers,
such as Krugman (1996), who referred to the Simon
model as still the best explanation of city-size distribu-
tions, seem to be unaware of the serious shortcomings
of this one-parameter distribution.

Similar problems can be found in the work of many
other researchers in this area. Indeed, Zipf’s (1949)
book is filled with some odd data sets that look rather
different on closer scrutiny. One of these is his (1949,
page 401, Figure 9-19) log–log histogram plots on the
length of one-way trips made by passenger cars and
trucks outside city limits in 11 states in the year 1936.
I focus only on the truck data, which are given in Ta-
ble 2 as taken from a report by Paddock and Rodgers
(1939, page 50, Table 9) cited by Zipf as his source.
There are at least two difficulties with Zipf’s figure:
(1) he used some ad hoc constants to shift the hor-
izontal scale with the apparent effect of making his
graphs look straighter in log–log form and (2) because
the original Paddock and Rodgers data are given using
unequal bin intervals, one needs to standardize interval
lengths by the counts within the intervals, although it

is not clear to me that Zipf did this accurately. My cor-
rected version of the histogram, as given in Table 2, is
shown in the log–log plot of Figure 4(a) and certainly
does not suggest much of a power law. Figure 4(b),
which shows the data plotted in log–log rank-size form
using midinterval values and midranks of the intervals
as coordinates, tells a similar story. Finally, when the
data are graphed as a lognormal probability plot [Fig-
ure 4(c)], they conform well to a lognormal model in
the part of the distribution above 5 miles (about the top
two-thirds of the data), although we do not have a de-
tailed breakdown of the values in the lowest interval
(0–5 miles).

A very recent example shows how these kinds of
difficulties continue to persist. Research that involves
networks of all kinds is leading to exciting discoveries
that reveal common mathematical structure across ar-
eas as diverse as social, economic and ecological webs,
transportation and telephone systems, metabolic nets
and the internet. Barabási (2002) provided an interest-
ing popular account by a key investigator in this new
cross-disciplinary science. He, as well as many of his
colleagues doing similar work, reported an explosion
of new power laws, such as with the numbers of in-
and out-links of nodes, for the distributions associated
with their empirical networks. In some cases, this has
become the key focus, and like their predecessors in the
area of power laws, they have sometimes been unclear
about the form of their models beyond the asymptot-
ics of upper tail behavior and have tended to be casual
about specifying what part of their empirical data ac-
tually fit a power law. I restrict my comments here to a
single data set analyzed by Barabási and his colleagues
and reported by them as a power law in the widely
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FIG. 4. (a) Replot of a graph given by Zipf (1947, page 401, Figure 9-19) for truck mileage without using his additive constant for
frequencies (= 10,000). (b)The data plotted in log–log rank-size form. (c) Lognormal probability plot, which shows a good lognormal fit for
the part of the data that can be graphed. There appears to be no justification for interpreting the data as a power law.

read journalsScience (Barabási and Albert, 1999),Na-
ture (Albert, Jeong and Barabási, 1999) andScientific
American (Barabási and Bonabeau, 2003).

Barabási and Albert (1999) discussed their finding
of a power law distribution for the number of outgo-
ing links from URL documents on the World Wide
Web based on a complete map of the nd.edu (Notre
Dame University) domain. Figure 1B of Barabási
and Albert shows a log–log histogram of outgoing
links that is quite linear over the whole distribu-
tion, but replotting the data (available in raw form
at www.nd.edu/~networks/database/index.html) indi-
cates that the good linear fit over the full range of data
is not robust across different binning choices. (I thank
Professor Jeong for explaining how geometric binning
was used in the original plot, but I was unable to ob-
tain the exact binning intervals used.) When I redo the

plot using geometric binning with the intervals 1, 2–3,
4–7, 8–15, . . . as given in Table 3, my results as shown
in Figure 5(a) do not support an SIPL. The rank-size
plot of Figure 5(b) further emphasizes this. In fact, it
is as easily argued from the lognormal probability plot
in Figure 5(c) that the top 10% of the distribution has
a roughly lognormal tail. (I note, by the way, that the
data set contains unusual clumping at particular values,
with the most obvious case occurring for the number
of out-links= 155.)Furthermore, this is a highly trun-
cated data set because it ignores the very large cate-
gory of documents that have 0 links! Indeed, as Table 3
shows, more than 58% of the 325,729 URL documents
in the data set have no links to other documents. [The
log–log histogram plot of the same data in Figure 1A of
Albert, Jeong and Barabási (1999) includes the 0-link
category by artificially adding 1 to the counts.]
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TABLE 3
Distribution of out-link counts for documents on the nd.edu domain as described by Barabási

and Albert (1999).The raw data are available as the World-Wide-Web data set at
http://www.nd.edu/˜networks/database. The data set comprises 325,729documents

with a total of 1,469,680out-links URL’s

Number of Standardized Mid value of number of
out-links Frequencies frequencies out-links interval

0 188,795 — —
1 21,830 21,830.0000 1

2–3 29,647 14,823.5000 2.5
4–7 47,919 11,979.7500 5.5
8–15 19,202 2,400.2500 11.5

16–31 8,709 544.3125 23.5
32–63 6,730 210.3125 47.5
64–127 1,163 18.1719 95.5

128–255 1,568 12.2500 191.5
256–511 89 0.3477 383.5
512–1023 63 0.1230 767.5

1024–2047 11 0.0107 1535.5
2048–4095 3 0.0015 3071.5

Barabási and his colleagues first proposed a theoret-
ical model of the link distribution for networks based
on “preferential attachment,” which both Watts (2003)
and Mitzenmacher (2001) noticed is very similar to
Simon’s model. Consequently, it may well share simi-
lar weaknesses as those discussed above. In subsequent
work, however, Barabási and his colleagues (Bianconi
and Barabási, 2001) proposed models where, in some
circumstances, the distribution of network links no
longer even has a power law tail. In just a few short
years the subject of power laws in networks has un-
dergone a swift evolutionary recapitulation of ear-
lier work in which initial reports of SIPLs have been
followed by more detailed studies that back away
from a strong power law model and sometimes even
abandon the idea of power law tails. Watts’s (2003,
page 112) comment that “Some evidence that scale-
free (i.e., power law) networks may not be as wide-
spread as they first seemed appeared about a year after
Barabási and Albert’s original paper” refers to work
by Amaral, Scala, Barthelemy and Stanley (2000) that
may be the first critical response to claims of strong
power laws in this field. Nevertheless, in an intro-
ductory article intended for wide popular dissemina-
tion, Barabási and Bonabeau (2003) made no mention
of these issues. Indeed, similar introductory articles
about Pareto–Zipf-type examples have been published
through the years, each leaving a new set of readers
without any real understanding of the “weak” charac-
ter of these laws and the significance of truncation.

3. A DETAILED LOOK AT FIPLs

3.1 Power Law Mimicry with the
Lognormal Distribution

Closely tied to the difficulties associated with trun-
cated data and the question of the breakdown of SIPLs
is the thorny topic of “power law mimicry,” that is,
the extent to which samples from distributions without
a power law tail can nevertheless look like a power law
under the right circumstances. Specifically, the ques-
tion of whether and how samples from the lognormal
distribution can mimic power law behavior has been
a matter of considerable confusion over the years. This
is surprising because it is so easy to show that this can
happen—if there is substantial truncation.

To varying degrees, a few individuals have touched
upon this. Taking a more general view of things, the
economist Macauley (1922, page 368) commented
long ago in connection with Pareto’s income law
that “The approximate linearity of the tail of a fre-
quency distribution charted on a doubly logarith-
mic scale signifies relatively little, because it is such
a common characteristic of frequency distributions of
many and various types.” In addition, Aitchison and
Brown (1957, page 101), remarking on some of Zipf’s
empirical examples in their monograph on the log-
normal distribution, stated that “. . . it is likely that
many of these distributions can be regarded as log-
normal, or truncated lognormal. . .” (italics added).
Parr and Suzuki (1973) made a similar comment:



76 R. PERLINE

FIG. 5. (a)Log–log histogram of the outgoing links from URL documents on the nd.edu domain using the data from Barabási and Albert
(1999).The plot uses geometric binning with the bin intervals and coordinates given in Table 3. (b)and (c) The same data in log–log rank-size
form and as a lognormal probability plot, respectively. URL sites with 0 out-links are excluded; thus only the top 42% of the data is shown.
It is easily arguable from plot (c) that the distribution has a roughly lognormal tail, not a power law tail. Log–log histogram plots such as
(a) can look more or less linear, depending on bin interval choices. For example, compare Figure 1B of Barabási and Albert (1999)with (a)
above.

“ . . . truncation of the lognormal distribution at an ap-
propriately high level enables the truncated portion to
be regarded as not significantly different from the rank-
size distribution (i.e., inverse power distribution).”
They also presented numerical and graphical results
that convincingly illustrated their assertion. Montroll
and Shlesinger (1982, 1983) noted that the lognor-
mal p.d.f. f (y) = 1/(y

√
2πσ 2 )exp(−(logy − µ)2/

(2σ 2)) (y,σ 2 > 0,−∞ < µ < ∞), which is so dif-
ferent from the Pareto p.d.f. that it is puzzling how
the two distributions could ever be confused with each
other, looks approximately proportional to 1/y for
large σ over “an intermediate range” (Montroll and

Shlesinger, 1982) or a “certain range” ofy (Montroll
and Shlesinger, 1983). In more recent work, Gong, Liu,
Misra and Towsley (2001), Mitzenmacher (2001) and
Downey (2003) have all commented on the difficul-
ties associated with comparing lognormal and power
law tails.

Arguing against the significance of lognormal power
law mimicry, Mandelbrot (1997, page 206) is quite dis-
missive of Aitchison and Brown’s comment above. In
his article titled “A Case Against the Lognormal Distri-
bution,” Mandelbrot showed a graph (1997, page 254,
Figure E9-1) of a log–log plot of a sample of 9000 ob-
servations drawn from a lognormal distribution that
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is supposed to reveal how the lognormal canslightly
resemble a power law—but Mandelbrot’s main point
seems to be to emphasize how poor the resemblance
is. Because he used anuntruncated sample for his
demonstration, however, he missed the point of how
the lognormal and certain other related distributions
can very convincingly pass for an inverse power law
when sufficient truncation is present. This failure to ap-
preciate the importance of truncation in the lognormal
versus power law issue is longstanding. For example,
Ijiri and Simon (1977, page 4) asserted that there is
some difficulty in distinguishing a lognormal from a
Pareto sample, but except for very small sample sizes,
this is simply not the case unless the lognormal data
are highly truncated.

The approach I take here, which emphasizes the
study of sample extreme order statistics through sim-
ple graphical and numerical experiments, on the one
hand, and analytic results, on the other, gives an eas-
ily understood picture of what is happening. Moreover,
the asymptotic theory I use leads to insights about the
Pareto-mimicking potential of other distributions be-
sides the lognormal, the point that Macauley (1922)
touched upon but which has not previously been given
any analytic explanation.

The simulation results graphically represented in
Figure 6 are my starting point. LetY1, Y2, . . . , Yn

be n independent observations drawn from the ba-
sic Pareto distribution with c.d.f.F(y) = 1 − (A/y)α .
Thesen observations rank ordered asY1 : n ≥ Y2 : n ≥
· · · ≥ Yn : n are the order statistics of the sample (David,
1970). For my purposes, I say that a sample satisfies
an approximate inverse power law if its order statis-
tics in some approximate sense satisfy the relationship
Yj : n ≈ cn/j

β , j = 1, . . . , n (β > 0, cn > 0). That is,
if Yj : n ≈ cn/j

β , then a plot of logYj : n on the verti-
cal axis against logj on the horizontal axis should be
approximately linear with slope−β. This linearization
simplifies matters; consequently, I chose to work with
the log-transformed data.

Why does the ordered sample of 1000 observations
drawn from a Pareto distribution produce a linear log–
log plot like that of curve 1 in Figure 6? The answer
is given in terms of expectations of order statistics. If
Y has the Pareto distributionF(y) = 1− (A/y)α , then
X = logY has the c.d.f.G(x) = 1− Aαe−xα and p.d.f.
G′(x) = g(x) = Aααe−xα (x ≥ logA), that is,X is
exponentially distributed. Therefore, any analysis us-
ing log-transformed Pareto order statistics, logYj : n =
Xj : n, actually can be thought of directly in terms of the
exponential order statisticsXj : n. A key result (David,

1970) that pertains to the moments of exponential order
statistics gives

E(Xj : n) = 1

α

n∑
r=j

1

r
+ logA

(1)

= 1

α
(Hn − Hj−1) + logA,

whereHj is the sum of the firstj terms of the harmonic
series andH0 = 0. Detailed analysis ofHj (Graham,
Knuth and Patashnik, 1994, page 278) shows that for
any positive integerj ,

Hj = logj + γ + 1

2j
− 1

12j2 + εj

120j4 ,(2)

whereγ = 0.577. . . (Euler’s constant) and 0< εj < 1
(all logarithms are to basee, unless otherwise indi-
cated). From (1) and (2) and the fact that log(n + 1) >

logn + (n + 1)−1, the following bounds onE(Xj : n)

are obtained (the lower bound is valid for 1≤ j ≤ n

and the upper is valid for 2≤ j ≤ n):

1

α
[logn − logj ] + logA

< E(Xj : n)(3)

<
1

α
[log(n + 1) − log(j − 1)] + logA.

So E(Xj : n) can be approximated for most practical
plotting applications by the value of its lower bound,
logA + 1

α
logn − 1

α
logj , which has the desired form

c′
n − β logj , whereβ = 1/α andc′

n = logAn1/α .
Given the order statisticsYj : n for a sample of pos-

itive values, a plot of logYj : n = Xj : n against logj
is called alog–log rank-size plot of the sample ob-
servations. WithA = α = 1, a log–log rank-size plot
of the Pareto order statistics, which, as just seen, actu-
ally involves exponential order statistics, tends to pro-
duce a nearly straight line with intercept approximately
logn and slope approximately−1. The lowest curve
(labeled 1) in the graph on the left of Figure 6 shows
such a plot forn = 1000 andj = 1 to 1000 (i.e., an un-
truncated sample). The curves above this one shown

varied from 10,000 to 1,000,000 withj still between 1
and 1000. Thus, the second curve up (labeled 2) shows
the top 1000 order statistics from a Pareto sample of
n = 10,000 observations (i.e., a 90% truncated sam-
ple). As the sample size increases in the curves moving
up, the degree of truncation also increases. Only the
intercepts are changing, as the slopes all remain close
to −1 sinceE(logYj : n) ≈ logn − logj .
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FIG. 6. Log–log rank-size plots that compare the top order statistics from simulated Pareto and lognormal samples varying from 0 to 99.9%
truncation and sample sizes varying from 1000to 1,000,000.Note that lognormal samples with a high degree of truncation ( plots labeled
7 and 8 on the right) produce quite linear log–log plots that essentially are indistinguishable from those of the Pareto samples on the left.

It is the counterintuitive behavior demonstrated on
the log–log plots on the right-hand side of Figure 6
that is most interesting. I emphasizecounterintuitive
because even experienced statisticians question what
is shown, and the story that unfolds in the graphs has
been poorly understood by many investigators. Indeed,
it appears that the only similar published results,based
on truncated sample data, are those of Parr and Suzuki
(1973) and Perline (1982). In the plots in Figure 6,
Y is lognormal [denotedY ∼ L(µ,σ 2)] with parame-
tersµ = −5.79, σ 2 = 16.9; that is,X = logY is nor-
mally distributed N(−5.79,16.9). The lowest curve
(labeled 5) shows the values of an untruncated sample
of 1000 observations. As the amount of truncation in-
creases from the 1000 largest of 10,000 observations
(90% truncation) in the second curve labeled 6 to the
largest 1000 of 1,000,000 observations (99.9% trun-
cation) in the highest curve labeled 8, the upper tail
of the lognormal sample produces an increasingly

straight log–log rank-size plot. The largest 1000 of
1,000,000 observations of the lognormal sample are
for most practical purposes indistinguishable from the
Pareto plots on the left and therefore closely mimic
an inverse power law. This set of plots is much more
revealing than Mandelbrot’s (1997, page 254) plot,
which does not examine or mention the effects of trun-
cation. Furthermore, there is no confusing theuntrun-
cated Pareto and lognormal samples (labeled 1 and 5
in the bottom curves on the left and right of Fig-
ure 6), although the discussion in Ijiri and Simon
(1977, page 4) suggested that distinguishing between
a lognormal and a power law would be a difficult task.
Again, they make no mention of truncation as the real
culprit responsible for the difficulty.

What explains the Pareto-mimicking behavior of the
upper tail of lognormal samples? Standard asymptotic
estimates from the classic theory of extreme order sta-
tistics provide helpful insights, and because the theory
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is applicable to a large class of distributions, other dis-
tributions that can exhibit this behavior can be found as
well. The behavior of the order statistics of the expo-
nential (i.e., log-transformed Pareto) distribution turns
out to be, in a certain sense that needs to be carefully
defined, typical of a surprisingly large class of distribu-
tions calledexponential type or Gumbel type, provided
only the top order statistics or largest extremes are
considered. The Gumbel-type distributions of interest
here are, essentially, all distributions with c.d.f.F(y)

and p.d.f.f (y) = dF(y)/dy that satisfy the von Mises
condition limy→∞ d

dy
1−F(y)

f (y)
= 0, which includes the

exponential, normal, lognormal, gamma and Weibull
distributions; however, my results also are extended to
a certain class of integer-valued distributions that are
closely related to Gumbel types, as subsequently dis-
cussed. All of these distributions, including the integer-
valued ones that are considered, are said to belong to
the Gumbel domain of attraction because the asymp-
totic behavior of their upper extreme order statistics
can be characterized in the same general way. I briefly
state the standard results required for the asymptotic
estimates that are used here. These can be found in
Embrechts, Klüppelberg and Mikosch (1997), unless
otherwise indicated.

SupposeYj : n is the j th order statistic of a sample
drawn from a parent distribution such that logY = X

is Gumbel type. In the case of ParetoY , X is exponen-
tial, which is Gumbel type. In the case of lognormalY ,
X is normally distributed and so also Gumbel type. The
expectations of normal order statistics do not have the
simple form of the exponential, but for the largest or-
der statistics, the asymptotic theory provides estimates
of E(Xj : n) for the situation of fixedj � n that help
to explain the log–log linear results in the upper curves
on the right of Figure 6.

First fix j . Then forX Gumbel type with c.d.f.F(x),
there exist two sequences of standardizing constants
an andbn, depending onF(x), such that each of the
standardized variables(Xi : n − an)/bn, 1 ≤ i ≤ j , as
n → ∞, converges in distribution to the limiting distri-
bution with c.d.f.Gi(x),

Gi(x) = exp(−e−x)

i−1∑
k=0

1

�(k + 1)
e−kx,(4)

and limiting p.d.f.

gi(x) = d

dx
Gi(x) = 1

�(i)
exp(−ix − e−x).(5)

With p > 0 for well-behaved distributions like the
abovementioned Gumbel types, Polfeldt (1970) justi-

fied the limiting moment convergence

lim
n→∞E

[∣∣∣∣(Xi : n − an)

bn

∣∣∣∣p
]

=
∫ ∞
−∞

|x|pgi(x) dx.(6)

Forp = 1, I get

lim
n→∞E

[
(Xi : n − an)

bn

]

= 1

�(i)

∫ ∞
−∞

x exp(−ix − e−x) dx(7)

= γ −
i−1∑
k=1

1

k
= γ − Hi−1 (= γ for i = 1).

In general these standardizing constants can be com-
puted from the relationships

F(an) = 1− 1

n
and bn = 1

nf (an)
.(8)

Therefore, for Gumbel-type distributions with largen

andi = 1, . . . , j � n, E(Xi : n) ≈ (an+bnγ )−bnHi−1.
SinceHi−1 is close to logi, a plot ofXi : n against logi
looks linear with intercept(an + bnγ ) and slope−bn.

Before looking more closely at the case of the nor-
mal distribution, for an instructive comparison the
simpler case of the exponential is examined. Recall
from (1) that if X is exponentially distributed with
p.d.f. αAαe−αx , then E(Xi : n) = logA + Hn/α −
Hi−1/α exactly for all i, i = 1,2, . . . , n. Now to com-
pare this exact result with the asymptotic approxima-
tion from extreme value theory, computean = logA +
1
α

logn andbn = 1
α

from the equations in (8). Then the
asymptotic approximation for theith top extreme for
i � n is E(Xi : n) ≈ (logA + 1

α
logn + γ

α
) − 1

α
Hi−1.

Because limn→∞ Hn − logn = γ , the difference be-
tween the exact and asymptotic estimates goes to 0 for
any fixedi asn → ∞. In this casebn = 1/α is a con-
stant, and therefore plots ofXi : n against logi tend to
be approximately linear with slope−1/α independent
of the sample size n, as we saw on the left-hand side of
Figure 6.

Now consider the log-transformed lognormal vari-
able, that is, the normal case represented graphically
on the right-hand side of Figure 6. For logY = X ∼
N(µ,σ 2), the standardizing constants for the topj or-
der statisticsXi : n, 1≤ i ≤ j , can be computed as (see
Embrechts, Klüppelberg and Mikosch, 1997, page 145)

an = µ + σ(2 logn)1/2

− σ
log logn + log 4π

2(2 logn)1/2 and(9)

bn = σ

(2 logn)1/2 .



80 R. PERLINE

Consequently, using the asymptotic approximation in
this normal case, fori = 1, . . . , j � n, Xi : n plotted
against logi is expected to give an approximately linear
trend with intercept approximatelyµ + σ(2 logn)1/2

and slope approximately−σ/(2 logn)1/2. Observe that
the slope in this case is not a constant independent ofn,
as in the exponential case, but is of orderO(1/

√
logn )

and soslowly goes to 0. Therefore, the lognormal upper
extremes should be described as only mimicking a true
power law because the slopes, not just the intercepts,
of the log–log rank-size plots of extremes vary withn.
(See the Appendix for further discussion of these esti-
mates.)

It is also worth remarking that on a log scale the re-
striction j � n can be less severe than might be sup-
posed. Ifj = 103 andn = 106 as in curve 8 of Figure 6,
thenj is small relative ton, but on the log scale of the
x axis, the ranks 1–103 span the same linear length as
the ranks 103–106. That is, at least 1/2 of the span of
the curve on thex axis looks quite straight.

3.2 Power Law Mimicry with Finite Mixtures
of Lognormal Distributions

Various researchers have commented on the ten-
dency toward oversimplification in the quest for mod-
els of Pareto–Zipf-type distributions. The fact is that
when domain experts bore in on the empirical data
of their specialty, whether incomes, community pop-
ulations, earthquakes or the numbers of publications
of scientists, they can usually point to many sources
of heterogeneity that support the idea of discrete
subpopulations likely to differ in important character-
istics. This motivates the logic of usingmixture distri-
bution models.

In the case of income distributions, Lebergott (1959),
among many others, discussed the messy realities of
segments of the population that consist of part-time and
seasonal workers, the semiretired, different age and sex
categories, members of the armed forces and so forth.
The data for the U.S. depression-era income distrib-
ution graphed in Figures 7(a) and (b) were collected
with survey information from some 729 component
subpopulations with strong regional, occupational and
rural–urban differences (National Resources Commit-
tee, 1938). The log–log rank-size plot of Figure 7(a)
indicates that the depression-era income data do not
fit a power law over the whole distribution. In addi-
tion, the income data do not fit a lognormal model,
as is clear from the lognormal probability plot of Fig-
ure 7(b). It should not be surprising that simple models
like the lognormal or Pareto or Yule–Simon do not fit

well over the full range of values for distributions that
comprise so many distinct subgroups.

The form of the income distribution plotted in Fig-
ure 7(a) and (b) is so common that it has led to the
general opinion expressed by Klein (1962) that there
“is a tendency towards the view that the Pareto distri-
bution gives a better explanation of the upper tail and
that the lognormal distribution gives a better explana-
tion at lower income values.” Figures 7(c) and (d) show
a similar-looking distribution for data on the lengths
of articles in the 11th edition of theEncyclopedia Bri-
tannica. Zipf (1949, page 177, Figure 5-3) exhibited
a log–log histogram plot of a sample of articles from
this encyclopedia, but again, his selection of bin in-
tervals seems to have enhanced the linearity of the
plot. Because of the continuous character of the lengths
data, a log–log rank-size plot is preferred. He did not
publish his raw data, but I have collected a sample of
article lengths from the same edition of this encyclope-
dia by beginning with the first article starting on or af-
ter page 500 and continuing for a total of 20 articles for
each of the 28 volumes. (My sample differs from Zipf’s
only in that he continued for 50 pages after page 500
for each volume, while for convenience, I took a fixed
20 articles from each volume.) The lengths in column
inches for all 560 articles that I measured are shown
as the log–log rank-size plot of Figure 7(c). This de-
parts significantly from linearity, in contrast to Zipf’s
log–log histogram plot, which seems to have only one
deviant point. It is also obvious from Figure 7(d) that
the data do not fit a lognormal model either.

A third, neither Pareto nor lognormal distribution is
shown in Figures 7(e) and (f ). This is another data
set that Zipf (1949, page 381, Figure 9-7) presented
as a binned log–log histogram, but which I am graph-
ing here as a log–log rank-size plot. The exact source
of his data is some census data prepared by Edwards
(1943, Table 2, pages 49–58), as cited in Zipf (1947).
These census data give the counts of individuals work-
ing in 450 occupational categories. Zipf (1947, 1949)
plotted the data for the 450 “Specific classes” and also
for aggregated “Generic classes” that come from the
same table. The plots in Figures 7(e) and (f ) force us
to reject the notion that the data could be as simply de-
scribed as either Pareto or lognormal.

For income data there is evidence that when more
homogeneous segments are examined, a lognormal fits
well within each segment. For example, this is true
for the distribution of weekly wages for full-time male
manual workers in England beginning with the first
wage survey of 1886 down to modern times (Thatcher,
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FIG. 7. Fitting finite mixtures of lognormal distributions. None of these three examples fits a Pareto distribution, as is shown by the
departures from linearity in the log–log plots of (a), (c)and (e).Similarly, the deviations from linearity in the plots of (b), (d)and (f ) show
that no examples fit a lognormal distribution. However, mixtures of lognormals, represented by the curves drawn through the data points, fit
well.
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1976). The corresponding distribution for women, al-
though it shows a large difference in earnings from
the men, is nevertheless also approximately lognor-
mal when separated out. The French economist Gibrat
(1931) was the first to remark on the lognormal char-
acter of the distribution of English wages, but there
is practically no overlap between the incomes of the
segment of the population he studied and the wealthier
English population in Pareto’s data in my Table 1.

These examples point to the reasonableness of us-
ing finite mixtures of lognormals to model income and
other Pareto–Zipf-type distributions. In this scheme,
a model is assumed in which the random variableYmix
has c.d.f.Fmix(y) defined byFmix(y) = ∑n

i=1 piFi(y),
where thepi > 0 are mixing proportions,

∑n
i=1 pi = 1,

and the component c.d.f.’sFi(y) correspond to those
of n distinct lognormals L(µi, σ

2
i ), i = 1, . . . , n.

I used the expectation–maximization (McLachlan and
Krishnan, 1997) algorithm to fit this model to each of
the three data sets of Figure 7. The resulting fitted dis-
tributions are drawn through the plotted points in all the
graphs and can be seen to fit very well. Quite recently,
Downey (2003) also made the point that mixtures of
lognormals can do a good job of fitting data (in his
case, computer file size distributions) that others have
put forth as having power law tails.

It is an easy matter to do simulations that show that
sufficiently truncated samples from mixtures of lognor-
mals can mimic a Pareto distribution. To do this, I re-
peated the earlier truncation experiment in Figure 6,
but now using samples from a mixture of three log-
normal distributions. For the experiments whose re-
sults are plotted in Figure 8, the mixture parameters
were(p1,p2,p3) = (0.33,0.33,0.34), (µ1,µ2,µ3) =
(−6,−1,−7) and (σ 2

1 , σ 2
2 , σ 2

3 ) = (52,22,12). A ran-
dom sample of 1000 observations drawn from this
mixture is graphed in the lognormal probability plot
of Figure 8(a). The decidedly nonlinear plot would not
be confused with a single lognormal sample, but the
effects of increasing truncation displayed in the log–
log rank-size plot of Figure 8(b) have basically the
same increasingly linear appearance as the truncated
samples from the single lognormal that was shown in
Figure 6(b). (However, I also add the observation that
my simulation results indicate a definite tendency for
samples of mixtures of lognormals to exhibit Pareto-
mimicking behavior over agreater range of the upper
tail than a sample from a single lognormal.) It is not
difficult to show that mixtures of normally distributed
random variables are Gumbel-type distributions, so the
asymptotic theory discussed in the previous section can

FIG. 8. (a)Lognormal probability plot of a sample of 1000drawn
from a mixture of three lognormal distributions as described in the
text. (b)The effects of increasing truncation in this mixture distribu-
tion. Pareto-mimicking behavior is obvious in curves 2–4.The data
plotted in the untruncated curve labeled 1 are the same as those
plotted in the lognormal probability plot of (a).

also help motivate the Pareto-mimicking behavior dis-
played in the top curves labeled 2–4 in Figure 8(b).

3.3 Power Law Mimicry with the
Poisson–Lognormal Distribution

Pareto-mimicking behavior is also easy to observe
in another lognormal-like distribution, the Poisson–
lognormal, and itszero-truncated form will be seen
to be particularly relevant. The general idea of using
mixed Poisson models to fit some of the integer-valued
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distributions associated with power laws has been sug-
gested on several occasions (Sichel, 1975; Bookstein,
1997). First consider the general definition of a mixed
Poisson distribution: Start with a Poisson random vari-
able with parameterλ > 0 and then letλ itself be a ran-
dom variable whose distribution has the p.d.f.f (λ).
This generates a mixed Poisson distribution whose
p.d.f. is given by

Pj = P(Y = j)

= 1

�(j + 1)

∫ ∞
0

e−λλjf (λ) dλ(10)

(j = 0,1,2, . . .).

The p.d.f.f (λ) in (10) is referred to as themixing
density function. The classic, tractable case assumes
f (λ) = βγ λγ−1e−βλ/�(γ ) (γ,β,λ > 0), the p.d.f.
of a gamma distribution, so that the values ofPj

have an exact, closed form solution. The resulting dis-
tribution, usually called a negative binomial (rather
than a “Poisson–gamma”) distribution, probably still
remains the most commonly applied mixed Pois-
son distribution function because of its mathematical
tractability.

Nevertheless, many other mixing density functions
have been investigated. The lognormal p.d.f. has been
considered potentially attractive (Bulmer, 1974), but is
regarded as difficult to work with because the valuesPj

cannot, in this case, be computed in closed form. How-
ever, heuristic considerations (Bulmer, 1974; Grandell,
1997, page 48) previously suggested that thetail of the
Poisson–lognormal takes on a simple form. This has
now been rigorously shown to be true (Perline, 1998;
see also Proposition 3.1 of Asmussen, Klüppelberg
and Sigman, 1999) and leads to the conclusion that
the Poisson–lognormal istail equivalent to its mix-
ing lognormal and therefore has very lognormal-like
tail behavior.

Specifically, letF(y) be the c.d.f. and letf (y) =
F ′(y) be the p.d.f. of a lognormal distribution L(µ,σ 2).
Write PL(µ,σ 2) to denote the Poisson–lognormal
mixture generated withf (y) as the mixing p.d.f.
in (10) and letFPL(y) be the c.d.f. of PL(µ,σ 2),
that is,FPL(y) = ∑[y]

j=0 Pj , where[y] is the greatest
integer function. Using a powerful asymptotic inte-
gral approximation due to Berg (1958), I was able to
show that the two c.d.f.’s,F(y) and FPL(y), are tail
equivalent, which is to say that limy→∞(1 − F(y))/

(1 − FPL(y)) = 1. As a consequence, the extreme or-
der statistics of both L(µ,σ 2) and PL(µ,σ 2) have the
same asymptotic behavior.

Power law mimicking in the Poisson–lognormal
is accentuated by the fact that it is often the zero-
truncated form of the distribution that is appropriate,
because in many empirical situations only the events
that occur at least once can be observed. I illustrate
how this bears on the problem with two classic integer-
valued examples of power laws: the word counts from
James Joyce’s novelUlysses analyzed by Zipf (1949)
and the publication counts of chemists analyzed by
Lotka (1926).

I fit the zero-truncated Poisson–lognormal distribu-
tion to theUlysses word frequency counts [compiled
by Hanley (1937), which was Zipf’s source, as well]
using the maximum likelihood estimation procedure
outlined in Bulmer (1974). When the zero class is
unobservable, the untruncated formPj of the mixed
Poisson mass function is modified by the renormaliza-
tion P ∗

j = Pj/(1 − P0), j ≥ 1. If P0 turns out to be
large, the situation is, in effect, like observing the up-
per tail of a truncated lognormal distribution, so that
log–log rank-size plots of the data have an appearance
similar to the highly truncated lognormal samples of
Figure 6.

The results of a simulation graphed in the log–
log rank-size plot on the right-hand side of Figure 9
make this concrete. The maximum likelihood esti-
mates of the zero-truncated Poisson–lognormal model
yielded µ̂ = −5.62 and σ̂ 2 = 9.75 for the underly-
ing lognormal. These estimates implŷP0 ≈ 0.931.
Because there are 29,899 distinct vocabulary words
(word types) in the novel, this gives an estimate of
V̂ = 29,899/(1− P̂0) ≈ 433,319 distinct words in the
author’s active vocabulary. (The notion of a finite
vocabulary opens up a debate that is secondary to my
main point of showing how well this distribution can
mimic a power law.) To simulate the observed sam-
ple using the fitted model, a valueλ1 was sampled
from a lognormal distribution with the fitted parame-
ter values given above. This value was then used as
a Poisson parameter to generate a random Poisson
variable Y1. If Y1 > 0, a counter was incremented.
This process was then repeated with another sample
valueλ2, and so forth, until the counter reached 29,899.
To obtain this number, an actual total of 441,418 (not
the theoretical 433,319 from above) parameter values
λ1, . . . , λ441418had to be sampled and then used to gen-
erate 441,418 Poisson random variables, about 6.5% of
which were nonzero. The log–log rank-size plot of the
simulated sample on the right-hand side of Figure 9 is
therefore constructed from the 29,899 nonzero-order
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FIG. 9. Left:Recreation of Zipf ’s log–log rank-size plot of the word frequencies in James Joyce’s novel Ulysses. Right:Results of simulating
a sample of word frequencies drawn from a zero-truncated Poisson–lognormal distribution fit to the observed data. The Poisson–lognormal
distribution is analytically quite different from a power law form, but with sufficient truncation, it can masquerade as a power law, as shown
in the plot.

statisticsY1 : n ≥ Y2 : n ≥ · · · ≥ Y29899 :n = 1, where
n = 441,418.

I also fit the zero-truncated Poisson–lognormal mo-
del to Lotka’s (1926) famous data on the scientific pro-
ductivity of chemists. My Figure 10 is like his Figure 2,
which plots the log–log histogram compiled from the
papers listed inChemical Abstracts 1907–1916 au-
thored by 6891 individuals with last names beginning
with the letters A and B. As Lotka did, I have plotted
only the data for counts between 1 and 30. Because
only someone with at least one listed paper appears
in the sample, a zero-truncated model is required. The
estimated parameters for these data wereµ̂ = −4.35
and σ̂ 2 = 6.97. Figure 10 plots Lotka’s data together
with the fittedP̂ ∗

j values from the truncated Poisson–
lognormal model, showing that the estimated probabil-
ities exhibit a substantially linear log–log plot in the
range shown.

[As Stewart (1994) pointed out, the Poisson–log-
normal model is rejected for Lotka’s data by a for-
mal chi-square goodness-of-fit test. On the other hand,
Price (1963) noted many years ago that the power law
model is also a poor fit over the entire range of data.
A more realistic model of both theUlysses data and
Lotka’s counts would be based on mixtures of Poisson–
lognormals, that is, a model that uses mixing distribu-
tions forλ that comprise several component lognormal
distributions. However, in my conclusion (Section 4),
I mention a class of hierarchically structured mixtures

FIG. 10. A recreation of Lotka’s (1926) famous log–log plot of
the publication counts of chemists. Also shown are the predicted
counts from the fitted zero-truncated Poisson–lognormal distribu-
tion. The zero-truncated Poisson–lognormal mimics a power law
over the range of values that Lokta used in his plot.
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of lognormal distributions that is much more likely to
help explain Pareto–Zipf-type data when the slope pa-
rameter is highly stable across samples. For example,
empirical word frequency distributions have a remark-
ably constant−1 slope for log–log rank-size plots.]

The Ulysses and Lotka data fit to the Poisson–
lognormal distribution here exemplify a type of data
that occurs quite commonly, but whose highly trun-
cated character has usually not been appreciated. This
type of data set is often found in “network science” re-
search, as in the Barabási and Albert (1999) example or
the URL links graphed in Figure 5. A salient common
feature of these examples is that the sampling scheme
is biased because it specifically excludes, or inaccu-
rately assesses, the very large category of observations
with j = 0. For the Lotka data, this means that, within a
given time interval, authors who have higher probabil-
ities of publishing are more likely to be observed, and
the lower probability individuals tend not to show up
with even a single paper. A similar situation holds for
word frequencies. Indeed, a strong indication of a high
degree of truncation is the occurrence of a large num-
ber of “singletons,” that is, the observations that occur
only once in the sample. For Lotka’s data set above,
fully 3991 of the 6891 authors had only one paper
to their credit in theChemical Abstracts 1907–1916.
Also, from Hanley’s (1937) index of theUlysses word
frequencies, 16,432 of the 29,899 distinct words in the
novel occurred only once. With so many authors and
words occurring only one time, it is obvious that there
must bepotentially many more that did not occur at
all, but somehow need to be taken into account to get
a true picture of the situation.

4. CONCLUSION AND RELATED RESULTS

It is surprising that the significance of truncation
and Pareto-mimicking behavior are so little discussed
in the literature of power law distributions. The basic
facts are easily established with simulations, and use-
ful insights can be obtained with standard asymptotic
estimates from extreme value theory. Perhaps part of
the explanation that truncation has been so often over-
looked is due to the strong natural asymmetry that calls
attention to the high end, while obscuring the low end,
of many kinds of distributions. What is the height of
the shortest building or the area of thesmallest island
in the world? What is thedimmest star in the sky? How
do we estimate the number of chemists who didnot
publish any papers (the zero class) listed inChemical
Abstracts 1907–1916? It is in the nature of things that

the low end, or very commonly, all but the upper tail,
of many kinds of data is hidden because of definitional
fuzziness and the difficulties associated with measure-
ment below some threshold. At the same time, it is fre-
quently the high end that is most important or most
likely to capture our attention.

As I have attempted to show in Section 3.2, a more
promising modeling approach takes into account issues
of heterogeneity that have generally been naively ig-
nored. Shoehorning the data into one- or two-parameter
models, such as the Pareto or Yule or the lognor-
mal, while simultaneously excluding some inconve-
nient portion of the distribution, has too long been the
norm. Many of the examples of inverse power laws
proposed through the years are probably FIPLs best
represented by finite mixtures of distributions.

Nevertheless, I want to emphasize my strong be-
lief in the existence of Pareto–Zipf-type distributions
that cannot be explained as FIPLs. For instance, Zipf’s
word frequency law exhibits a rank-size power law ex-
ponent consistently close to−1 regardless of the sam-
ple used. Such striking stability of a parameter value is
not accounted for by Pareto-mimicking FIPLs, which
have “exponents” (“slopes” on a log–log scale) that
depend on the sample size, as we saw in Section 3.1.
[The upper tails of income distributions—the “weak
Pareto law”—were found by Pareto to approximately
satisfy Ny = B/yα with α close to 3/2, which im-
plies a log-log rank-size slope of−2/3 as in Figure 1.
However, the stability of this parameter value in other
data sets (Arnold, 1983, Table C) is not nearly as im-
pressive as that for Zipf’s word frequency law.] It is
important to point out, therefore, that there is a nat-
ural path that leads from FIPLs to WIPLs and SIPLs
that seems particularly compelling to me as an expla-
nation for how these distributions with “true” power
law tails could occur. Instead of working with un-
structured, finite mixtures of lognormal distributions
(other exponential-type distributions can also be used)
as in Section 3.2, there is a class ofhierarchically
structured, infinite mixture distributions that provides
the mechanism for generating WIPLs and SIPLs from
FIPL building blocks. One well-known example is a
model of Pareto’s income law given by Montroll and
Shlesinger (1982, 1983) that is defined as an infi-
nite mixture of increasingly richer income levels rep-
resented by the random variablesY1, Y2, . . . , where
each component distributionYj has the formkj−1Y

for some constantk > 1 and Y has the lognormal
distribution L(µ,σ 2). Montroll and Shlesinger then
defined the mixing proportions for the components as
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a geometric distribution, so thatYj has the mixing pro-
portion qpj−1, p + q = 1. The parameterk > 1 is
an amplification constant that reflects the hierarchical
structure of society in which individuals at higher in-
come levels organize enterprises so that their incomes
are “amplified through the efforts of others.” Montroll
and Shlesinger showed that the overall distribution
generated from this infinite mixture is a WIPL with an
asymptotic power law tail that has an exponent equal
to − logp/ logk.

Quite recently, Reed (2001) proposed a conceptually
related model in the context ofgeometric Brownian
motion. Reed defined a stochastic process based on an
infinite mixture of lognormal distributions with para-
meter values that increase linearly over time using an
exponential mixing distribution for the time variable.
From this he then derived a new class of distributions
called thedouble Pareto, which can be viewed as an
odd form of WIPL with one power law in the upper
part of the distribution and another in the lower part.
Reed and Hughes (2002) showed how several forms
of exponential growth can generate such a stochastic
process.

Indeed, the idea of hierarchically structured mix-
ture distributions—closely related to what Mandelbrot
(1997, page 226) termed “compensation between two
exponentials”—is an old and recurring theme associ-
ated with power law behavior. This crops up in the
analysis of the monkey-at-the-typewriter generation of
pseudo-words (Perline, 1996) and has been proposed in
a variety of models of power laws spanning both phys-
ical and social sciences.

This leads to a research question of keen interest to
me: Which Pareto–Zipf distributions are more plausi-
bly modeled as FIPL unstructured, finite mixtures and
which are better explained in terms of hierarchical, in-
finite mixture models? Finally, let me also pose my fa-
vorite Pareto–Zipf challenge: Are thereany examples
in Zipf (1949) that can reasonably be called SIPLs,
but are not associated in any way with truncated data?
I believe there is at least one, but I will save my argu-
ment for another occasion.

APPENDIX: DISCUSSION OF ASYMPTOTIC
PARAMETER ESTIMATES

The theoretical slope estimates based on the para-
meter valuebn defined in (9) may be considerably
discrepant from the slope computed from randomly
generated sample data untiln is sufficiently large. For
example, for a truncated sample from the normal distri-
bution (on the log scale) withσ 2 = 16.9 andn = 106

as graphed in curve 8 of Figure 6, the theoretical ap-
proximation of the slope for the top 103 observations
plotted against log rank is−bn = −0.782. However,
the slope computed from the actual simulated data us-
ing the least squares regression ofXj : n = logYj : n

onto logj for the 103 values is−1.074—a large 27%
discrepancy. I mention, therefore, that the constants
an andbn in (8) and (9) are not unique with respect to
the limiting distributions and moments of (4) and (6).
Those limit results remain identical if alternative stan-
dardizing constantsAn and Bn are substituted, pro-
vided that the two limits limn→∞(an − An)/bn = 0
and limn→∞ bn/Bn = 1 hold. This is just a state-
ment of the well-known “convergence to types” theo-
rem (Embrechts, Klüppelberg and Mikosch, 1997) and,
consequently, different choices of these constants will
prove more useful for the task of slope estimation.

As an illustratation, Hall (1979) showed that for the
standard normal distribution, the speed of convergence
of the largest order statistic,X1 :n, to its limiting dis-
tribution is fastest by choosingan as the solution to
nf (an) = an and then settingbn = 1/an, wheref (x) =
exp(−x2/2)/

√
2π is the standard normal p.d.f. [These

constants, therefore, can be shown to satisfy the con-
vergence to types theorem relative to thean and bn

of (9).] Forn = 106 and adjusting forσ 2 = 16.9, Hall’s
solution leads to a slope estimate ofbn = −0.863,
which is a 20% discrepancy—already an improvement
from above. Still further refinements based on other
considerations can yield even better slope estimates.

A reviewer of an earlier version of this paper raised
questions about the accuracy of the random values
used in the simulations. The normal random deviates
were produced by SAS©V8.2 programs employing
a random generator based on the widely used pro-
cedure of generating uniform random deviates us-
ing a multiplicative congruential generator modulus
231 − 1 (Fishman and Moore, 1982) followed by a
Box–Muller (1958) transformation. This procedure
is exceedingly unlikely to be producing poor quality
simulations on samples the size of those used here,
but there are several ways to check this. One ap-
proach is to use some classical bounds on the moments
of order statistics in terms of distribution quantiles
(David, 1970). Let�−1(x) be the inverse of the stan-
dard normal c.d.f. It can be shown that the bounds
�−1((n − j)/n) ≤ E(Xj : n) < �−1((n − j + 0.5)/n)

hold for all 1≤ j ≤ n. First, with n = 106, I took the
midpoints of these bounds (adjusted forσ 2 = 16.9 and
µ = −5.79) as estimates of theE(Xj : n) and then re-
gressed them onto logj , for 1 ≤ j ≤ 103. The slope
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and intercept values obtained with this regression were
within 0.1% of that obtained from the regression using
the simulated sample. Also, based on 50 different sim-
ulated samples of 106 observations, the average val-
ues for the top 103 sample order statistics differed by
only tiny amounts from the midpoint estimates from
the classical bounds.
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