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Abstract. This article presents an exposition and synthesis of the theory and
some applications of the so-called indirect method of inference. These ideas
have been exploited in the field of econometrics, but less so in other fields
such as biostatistics and epidemiology. In the indirect method, statistical
inference is based on an intermediate statistic, which typically follows an
asymptotic normal distribution, but is not necessarily a consistent estimator
of the parameter of interest. This intermediate statistic can be a naive
estimator based on a convenient but misspecified model, a sample moment
or a solution to an estimating equation. We review a procedure of indirect
inference based on the generalized method of moments, which involves
adjusting the naive estimator to be consistent and asymptotically normal.
The objective function of this procedure is shown to be interpretable as an
“indirect likelihood” based on the intermediate statistic. Many properties of
the ordinary likelihood function can be extended to this indirect likelihood.
This method is often more convenient computationally than maximum
likelihood estimation when handling such model complexities as random
effects and measurement error, for example, and it can also serve as a basis
for robust inference and model selection, with less stringent assumptions
on the data generating mechanism. Many familiar estimation techniques
can be viewed as examples of this approach. We describe applications
to measurement error, omitted covariates and recurrent events. A dataset
concerning prevention of mammary tumors in rats is analyzed using a
Poisson regression model with overdispersion. A second dataset from an
epidemiological study is analyzed using a logistic regression model with
mismeasured covariates. A third dataset of exam scores is used to illustrate
robust covariance selection in graphical models.
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1. INTRODUCTION 2. One first computes amtermediate or auxiliary
statistics = W (P™) of dimensiong > p which is
a functional of the empirical distribution function
P™ | say.

3. A bridge (or binding) relationships = w(P®)
is defined. Theunknown quatity s is called the

Methods of “indirect inference” have been devel-
oped and used in the field of econometrics where
they have proved valuable for parameter estimation
in highly complex models. However, it is not widely
recognized that similar ideas are extant generally in a i~

auxiliary parameter.

number of other statistical methods and applications,4 With th m fimaté replaci the brid
and there they have not been exploited as such to the™ Ith e auxiliary estimate replacings, tn€ bridge
relationship above is used to compute alusted

fullest extent. timated (5 for @
This article was motivated by our experience in an- estimatey (s) for 6.

alyzing repeated events data for the Nutritional Pre-  The goals to be achieved in this approach include the
vention of Cancer (NPC) trial (Clark et al., 1996). The following. We would like the estimatod (5) to be (1)
results reported there were quite controversial, suggestrobust to model M misspecification, in the sense that
ing substantial health benefits from long term daily 4(s) remains a consistent estimatoréfinder a larger
supplementation with a nutritional dose of selenium, class of modelst that includes M, and (2) relatively
an antioxident. Early on, it was recognized that the easyto compute. To attain these two goals, we will base
subject population was heterogeneous and that thereyur inference on the auxiliary statisfiavhich may not
were sources of vability and bisses not accounted  pe sufficient under model M. Therefore, a third goal is
for by standard statistical analyses—these included co-that the estimataf (5) have high efficiency under M.
variate measurement error, omitted covariates, missing The starting point is the choice of an intermediate
data and overdispersion. However, the dataset, beingstatistic$. This can be chosen as some set of sample
large and complex, did not lend itself well to statisti- moments or the solution of some estimating equations

cal methods that required complicated computations. or the ML estimator (MLE) based on some convenient
Instead, convenient available statistical software wasmodel M, say, termed thauxiliary (or naive) model.

used that was based on fairly straightforward (nonlin- |f the |ast, then the model Mis a simpler but mis-

ear) regression models. The outputted results based 0gpecified or partially misspecified model. The choice
these naive models were then examined in the light of of an intermediate statisticis not necessarily unique;

known and putative deviations from the model and in- however, in any given situation there is often a natural
ferences were adjusteq acc_ord_lngly. The details of this e to use. The theory of properties of estimators ob-
case study were described in Jiang, Turnbull and Clarkained from misspecified likelihoods goes back at least
(1999). as far as Cox (1962), Berk (1966) and Huber (1967),

~ This is an example of a general approach, termed,nq js summarized in the comprehensive monograph
indirect inference (Gouriéroux, Monfort and Renault, by White (1994). The use of (based on an auxil-

1993), which was motivated by complex dynamic fi- 5 model M) in indirect inference about (under
nancial models. Here maximum likelihood (ML) esti- - 1,5qel M) appeared recently in the field of economet-
mates are difficult to obtain despite modern algorithms ..« 5 treat complex time series and dynamic mod-
and computing power, due to the presence of many la-¢|5 (see, e.g., Gouriéroux, Monfort and Renault, 1993:
tent variables and high-dimensional integrals. Another Gallant and Tauchen, 1996, 1999), as well as in the
consideration in these applications is the desire to Ob'field of biostatistics to treat regression models with
tain esti_mates that are robust to misspecification of therandom effects and measurement error (see, e.g., Kuk,
underlying model. 1995; Turnbull, Jiang and Clark, 1997; Jiang, Turnbull
1.1 Indirect Inference and Clark, 1999).

The econometric applications of the indirect ap-
proach have been primarily motivated by goal 2; for ex-
ample, to perform inference for financial data based on
stochastic differential equation or stochastic volatility
1. There is a hypothesized true model M for data models, where the usual maximum likelihood-based

generation, with distribution?® which depends approach is intractable (see, e.g., Matyas, 1999, Chap-

on an unknown parameter of inter@stwhich is of ter 10; Carrasco and Florens, 2002, for reviews). In

dimensionp. contrast, the goal of robustness as described in goal 1

Suppose we have a dataset consisting ofdepen-
dent units. The essential ingredients of the indirect ap-
proach are as follows.
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has been an important consideration in recent biosta- EXAMPLE 1 (Exponential observations with cen-
tistical applications (e.g., see Lawless and Nadeau,soring). Consider lifetimeg7y, ..., T,}, which are
1995, and further references in Section 2.5). Recentindependent and identically distributed (i.i.d.) accord-
work (Genton and Ronchetti, 2003) has shown how in- ing to an exponential distribution with meah The
direct inference procedures can also be made robustiata are subject to Type | single censoring after fixed
in the sense of stability in the presence of outliers. timec. Thus the observed data g, .. ., ¥, }, where
Both senses of robustness are discussed further in Sec¥; = min(7;,¢) i =1,..., n). We consider indirect in-
tion 2.5. ference based on the intermediate statigtieY. This
choice can be considered either as the basis for an MM
estimator or as the MLE for a misspecified modéliv

The method of moments can be formulated as indi- which the presence of censoring has been ignored. The
rect inference. Consider an intermediate stati$tie naive estimatot in fact consistently estimates n@f
U(F,) = (X, 5% ...)T with components that contain but the naive or auxiliary parameter
some sample moments such as the m&aand the _
varianceS2. Then the bridge equation is= s() = @) $ =011 = exp(=c/0)],
W(Fy) = (u(8), 02(@®),...)T with components of pop-  the expectation o¥. Equation (1) is an example of
ulation moments, that is, mean(®), variances2(6) what we term a bridge relationship. We can see the
and so on. The vector of population moments is the obvious effect of the misspecification, namely thiat
auxiliary parametes. underestimate®. However, a consistent estimafe

In the usualmethod of moments (MM), dim(s) = of & asn — oo can be obtained by solving (1) for
g = p = dim(9), we solves = s(d) for §, the MM es- with s replaced bys = Y. (Note that this is not the

timator. (We assume the solution is uniquely defined.) MLE of 6, whichisnY /[Y7_; 1(Y; < ¢)].) In the later
If ¢ > p, then we can instead takeas sections we will see how to obtain the standard error
for the adjusted estimate

1.2 Method of Moments as Indirect Inference

6 =argmins —s@)} v 5 — s(0)},
o EXAMPLE 2 (Zero-truncated Poisson data). The
wherev is a positive definite matrix, such as a sample zero-truncated Poisson distributif@xp(—6)6~)/(1—
estimate of the asymptotic variance (avar)sofThis ~ exp(—6)y!); y =1,2,...}is amodel for positive count
is an example of th@eneralized method of moments data—the number of articles by an author, for exam-
(GMM; Hansen, 1982). In thesimulated method of ple. Supposé, ..., Y, is an ii.d. sample from this
moments (SMM; McFadden, 1989; Pakes and Pollard, distribution. Suppose, however, that the zero trunca-
1989), the moments(6) are too difficult to compute  tion is overlooked and the standard Poisson likelihood
analytically. Insteads(0) is evaluated as a function [li—1{€XP(—0)6%/y;!} is used. The naive estimator
of 6 by Monte Carlo simulation. § =Y is consistently estimating (§) =s = 6/[1 —
Now, the full GMM method is a very broad approach exp(—6)]. This is the bridge relationship and, wifh
to estimation which includes maximum likelihood, in place ofs, it can be inverted to obtain a consistent
estimating equations, least squares, two-stage leasestimato® of 6. In this case, it coincides with the MLE
squares and many other estimation procedures adased on the true likelihood and is asymptotically effi-
special cases (see, e.g., Imbens, 2002). Since theient.

ind?rect. method is alsq a unifying f_rqmework for ExamMpPLE 3 (Multinomial genetic data). Dempster,
_estlmatlon procedurgs, it is not surprising that thgre Laird and Rubin (1977, Section 1) fitted some pheno-
IS a strgng_ cgnnquog fbetr\:vegn Slt ar_1d C25|\7/IM This type data given by Rao (1973, page 369) to a genetic
connection is described further in Section 2.7. linkage model described by Fisher (1946, page 303).
1.3 Three Pedagogic Examples The sample consists af= 197 progeny which are dis-
] ] o ) tributed multinomially into four phenotypic categories
t Tthg _SITES ;nﬁolv'ed n thel |nd|:ject method arel '”uf' according to probabilities from an intercross model M
rated in the following simple pedagogic examples. In 1,151
fact, in all three of tr?ese zxarF;\ I o ot ;.Of the genotypes Apabx AB/ab: (3 1 36, 3(1~6),
, ples, the adjusted esti- 1 1 .
) . ) . 7(1—0), 70) for somed € [0, 1]. The corresponding
mators can be viewed as MM estimators; however, it
. ) ) . o ) observed counts are
is instructive to consider them in the indirect inference
framework of Section 1.1. Yy = (y1, y2, y3, y4) = (125 18, 20, 34).
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For the first step, we define an intermediate statistic of S() and 8éS(é) only once, can greatly reduce

as a naive estimate offrom a “convenient” but mis-  the computational effort compared to that for . In
specified model Min which it is wrongly assumed our genetic linkage example the true log-likelihood
thaty is drawn from a four-category multinomial distri-  function is

bution with probabilities(3s, 2(1 — s), 3(1 - s), 35). 1 0 1 0

This corresponds to a backcross of the genotypes L =Yilog (E 4) + (Y2+ Y3)log (Z - Z)
AB/ab x ab/ab. The naive model is convenient be-

cause the naive MLE is simply calculated &s= + Yalog <€>

(v1 + y4)/n = (125+ 34)/197= 0.8071. In the sec-

ond step, we derive a bridge relationship which relates First- and second-order derivatives bfcan easily be
the “naive parameter$ (large sample limit off) to evaluated, leading to the one-step correction estimator
the true parametet. Here the bridge relationship is A A A

s = (1+0)/2, since, under the true model, this isthe §—§ + Y12+ %) - (24 Y- 2 "+ Y46 -
almost sure limit of asn — co. The third step is to in- Y1(2+60)72+ (Y2+ Y3)(1—0)72 4 Y402
vert the bridge relationship to obtain the adjusted esti- =0.6271

matef =25 —1=(n+ya—y2—y3)/n=06142.01 .0 oo is closer to the MLy = 0.6268 and
course, in this case the maximum likelihood estimate : .
< has the same asymptotic variance di@26. Thus we
based on the true modély. say, can be computed ex- ! . ; L
have obtained a consistent and asymptotically efficient

plicitly as estimate.
OmL = (y1— 2y2 — 2y3 — y4 Another way to increase efficiency is to incorpo-
rate more information into the intermediate statistics.
+V(y1 — 2y2 — 2y3 — y4)? + 8nya) /(2n) For example, all information of the data is incorpo-
—0.6268 rated if we instead define the intermediate statistic

§=(y1/n, y2/n, y3/n)T [the last cell frequency is de-
which can be obtained directly from solving the score termined by(l — §1 — 52 — §3)]. Hereg = dim(s) =
equation. Alternatively, the expectation-maximization 3> 1= p = dim(@). The new bridge relationship is
algorithm can be used as in Dempster Laird and Rubing — s(@) = (2 19, %(1 —9), %(1 — 9)). If we use
(1977, Section 1). The MLBy. is biased, unlike the generalized method of moments and choose
the adjusted estimato#, but has smaller variance be an estimate of the asymptotic varian@a(s) of
thand. We have Vaé = 4 Vars = 4s(1 — s)/n, which § with the jkth element beings;8;x — §;5k)/n (8«
can be estimated assd — §)/n = 0.0032. This is the Kronecker delta), then the adjusted estimate is
compares with Vaf\y. = 0.0026, obtained from the 6 = argmin {5 —s(0)}T v=1{§ —s(0)}. This expression
sample Fisher information. The asymptotic efficiency yields
of 9 relative to Ay is therefore estimated to be
0.0026/0.0032= 0.81. The loss of efficiency is due
to model misspecification§ is not sufficient under (2t vt v
model M.

Whend is not efficient, a general method for obtain- =06264
ing an asymptotically fully efficient estimatérisviaa  which is closer to the ML estimator. Later, in Propo-
one-step Newton—Raphson correction or “efficientiza- sition 1(ii), we will show that the asymptotic vari-
tion” (e.g., see Le Cam, 1956; White, 1994, page 137; ance o can be estimated bgar(9) = 2(892H)—1|9:é,
Lehmann and Casella, 1998, page 454). Specifically,where 32H is the Hessian of the objective function
sinced is consistent and asymptotically normal, the es- g — (5 —s@)}TvY5 — 5(0)}. In this example, upon

b=+ vty

timator evaluation, we obtain
5P _ (9.0 —L1ch ~ 16
(2) 0=0—1{9;S©0)} "5, vard) = (vt vyt vyt !

whereS(-) is the true score function, is asymptotically
the same as the ML estimate and hence achieves full - 0‘0029

efficiency. For complicated likelihoods, the one-step The avar estimate now is very close to that of the ML
efficientization method, which requires the evaluation estimator. In fact, heré is fully efficient because now
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it is based on an intermediate statistihat is sufficient

under model M. The difference of the avar estimates
arises because of the finite sample size. One should
note that the method here is the minimum chi-square
approach of Ferguson (1958) recast in terms of the

indirect method.

1.4 Ouitline of the Article

The approach described has been used in a variety of
statistical problems, but has not really been exploited
on a systematic basis, with the exception of the consid-
erable work in the field of econometrics. The present
article is intended to provide a synthesis of a num-

ber of different ideas from different fields, illustrat-

ing them with examples from various applications (in

fields other than econometrics).

Our unifying concept is inference using the frame-
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3. Robustness. We will see that the validity of the

inference based on an intermediate statistic es-
sentially relies on the correct specification of its
asymptotic mean. This is often a less demand-
ing assumption than the correct specification of a
full probability model, which would be generally
needed for a direct likelihood inference to be valid.
Therefore, the inferential result based on the ad-
justed estimat® often remains valid despite some
departure of the data generation mechanism from
the hypothesized true model M. Another, perhaps
more traditional, sense of robustness is that of pro-
tection against outliers. It is possible to make indi-
rect inference procedures resistant to outliers. Both
senses of robustness are further discussed in Sec-
tion 2.5.

In Section 2 we summarize the theory, integrat-

work of an approximate likelihood based on the in- ing literature from different fields. In Section 3, we

termediate statistic (thidirect likelihood), instead of

present some applications of the bridge relationship

one based on the full data. The current article may in assessing the robustness and sensitivity of an un-
be viewed as an attempt to extend an analysis baseddjusted naive estimator regarding model misspeci-
on “complete data plus a complete probability model” fication (when M is misspecified as’M Examples

to an asymptotic analysis based on “some compressednclude Poisson estimation, omitted covariates, mea-
datas plus a model for its asymptotic mean.” This surement error and missing data. Section 4 includes
extension allows flexibility for a spectrum of trade- three analyses: a carcinogenicity dataset is modelled
offs between robustness and efficiency. Often, a moreby a Poisson regression model with random effects
compressed intermediate statistic leads to a lower effi-(overdispersion); an epidemiological dataset concerns

ciency under model M, but produces a consistent indi- @ mismeasured covariate; a well-known multivariate
rect likelihood estimator that relies on less assumptionsdataset of mathematics exam scores illustrates robust

about M. This indirect approach offers the following
advantages:

1. Ease of computation. The indirect method is often
computationally simpler or more convenient (e.g.,
s often can be computed with standard software if it
is based on a standard auxiliary mod€)M

. Informativeness on the effect of model misspecifi-
cation. Whens is a naive estimate obtained from
a naive model M by neglecting certain model
complexity, the current approach is very informa-
tive on the effect of model misspecification—the
bridge relationships = s(6) provides a dynamic
correspondence between’ ind M. In fact, such
a relationship is of central importance in, for ex-

model selection. In the Conclusion, we list some more
statistical procedures that can be recast as examples of
indirect inference, including importance sampling and
applications to gene mapping.

2. THEORY
2.1 Auxiliary Statistic

Under the hypothesized true model M, we suppose
that the observed dat&/ come fromn subjects or
units, independently generated by a probability distrib-
ution P, which depends on an unknowndimen-
sional parameteé. It is desired to make inferences
concerning.

The indirect method starts with auxiliary or in-

ample, errors-in-variables regression, where such atermediate statistic § = §(W), which can be generated

relationship is sometimes termed an attenuation re-
lationship (see, e.g., Carroll, Ruppert and Stefanski,
1995, Chapter 2), which tells how the regression

by the method of moments, least squares (LS) or a
likelihood analysis based on a convenient misspecified
model M, for example. Most such intermediate sta-

slope can be underestimated when neglecting thetistics can be defined implicitly as a solutian= s,

measurement error in a predictor.

of a (g-dimensional) estimating equation of the form
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G(W,s) =0, say. [Clearly this includes any statistic
s = 5§(W) that has an explicit expression as a special
case, by takings = s — §(W).] The estimating equa-
tion could be the normal equation from an LS analysis,

the score equation based on some likelihood function

or the zero-gradient condition for a GMM analysis.
Note thats is typically asymptotically normal (AN)
and /n consistent for estimating some= s(9), the
auxiliary parameter (see, e.g., White, 1994, Theo-
rem 6.4, page 92, for the case wh@éns a score func-
tion based on a naive/misspecified likelihood). In our
exposition, the theory ofnidirect inference methods
will be based on this AN property for the intermedi-
ate statistic alone, noting that this property can hold
even if the complete original mod&I®’ for the datav
is invalid. Our intermediate model is now

3) nY2(5 — 5)) 2 N, v).

Here § and s(#) are of dimensiong, where the
auxiliary parameter s = s(0) is the asymptotic mean
of §. (Whens is based on a naive model’Mwe
sometimes alternatively term a naive parameter.)
Also, n~1v = var() is theq x ¢ asymptotic variance
(avar) ofs. In general, the avar of has a sandwich
form:

1

var(s) =n""v

(4) _ _

= (E 3,G) "t var(G)(E 8,G) " |s=s(0)-
Here we use superscrip® for transpose, and-T
for inverseand transpose. The derivative matrix is
defined by[d;Gljx = 3,,G;, j.k=1,...,q, G =
(G1,...,GpT ands = (s1,...,s9)7.

2.2 The Bridge Equation

Note that, as an asymptotic mean &f s(9) is
not unique:s(9) + o(n~?) would do as well. We
usually choose a version ©9) which does not depend
onn, if available. Alternatively, we may use the actual
expectations(9) = Ewjes. Now s(6), the consistent
limit of §, is not equal to the true parametérin

W. JIANG AND B

TURNBULL

CAsSE A. When the naive estimatér= 5(W) has
an explicit expression, it is sometimes possible to use
the law of large numbers to find its limit directly, as in
the examples of Section 1.

CAse B. More commonly,s does not have an
explicit expression. Whed maximizes an objective
function, its large sample limit may be obtained by
maximizing the limit of the objective function. When
s is implicitly defined as a solution of an estimat-
ing equationG(W,s) = 0, and G(W, s) converges
in probability to EweG(W,s) = F(0,s), say, as
n — oo, we can find the naive parameigp) by look-
ing for the solutions = sg(#), say, of the equation
F(©,s) =0, and take (9) = so(0).

Note that Case A is a special case of Case B with
GW,s)=s—5(W).

More generallys = §(W) is defined as a procedure
which maps the data vector %7, ands is asymptot-
ically normal. Thens(6), being an asymptotic mean
of §, can be computed b¥ws5(W). If necessary, this
expectation, as a function ef, can be estimated by
a Monte Carlo method: Simulad®®, k=1,...,m,
ii.d. W|9, and uses(®) ~ m~ 1Y, 5(W®). For
examples, see McFadden (1989), Pakes and Pollard
(1989) and Kuk (1995).

2.3 The Adjusted Estimator and the
Indirect Likelihood

We now consider inference for the parameéteinder
model M based on the intermediate stati§tiErom the
assumed AN approximation (3) 6f we define arin-
direct likelihood L = L(6|5) = |2 v| Y2exp—H/2),
whereH = H(#,5) = {§ —s(@)} v {5 —s0)}, v is
(a sample estimate of ) the avarsadind| - | denotes de-
terminant. More generally, whens defined implicitly
as the solution to an equation of the foiW, s) = 0,
in the definition of the indirect likelihood., H is de-
finedbyH (6, 5) = F(0,5)Tv1F (8, 5), with F (0, s) =
EwppG(W,s). Herev is (a sample estimate of) the

general and not even necessarily equal in dimensionavar of (6, s5), which can be evaluated by the delta

For problems with model misspecification, the naive
parameters(f) establishes a mapping which plays
a central role in bias correction and is referred to
as thebinding function (Gouriéroux, Monfort and
Renault, 1993) obridge relationship (Turnbull, Jiang
and Clark, 1997; Jiang, Turnbull and Clark, 1999),

method (e.g., Bickel and Doksum, 2001, Section 5.3)
and found to be the same as (@Jy evaluated at =
s(0) (the auxiliary parameter).

We then define thadjusted estimator (or theindirect
MLE) 6 to be the maximizer of. or the minimizer
of H. This maximizer ofL bears properties that are

because it relates what the naive model really estimatesanalogous to the usual MLE under mild regularity

to the true parameter.
Now we turn to the problem of deriving6) in two
cases:

conditions. The most important condition is the correct
specification of the bridge relationship= s(0), or
implicitly of F (8, s) =0, for the asymptotic meanof
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the intermediate statistic. These results are summarizedhen

in the following proposion. We will ouline theproof

in the explicit form. The proof in the implicit form is

n~Y23510gL 2 N{0,5'(0) v15'(6))

similar and is actually asymptotically equivalent after and

applying the implicit function theorem to the partial

derivatives onr.

ProOPOSITION1. Analogy of the adjusted estima-
tor to the MLE. Suppose:

(8) V(s —5(8)} > N (0. v);

(b) v ispositive definite and symmetric and nv 2y

(c) s(-) is second-order continuously differentiable
in a neighborhood of & and the derivative matrix s’
is full rank at 6. [In the implicit form this condition
involves the following: F is bivariate continuously
differentiable to the second order in a neighborhood
of (8, s(0)), 9, F and 9y F arefull rankat (9, s(0)) and
F takesvalue zero at (0, s(9)).]

Then we have the following:

(i) Indirect score function: The asymptotic mean
and variance of the indirect likelihood score function
satisfy the usual relationships E(dylogL) = 0 and
var(d logL) + E(32logL) = 0.

(i) Asymptotic normality: There exists a closed
ball ® centered at the true parameter 6, in which
there is a measurable adjusted estimator 6 such that
d = argmaxcolog L and /(6 —6) 2 N{0, (s'®)T -
v=15/(6))~1}. Alternatively, § is AN with mean 6, and
with avar estimated by —(82log L)~ or 2(32H)71,
where consistent estimates are substituted for parame-
ter values.

(ii) Tests: Likelihood-ratio statistics based on the
indirect likelihood for testing simple and composite
null hypotheses have the usual asymptotic x 2 distribu-
tions (eg., under Hp:6 = 6y, 2logL®) —
210gL(00) 2 x2..,)-

(iv) Efficiency I: The adjusted estimator has small-
est avar among all consistent asymptotically normal
(CAN) estimators f(s) of 6, which are constructed
from the naive estimator § by continuously differen-
tiable mappings f.

PrRooF (i) From Assumption (a), we note that

nloylogL = —0.5n"1oy H

=50V —50)) +0,(n"Y?)
and

—n192logL =5'0) " vIs'(0) + 0,(nY?).

—n92logL 5 5/ )T v 15 (6).

In this sense, the asymptotic mean 0f¥/23,logL
is zero, and the asymptotic varianee! var(d log L)
and the asymptotic mean efn=132logL are both
equal tos’(8)Tv=1s'(6).

(i) The AN result is proved by using a usual linear
approximation and using the results in (i). The validity
of the linear approximation depends on the consistency
of § and a zero-gradient condition, which are justified
below.

By conditions (a), (b) and (c) we can choose a closed
ball ® centered at the true paramei@r such that
SUR.e In~TH (1,8) — h(1)| 5 0 and the limiting cri-
terion functioni(r) = {s(@) — s()} v "1{s(0) — s(1)}
has a unique minimum = 6 located in the interior

of ®. Therefore, the minimizef = argminegn=t -

H(t,5) £ ¢ and satisfies a zero-gradient condition
dH(t,5)|,_s =0=dlogL(@) with probability tend-
ing to 1. Now we expand this zero-gradient condition
aroundd ~ 6 and use the just-established consistency
of 6 to characterize the remainder. We obtain-

0 = —{92log L(0)} 19y log L(8) + 0, (n~1/?). Apply-

ing the results obtained in the proof of (i) and Slutsky’s
theorem, we obtai—6 = {s’(9)Tv=1s'(0)} 15’ (6)7 -
VY5 — 5(0)} + 0,(n~Y/?), from which the AN result

of (ii) follows.

(i) Since the AN result (ii) for the parameter
estimates has been established, the standard treatment
in likelihood-based inference (e.g., Sen and Singer,
1993, Section 5.6) can be applied, based on a second-
order Taylor expansion. This results in the the limiting
x2 distribution of the likelihood-ratio statistics.

(iv) The delta method can be applied to derive
nvar(f(5)) = f'(s)vf'(s)T, while result (i) gives
nvar®) = (s'(0)Tv=1s'(6))~1. The consistency of
f(5) as an estimator af implies thatf (s(9)) =0 for
all 8, implying the constrainf’(s)s’(8) = I, which in
turn implies that a positive semidefinite matrix

(f/ _ (S/Tv—ls/)—ls/TU—l)
) v(f/ _ (S/Tv—ls/)—ls/TU—l)T
= fswf' ) = ('@ v i)

This last equation shows thawar( f(5)) is never less
thann vard) in the matrix sense.
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This proposition represents a summary of results to be consistently estimated by inverting the bridge re-
that have appeared in varying forms and generality lationship. Examples of this kind arising from errors-
and tailored for various applications. For example, in-variables regression models are given in Sections
(iv) is a stronger version and synthesis of various op- 3.2 and 4.2.
timality results in the existing literature such as the
optimal quadratic criterion function in indirect infer-
ence (Gouriéroux, Monfort and Renault, 1993, Propo- In general, the intermediate statistic is not a
sition 4), the optimal linear combination of moment syfficient statistic o9 under the true model M and
conditions in GMM (Hansen, 1982, Theorem 3.2; the indirect MLEA based on the intermediate dates
McCullagh and Nelder, 1989, page 341), the method not as efficient as the MLBy based on the complete
of linear forms (Ferguson, 1958, Theorem 2) and the gataw. However, Cox (1983) and Jiang, Turnbull and
regular best AN estimates that are functions of sampleciark (1999) provided examples of situations when the
averages (Chiang, 1956, Theorem 3). efficiencies ofd are quite high for some parameter

Recognizing that the maximization &fis the same  components; see also the example of Section 4.1.
as minimizing H, we can often view the method of  proposition 1(iv) has already given our first result

minimum x © or GMM as likelihood inference based on - concerning the efficiency df. Further results on the
an intermediate statistic. For example, in the S'mUIatedefficiency of O under model M are summarized in

method of moments and indirect inference, either the y,e fojlowing two propositions. Proposition 2 provides
explicit (McFadden, 1989; Pakes and Pollard, 1989; yocessary and sufficient conditions for the entire vec-
Gouriéroux, Monfort and Renault, 1993; Newey and . ot 4 [parts (i) or (ii)] or some of its components
McFadden, 1994) or the implicit form (Gallant and
Tauchen, 1996, 1999; Gallant and Long, 1997) of
the GMM criterion functionH is used, and applied
to econometric and financial problems. Applications
of GMM in the settings of generalized estimating
equations from biostatistics were discussed by Qu
Lindsay and Li (2000).

In a special case when the dimension of the interme-
diate statistic ) equals that §) of the paramete#,
ands(-) is a diffeomorphism on the parameter spéce

2.4 Efficiency of the Adjusted Estimator

[part (ii)] to be as efficient as the MLE. Proposition 3
provides a geometric view of the relative efficiency
and avars for the three CAN estimators considered in
this article, with their avars decreasingly ordergds)
(any CAN estimator ob smoothly constructed from
'the intermediate dat@), 6 (indirect MLE based orf)
anddu. (MLE based on the complete da). The
results in Propositions 2 and 3 have appeared in dif-
ferent forms in the literature. For example, part of the
of 6, maximization ofL is equivalent to the bias correc- geome't'ry was g|ve.n'by Hausman (1978.’ Lemma 2.1);
tion 6 = s~1($) [from solving F(0, §) = 0], which is result (i) of Proposql.on 2 can be recognlzt_ed as a con-
AN and consistent fof (see, e.g., Kuk, 1995; Turnbull, Seduence of the Hajek-Le Cam convolution theorem
Jiang and Clark, 1997; Jiang, Tumnbull and Clark, (Hajek, 1970); result (i) is used in the efficient method
1999, for biostatistical applications). In fact, whgn ~ ©f moments (e.g., Gallant and Tauchen 1996, 1999;
is itself already asymptotically unbiased, the above ad- Gallant and Long, 1997) for choice of auxiliary mod-
justment procedure can still be used to remove small-€!S t0 achieve full or approximate efficiency in indirect
sample bias of orde©(1/n) by solving ford from  inference.
§ — Ews$(W) = 0 (MacKinnon and Smith, 1998). Some notation and background knowledge for the
When g < p, there are more unknown true para- Propositions are the following. Let the intermedi-
meters than naive parameters. In this case, the bridgéte statistici be defined in a general implicit form
re|ati0nship is many-to-one and does not, in generaLG(W,.?) = 0. Denote the indirect likelihood based on
permit the construction of adjusted estimates. It is the intermediate dataasL(¢]s) and denote the like-
mainly of interest for investigating the effects of mis- lihood based on the complete data/a®|W), which
specification when the naive estimators are constructeddre maximized by the indirect MLE and the MLE
under misspecified models; see Section 3.3, for exam-OmL, respectively. We adopt the following notation.
ple. However, in such situations it may be possible to Two ordern=%/2 quantities are said to be asymptot-
construct consistent estimates for a subset of true paically equal(~) when their difference is of a lower
rameters, which may be of interest. In other situations, order and are said to be orthogorial) to each other
some components of the higher-dimensional true para-if their covariance elements have a lower order than
meter are known or can be estimated from other out-»~1. All function or derivative values are evaluated
side data sources. This enables the other componentat the asymptotic limits9 and/or s(6) (for s). For
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a generic column vectov, v®2 denotesvv!. Sub-
scripts onF denote partial derivatives, for example,
Fo={0gF(0,5)}|5=s)-

ProPOSITION 2. Efficiency IlI. Assume that the
usual regularity conditions hold so that 6 and fy, are
both AN. (Assume, e.g., conditionsin Proposition 1 for
the AN of 6 , and the conditionsin Senand Singer, 1993,
Section 5.2, for the AN of the MLE 6y .) Denote the
score function as S = dg logL(6|W) and denote the
indirect score function as T = 9y log L(6|5). Then we
have the following results:

(i) The difference of the “information” matrices
satisfies
var(s) — varnT)
= var(@u, )"t — var@) !
inf varnS§ —CG)=varS —T).
pxgq matrix C

(i) The difference of avarmatrices satisfies

var®) — var@m.)
=E{ETT)™'T — (ESST)"15)%2,

Therefore, for any direction vector a, a’d is efficient
for estimating a’ 6 iff the standardized score functions
for the true likelihood and the indirect likelihood are
asymptotically equal at 6 when projected onto a.

PrROOE Note that
OmL — 0 ~ —{E 92log L(0|W)} 13 log L(6|W)
~ (ESST)™1s.

On the other hand, from the linear approximation
and the results about the indirect score function in
Proposition 1, we have

0 — 6~ —{Ed2logL(0|5)) 185 log L(0]5)
~E(TTT)7'T.

These relationships imply that @) = var(7)~* and
var(dy) = var(S)~1 as used in (i).

(i) We first derive a relationship between the indi-
rect score functiorf’ and the estimating functiot.
By taking the derivative

d9log L(015) = 09{—F (6,5)" (var G)"1F (6, §)/2}
and a linear approximation i§ — s), we obtain
T~—FlEGGH) R, —s)
~—EGSHTEWGGTH™HGW, 5 — GW, s)}
=EGSHTEGGHIGW, ),
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noting thatG (W, §) =0 and thatE(GST) = Fy (an
identity derivable assuming the interchangeability of
the derivative and the integration). Then the indirect
scoreT is asymptotically equivalent to the projection
of the direct score functionS) onto the span of the
estimating functionG. Then (S — 7) L T and it
follows that (i) is a direct consequence of Pythagoras’
theorem.

(i) Note thatfy, — 6 ~ (ESST)~1s andf — 6 ~
E(TTT)~1T. Also note that

(E(TTT)y~r —(ESST)1s} L (ESST)~1s

is a consequence afS — 7) L T. Now (ii) follows
from Pythagoras’ theorem.[]

Result (i) was used by Gallant and Tauchen (1996,
1999) and Gallant and Long (1997) for the choice
of the auxiliary model M (a “score generator”) that
generates a naive score functiéiiW, s) to which the
intermediate statistié is a root, to guarantee full or
approximate efficiency in indirect inference. Gallant
and Tauchen (1996) showed théatis fully efficient
if the auxiliary model M includes the true model M
as a submodel by a smooth reparameterization. They
claimed high efficiency can be achieved if the auxiliary
model can well approximate the true model. They
proposed the use of flexible families of auxiliary
models such as semi-nonparametric models and neural
network models to generate ands.

Some geometric relationships are established from
the proof of the above pposition. The orthogonality
argument in the proof of (i) essentially sayg —
6mL) L (OuL —6). When similar arguments are applied
to the situation of comparingwith any CAN estimate
f(5) smoothly constructed frothin Proposition 1(iv),
we arrive at the following results that summarize
the geometric relationships amons), 6 and L,
where we assume standard regularity conditions as in
Proposition 2.

PROPOSITION3. Geometry. Oy —6, 6 — Oy and
f(§) — 6 are mutually orthogonal (see Figure 1). The
following Pythagoras-type result holds and summa-
rizes the efficiency results geometrically:

E{f() —0}%?
~E(f() =012+ E@ — )%
~ E(f() — )%+ E@ — Ou)®?
+ E (G — )%,
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0

all CAN estimates
based on §

()ML

all CAN estimates

Fic. 1. Geometry of efficiency results. Note that 6 is the true parameter, dy is the MLE, 4 is the optimal adjusted estimator based on
s and f(s) isany CAN estimator smoothly constructed from the intermediate statistic. The plane represents all CAN estimators constructed
from the full dataset; the line across 6 and f(§) represents all CAN estimators constructed from the intermediate statistic §. The geometry
uses the covariance as the matrix of inner products and uses the variance as the matrix of norms, and is accurate up to order n—1/2. The
closer apointisto 6, thelessisthe asymptotic variation. The distance from 6 to the plane goes to zero as the size of the data increases.

2.5 Robustness of the Adjusted Estimator tency regardless of the assumptions on higher order

In the indirect approach, with the freedom of choos- moments or correlation structures of longitudinal data.
ing what aspect of data information to be incorporated | '€ marginal method of Wei, Lin and Weissfeld (1989)
via the intermediate statistic, the inferential results can 'S & Popular method for achieving consistent estimation

sometimes be made robust against certain departure¥/ithout modelling the depelence structure for multi-
from the hypothesized true model M, possibly at the Ple eventsin survival analysis.

cost of losing some efficiency when the true model is  Another sense of robustness refers to estimators that
indeed M. The asymptotic properties of inferential pro- are resistant to outliers or gross errors (e.g., Huber,
cedures based on the indirect likelihood remain valid 1964; Hampel, 1968). Indirect inference procedures
as long as the asymptotic mean of the intermediatecan also be made robust against outliers. A sequence
statistic is correctly specified. In comparison, proper- of recent articles (Genton and de Luna, 2000; de Luna
ties of the MLE usually depend on the correct spec- and Genton, 2001, 2002; Genton and Ronchetti, 2003)
ification of a full probability model. Thus inferences investigated the robustness of indirect inference in this
based on indirect likelihood are typically more robust sense of protecting against outliers and described many
to model misspecification. [This type of robustness has gpplications.

been considered by many authors, e.g., Box and Tiao  The key to robustness in the sense of resistance to
(1973, Section 3.2), Foutz and Srivastava (1977) andoytiiers lies in the influence function (IF) of the es-

Kent (1982).] It is typical to take robustness into con- imator. Letb be a /n-consistent estimator of the
sideration when choosing an intermediate statistic. Forparameterb based onn i.i.d. copies of dataW —

example, when one is only wiling 1o assume & mean (w W,). Then the IF is defined such that- b =
model for a response, then an intermediate statistic that i < |

L . : . n~13"  IF(W;) +o0,(n~Y?). One can often compute
is linear in the response varlaple IS often used. Further”: via the Gateaux differential (Hampel, Ronchetti,
such examples are illustrated in Sections 3 and 4.

The robustness discussed above refers to the ConRousseeuw and Stahel, 1986, page 84). Note that

sistency of estimators under violations of certain as- sugv “F(w)l_ShOWS how much one outlying obser-
sumptions on the distribution of data. This sense of V&tion can influence the value di. Therefore, the
robustness has been the focus of much recent work infobustness of a consistehtagainst outliers can be
biostatistics. For example, the Poisson process estimacharacterized by a bounded(lf= Note that a bounded
tion is termed robust by Lawless and Nadeau (1995)IF prevents a large loss of asymptotic efficiency un-
because the consistency holds regardless of the asder perturbations of the distributions assumed for
sumptions on higher order moments and correlations of W;'s (€.g., gross error), since the asymptotic variance
the recurrent events. The generalized estimating equavar(b) = n~—Lvar{IF(W;)} will be bounded if IR-) is,
tions (GEE; Liang and Zeger, 1986) allows consis- whatever distributionW; actually follows. For more
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discussion on the general notion of influence func- quadratic approximation aroun®, which is analyt-
tion and robust estimation, see Bickel (1988) and Reid ically simpler, in this section we will denote by
(1988). H(9,5) the quadratic functionH @, $) + 2716 —
Genton and de Luna (2000, Theorem 1) presentedé)TagH(é,§)(0 — 6). For model selection, we can
the key fact that relates the influence function tf the continue the process of the analogy and construct a
indirect estimato® to the influence function IFof the Bayesian information criterion (BIC; Schwarz, 1978)

auxiliary estimatog: based on the indirect likelihooH(6|5) oc exp(—H/2).
ST 1 o] ST —1 Suppose that a submod# of the original saturated
(5) IFg(w) ={s"(0)" v s ()} "s°(6)" v IFs(w). model claims tha® lies in ady- (< p) dimensional

This result follows from the relationshif — 9 =  Submanifold®,, of the original parameter space |
'O v 1@ 15 0) v 15 — 5(0)) +0p(n—1/2) sqy). (Note thatf is the minimizer QfH in the_

original parameter space.) The BIC criterion function
—2SURcp,, 109 L(0]5) + dy logn is, up to a constant
of M, equal to theBayesian cost

derived in the proof of Proposition 1(ii). Therefore,
6 will have bounded influence and be resistant to out-
liers if a robust auxiliary statisti€, having bounded in-
fluence, was used in the first place. (For the generalized CM)= inf H(@,5)+dylogn.
method of moments procedure, there are parallel re- 0€Oum
sults that relate the influence function and the momentFor a setd (called thescope) of candidate model/’s,
conditions; e.g., see Ronchetti and Trojani, 2001.) the BIC (based on the intermediate statis)ichooses
Relationships between various norms of (& and M = argminyce C(M). This choice M enjoys the
IF,(-) are then derived from (5). Additional variation desirable frequentist property of consistency, when a
due to simulated approximation of¢) are accounted single parametemy, say) is the true parameter based
for in Genton and Ronchetti (2003). These ideas wereon which the data are generated. A true model in this
applied in Genton and de Luna (2000), de Luna case is a model which proposes a parameter space
and Genton (2001, 2002) and Genton and Ronchettithat contains the true parameter.
(2003) to a variety of problems including stochastic

) , _ ) : _ PropPoOsSITION4. Consistency of BIC. Assume the
differential equations models, time series and spatial

conditions hold for the AN result in Proposition 1(ii).
data. . ) Then, with probability tending to 1 as the sample size
For one example in Genton and Ronchetti (2003), ,, increases, M chooses a simplest true model (with
the assumed model M is the stochastic differential |qyest dyr) in the search scope @. If there is no true
equation (geometric Brownian motion with drift). The odelin @, then M convergesin probability to a model
auxiliary model M is based on a crude Euler dis- i & that is closest to the true parameter 6o, that
cretization. The auxiliary estimators computedsas is, with smallest distance d (6o, ® ) = infgco,, (0 —
the maximum likelihood estimators undef Mr s;, the 90)Tv9_1(9 — o), where vy = plim,,_, o (nvar@)}.

robust estimators under’Mfter using the “Huberized”
estimating functions that have bounded influence. In- PROOF  This consistency result is easily proved
direct inference based on adjusting these auxiliary esti-bYy noting that infce,, [H (6, 5) — H(6, 5)] is positive
mators then generates (respective) estimatgrandg, ~ and of ordern when 6 is outside®y, and is of
that are both consistent under M. However, as might beOrder 1 wheréo € ®,,. These observations imply that,
expected, simulation experiments reported by Genton@symptotically, a true model is favore_d against a false
and Ronchetti (2003) showed that, generally in their Model; when true modelsM's for which 6 € © )
applications, when there is gross error contamination '€ compared, the complexity penalty dominates and a

on the assumed model My, obtained from adjusting simplest model will b_e chosen. Whgn all modelsdin
the naive MLE, behaves poorly, but the estimadgr ~ '€ false, the behavior of the leading term M)
obtained from adjusting a robustified auxiliary estima- 'S essentially:d(6o, ©y) and the closest false model
tor, still behaves very well in terms of bias and variabil- Will b€ chosen. [l
ity. Continuing the Bayesian approach, conditional on
the intermediate statisti€, we define the posterior
probability of a model and the Bayes factor (BF)
Since the leading order properties of the crite- for comparing two models. Suppose under motiel
rion function H(-) are completely determined by its 6 can be parameterized @#&= 6(¢y)), wWhere ¢y

2.6 Model Selection
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lies in a dy-dimensional manifold®,;,. Then we
can write P (S|M) = [o,, P(510(pm)) P (@ |M) dpu,
whereP (¢ | M) is a prior for the parameter,.

The posterior conditional ofis defined as

P(M|$) = P(S|M)P(M)/P5),

two-stage least squares (e.g., see Imbens, 2002). It is
defined as follows (e.g., Matyas, 1999, Chapter 1).
Suppose the observed ddtaconsist ofz i.i.d. copies
(W1, ..., W,) of W from n units. Suppose also that
under our model MEy[h(W,0)] = 0O for all 6. Here

h € N7 and theg equationsEy[h(W, )] =0 are called

the moment conditions. Define the sample analog
hp(0) =n~1 Y h(W;, 0). The GMM estimator o

is then defined as

(6) famm = arg min, (0)" Anhy (6).
whereA, is a positive definite weight matrix.

In Sections 2.1 and 2.3 we saw that indirect inference
(I1) was essentially a two-step procedure. In the first

and the Bayes factor Bk for two modelsM; andM»
is defined by By = P (S| M1)/ P (5|M>).

The following proposition is a straightforward appli-
cation of the Laplace approximation:

—2logP(5|M)
=dpylog(n) — 2sudog P (510 (ty)) + O(1)
M

(see, e.g., Draper, 1995, equation 11), and of the nor-

mal approximation-2log P (s|0) = H (0, §)+log |2 -
var(s)| coming from (3).

PROPOSITION 5.
and the Bayes factor.

(i) —2logP(s|M) = C(M) + log|2zvars)| +
0(1) and -—2logP(M]|s) —2logP(S|M) —
2logP (M) + 2logP(s).

(i) —2logBF2 = C(M1) — C(M>) 4+ O(1) and if
—2log{P(M1)/P(M2)} = O(1), then —2log{ P (M|
§)/ P(M2|5)} = —2logBFi2 + O(1).

Indirect posterior for a model

auxiliary step we obtained an intermediate statistic
S», Which can often be defined implicitly from a set
of ¢ estimating equation& (W, s) = 0. The indirect
estimator; is then obtained in the second adjustment
step as

6 = arg rginF<0,§n>Tv—1F<9,§n>,

where F(0,s) = EwjpG(W,s) and v is a sample
estimate of the avar ofF (9, 5). This includes the
explicit case wher¥ (0, 5,,) =5, — s(0).

In the definition ofdgmm, we may identify A, =

v=1 and h,(0) = F(,5,). The moment conditions
for this choice are satisfied approximately because
E{F(9,5,)10} ~ F{0,E(5,|0)} ~ F{0,s(6)} = 0.
These approximate equalities become exact if we in-
terpret theE operator to denote thasymptotic mean.
. . Thus the adjustment step of indirect inference can be
wherelog Q(M15) = log P(M5) + O(1). considered as a GMM procedure where the moment
Roughly speaking, Proposition 5 implies that models conditions are asymptotically satisfied.
with small Bayesian costs tend to have high leading Conversely, it can be argued that GMM is a special
order posterior probability. Together with the previous example of the complete two-step procedure of indirect
proposition, this implies that it may be desirable inference. Suppose we take the intermediate stafistic
to report the models in the searching scope thatas a GMM estimatofgumm based on some auxiliary
have the smallest costs. We propose to repértas model M. We can then go on to obtain an adjusted
well as models that have€ (M) < C(M) + 6, which estimator 6, under a true model M as described
corresponds roughly to reporting models with leading in Section 2.3. This possibility was suggested by
order posterior probability at least 0.05 times that Carrasco and Florens (2002) above their equation (15).
of M. We give an application of graphical model The GMM becomes the same as indirect inference
selection in Section 4.3. when the bridge relationship is trivial, so th@t =
Semm even after the adjustment. This will happen if
Semm Wwas obtained from a moment conditidn) ()
that is correctly specified even under the true model M,
The generalized method of moments is an extremelythat is, E{h,(0)|6} = 0 under (both Mand) M.
general method of estimation that encompasses most Although closely connected, the indirect inference
well-known procedures, such as maximum likelihood, approach, with its emphasis on an auxiliary (or inter-
least squaredy estimation, instrumental variables and mediate) statistic and an indirect likelihood function,

(i) Let M argmingece C(M).  Suppose
—2log{P(M1)/P(M>2)} = O(1) for all M1, M2 in ®.
Then

M = arg maxiog Q(MI5).

2.7 Generalized Method of Moments and
Indirect Inference
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gives a viewpoint that is somewhat different from the that the naive estimatgt from § not only remains con-
GMM approach. This viewpoint has been productive, sistent, but can also retain high efficiency relative to the
leading to contributions in various application areas, MLE.
especially econometrics.

3.2 Measurement Error Problems

3. APPLICATIONS OF BRIDGE RELATIONSHIPS The main goal is to study the relationship between

Often the auxiliary statistid is constructed as a the respons& and the (true) covariat®, when only
naive estimator Qf9 based' on a simplifiegl or naive an error-contaminated versighof X is observed. The
model M. The bridge relationship of Section 1.1 can regression model of interest is the one that relates

be viewed as an expression for the large-sample limit ang the true covariat®&, which may be described by
of this naive estimator in terms of the true parameter. 5 -onditional distributionpy x (v|x; 6) that involves

The relationship is then useful for assessing how sensi-

) X heis | > o Isome unknown parameter(@) It is desired to make
t|v_e or ro_b_ust_analve anaysis Is agalr?stpof[en_tla r_n(_)de inferences concerning. A common simplification
misspecification. If the bridge relationship is trivial

: : : . p assumes that is a “surrogate” ofX in the sense that
(i.e., s = 0), the naive estimator obtained from’ ve- . .

; . . Y isindependent of the surrogatewhen conditioning
mains consistent fof, even when the true model is

M instead of M. This demonstrates certain robust- °" the truex. . . .
ness (of thenaive estimator). See examples in Sections -6t (i, Xi, Zo),i = 1,...,n, be iid. copies of
3.1 and 3.3. A number of estimating procedures canY> X;2), where X;’s are unobserved. The observed
be considered in this perspective, which are also clas-data consistof pair¥/; = (¥;, Z;),i =1,..., n.
sifiable as the pseudo-maximum-likelihood methods in  If we denotepy x z, px|z andpz as the probability
econometrics (Gouriéroux and Monfort, 1993; Broze density functions (pdfs) aft;|X;, Z;), (X;|Z;) andZ;,
and Gouriéroux, 1998). Nontrivial bridge relationships respectively, we have that the true likelihood based on
(biased naive estimates) reveal the effect of misspeci-the observed dateY;, Z;)} is [1'_1 ([ pyi|x,z Px|z; X
fication and are useful for sensitivity analysis and bias pz, dx), which involves integration over unobserved
correction. See examples in Sections 3.2 and 3.4. X; values. The maximization of the likelihood can be
difficult computationally and there is unlikely to be any
standard software available to be of aid. On the other
_ hand, if we adopt a model Mhat simply ignores the
Fori=1,...,n, supposgW;(r), r = 0} aren inde-  coyariate measurement error and treztsas X; for
pendent realizations of a point process (not necessarilygach;  we are led to a naive regression analysis for
Poisson) with respective multiplicative intensity func- \ hich standard software will very likely be available.
tions f;(A)A(1), where f;() = ¢*i #, say, andx; de- A naive estimatos then is simply constructed by ne-
notes a vector of covariates for tht process. Here the glecting the measurement error4n and maximizing

true ﬁarameter 18 = (ﬁb{)‘(t?})’ with A() represer;]t- the naive likelihood [7_; py|x (Yi|Z;i; s). The general
ing the nonparametric baseline intensity. It was shown . = o .
by Lawless and Nadeau (1995) that naively assuming arAnethod of Section 2 isto try to find a large sample limit

model M in which theW; (¢) follows a Poisson process s _>.s<92 and then obtain the adjusted estimatany

but with a correct specification of the intensity function solving$ - $(0) for . .

leads to a consistent naive estimatet (3, {i(r)}) for For a simple example, consider the case wr;en the
the true parameteis, {(1)}). (The consistency of the conditional distribution ofY; givenX; is N(6X;, o),

naive estimator is characterized by a trivial bridge re- that is, simple linear regression through the origin
lationships = plim,_ o § = 6.) HereB is the Cox with homoscedastic normal errors. A structural model

(1972) partial likelihood estimate ardt) is a dis-  Of normal additive measurement error structure is as-

crete intensity estimate fdi.(z)} that corresponds to  sumed, that isZ; = X; + U;, whereX; and U; are
the Nelson-Aalen estimate of the cumulative inten- independent normal with variance$ ando3, respec-
sity (see Andersen et al., 1993, Section VI1.2.1). Jiang, tively. Then the naive MLE or naive LS estimator is
Turnbull and Clark (1999) gave an application based § = ZYiZi/ZZiZ, ands — s(6) almost surely, where
on an overdispersed Poisson process model, where the
overdispersion is caused by frailties (or random ef-
fects) that follow a gamma distribution. They showed

3.1 Poisson Process Estimation for
Recurrent Events

EY:Z; EX;Z  EX? o2
EZ?  EZ? EZ?  o%+of

4 4 l

5(0) 0.
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Note that|s| < |6|, which is called the attenuation Let Y, X and Z be three random vectors of dimen-
phenomenon: the magnitude of the naive slope esti-sionsd,, d, andd,, respectively. Assume a nondif-
mate |s| underestimate$d|. This is a common fea- ferential mean modeE(Y|X, Z) = u(X, 0), where
ture when measurement error is ignored in analyzing® is a p x 1 parameter. Suppose we observe a main
regression models (Fuller, 1987, page 3). By solving datasetW = (Y;, Z;)7_,, that is, an i.i.d. realization

§ = 5(0), aconsistent adjusted estimator is easily found of (¥, Z), as well as an independent validation dataset
to bed = (02 + 0)/02)s. Of course, this adjust- V= (X;, Z;)7_,, thatis, ani.i.d. realization ¢, Z).
ment assumes that the measurement error parameterbhe problem is to perform valid inference érbased

o ando? are known. In practice, they will not be, and  on the observed datasets.

ox andoy should be considered as part of the parame- Suppose we start with a naive x 1 estimators

ter vectord. We are in the situation discussed at the (¢ > p), which solves ag x 1 linear estimating
end of Section 2.3, where (dif# > dim(s). However,  equation of the fornG (W, s) =n=1 31 h(Z;, ){Y; —

ox andoy can sometimes be estimated from a second™(Z;, s)} = 0, whereh;xq,) andm,«1) are fixed

or “validation” dataset in which pairéX;, Zy), k = smooth functions. Typically;, is AN but not consistent
1,...,m, can be observed directly (Carroll, Ruppert for 6. We could then use the methods from Section 2 to
and Stefanski, 1995, page 12). These estimates car@djusts to obtain a consistent estimatarfor example,
then be plugged into the formula fér The uncertainty by maximizing the indirect likelihood.(¢|5) in the
resulting from the fact that the measurement error Implicit form, or when dinis) = dim(#), by solving
parameters are not known but estimated can be incor-F (¢, §) = 0, where F (6, s) is the expectation of the
porated into an estimate of vaby the method of prop- ~ €stimating functiorG.

agation of errors [see Taylor, 1997, (3.4), and Jiang, Here, the functionF (0, s) = EwjsG(W, s) can be
Turnbull and Clark, 1999, Appendix B]. Alternatively, computed by noting thatEwpG(W.,s) = Ex,z
instead of using a validation study? = 02 + o2 can (£ (X, 0) —m(Z, 5)} by first taking the con-
be estimated from the sample variance of the observedltional mean giverX, Z and using the nondifferen-

Z values andr can be treated as a tuning parameter tial assumption. Then the expectatidfy,z can be
for a sensitivity analysis. approximated by the sample average based on the

In the presence of covariate measurement error, sim-\/"‘:tl'd""tIon da_t?v.mConsequentlyF is estimated by
ilar explicit formulae that relate naive regression pa- = (»8) =m =21 [(V}3 6,9, wheref(V,;G,sT) -
rameters and the true parameters were established b{}(Zj- /{1 (X;,0) —m(Z;, s)} andV; = (Xj. Z;) -
Jiang (1996) for Poisson, exponential and logistic re- YSING £ to approximate” inflates the avar of the final
gression models, by Turnbull, Jiang and Clark (1997) €Stimatol™(s). Jiang and Turnbull (2003) showed that
for negative binomial regression models and by Jiang,the avar can be estimated, in the I|m|t_ of proportionally
Turnbull and Clark (1999) for semiparametric Pois- |a"9€7 andm, based on a sample estimate of
son process regression models. In these articles itwas  var6*(s5) = (Fe)_l(m_lEffT

assumed that the distribution &f; conditional onZ; (7) 1 . s

follows a normal linear model. In the following dis- +n"Egg )(Fp) ™" ls=s(0)
cussion, we introduce a method which does not requireyyhere £ = £(v;: 6, s) andg = g(W:, s) = h(Zi, s) x
parametric assumptions on the distribution(®f, Z;). {Y; —m(Z;, s)}. In Section 4.2 we will use an epidemi-

In addition, only the first moment is specified for gjggical dataset to illustrate the methodology described
the parametric model of; given X;. This provides  here.

an example where the bias correction is robust in _ _
the sense that the consistency of the adjusted estimas-3 Omitted Covariates
tor depends on the correct specification of the mean Gail, Wieand and Piantadosi (1984) considered the
function E(Y;|X;) instead of a complete probability effect of omitting covariates in randomized clinical tri-
model. We also generalize the notion of a naive co- als. Their method can be put into the formalism of
variate Z; to be a general surrogate &f;. The di-  establishing bridge relationships. Consider a special
mensions ofZ; and X; can differ. It is only assumed example whereW = (Wy,..., W,) are iid., W; =

that E(Y;|X;, Z;) = E(Y:|X;), which corresponds to  (Y;, Z;, O0;), andY; is the response following;|Z;,

the assumption of nondifferential measurement error O; ~ Poissotie®+4:#+97) under model M. Her¢; is
(Carroll, Ruppert and Stefanski, 1995, page 16). a treatment assignment variable that takes value 0 or 1
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with equal probability and is assumed to be indepen- Jiang (1996) considered the bridge relationship for
dent of O;, another covariate. The true parameter is finding the effect of neglecting incomplete cases in
6 = (a, B,y)T, andp is the regression coefficient for analysis of multivariate normal data. Assume that the
the treatment effect, which is of primary interest. Now complete data consist efx 1 random vectory;, i =
consider a naive or simplified regression mod€l, M 1,...,n, which are i.i.d. Associated with each subject
where the presence of the covari@lgis ignored, that  there is a binary indicatoM; which takes value 1
is, it is assumed that;|Z; ~ Poissoiie?*%i%). The if and only if all components ofY; are observed.
(naive) parameter in this model is= (a, b)”. Note DenoteY]‘.‘, j=1,...,n¢ as the subsample where the
that this is again a situation where there are fewer y;’s are 1. A naive likelihood analysis is based on the
naive parameters than true parameters. The naive essomplete cases and the multivariate normal assumption
timator § = (a,5)” maximizes the naive likelinood —yciid. N(m, 5), where the naive parametecontains

n +Z;b\Y; _ a+Zib . H
[Tizq ("7 7)" exp—e 7}/ Y1, which neglects the 4 components ofr and'S. Therefore, we take as our
covariate O;. Therefore,s satisfies the naive score

intermediate statistic

equation )
n
" § =argmax] | {71
GW,s)=n"1Y (1, Z)" (¥ —e“t4") =0 s Lvdet2r s)
i=1
and its large sample limit = s(9) satisfiesEG (W, -exp(—%(Yj‘f —m)TS_l(YJ‘f —m))}.

s)=0o0rE(1, Z)T (Y; — e“+4i%) = 0. Using

~ . _ _ c _—
E(Yi|1Z;) = E(e2+ZiB+07 | 7,) = 0@+ 2iB (£oOi7), In fact, 5 estimatess = (m, S), wherem = EY; =

E(Yi|M; = 1) and § = varY{ = van¥;|M; = 1),

we obtain which may be calculated according to different models
EQ, Zi)T(eXp((oz +log EeOiy) + Ziﬁ) of the missing mechanism. In a normal selection model
(see Litte, 1994), for example}; ~ N(u, ) and
—e“+z"b)=0. M;|Y; follows a probit regression modeP (M; =

Hence 1Y) = ®(x + BTY;), where ® is the cumulative

distribution function (cdf) of the standard normal
a=a+log Ee% and b= B, distribution. For this model, the pdf af |M; =1 s
establishing the bridge relationship= s(0) between » " ® (o + BT X) b5 (x)
_ T _ T e citiiat —1(x) =

6 = (Ot,.ﬂ,y) and s = (a,b)'. In this situation, Y|M [ @@+ BTy)p, s () dy

neglecting the covariateD; still leaves the treat-

ment effect estimatob from § = (a,b)” consistent, _ D(ao+ BT (x — w)doz(x — 1)

sinceb = B. In a similar manner, Gail, Wieand and [ ®(ao+BTn)os(n)dn

Piantadosi (1984) considered other regression models
fc;r %;mvplﬁ, |Og:isr;[:f farrld tiexnponenrglalr regllfq(-:;szlon”rrloi— variate normal random variable with mearand vari-
els arious unctions, and p _ese edals O. anceX, andag = o + BT . Note that wheng = 0,
results on how the treatment effect estimator behavesmP _ _p hich leads to th o
randomized clinical trials when covariates are omitted, /M=t = ®u.z = Py, which leads to the missing
" completely at random (MCAR) model. In that case,

3.4 Missing Data the bridge relationships are triviah = © andS = X%,

Roinizky and Wypij (1994) considered the bias of 'huind atgnoring incomplete cases leads to con-
estimating equation methods (MLE and GEE) with . 99 ’

missing data, when all available cases are used and' - C2" perform a Taylor expansion when evaluating
g data, : L . . E;|M; =1) and varY;|M; = 1). Upon neglecting

the missing data mechanism is ignored, in the situ- ) T . ;

) o terms ofo(B<) [or o(B" £B)], this leads to approxi-
ation when the data may not be missing at random mate bridae relationshios
(Heckman, 1976; Little, 1994). The bias is obtained 9 P
from examining the limit of the estimating equation m=EY;|Mi=1)=u+ CD(oeo)_ld)(Oto)Eﬂ,
and its solution—similar to finding the bridge rela- . .
tionships = s(0) from F (0, s) = Ew;eG(W,s) =01n (8) S§=var¥;|M;=1)
Section 2.2. =% — ap® (@) ¢ (a0)(ZA)(ZH),

where ¢, x is the probability density for the multi-



254

where¢ is the standard normal pdf. In fact, an exact
formula form is available, namely

m=u+(@E) pE) A+ Ep) V258,

where ¢ = (1 + gT28) Y2« + BT w); see Jiang
(1996, equation 4.59).

W. JIANG AND B.

TURNBULL

4.1 Poisson Regression with Overdispersion:
Animal Carcinogenicity Data

We use carcinogenicity data presented by Gail, Sant-
ner and Brown (1980) from an experiment conducted
by Thompson, Grubbs, Moon and Sporn (1978) to
illustrate our method for treating a Poisson regres-

We note that, in general, the bias of the naive meangjon model with random effects (overdispersion). Forty

estimator is determined by the sign &f8, and the
naive variance estimator is typically biased downward,
that is,[STkx < [Z 1k for eachk, 1 <k < r, provided

eight female rats that remained tumor-free after 60
days of pretreatment of a prevention drug (retinyl ac-
etate) were randomized with equal probability into two

a0 = o + T > 0 (meaning that a majority of the groups. In Group 1 they continued to receive treatment
cases are complete). The brlplge relationships in (E_B)(Z = 1); in Group 2 they received a placehd £ 0).

can be used to reduce the bias caused by the naivey|| rats were followed for an additional 122 days and
analysis that neglects incomplete cases, provided thabalpated for mammary tumors twice a week. The ob-

the missing data parametér, 87) can be estimated,

jective of the study was to estimate the effect of the

perhaps from other studies, where missing data arepreventive treatmentZ) on number of tumorsy) di-

tracked down with additional effort.
Alternatively, if such a dataset does not exist, but
the missing at random (MAR) assumption (see Little,

agnosed.
In the model, giver¥ ande, Y is assumed to be Pois-
son with mear®*+2f+¢_ HereZ is observed but rep-

1994, equation 9, page 473) is reasonable, we couldresents an unobserved random effect assumed normal

estimate(«, 8) from the original dataset. There we as-
sume that the missingnegs; is only dependent on
the complete components &% which are observed
for all subjects. For example, in the bivariate normal
incomplete data situation, suppoge= (Y; (1), Yi(z))T
and the first component; i), say, is always observed,
but the second componeti) is sometimes miss-
ing, whenM; = 0. In the MAR model we write8 =

(Bw), Bz))" and may assumgyz) = 0. Hence(w, A},

with zero mean and constant variance independent

of Z. This unobserved random effect or unexplained
heterogeneity could be caused by omitted covariates.
We observe i.i.d. pairs ofW; = (Y;, Z;),i=1,...,n.

The likelihood for the observed data involves integra-
tion overe and is difficult to compute. We start with an
auxiliary statistics = (a, b,72)", where(a, b) are the
regression coefficient estimates that maximize a naive
log-likelihood R = Y>"}{Y;(a + Z;b) — expla + Z;b)},

can be obtained by performing a probit regression of and72 =n=1y"_; ¥? is the sample second moment.

theM;’sontheY;)’s,i =1, ..., n, which are all avail-

Here the naive parameter is= (a,b,t?) and the

able in the original dataset. Of course the uncertainty in true parameter i§ = («, 8, 02). The use of the naive

estimating«, ﬂ(Tl)) must be incorporated in the asymp-

totic variance of the adjusted estimates(or X). This

can be done by a sensitivity analysis or, alternatively,
by use of the propagation of errors method [Taylor,
1997, (3.4); Jiang, Turnbull and Clark, 1999]. Here we

log-likelihood R corresponds to estimating the regres-
sion coefficients by neglecting the random effect
The second sample moment is included in the inter-
mediate statistic to provide information for estima-
tion of the variance parameter. Therefafds solved

are more interested in assessing the effect of droppingfrom the estimating equatio@ (W, s) = 0, where (for-
incomplete cases in the complete case naive analysismally) G = (n~19,R, n"19,R, 7% — t3)T. The solu-
Notice that the MAR assumption does not ensure thattion can be computed easily. For the rat carcinogenic-

the complete case analysis will give a consistent an-

swer for estimating, sinceX is not necessarily zero
even if B2 is assumed to be zero.

4. THREE DATASETS

We illustrate the ideas of indirect inference proce-

dures with analyses of three datasets. The first two use

estimates from a naive model Ms intermediate statis-

ity data, we obtain the naive estimatés= 1.7984,

b = —0.8230 and’ 2 = 31.875. To obtain the adjusted
estimates) = (&, B, 52), we must derive the bridge
equation which comes from the large sample limit
of 5§ = (&,13, 2). Here, this limit is the solution of
F(9,s) = EwjpG(W,s) =0, which can be explicitly
solved to obtain = s(0). This yields bridge equations
a=o+02%/2,b=p andr? = %(1 + eﬂ)e"‘+"z/2 +

. ) ) . 1 2 - :
tics as in the examples of Section 3. The third concerns3 (1+¢%)e?®+7%)_ These equations are inverted to ob-

model selection and uses sample moments.

tain the adjusted estimatér= (&, 8, 62). Thuspg = b
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and& = a — 62/2, whereé2 = log{(2/2 — (1 + only comparable parametgi(the treatment effect), the

e))/(e%(1+ ¢2))}. For the rat data, this leads to ad- Breslow method [from his equations (1), (2) and (7)]
justed estimated = 1.6808 (0.1589), B = —0.8230 gives exactly the same answer as our adjusted analy-
(0.1968 and 6 = 0.4850 (0.1274. The estimated  SiS: Bereslow= —0.8230(0.1968. This is because, for
standard errors shown in parentheses are obtained fronthis special two-group design, both methods essentially
the sandwich formula (4) and the delta method. use the log(frequency ratio) to estimate the treatment
Alternatively, the MLE of6 = (a, 8,02) can be  effect.
founq 'by ,a somewnhat 'ted'ious iter_ativ_e numerical 4.2 Logistic Regression with Measurement Error:
maximization of the true likelihood which involves nu-
merical integration over the distribution ©f These es-
timates areyy. = 1.6717 (0.1560), 3ML — —-0.8125 We consider data from Florey et al. (1979) on the
(0.2078 andéy. = 0.5034(0.0859. For the MLEs, prevalence of respiratory illness in relation to nitro-
the estimated standard errors are based on the inversgen dioxide (NQ) exposure among primary school
of the Fisher information matrix, evaluated at the cor- children in Middlesborough, England. Whittemore and
responding estimate values. Keller (1988) analyzed this dataset using a logistic re-
The estimated standard errors suggest that the effigression where the NOexposure variable is consid-
ciency of the estimation of the treatment effect para- ered to be a covariate that is subject to measurement
meter 8 is high here in this example. Related results error. They used estimates based on modifying the
(Cox, 1983; Jiang, Turnbull and Clark, 1999) show that estimates that result from a naive logistic regression
such high efficiency is achievable if the overdispersion model. Our method differs from theirs in that (i) it does
is small or if the followup times are about the same hot involve a small measurement error approximation,
across different subjects. Also it should be noted that (i) no parametric assumption is made concerning the
the adjusted estimatgis robust in the sense thatitre- measurement error distribution and (iii) adjustment is
mains consistent essentially as long as the mean funcmade for the effect of measurement errors both from
tion E(Y|Z,¢) is correctly specified and and Z are the imperfection of the measurement method and from
independent. (Its standard error estimate from the sandthe incomplete knowledge of (grouped) measured data.
wich formula is also model-independent and robust.)  The study population consists of 103 primary school
In particular, the consistency property does not dependchildren and each child was classified into one of three
on the specification of a complete probability model, exposure categories of the nitrogen dioxide gNO
namely thatr is Poisson and is normal. concentration in the child’s bedroom, which is a
Our approach, although formulated from the dif- surrogate for personal exposure to Ndhe response
ferent perspective of using the naive model plus the variable Y is 1 if a child has prevalent respiratory
method of moments, is intimately related to the work disease and 0 otherwise. A logistic regression model
of Breslow (1990) based on quasi-likelihood and the is assumed in which Idg&Y /(1 — EY)} =« + BX,
method of moments. Breslow used a different linear whereX is the personal exposure to N@Q\n imperfect
combination ofY;’s based on quasi-likelihood (Wed- measurement method fof is to useZ, the bedroom
derburn, 1974; McCullagh and Nelder, 1989) that en- level of NO,, as a surrogate of the personal exposure.
joys general efficiency properties among linear esti- However, the values of reported by Florey et al.
mating equations. However, (i) our approach can be in- (1979) were only in three categories, namely less than
terpreted as basing inference on the simple moments20 parts per billion (ppb), between 20 and 39 ppb, and
Y, Y. z;Y; and ZYI.Z (which can be easily seen exceeding 40 ppb. Since the individual levels are not
from writing out the naive score equations) and (i) published, Whittemore and Keller (1988, Section 6)
our approach shows clearly, by the use of bridge re- used a further surrogai of Z to perform the logistic
lationships, the sensitivity and robustness of parame-regression analysis, where they codee: 10 if Z <
ter estimates to the omission of overdispersion in mod- 20 ppb,Z = 30 if Z € [20, 40) ppb, andZ = 60 if Z >
elling. Also note that here we used a log-normal dis- 40 ppb. Table 1 is a recasting of Table 1 of Whittemore
tribution to model the random effects and the variance and Keller (1988) which summarizes the data.
parameter also enters the mean model (unconditional Estimates and standard errors for the parameters
on ¢), whereas Breslow (1990) focused on examples and s based on naive logistic regression analysi§ of
such as those with gamma multiplicative random ef- on Z are displayed in the first row of Table 2 and agree
fects in which the mean model does not change. For thewith those of line 1 in Table 3 in Whittemore and Keller

Indoor Air Pollution Data
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Nurmber of children wi hTABL.Ehl . p o E(Y|X) = #H(x + BX). We also assume that is a
Hmber ot et renbgtogr;méogﬁ”atory ISeasety nondifferential surrogate of (see Section 3.2), so that
2 E(Y|X, Z) = E(Y|X). Then we obtain

Z=10 Z=30 Z=60 Tota F(,s)=E[(, Z)T{J(’(a-i-ﬁX)
CasesY = 1) 21 20 15 56 ) B
Controls ¢ =0) 27 14 6 47 —H(a+b2)}]=0
Total 48 34 21 103 This obviously is a special example of the situation

NoTes From Whittemore and Keller (1988Y. = 1 indicates the d'scu_ssed at the end of Sect|qn 3'21_W_'th the mean
existence of respiratory illness antl= 0 otherwise;Z = 10 if functions (-) and m(-) both being logit-linear, and
bedroom NQ exposure is under 20 pp; = 30 if NO, exposure the naive estimatof having the same dimension as
is between 20 and 39 pplz, = 60 if NO, exposure is 40 ppb or  that of the true parametér = (a, B). [Alternatively,
more. we may regard the true parameter as also including the
joint distribution (X, Z), which will be approximated
(1988). However, two problems exist. First, bedroom jn some sense by use of a validation dataset.]
level (Z) of NO; is only a surrogate for personal  The developmentin Section 3.2 suggests we approx-
exposure X), due to limitation of the measurement imate F in (9) by F*, where the expectation oxi and
method. Second, the variabfe used in thg analysis Z is approximated by a Samp|e average based on a
is only a coded version of bedroom exposédreaused  validation dataset. We will consider a validation study
by the grouping of this variable. (Leaderer, Zagraniski, Berwick and Stolwijk, 1986)
We proceed in a manner analogous to that outlineda|so considered by Whittemore and Keller (1988).
in Section 3.2. The datas&V consists ofn =103 | eaderer et al. (1986) discussed a dataset relating per-
Lid. pairs {(Y;, Z)}, 1 <i < n. The naive estima-  sonal NQ exposure X) to bedroom N@ concentra-
tor § = (4, b) is obtained from the logistic regression tion (Z) for 23 adults in New Haven, Connecticut. As
of the Yi's on, the Z;'s, maximizing the naive like-  in Whittemore and Keller (1988), we assumed the val-
lihood JT/_ 1pl "1 — pH*Yi in which the true co- idation data are applicable to the English school chil-
variate X; is replaced by the surroga® . Thus the  dren. In Leaderer et al. (1986), the dataXofrersusZ
naive estimator = (&,B)T satisfies the naive score were not published at the individual level, but their
equationG = n—12'1(1, ZHT(; — pi) =0, where Figure 7 displays a scatter plot &f versus house
pi=H(a+bZ;), and H(u) = expu)/[1+ expu)]. average NQ@ level for the 23 subjects. To illustrate
Its large-sample limits = (a, b) satisfies the limit of = our method, we simulated two validation datasets of
the naive score equatio(0,s) = Ew;pG = 0 or sizesm = 23 and 230 as follows. First, we simu-
E[(1, 2)T{Y — #(a + bZ)}] = 0. Note thatY is as- lated a dataset of 23 independét Z)’s to have the
sumed to satisfy a logistic regression model n  same distribution shape as Figure 7 in Leaderer et al.
(personal N@ exposure) instead of o, that is, (1986). [We rescaled their data in Figure 7 to satisfy

TABLE 2
Logistic regression coefficients for respiratory illness versus personal NO» exposure

o (standard error) Zvalue B (standarderror) Z value

Naive —0.4536 (0.3490) —1.299  0.0240 (0.0112) 2.138
WK 23 —0.5563 (0.3691) —1.507  0.0296 (0.0125) 2.368
RSW,,_23 NA4 NA4 0.0264 (0.0133) 1.983
Adjusteq,_o3  —0.5659 (0.4472) —1.265  0.0304 (0.0188) 1.617
RSW,,_230 NA4 NA? 0.0270 (0.0127) 2.124

Adjusteq,_o30 —0.6383 (0.4758) —1.342  0.0314 (0.0186) 1.688

NOTE. The row labeled Naive gives the results obtained in a logistic regression dsaggthe predictor and neglecting the presence of
measurement error. The row labeled WK contains the resultsnalotddy the modified method of Whittemore and Keller (1988). The rows
labeled RSW contain the results obtained byrtiethod of Rosner, Spiegelman and Willett (1290)e rows labeled Adjusted were obtained
using the method described here.

¢RSW did not provide a method for adjusting the intercept estimate. WAmwia case-control studies, asrk, the intercept parameter is not
of particular relevance.
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the published regression fit = 4.48 + 0.76Z and data was incorporated using the delta method (RSW,
Var(X|Z) = 81.14.] From this simulated dataset, we 1990) and the coded values Bfwere used both in the
grouped and coded tH&values to obtaim = 23 pairs naive logistic analysis of the main data and in the linear
Xk, Z), k = 1,...,23, which form the first valida- regression of the validation data.

tion dataset. Then a second (larger) validation dataset Our estimates of the slopé are larger than those
(m = 230) was obtained by sampling the first valida- obtained from the RSW method, showing that a cor-

tion dataset with replacement. rection based on regression calibration is not enough,
Following Section 3.2, we approximatgé in (9) probably due to a nonlinear bridge relationship be-
by F* constructed from the validation sampl;, Z;),  tweenb andpg implied by (9). In the special case when
k=1,...,m,withm = 23 or 230, that is, the distribution ofX given Z is modelled as a normal
. linear regression irZ, this nonlinearity feature can be
F7(0,s) seen in the approximation formula (3.24) of Carroll,

L - Ruppert and Stefanski (1995); see also Figure 4.1 in

=m~Y (L Z) {H(a+ BXy) — H(a +bZp)}. Jiang (1996). However, ouZ values are lower than
k=1 those obtained from the RSW method, due to an infla-
Using the naive MLES = (4, B) (from line 1 of Ta- tion of variance which more than compensates for the

ble 2), consistent adjusted estimagss) = (a*, %) inflation of the parameter estimate. This is probably not
are ot;tained by solving™ (9, §) = O: their valués are related to the extra variation from the validation data,

listed in the fourth and sixth rows of Table 2. The stan- SiNC€ in our approach as well as in the RSW approach,

dard errors (in parentheses) incorporate the sampling'€ S-€-S change little (less than 10%) when the varia-

error from the validation data through use of (7), where gon from Fhe;;]aligat:on data isdn_eglect(;d, fotrhexamplea
Vi = (Xp, Zo) and f(Vi:0,s) = (L Z0T {H(a + y removing the first summand in our (7) or the secon

BX,) — H(a +bZy) for k =1 m summand of (A4) in RSW (1990). The nonproportional
For comparison, we have in’cluded results from Someincrease in s.e. is more likely due to the nonlinearity

alternative methods for treating covariate measurementi;ghese Iggﬂgteiorsljté%r;shlp betweénand (see Jiang,

error in logistic regression. In the second row of Ta- Comparing the results derived from the two valida-
ble 2, we have included the parameter estimates thatt. L
ion datasets, we see that the results are very similar

result from the approximation method of Whittemore despite the tenfold increase im. This is not surpris-

and Keller (1988) (WK), which were listed in Table 3 . . : .

T : : . ing, since (i) from the previous paragraph, we see that
of their article. Iqthe third and fifth rows,wellsf[the e ihe changes in s.e. can be small even if we take
sults from applying the method of Rosner, Spiegelman, 1o 204 (ii) this insensitivity probably is due to
gnd Willett (1990) (RSW) based on regression calibra- the small size ofy, (0.024). Point (ii) is easiest to un-
tion (Carroll, Ruppert and Stefanski, 1995, Chapter 3). derstand by looking at avé*, ) = aval(i,;lé,,), the

Here a standard analysis was performed, but regres,,or of the adjusted estimator using the antiattenuation

sion of X on Z was used in place df, the regression ¢, 3 (i.e., the RSW approach). It is apparent from
being based on estimates from the validation datasetsthe delta method that & is very small, the precision
n ’

The method of RSW (1990) also provides a first-order of 3, (or the validation sample size) is not very
correction to the bias, which is valid if the disease  gjavantto avap®, )
nm’*

probability is small (RSW, 1990, Appendix 1) or if 5 symmary, our proposed adjustment method does
the effect of measurement error is small (see Carroll, o require modelling the validation data, in contrast to
Ruppert and Stefanski, 1995, page 65), which requiresine Wk and RSW methods, which both make use of
B" var(X|Z)p to be small. _ o a linear regression aof given Z. Second, the validity
Our approach gives point estimates similar to those o oyr procedure is not restricted to the special cases

from Whittemore and Keller (1988), but our stan- of small measurement error (WK) or small disease
dard errors (s.e.s) are larger. Note, however, that thep opability (RSW).

Whittemore and Kiter (1988) results in the second row . . _

were obtained by treating (the coded values) as the 4-3 Robust Covariance Selection: Mathematics

true bedroom N@level Z, and the s.e.’s were obtained Examination Marks Data

by neglecting the sampling variation from the valida-  For continuous multivariate data, graphical models
tion data. Our results are more comparable to thoseare attractive tools for summarizing visually the con-
in the RSW rows, where variation from the validation ditional irrelevance relationship among the variables.



258 W. JIANG AND B.
However, most existing techniques for model selection
depend on a complete probability model of the data
such as joint normality. In the following example, an

approach based on joint normality may be question-
able due to the skewness and multimodality of some of

the variables. On the other hand, the proposed indirect
method can be used to produce inferential results that

are robust against nonnormality.
Whittaker (1990, Example 6.7.1) illustrated the

graphical Gaussian model (or the covariance selection

model) using a dataset of the examination marks of
n = 88 students in the five mathematics subjects me-

TURNBULL

TABLE 3
Mathematics marks data: The sample partial
correlation matrix

mech vect alg anal stat
mech 1.0
vect 0.33 1.0
alg 0.23 0.28 1.0
anal 0.00 0.08 0.43 1.0
stat 0.02 0.02 0.36 0.25 1.0

Chanics, vectors, a|gebra’ ana|ysis and Statistics’ reprethe inferential reSUItS, it is desirable to investigate aro-

sentable as =88 i.i.d. copies of a five-dimensional
random vectorX = (X;), j = 1,...,5. The dataset
comes from Mardia, Kent and Bibby (1979) and is
displayed in full in Table 1.1.1 of Whittaker (1990).
Based on the matrix of partial correlations (Table 3),
a butterfly graph (see Whittaker, 1990, page 181 or
Model 6 in Figure 2 herein) that represents the condi-
tional independence relationships among the five vari-
ables was shown to be an “excellent fit to the data,”

using a goodness-of-fit deviance test based on a multi-

variate normal model for the responses. By examining
the histograms of the five variables (see Figure 3), it

can be seen that some of the variables can exhibit left-

skewness (analysis) and bimodality (mechanics). Be-
cause it is unclear how much the nonnormality affects

mech anal

alg

vect stat

MODEL 6  C=73.0

mech anal

alg

vect stat

MODEL 5 C=74.3

bust method for selecting the graphical models for the
structure of partial correlations. Note that the essential
Markov properties of the graphs are preserved when
we consider the weaker property of conditional irrele-
vance (see Dawid, 1998, page 149), that is, zero partial
correlation, rather than the stronger property of con-
ditional independence of the random variables. In such
a graphical representation, a pair of vertices that repre-
sent two random variables is disconnected if and only
if the partial correlation of these two variables is zero
given the rest of the random variables. The concept of
zero partial correlation is distribution-free (e.g., not de-
pendent on a normal assumption on the veatprand

a corresponding distributiefree test is desirable, as is

MODEL 7

C=76.3

mech
anal

alg

vect
stat

MODEL 4  C=71.7

FiG. 2. Mathematics marks data: Some robust graphical models with small Bayesian costs (C = BIC + cons).
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FIG. 3. Histograms of mathematics examination marks.

a robust method for selecting graphical models for the constrained to be zero, the minimum value férof

structure of partial correlations.

For such a distribution robust treatment, we con-
sider inference based on the intermediate statigtics
composed of th€s + 15) first- and second-order sam-
ple momenta 1", X;; andn 1Y X X (1<
j < j’ <5), and using the objective functiai = {5 —
E@$10)Y v — E(5]9)}); see Section 2.6. Here the
true parameter includes the five mean parametets
(u1, ..., us), as well as the elements of the symmetric
concentration matriX" = var(X)~1. The weightv is
chosen as a sample estimate of the variance matsix of
that is, (V) = n~1 Y11 (Wi — W) (Wi — W) and
W, =n"1Y"_ | Wy, whereW; is the 20-dimensional
concatenated vector of;;’s and X;; X;;'s for 1 <
Jj < j' <5 foreachi (1 <i < 88). This function H

zero can no longer be achieved. For example, for the
butterfly graph chosen by Whittaker for this data (Fig-
ure 2, Model 6), the concentration matrix has a block
structure where elements that correspond to the index
pairs {mech—anal, mech-stat, vect—anal, vect—stat} are
constrained to be zero. The minimizédl under this
model equals B8 on 4 degrees of freedom and the
goodness of fit is excellent (a similar deviance statistic
of 0.895 was reported by Whittaker, 1990, page 182,
but is based on the normal modelXj.

Rather than using subjective judgment based on the
observed concentration matrix, we may select a graph-
ical model by considering a BIC analysis using the
methods of Section 2.6 based on the intermediate sta-
tistic, namely the first- and second-order sample mo-

is minimized at zero by the saturated (or unrestricted) ments. The selection process involves computing the
model with the same estimated means and concentraBayesian costC (M) for all the modelsM in the en-

tion parameters as the MLEs derived using a multi-
variate normal specification for the distribution &t
When a subset of partial correlation parameters is

tire searching scop® represented by thel'2= 1024
different graphs. For ease of illustration, we consider
a reduced random scopé@, with just 10 models,
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M, ..., M1g say, where model/; allows only those  Bayesian cost can be converted to the scale of posterior
partial correlations with the largest observed ab- model probability. For example, with about 52% of
solute values to be nonzero and restricts the remainingthe posterior probability of the favored butterfly model
10 — k off-diagonal entries in the concentration ma- Mg, modelMs additionally proposes linear irrelevance
trix to be zero. Thus\g is the saturated model and, between students’ marks in the mechanics subject and
from Table 3, we see that the butterfly graphical model the algebra subject after controlling the vector subject
is Mg. [In general, it can be shown that such a (much) mark. The modeld/; and M4, on the other hand, are
reduced scope, based on ordering the magnitudes obnly about 19 and 10%, respectively, as likely as model
the partial correlations, will contain the simplest true Mg, based on the intermediate statistics of first- and

model and the one with the lowest Bayesian cost al- second-order sample moments.

most surely in the large-sample limit.]
In Figure 4, the Bayesian coét(M) is plotted for
each of the 10 models i®,. The shape of the graph

here appears to indicate that the Bayesian cost criterion
penalizes overparametrization less than omission of

true nonzero partial correlations. The best model,
Model 6 = 6), corresponds to the butterfly model
of Whittaker (1990, Figure 1.2), but is here chosen
in a (somewhat) automated way. Model 6 suggests
that {mechanics, vector} marks and the {analysis,
statistics} marks are linearly related primarily through

the algebra mark. The Bayesian costs also suggesh

some close competing modeld,, Ms, M7, which all
have corresponding leading order a posteriori model
probabilities at least 0.05 times that of Mod& s,

as characterized by a Bayesian cost exceeding that of
Model Mg by no more than 6 (as represented by the o

dashed horizontal line in Figure 4). The corresponding
graphical models oMy, M5, Mg, M7, which represent

the conditional linear irrelevance characterized by
zero partial correlations, together with the Bayesian
cost of each, are shown in Figure 2. Of course the

200

180",

160

140

120

C(Mk): Bayesian cost

100

B0E o o

60
0

k: Number of free partial correlations

FiG. 4. Mathematics marks data: Bayesian cost versus number
of free partial correlation parametersin the model.

5. CONCLUSION

A number of further applications of the indirect

ethod are discussed in Jiang and Turnbull (2003).
These include:

e The method of moment generating functions (mgf)

(e.g., Quandt and Ramsey, 1978; Schmidt, 1982)
can be regarded as indirect inference based on the
intermediate statistic composed of some sample mgf
values.

Optimal linear combination of several consistent
estimators (e.g., Serfling, 1980, page 127) can be
regarded as the indirect inference based on an
intermediate statistic with components including all
those consistent estimators.

The approximate relationship between the maxi-
mum likelihood estimates under the reduced model
and the extended model [e.g., (5) and (6) of Cox and
Wermuth (1990)] can be derived from indirect in-
ference based on an intermediate statistic (the MLE
from the extended model).

The importance sampling estimator of a target dis-
tribution can be regarded as the indirect estimator
based on an intermediate statistic that is the empiri-
cal cdf based on simulated data from the instrumen-
tal (naive) distribution.

The method of least squares can be regarded as in-
direct inference based on the MLE from a naive re-
gression model assuming independent normal errors
with equal variances.

The method of Gaussian estimation (e.g., Whittle,
1961; Crowder, 1985, 2001; Hand and Crowder,
1996, Chapter 7) can be regarded as indirect in-
ference based on the MLE from a naive regression
model assuming normal errors that may be corre-
lated and have unequal variances.

There are other applications that are formally differ-

ent but similar in spirit to the indirect approach that we
discuss in this article. For example:
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e Several articles concerning gene mapping (e.g.,
Wright and Kong, 1997; Sen, 1998) studied infer-

ence based on intermediate statistics generated from

a naive single-gene normal quantitative trait locus
model, when the “true model” can include nonnor-
mality of phenotypic effect and polygenic traits.
Some methods of nonparametric estimation of addi-
tive regression functions are built on marginal inte-
gration (e.g., Newey, 1994; Hengartner and Sperlich,
2002) or minimum Lk-distance treatment (e.g.,
Mammen, Linton and Nielsen, 1999) of an inter-
mediate statistic, which is a full-dimensional local
polynomial regression smoother.
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