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Handling Covariates in the Design of
Clinical Trials
William F. Rosenberger and Oleksandr Sverdlov

Abstract. There has been a split in the statistics community about the need
for taking covariates into account in the design phase of a clinical trial. There
are many advocates of using stratification and covariate-adaptive random-
ization to promote balance on certain known covariates. However, balance
does not always promote efficiency or ensure more patients are assigned to
the better treatment. We describe these procedures, including model-based
procedures, for incorporating covariates into the design of clinical trials, and
give examples where balance, efficiency and ethical considerations may be in
conflict. We advocate a new class of procedures, covariate-adjusted response-
adaptive (CARA) randomization procedures that attempt to optimize both
efficiency and ethical considerations, while maintaining randomization. We
review all these procedures, present a few new simulation studies, and con-
clude with our philosophy.

Key words and phrases: Balance, covariate-adaptive randomization, covari-
ate-adjusted response-adaptive randomization, efficiency, ethics.

1. INTRODUCTION

Clinical trials are often considered the “gold stan-
dard” in convincing the medical community that a ther-
apy is beneficial in practice. However, not all clini-
cal trials have been universally convincing. Trials that
have inadequate power, or incorrect assumptions made
in planning for power, imbalances on important base-
line covariates directly related to patient outcomes,
or heterogeneity in the patient population, have con-
tributed to a lack of scientific consensus. Hence, it
is generally recognized that the planning and design
stage of the clinical trial is of great importance. While
the implementation of the clinical trial can often take
years, incorrect assumptions and forgotten factors in
the sometimes rushed design phase can cause contro-
versy following a trial. For example, take the trial of
erythropoietin in maintaining normal hemoglobin con-
centrations in patients with metastatic breast cancer
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(Leyland-Jones, 2003). This massive scientific effort
involved 139 clinical sites and 939 patients. The study
was terminated early because of an increase in mortal-
ity in the erythropoietin group. The principal investiga-
tor explains:

. . . drawing definitive conclusions has been
difficult because the study was not designed
to prospectively collect data on many po-
tential prognostic survival factors that might
have affected the study outcome. . . . The re-
sults of this trial must be interpreted with
caution in light of the potential for an im-
balance of risk factors between treatment
groups. . . . The randomisation design of the
study may not have fully protected against
imbalances because the stratification was
only done for one parameter, . . . and was
not done at each participating centre. . . . It is
extremely unfortunate that problems in de-
sign. . . have complicated the interpretation
of this study. Given the number of design is-
sues uncovered in the post hoc analysis, the
results cannot be considered conclusive.

An accompanying commentary calls this article
“alarmist,” thus illustrating the scientific conundrum
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that covariates present in clinical trials. There is no
agreement in the statistical community about how to
deal with potentially important baseline covariates in
the design phase of the trial. Traditionally, prestratifi-
cation has been used on a small number of very im-
portant covariates, followed by stratified analyses. But
what if the investigator feels there are many covariates
that are important—too many, in fact, to feasibly use
prestratification?

The very act of randomization tends to mitigate the
probability that important covariates will be distrib-
uted differently among treatment groups. This property
is what distinguishes randomized clinical trials from
observational studies. However, this is a large sample
property, and every clinical trialist is aware of random-
ized trials that resulted in significant baseline covari-
ate imbalances. Grizzle (1982) distinguished two fac-
tions of the statistical community, the “splitters” and
the “lumpers.” The splitters recommend incorporating
important covariates into randomization, thus ensuring
balance over these covariates at the design stage. The
lumpers suggest ignoring covariates in the design and
use simple randomization to allocate subjects to dif-
ferent treatment groups, and adjust for covariates at
the analysis stage. As Nathan Mantel once pointed out
(Gail, 1992):

. . . After looking at a data set, I might see
that in one group there are an unusually
large number of males. I would point out to
the investigators that even though they had
randomized the individuals to treatments,
or claimed that they had, I could still see
that there was something unbalanced. And
the response I would get was “Well, we
randomized and therefore we don’t have to
bother about it.” But that isn’t true. So, as
long as the imbalance is an important factor
you should take it into account. Even though
it is a designed experiment, in working with
humans, you cannot count on just the fact
that you randomized.

Today, many statisticians would argue that the only le-
gitimate adjusted analyses are for prespecified impor-
tant covariates planned for in the analysis according to
protocol, and that these adjustments should be done
whether or not the distributions are imbalanced (e.g.,
Permutt, 2000). In addition, these covariates should be
accounted for in the design of the trial, usually by pre-
stratification, if possible.

The three-stage philosophy of prestratifying on im-
portant known covariates, followed by a stratified
analysis, and allowing for randomization to “take care
of” the other less important (or unknown) covari-
ates, has become a general standard in clinical trials.
This method breaks down, however, when there are
a large number of important covariates. This has led
to the introduction of covariate-adaptive randomiza-
tion procedures, sometimes referred to as minimiza-
tion procedures or dynamic allocation.1 Some of these
“covariate-adaptive” procedures (the term we will use)
that have been proposed have been randomized, and
others not.

There is no consensus in either the statistics world
or the clinical trials world as to whether and when
these covariate-adaptive procedures should be used, al-
though they are gaining in popularity and are now used
frequently. Recently clinical trialists using these proce-
dures have grown concerned that regulatory agencies
have expressed skepticism and caution about the use of
these techniques. In Europe, The Committee on Propri-
etary Medicinal Products (CPMP) Points to Consider
Document (see Grouin, Day and Lewis, 2004) states:

Dynamic allocation is strongly discourag-
ed. . . . Without adequate and appropriate
supporting/sensitivity analysis, an applica-
tion is unlikely to be successful.

This document has led to much controversy. In a com-
mentary, Buyse and McEntegart (2004) state:

In our view, the CPMP’s position is unfair,
unfounded, and unwise. . . . It favors the use
of randomization methods that expose trial-
ists and the medical community to the risk
of accidental bias, when the risk could have
been limited through the use of balancing
methods that are especially valuable. . . . If
there were any controversy over the use of
minimization, it would be expected of an
independent agency to weigh all the scien-
tific arguments, for and against minimiza-
tion, before castigating the use of a method
that has long been adopted in the clinical
community.

In a letter to the editor, Day, Grouin and Lewis (2005)
respond that

1Or sometimes, unfortunately, as just adaptive designs, which
could refer to any number of statistical methods having nothing
to do with covariates, including response-adaptive randomization,
sequential monitoring, and flexible interim decisions.
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. . . the scientific community is not of one
mind regarding the use of covariate-adaptive
randomization procedures. . . . Rosenberger
and Lachin cautiously state that “very lit-
tle is known about its theoretical proper-
ties.” This is a substantial point. The direct
theoretical link between randomization and
methods of statistical analysis has provided
a solid foundation for reliable conclusions
from clinical trial work for many years.

It is in the context of this controversy that this paper
is written. The intention of this paper is to explore the
role of covariates in the design of clinical trials, and
to examine the burgeoning folklore in this area among
practicing clinical trialists. Just because a technique is
widely used does not mean that it is valuable. And just
because there is little theoretical evidence validating a
method does not mean it is not valid. The nonspeci-
ficity of the language in these opinion pieces is be-
coming troubling: what is meant by the terms “mini-
mization,” “dynamic,” “adaptive”? Many procedures to
mitigate covariate imbalances have been proposed. Are
they all equally effective or equally inappropriate? We
add to the controversy by discussing the often compet-
ing criteria of balance, efficiency and ethical consider-
ations. We demonstrate by example that clinical trials
that balance on known covariates may not always lead
to the most efficient or the most ethically attractive de-
sign, and vice versa.

This paper serves as both a review and a summary of
some of our thoughts on the matter; in particular, we
advocate a new class of procedures called covariate-
adjusted response-adaptive (CARA) randomization
procedures (e.g., Hu and Rosenberger, 2006). The out-
line of the paper is as follows. In Section 2, we review
the most popular covariate-adaptive randomization
procedures. In Section 3, we describe randomization-
based inference and its relationship to clinical trials
employing covariate-adaptive randomization methods.
In Section 4, we discuss what is known from the lit-
erature about the properties of the procedures in Sec-
tion 2. In Section 5, we describe the alternative model-
based optimal design approach to the problem and de-
scribe properties of these procedures in Section 6. In
Section 7, we discuss the relationship between bal-
ance, efficiency and ethics, and describe philosophi-
cal arguments about whether balance or efficiency is
a more important criterion. We demonstrate by ex-
ample that balance does not necessarily imply effi-
ciency and vice versa, and demonstrate that balanced

and efficient designs do not necessarily place more pa-
tients on the better treatment. In Section 8, we describe
CARA randomization procedures and their properties.
In Section 9, we report the results of a simulation study
comparing different CARA and covariate-adaptive ran-
domization procedures for a binary response trial with
covariates. Finally, we give a summary of our own
opinions in Section 10.

2. COVARIATE-ADAPTIVE RANDOMIZATION

Following Rosenberger and Lachin (2002), a ran-
domization sequence for a two-treatment clinical trial
of n patients is a random vector Tn = (T1, . . . , Tn)

′,
where Tj = 1 if the j th patient is assigned to treat-
ment 1 and Tj = −1 if the patient is assigned to treat-
ment 2. A restricted randomization procedure is given
by φj+1 = Pr(Tj+1 = 1|Tj ), that is, the probability
that the (j + 1)th patient is assigned to treatment 1,
given the previous j assignments. When the random-
ization sequence is dependent on a patient’s covariate
vector Z, we have covariate-adaptive randomization.
In particular, the randomization procedure can then be
described by φj+1 = Pr(Tj+1 = 1|Tj ,Z1, . . . ,Zj+1),
noting that the current patient is randomized based on
the history of previous treatment assignments, the co-
variate vectors of past patients and the current patient’s
covariate vector. The goal of covariate-adaptive ran-
domization is to adaptively balance the covariate pro-
files of patients randomized to treatments 1 and 2. Most
techniques for doing so have focused on minimizing
the differences of numbers on treatments 1 and 2 across
strata, often marginally. Note that covariate-adaptive
randomization induces a complex covariance structure,
given by Var(Tn|Z1 = z1, . . . ,Zn = zn) = �n,z.

For a small set of known discrete covariates, prestrat-
ification is the most effective method for forcing bal-
ance with respect to those covariates across the treat-
ment groups. The technique of prestratification uses
a separate restricted randomization procedure within
each stratum. For notational purposes, if discrete co-
variate Zi, i = 1, . . . ,K , has ki levels, then restricted
randomization is used within each of the

∏K
i=1 ki strata.

The first covariate-adaptive randomization proce-
dures were proposed in the mid-1970s. Taves (1974)
proposed a deterministic method to allocate treatments
designed to minimize imbalances on important covari-
ates, called the minimization method. Pocock and Si-
mon (1975) and Wei (1978) described generalizations
of minimization to randomized clinical trials. We will
refer to this class of covariate-adaptive randomization
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procedures as marginal procedures, as they balance on
covariates marginally, within each of

∑K
i=1 ki levels of

given covariates.
The general marginal procedure can be described as

follows for a two-treatment clinical trial. Let Nijl(n) be
the number of patients on treatment l in level j of co-
variate Zi , i = 1, . . . ,K, j = 1, . . . , ki, l = 1,2, after n

patients have been randomized. When patient n + 1 is
ready for randomization, the patient’s baseline covari-
ate vector (Z1, . . . ,ZK) is observed as (z1, . . . , zK).
Then Di(n) = Nizi1(n) − Nizi2(n) is computed for
each i = 1, . . . ,K . A weighted sum is then taken as
D(n) = ∑K

i=1 wiDi(n). The measure D(n) is used to
determine the treatment of patient n + 1. If D(n) > 0
(< 0), then one decreases (increases) the probability of
being assigned to treatment 1 accordingly. Pocock and
Simon (1975) formulated a general rule using Efron’s
(1971) biased coin design as:

φn+1 =
⎧⎨
⎩

1/2, if D(n) = 0,
p, if D(n) < 0,
1 − p, if D(n) > 0.

When p = 1, we have Taves’s (1974) minimization
method, which is nonrandomized. Pocock and Simon
(1975) investigated p = 3/4.

Wei (1978) proposed a different marginal proce-
dure using urns. At the beginning of the trial, each
of

∑K
i=1 ki urns contain α1 balls of type 1 and α2

balls of type 2. Let Uij denote the urn representing
level j of covariate zi , and let Yijk(n) be the num-
ber of balls of type k in urn Uij after n patients have
been randomized. For each urn compute the imbalance
Dij (n) = (Yij1(n)−Yij2(n))/(Yij1(n)+Yij2(n)). Sup-
pose patient n + 1 has covariate vector (z1, . . . , zK).
Select the urn such that Dizi

(n) is maximized. Draw
a ball and replace. If it is a type k ball, assign the pa-
tient to treatment k, and add αk balls of type k with
βk ≥ 0 balls of the opposite type to each of the ob-
served urns. The procedure is repeated for each new
eligible patient entering the trial. Wei proved that if
there is no interaction between the covariates or be-
tween the treatment effect and covariates in a stan-
dard linear model, then marginal balance is sufficient
to achieve an unbiased estimate of the treatment differ-
ence. Efron (1980) provided a covariate-adaptive ran-
domization procedure that balances both marginally
and within strata, but the method applies only to two
covariates.

There has been substantial controversy in the lit-
erature as to whether the introduction of randomiza-
tion is necessary when covariate-adaptive procedures

are used. Randomization mitigates the probability of
selection bias and accidental bias, and provides a ba-
sis for inference (e.g., Rosenberger and Lachin, 2002).
Taves’s original paper did not advocate randomization,
and, in fact, he still supports the view that random-
ization is unnecessary, writing in a letter to the editor
(Taves, 2004, page 180):

I hope that the day is not too far distant
when we look back on the current belief that
randomization is essential to good clinical
trial design and realize that it was. . . “cred-
ulous idolatry.”

Other authors have argued for using minimization
without the additional component of randomization.
Aickin (2001) argued that randomization is not needed
in covariate-adaptive procedures because the covari-
ates themselves are random, leading to randomness
in the treatment assignments. He also argued that the
usual selection bias argument for randomization is ir-
relevant in double-masked clinical trials with a central
randomization unit.

Several authors, such as Zelen (1974), Nordle and
Brandmark (1977), Efron (1980), Signorini et al.
(1993) and Heritier, Gebski and Pillai (2005), proposed
covariate-adaptive randomization procedures which
achieve balanced allocation both within margins of
the chosen factors and within strata. These methods
emphasize the importance of balancing over interac-
tions between factors when such exist. Raghavarao
(1980) proposed an allocation procedure based on dis-
tance functions. When the new patient enters the trial,
one computes dk , the Mahalanobis distance between
the covariate profile of the patient and the average of
the patients already assigned to treatment k, where
k = 1, . . . ,K . Then the patient is assigned to treat-
ment k with probability pk ∝ dk .

3. RANDOMIZATION-BASED INFERENCE

One of the benefits of randomization is that it
provides a basis for inference (see Chapter 7 of
Rosenberger and Lachin, 2002). Despite this, as-
sessment of treatment effects in clinical trials is of-
ten conducted using standard likelihood-based meth-
ods that ignore the randomization procedure used.
Letting Y(n) = (Y1, . . . , Yn) be the response vector,
T(n)

n = (T1, . . . , Tn) the treatment assignment vector
and Z(n) = (Z1, . . . ,Zn) the covariate vectors of pa-
tients 1, . . . , n, the likelihood can simply be written
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as

Ln = L
(
Y(n),T(n),Z(n); θ)

= L
(
Yn|Y(n−1),T(n),Zn; θ)

· L(
Tn|Y(n−1),T(n−1),Z(n); θ)

· L(
Zn|Y(n−1),T(n−1),Z(n−1))Ln−1.

As L(Yn|Y(n−1),T(n),Zn; θ) = L(Yn|Tn,Zn; θ), the
treatment assignments do not depend on θ , and the co-
variates are considered i.i.d., we can reduce this to the
recursion

Ln ∝ L(Yn|Tn,Zn; θ)Ln−1

=
n∏

i=1

L(Yi |Ti,Zi; θ).

This is the standard regression equation under a pop-
ulation model; that is, the randomization is ancillary
to the likelihood. Thus, a proponent of the likeli-
hood principle would ignore the design in the analy-
sis, and proceed with tests standardly available in
SAS.

The alternative approach is to use a randomization
test, which is a simple nonparametric alternative. Un-
der the null hypothesis of no treatment effect, the re-
sponses should be a deterministic sequence unaffected
by the treatment assigned. Therefore, the distribution
of the test statistic under the null hypothesis is com-
puted with reference to all possible sequences of treat-
ment assignments under the randomization procedure.

Various authors have struggled with the appropri-
ate way to perform randomization tests following
covariate-adaptive randomization. Pocock and Simon
(1975) initially suggested that the sequence of covari-
ate values and responses be treated as deterministic,
and the sequence of treatment assignments be per-
muted for those specific covariate values. This is the
approach taken by most authors. Ebbutt et al. (1997)
presented an example where results differed when the
randomization test took into consideration the sequenc-
ing of patient arrivals. Senn concluded from this that
the disease was changing in some way through the
course of the trial and thus there was a time trend
present (see the discussion of Atkinson, 1999).

4. WHAT WE KNOW ABOUT COVARIATE-
ADAPTIVE RANDOMIZATION PROCEDURES

Our knowledge of covariate-adaptive randomization
comes from (a) the original source papers; (b) a vast

number of simulation papers; (c) advocacy or regula-
tory papers (for or against); and (d) review papers. Very
little theoretical work has been done in this area, de-
spite the proliferation of papers. The original source
papers are fairly uninformative about theoretical prop-
erties of the procedures. In Pocock and Simon (1975),
for instance, there is a small discussion, not supported
by theory, on the appropriate selection of biasing prob-
ability p. There is no discussion about the effect of
the choice of weights for the covariates; no discussion
about the effect on inference; no theoretical justifica-
tion that the procedure even works as intended: Do co-
variate imbalances (loosely defined) tend to zero? Does
marginal balance imply balance within strata or over-
all? Wei (1978) devotes less than one page to a descrip-
tion of his procedure; he does prove that marginal bal-
ance implies balance within strata for a linear model
with no interactions. Taves (1974) is a nontechnical pa-
per with only intuitive justification of the method. Sim-
ulation papers have been contradictory.

Klotz (1978) formalized the idea of finding an op-
timal value of biasing probability p as a constrained
maximization problem. Consider a trial with K treat-
ments and covariates. When patient n + 1 is ready to
be randomized, one computes Dk , the measure of over-
all covariate imbalance if the new patient is assigned to
treatment k = 1, . . . ,K . The goal is to find the vector
of randomization probabilities ρ = (ρ1, . . . , ρK) which
maximizes the entropy measure subject to the con-
straint on the expected imbalance. Titterington (1983)
built upon Klotz’s idea and considered minimization of
the quadratic distance between ρ and the vector of uni-
form probabilities ρ0 = (1/K, . . . ,1/K) subject to the
constraints on the expected imbalance.

Aickin (2001) provides perhaps one of the few the-
oretical analyses of covariate-adaptive randomization
procedures. He gives a very short proof contradicting
some authors’ claims that covariate-adaptive random-
ization can promote imbalances in unmeasured covari-
ates. If X2 is an unmeasured covariate, and covariate-
adaptive randomization was used to balance on co-
variate X1, then X2 can be decomposed into its linear
regression part, given by L(X2|X1), and its linear re-
gression residual X2 − L(X2|X1). If X1 and X2 are
correlated positively or negatively, balancing on X1
will improve the balance of L(X2|X1). Since the resid-
ual is not correlated with the randomization procedure,
X2 − L(X2|X1) will balance as well as with restricted
or complete randomization. This is a formal justifica-
tion of the intuitive argument that Taves (1974) gave
in his original paper, an argument that Aickin (2001)
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says is a “remarkably insightful observation.” Aickin
also uses causal inference modeling to show that, if the
unobserved errors correlated with the treatment assign-
ments and known covariates are linearly related to the
known covariates, the treatment effect should be unbi-
ased.

There seems to be a troubling misconception in the
literature with regard to covariate-adaptive randomiza-
tion. For example, in an editorial in the British Med-
ical Journal (Treasure and MacRae, 1998) we have the
statement:

The theoretical validity of the method of
minimisation was shown by Smith. . . .

The quotation refers to Smith (1984b), which actually
derives the asymptotic distribution of the randomiza-
tion test following a model-based optimal design ap-
proach favored by many authors. We shall discuss this
approach momentarily, but it is important to point out
that there is no justification, theoretical or otherwise,
of minimization methods in Smith’s paper.

In contrast to the dearth of publications exploring
covariate-adaptive randomization from a theoretical
perspective, a literature search revealed about 30 pa-
pers reporting results of simulation studies. Some of
these papers themselves are principally a review of var-
ious other simulation papers. A glance at the recent So-
ciety for Clinical Trials annual meeting abstract guide
revealed about 10 contributed talks reporting additional
simulation results and their use in clinical trials, indi-
cating the continuing popularity of these designs.

Papers dealing with the comparison of stratified
block designs with covariate-adaptive randomization
methods with respect to achieving balance on covari-
ates include the original paper of Pocock and Simon
(1975), Therneau (1993), and review papers by Kalish
and Begg (1985) and Scott et al. (2002). The gen-
eral consensus is that covariate-adaptive randomization
does improve balance for large numbers of covariates.

Inference following covariate-adaptive randomiza-
tion has been explored by simulation in Birkett (1985),
using the t-test, Kalish and Begg (1987) using random-
ization tests, and Frane (1998), using analysis of co-
variance. Recent papers by Tu, Shalay and Pater (2000)
and McEntegart (2003) cover a wide-ranging number
of questions. Tu et al. found that minimization method
is inferior to stratification in reducing error rates, and
argued that marginal balance is insufficient in the
presence of interactions. McEntegart concluded that
there is little difference in power between minimiza-
tion method and stratification. Hammerstrom (2003)

performed some simulations and found that covariate-
adaptive randomization does not significantly improve
error rates, but does little harm, and therefore is useful
only for cosmetic purposes.

We conclude this section by interjecting some rele-
vant questions. Does marginal balance improve power
and efficiency, or is it simply cosmetic? Is covariate-
adaptive randomization the proper approach to this
problem?

5. MODEL-BASED OPTIMAL
DESIGN APPROACHES

An alternate approach to balance is to find the op-
timal design that minimizes the variance of the treat-
ment effect in the presence of covariates. This approach
is first found in Harville (1974), not in the context of
clinical trials, and in Begg and Iglewicz (1980). The
resulting designs are deterministic.

Atkinson (1982) adopted the approach and has ad-
vocated it in a series of papers, and in the 1982 paper,
introduced randomization into the solution. In order to
keep consistency with the original paper, we summa-
rize Atkinson’s approach for a general case of K ≥ 2
treatments. Suppose K treatments are to be compared,
and responses follow the classical linear regression
model given by

E(Yi) = x′
iβ, i = 1, . . . , n,

where the Yi ’s are independent with Var(Y) = σ 2I and
xi is (K + q) × 1 vector which includes treatment in-
dicators and selected covariates of interest (q is the
number of covariates in the model). Let β̂ be the least
squares estimator of β . Then Var(β̂) = σ 2(X′X)−1,
where X′X is the dispersion matrix from n observa-
tions.

For the construction of optimal designs we wish to
find the n points of experimentation at which some
function is optimized (in our case we will be finding
the optimal sequence of n treatment assignments). The
dispersion matrix evaluated at these n points is given
by M(ξn) = X′X/n, where ξn is the n-point design. It
is convenient, instead of thinking of n points, to formu-
late the problem in terms of a measure ξ (which in this
case is a frequency distribution) over a design region
	 = {1, . . . ,K}.

Atkinson formulated the optimal design problem as
a design that minimizes, in some sense, the variance
of A′β̂ , where A is a matrix of contrasts. One possible
criterion is Sibson’s (1974) DA-optimality that maxi-
mizes

|A′M−1(ξ)A|−1.(1)
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For any multivariable optimization problem, we
compute the directional derivative of the criterion. In
the case of the DA criterion in (1), we can derive the
Frèchet derivative as

dA(x, ξ) = x′M−1(ξ)A(A′M−1(ξ)A)−1A′M−1(ξ)x,

for x ∈ 	. By the classical Equivalence theorem of
Kiefer and Wolfowitz (1960), the optimal design ξ∗
that maximizes the criterion (1) then satisfies the fol-
lowing equations:

sup
x∈	

dA(x, ξ) ≤ s ∀ξ ∈ 	

and

sup
x∈	

dA(x, ξ∗) = s.

Such a design is optimal for estimating linear con-
trasts of β . Assume n patients have already been allo-
cated, and the resulting n-point design is given by ξn.
Let the value of dA(x, ξ) for allocation of treatment
k be dA(k, ξ). Atkinson proposed a sequential design
which allocates the (n + 1)th patient to the treatment
k = 1, . . . ,K for which dA(k, ξn) is a maximum, given
the patient’s covariates. The resulting design is deter-
ministic.

In order to randomize the allocation, Atkinson sug-
gested biasing a coin with probabilities

ρk = ψ(dA(k, ξn))∑K
k=1 ψ(dA(k, ξn))

,(2)

where ψ(x) is any monotone increasing function, and
allocating to treatment k with the corresponding prob-
ability. With two treatments, k = 1,2, we have s = 1,
A′ = (−1,1,0, . . . ,0), and the probability of assigning
treatment 1 is given by

φn+1 = ψ(dA(1, ξn))

ψ(dA(1, ξn)) + ψ(dA(2, ξn))
.(3)

(We consider only the case of two treatments in this
paper.) Equation (3) gives a broad class of covariate-
adaptive randomization procedures. The choice of
function ψ has not been explored adequately. Atkin-
son (1982) suggested using ψ(x) = x; Ball, Smith and
Verdinelli (1993) suggested ψ(x) = (1 + x)1/γ for a
parameter γ ≥ 0, which is a compromise between ran-
domness and efficiency.

Atkinson (1999, 2002) performed careful simu-
lation studies to compare the performance of sev-
eral covariate-adaptive randomization procedures for
a linear model with constant variance and trials up
to n = 200 patients. One criterion of interest was

loss, the expected amount of information lost due to
treatment and covariate imbalance. Another criterion
was selection bias, measuring the probability of cor-
rectly guessing the next treatment assignment. Atkin-
son observed that the deterministic procedure based on
the DA-optimality criterion has the smallest value of
loss, and Atkinson’s randomized procedure (3) with
ψ(x) = x increases the loss. He noted that DA-optimal
designs are insensitive to correlation between the co-
variates, while complete randomization and minimiza-
tion method increase the loss when covariates are cor-
related.

6. WHAT WE KNOW ABOUT ATKINSON’S CLASS
OF PROCEDURES

Considerably more theoretical work has been done
on the class of procedures in (3) than for the covariate-
adaptive randomization procedures in Section 2. Most
of the work has been done in a classic paper by Smith
(1984a), although he dealt with a variant on the proce-
dure in (3). It is instructive to convert to his notation:

E(Yn) = αtn +
q∑

j=1

znjβj ,

where Yn and tn are the response and treatment as-
signments of the nth patient, respectively, and znj

represent q covariates, and may include an intercept.
Let Tn be the treatment assignment vector and let
Zn be the matrix of covariates. Then Atkinson’s pro-
cedure in (3) can be formulated as follows: assign
tn+1 = ±1 with probabilities proportional to (±1 −
z′
n+1(ZnZn)

−1Zntn)2 (Smith, 1984b, page 543). Smith
(1984a) introduced a more general class of allocation
procedures given by

φn+1 = ψ(n−1z′
n+1Q−1Z′

ntn),(4)

where ψ is nonincreasing, twice continuously dif-
ferentiable function with bounded second derivative
satisfying ψ(x) + ψ(−x) = 1, and Q = E(znz′

n) =
limn→∞ n−1(Z′

nZn). It is presumed that the {zn} are in-
dependent, identically distributed random vectors, Q is
nonsingular and all third moments of zn are finite. Note
that the procedure (4) can be implemented only if the
distribution of covariates is known in the beginning of
the trial.

Smith suggested various forms of ψ , most leading to
a proportional biased coin raised to some power ρ. In
general, ρ = −2ψ ′(0). Without covariates, Atkinson’s
procedure in (2) leads to

φn+1 = n
ρ
2

n
ρ
1 + n

ρ
2
,
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where ρ = 2. Smith found the asymptotic variance of
the randomization test based on the simple treatment
effect, conditional on Zn. He did not do any further
analysis or draw conclusions except to suggest that ρ

should be selected by the investigator to be as large
as possible to balance the competing goals of balance,
accidental bias and selection bias.

7. BALANCE, EFFICIENCY OR ETHICS?

Clinical trials have multiple objectives. The princi-
pal considerations are given in the schematic in Fig-
ure 1. Balance across treatment groups is often con-
sidered essential both for important covariates and for
treatment numbers themselves. Efficiency is critical for
demonstrating efficacy. Randomization mitigates cer-
tain biases. Ethics is an essential component in any hu-
man experimentation, and dictates our treatment of pa-
tients in the trial. These considerations are sometimes
compatible, and sometimes in conflict. In this section,
we describe the interplay among balance, efficiency
and ethics in the context of randomized clinical trials,
and give some examples where they are in conflict.

In a normal error linear model with constant vari-
ance, numerical balance between treatments on the
margins of the covariates is equivalent to minimizing
the variance of the treatment effect. This is not true for
nonlinear models, such as logistic regression or tradi-
tional models for survival analysis (Begg and Kalish,
1984; Kalish and Harrington, 1988). As we shall dis-
cuss further in the next section, balance does not imply
efficiency except in specialized cases. This leaves open
the question, is balance on covariates important?

We have the conflict recorded in a fascinating in-
terchange among Atkinson, Stephen Senn and John
Whitehead (Atkinson, 1999). Whitehead argues:

FIG. 1. Multiple objectives of a phase III clinical trial.

I think that one criterion is really to reduce
the probability of some large imbalance
rather than the variance of the estimates. . . .
And to make sure that these unconvincing
trials, because of the large imbalance, hap-
pen with very low probability, perhaps is
more important. . . . I would always be want-
ing to adjust for these variables. None the
less, the message is simpler if my preferred
adjusted analysis is similar to the simple
message of the clinicians.

Senn gives the counterargument:

I think we should avoid pandering to these
foibles of physicians. . . . I think people
worry far too much about imbalance from
the inferrential (sic) point of view. . . . The
way I usually describe it to physicians is
as follows: if we have an unbalanced trial,
you can usually show them that by throw-
ing away some patients you can reduce it
to a perfectly balanced trial. So you can
actually show that within it there is a per-
fectly balanced trial. You can then say to
them: ‘now, are you prepared to make an
inference on this balanced subset within the
trial?’ and they nearly always say ‘yes.’ And
then I say to them, ‘well how can a little bit
more information be worse than having just
this balance trial within it?’

We thus encounter once again deep philosophical
differences and the ingrained culture of clinical tri-
alists. Fortunately, balance and efficiency are equiv-
alent in homoscedastic linear models. Thus, strati-
fied randomization and covariate-adaptive randomiza-
tion procedures (such as Pocock and Simon’s method)
are valid to the degree in which they force balance
over covariates. Atkinson’s model-based approach is
an alternative method that can incorporate treatment-
by-covariate interactions and continuous covariates.
Atkinson’s class of procedures for linear models has an
advantage of being based on formal optimality criteria
as opposed to ad hoc measures of imbalance used in
covariate-adaptive randomization procedures. On the
other hand, balanced designs may not be most efficient
in the case of nonlinear and heteroscedastic models.
We agree with Senn that cosmetic balance, while psy-
chologically reassuring, should not be the goal if power
or efficiency is lost in the process of forcing balance.



412 W. F. ROSENBERGER AND O. SVERDLOV

First, let us illustrate that balanced allocation can be
less efficient and less ethically appealing than unbal-
anced allocation in some instances, and that there may
exist unbalanced designs which outperform balanced
designs in terms of compound objectives of efficiency
and ethics. Consider a binary response trial of size n

comparing two treatments A and B , and suppose there
is an important binary covariate Z, say gender (Z = 0
if a patient is male, and Z = 1 if female), such that
there are n0 males and n1 females in the trial. Also as-
sume that success probabilities for treatment k are pk0
for males and pk1 for females, where k = A,B . Let
qkj = 1 − pkj , j = 0,1. For the time being we will as-
sume that the true success probabilities are known. One
measure of the treatment effect for binary responses is
the log-odds ratio, which can be expressed as

log OR(Z = j) = log
pAj/qAj

pBj/qBj

, j = 0,1.(5)

An experimental design question is to determine al-
location proportions πAj and πBj in stratum j for treat-
ments A and B , respectively, where j = 0 (male) or
j = 1 (female). Let us consider the following three al-
location rules:

Rule 1: Balanced treatment assignments in the two
strata, given by

πAj = πBj = 1/2, j = 0,1;
Rule 2: Neyman allocation maximizing the power

of the stratified asymptotic test of the log-odds ratio:

Tj = log ÔR(Z = j)√
v̂ar(log ÔR(Z = j))

, j = 0,1.

The allocation proportion is given by

π∗
Aj = 1/

√
pAjqAj

1/
√

pAjqAj + 1/
√

pBjqBj

, j = 0,1;

Rule 3: the analog of Rosenberger et al.’s (2001) op-
timal allocation minimizing the expected number of
treatment failures in the trial subject to the fixed vari-
ance of the log-odds ratio. This is given by

π∗∗
Aj =

1/
√

pAjq
2
Aj

1/
√

pAjq
2
Aj + 1/

√
pBjq

2
Bj

, j = 0,1.

Note that unlike Rule 1, Rules 2 and 3 depend on
success probabilities in the two strata, and are unbal-
anced, in general. Consider a case when n0 = n1 = 100
and let (pA0,pB0) = (0.95,0.7) and (pA1,pB1) =
(0.7,0.95). This represents a case when one of the

treatments is highly successful, there is significant
treatment difference between A and B , and there
is treatment-by-covariate interaction (treatment A is
more successful for males and is less successful for
females). Then allocation proportions for treatment A

in the two strata are πA0 = 0.68 and πA1 = 0.32 for
Rule 2, and πA0 = 0.84 and πA1 = 0.16 for Rule 3.

All three rules are very similar in terms of effi-
ciency, as measured by the asymptotic variances of
stratum-specific estimates of the log-odds ratio. How-
ever, Rules 2 and 3 provide extra ethical savings. For
the sample size considered, Rule 3 is expected to have
16 fewer failures than the balanced design. At the same
time, Rule 2, whose primary purpose is optimizing effi-
ciency, is expected to have 8 fewer failures than the bal-
anced allocation. Therefore, in addition to maximizing
efficiency, Rule 2 provides additional ethical savings,
and is certainly far more attractive than balanced allo-
cation.

So far we have compared different target allocations
for “fixed” designs, that is, for a given number of pa-
tients in each treatment group and known model para-
meters. In practice, true success probabilities are not
available at the trial onset, which precludes direct im-
plementation of Rules 2 and 3. Since clinical trials are
sequential in nature, one can use accruing responses
to estimate the parameters, and then cast a random-
ization procedure which asymptotically achieves the
desired allocation. To study operating characteristics
of response-adaptive randomization procedures target-
ing Neyman allocation (Rule 2) and optimal alloca-
tion (Rule 3) we ran a simulation study in R using
10,000 replications (results are available from the sec-
ond author upon request). In the simulations we as-
sumed that two strata (male and female) are equally
likely. For Rules 2 and 3, the doubly adaptive bi-
ased coin design (DBCD) procedure of Hu and Zhang
(2004) was used within each stratum to sequentially
allocate patients to treatment groups. In addition, bal-
anced allocation was implemented using stratified per-
muted block design (PBD) with block size m = 8. We
assumed that responses are immediate, and compared
the procedures with respect to power of the stratified
asymptotic test of the log-odds ratio for testing the
null hypothesis H0: (pA0 = pB0) and (pA1 = pB1)

versus HA: not H0 using significance level α = 0.05,
and the expected number of treatment failures. We
considered several experimental scenarios for success
probabilities (pAj ,pBj ), j = 0,1, including the one
described in the example above. To facilitate com-
parisons, the sample size for each experimental sce-
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nario was chosen such that the stratified block de-
sign achieves approximately 80% power of the test.
In summary, response-adaptive randomization proce-
dures worked as expected: for chosen sample sizes they
converged to the targeted allocations and preserved
the nominal significance level. Additionally, response-
adaptive randomization procedures had similar aver-
age power to the PBD, but on average they had fewer
treatment failures. Ethical savings of response-adaptive
designs were more pronounced when one of the treat-
ments had high success probability (0.8–0.9) and treat-
ment differences were large.

We would also like to emphasize that phase III trials
are pivotal studies, and one typically has an idea about
the success probabilities of the treatments from early
stage trials. If a particular allocation is such that it leads
to high power of the test, and it is also skewed toward
the better treatment, then it makes sense to implement
such a procedure. The additional ethical savings can
be prominent if the ethical costs associated with trial
outcomes are high, such as deaths of trial participants.

8. CARA RANDOMIZATION

Hu and Rosenberger (2006) define a covariate-
adjusted response-adaptive (CARA) randomization
procedure as one for which randomization probabilities
for a current patient depend on the history of previous
patients’ treatment assignments, responses and covari-
ates, and the covariate vector of the current patient, that
is,

φj = Pr(Tj+1 = 1|Tj ,Yj ,Z1, . . . ,Zj ,Zj+1).(6)

There have been only few papers dealing with CARA
randomization, and it has become an area of active
research. CARA randomization is an extension of
response-adaptive randomization which deals with ad-
justment for covariates. Response-adaptive randomiza-
tion has a rich history in the literature, and the inter-
ested reader is referred to Section 1.2 of Hu and Rosen-
berger (2006).

Bandyopadhyay and Biswas (2001) considered a lin-
ear regression model for two treatments and covari-
ates with an additive treatment effect and constant vari-
ance. Suppose large values of response correspond to a
higher efficacy. Then the new patient is randomized to
treatment 1 with probability

φj+1 = (dj/T ),(7)

where dj is the difference of covariate-adjusted treat-
ment means estimated from the first j patients, T is a

scaling constant and  is the standard normal c.d.f. Al-
though procedure (7) depends on the full history from
j patients, it does not account for covariates of the
(j +1)th patient, and it is not a CARA procedure in the
sense of (6). Also, this procedure depends on the choice
of T , and small values of T can lead to severe treatment
imbalances which can lead to high power losses.

Atkinson and Biswas (2005a, 2005b) improved
the allocation rule of Bandyopadhyay and Biswas
(2001) by proposing CARA procedures that are based
on a weighted DA-optimal criterion combining both
efficiency and ethical considerations. They investi-
gated operating characteristics of the proposed designs
through simulation, but they did not derive asymptotic
properties of the estimators and allocation proportions.
Without the asymptotic properties of the estimators, it
is difficult to assess the validity of statistical inferences
following CARA designs.

A few papers describe CARA designs for binary re-
sponse trials. One of the first papers in this field is by
Rosenberger, Vidyashankar and Agarwal (2001). They
assumed that responses in treatment group k = A,B

follow the logistic regression model

logit
(
Pr(Yk = 1|Z = z)

) = θ ′
kz,

where θk is a vector of model parameters for treat-
ment k. Let θ̂ jA and θ̂ jB be the maximum likelihood
estimators of model parameters computed from the
data from j patients. Then the (j + 1)th patient is ran-
domized to treatment A with probability

φj+1 = F
(
(θ̂ jA − θ̂ jB)′zj+1

)
,

where F is the standard logistic c.d.f. Basically, each
patient is allocated according to the current value of
covariate-adjusted odds ratio comparing treatments A

and B . The authors compared their procedure with
complete randomization through simulations assuming
delayed responses. They showed that for larger treat-
ment effects both procedures have similar power, but at
the same time the former results in a smaller expected
proportion of treatment failures.

Bandyopadhyay, Biswas and Bhattacharya (2007)
also dealt with binary responses. They proposed a two-
stage design for the logistic regression model. At the
first stage, 2m patients are randomized to treatment A

or B in a 1 : 1 ratio and accumulated data are used to
estimate model parameters. At the second stage, each
patient is randomized to treatment A with a probability
which depends on the treatment effect estimated from
the first stage and the current patient’s covariate vector.
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Theoretical properties of CARA procedures have
been developed in a recent paper by Zhang et al.
(2007). This paper proposed a general framework for
CARA randomization procedures for a very broad
class of models, including generalized linear models.
In the paper the authors proved strong consistency and
asymptotic normality of both maximum likelihood es-
timators and allocation proportions. They also exam-
ined the CARA design of Rosenberger, Vidyashankar
and Agarwal (2001) and provided asymptotic proper-
ties of the procedure.

CARA procedures do not lend themselves to analy-
sis via randomization-based inference. The theoretical
validity of randomization tests is based on condition-
ing on the outcome data as a set of sufficient statistics,
and then permuting the treatment assignments. Under
the null hypothesis of no treatment difference, the ob-
served outcome data should be exchangeable, leading
to a valid randomization p-value (see Pesarin, 2001).
However, under the CARA procedure, the treatment
assignments and outcomes form the sufficient statis-
tics, and conditioning on both would leave nothing.
One could perform a standard permutation test on the
resulting data by introducing a “sham” equiprobable
randomization, but one would lose information about
treatment efficacy.

Therefore, we rely on likelihood-based methods
to conduct inference following a CARA randomiza-
tion procedure, and Zhang et al. (2007) provide the
necessary asymptotic theory. For further discussion
of appropriate inference procedure following general
response-adaptive randomization procedures, refer to
Chapter 3 of Hu and Rosenberger (2006) and Baldi
Antognini and Giovagnoli (2005, 2006).

9. COMPARING DIFFERENT RANDOMIZATION
PROCEDURES WHICH ACCOUNT

FOR COVARIATES

In the following we used simulation to compare the
operating characteristics of several covariate-adaptive
randomization procedures and CARA procedures for
the logistic regression model. We used the covariate
structure considered in Rosenberger, Vidyashankar and
Agarwal (2001). Assume that responses for treatment k

satisfy the following logistic regression model:

logit
(
Pr(Yk = 1|z)) = αk +

3∑
j=1

βkj zj ,(8)

where αk is the treatment effect, and βkj is the effect
due to the j th covariate in treatment group k = A,B .

The parameter of interest is the covariate-adjusted
treatment difference αA − αB . The components of co-
variate vector z′ = (z1, z2, z3), which represent gen-
der, age and cholesterol level, were assumed to be
independently distributed as Bernoulli(1/2), Discrete
Uniform[30,75] and Normal(200,20). Note that
model (8) allows for treatment-by-covariate interac-
tions, since covariate effects βkj ’s are not the same
across the treatments.

The operating characteristics of designs included
measures of balance, efficiency and ethics. For balance
we considered the allocation proportion NA(n)/n, and
the allocation proportions within the male category of
covariate gender, NA0(n)/N0(n). Also, we examined
the Kolmogorov–Smirnov distance dKS(z2) between
empirical distributions of covariate age in treatment
groups A and B . The efficiency of procedures was mea-
sured by the average power of the asymptotic test of the
log-odds ratio evaluated at a given z0. The ethical as-
pect of a procedure was assessed by the total number
of treatment failures, F(n).

The sample size n was chosen in such a way that
complete randomization yields approximately 80% or
90% power of the test of log-odds ratio under a par-
ticular alternative. For each choice of n we also esti-
mated the significance level of the test under the null
hypotheses. We report the results for three sets of para-
meter values given in Table 1. Under the null hypoth-
esis of no treatment difference (Model 1), n = 200.
When αA −αB = −1 (Model 2), the choice of n = 200
yields 80% power for complete randomization. When
αA − αB = −1.25 (Model 3), we let n = 160, which
corresponds to 90% power for complete randomiza-
tion.

The first class of procedures are CARA designs. For
their implementation, we need to sequentially estimate
model parameters. In our simulations we assumed that
all responses are immediate after randomization, al-
though we can add a queuing structure to explore the

TABLE 1
Parameter values for the logistic regression model (8) used

in simulations

Model

1 2 3

Parameters A B A B A B

αk −1.652 −1.652 −1.402 −0.402 −1.652 −0.402
βk1 −0.810 −0.810 −0.810 0.173 −0.810 0.173
βk2 0.038 0.038 0.038 0.015 0.038 0.015
βk3 0.001 0.001 0.001 0.004 0.001 0.004



COVARIATES IN CLINICAL TRIALS 415

effects of delayed response. For CARA procedures,
some data must accumulate so that the logistic model
is estimable. We used Pocock and Simon’s method to
allocate the first 2m0 patients to treatments A and B .

Suppose after n > 2m0 allocations the m.l.e. of θk

has been computed as θ̂n,k . Then, for a sequential
m.l.e. CARA procedure, the (n + 1)th patient with co-
variate zn+1 is allocated to treatment A with probabil-
ity φn+1 = ρ(θ̂n,A, θ̂n,B, zn+1). We explored four dif-
ferent choices of ρ:

1. Rosenberger, Vidyashankar and Agarwal’s (2001)
target:

ρ1 = pA(z)/qA(z)
pA(z)/qA(z) + pB(z)/qB(z)

.

2. Covariate-adjusted version of Rosenberger et al.’s
(2001) allocation:

ρ2 =
√

pA(z)√
pA(z) + √

pB(z)
.

3. Covariate-adjusted version of Neyman allocation:

ρ3 =
√

pB(z)qB(z)√
pB(z)qB(z) + √

pA(z)qA(z)
.

4. Covariate-adjusted version of optimal allocation:

ρ4 =
√

pB(z)qB(z)√
pB(z)qB(z) + √

pA(z)qA(z)
.

Here pk(z) = 1/(1 + exp(−θ ′
kz)) and qk(z) = 1 −

pk(z), k = A,B . We will refer to CARA procedures
with four described targets as CARA 1, CARA 2,
CARA 3 and CARA 4, respectively.

We also considered an analogue of Akinson and
Biswas’s (2005a) procedure for the binary response
case. It is worthwhile to describe this approach in more
detail. Consider model (8) and let θk = (αk, β1k, β2k,

β3k)
′. Suppose that a trial has nA patients allocated

to treatment A and nB = n − nA patients allocated
to treatment B . Then the information matrix about
θ = (θA, θB) based on n observations is of the form

Mn = diag{Z′
AWAZA,Z′

BWBZB},
where Zk is the nk × p matrix of covariates for treat-
ment k, Wk is nk × nk diagonal matrix with elements
pkqk . Here pk = pk(zi , θk) denote the success proba-
bility on treatment k given zi and qk = 1 − pk , k =
A,B . Suppose the (n + 1)th patient enters the trial.
Then the directional derivative of the criterion det(M)

for treatment k given zn+1 is computed as

d(k, θn, zn+1) = z′
n+1(Z

′
kWkZk)

−1zn+1pkqk.(9)

Note that (9) depends on θk , which must be esti-
mated using the m.l.e. θ̂n,k . The (n + 1)th patient is
randomized to treatment A with probability

φn+1 = f̂Ad(A, θ̂n,A, zn+1)∑B
k=A f̂kd(k, θ̂n,k, zn+1)

,(10)

where fk is the desired proportion on treatment k. We
take fk = pk(z)/qk(z). The CARA procedure (10) will
be referred to as CARA 5.

The second class of allocation rules are covariate-
adaptive randomization procedures. For Pocock and
Simon’s (P–S) procedure, each component of zn+1 is
discretized into two levels, and the sum of marginal im-
balances within these levels is computed. The (n+1)th
patient is allocated with probability 3/4 to the treat-
ment which would minimize total covariate imbalance.
If imbalances for treatments A and B are equal, then
the patient is assigned to either treatment with proba-
bility 1/2.

For the stratified permuted block design (SPBD),
the stratum of the current patient is determined based
on the observed combination of the patient’s covariate
profile. Within that stratum allocations are made using
permuted blocks of size m = 10. It is possible that had
some unfilled last blocks, and thus perfect balance is
not achieved. However, we did not specifically exam-
ine this feature of SPBD. We also report the results for
complete randomization (CRD).

The program performing the simulations was writ-
ten in R. For each procedure, a trial with n patients
was simulated 5000 times. To facilitate the compari-
son of the procedures, the n × 4 matrix of covariates
Z was generated once and was held fixed for all simu-
lations. For CARA procedures, the first 2m0 = 80 pa-
tients were randomized by Pocock and Simon’s proce-
dure with biasing probability p = 3/4. The response
probabilities of patients in treatment group k = A,B

were computed by multiplying the rows of Z by the
vector of model parameters and calculating the logistic
c.d.f. F(x) = 1/(1 + exp(−x)) at the computed val-
ues. The significance level of the test was set α = 0.05,
two-sided.

Table 2 shows the results under the null hypothesis
(Model 1). We see that all rules produce balanced al-
locations. CARA 1, CARA 3 and CARA 4 procedures
are slightly anticonservative, with a type I error rate of
0.06, while the procedures CARA 2 and CARA 5 pre-
serve the nominal significance level of 0.05. Pocock
and Simon’s procedure is the least variable among the
eight rules considered; the other procedures are almost
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TABLE 2
Simulation results for Model 1 with θA = θB and n = 200

Procedure NA(n)
n (S.D.) NA0(n)

N0(n)
(S.D.) dKS(z2) (S.D.) Err. rate F(n) (S.D.)

CRD 0.50 (0.03) 0.50 (0.05) 0.12 (0.04) 0.05 90 (6)
SPBD 0.50 (0.03) 0.50 (0.04) 0.12 (0.03) 0.05 90 (6)
P–S 0.50 (0.00) 0.50 (0.01) 0.10 (0.03) 0.05 90 (6)
CARA 1 0.50 (0.03) 0.50 (0.04) 0.11 (0.03) 0.06 90 (6)
CARA 2 0.50 (0.03) 0.50 (0.04) 0.12 (0.03) 0.05 90 (6)
CARA 3 0.50 (0.02) 0.50 (0.04) 0.11 (0.03) 0.06 90 (6)
CARA 4 0.50 (0.02) 0.50 (0.04) 0.12 (0.03) 0.06 90 (6)
CARA 5 0.50 (0.02) 0.50 (0.04) 0.12 (0.04) 0.05 90 (6)

identical in terms of variability of allocation propor-
tions.

Tables 3 and 4 show the results for Models 2 and 3,
respectively. The conclusions are similar in the two
cases, and so we will focus on Model 2. Balanced de-
signs equalize the treatment assignments very well. As
expected, the stratified blocks and Pocock and Simon’s
procedure are less variable than complete randomiza-
tion. Similar conclusions about balancing properties of
the designs apply to balancing with respect to the con-
tinuous covariates. The average power is 90% for the
stratified blocks and Pocock and Simon’s procedure,
and 89% for complete randomization.

Let us now examine the performance of CARA pro-
cedures. All CARA procedures are more variable than
the stratified blocks and Pocock and Simon’s method,
but a little less variable than complete randomization.
In addition, all CARA procedures do a good job in
terms of balancing the distributions of the continuous
covariates [estimated dKS(z2) = 0.13 (S.D. = 0.04)
versus 0.14 (S.D. = 0.04) for complete randomiza-
tion]. CARA 2, CARA 3 and CARA 5 procedures are
closest to the balanced design. The simulated alloca-

tion proportions for treatment A and the corresponding
standard deviations are 0.48 (0.03) for CARA 2, and
0.48 (0.03) for CARA 3, and 0.47 (0.03) for CARA 5
procedure. These three CARA procedures have aver-
age power of 81%, same as for stratified blocks and
Pocock and Simon’s procedure, but at the same time
they yield two fewer failures than the balanced designs.
CARA 4 procedure has the power of 80% (same as
for complete randomization), but it has, on average,
four fewer failures than the balanced designs. CARA 1
procedure is the most skewed: the simulated allocation
proportion for treatment A and the standard deviation
is 0.40 (0.04), and it results, on average, in six fewer
treatment failures than in the balanced design case. On
the other hand, it is less powerful than balanced designs
(the average power is 76%).

The overall conclusion is that CARA procedures
may be a good alternative to covariate-adaptive proce-
dures targeting balanced allocations in the nonlinear re-
sponse case. Although incorporating responses in ran-
domization induces additional variability of allocation
proportions, which may potentially reduce power, one

TABLE 3
Simulation results for Model 2 with αA − αB = −1.0 and n = 200

Procedure NA(n)
n (S.D.) NA0(n)

N0(n) (S.D.) dKS(z2) (S.D.) Power F(n) (S.D.)

CRD 0.50 (0.04) 0.49 (0.05) 0.12 (0.04) 0.80 62 (6)
SPBD 0.50 (0.03) 0.50 (0.04) 0.12 (0.03) 0.81 62 (6)
P–S 0.50 (0.01) 0.50 (0.01) 0.10 (0.03) 0.81 62 (6)
CARA 1 0.40 (0.04) 0.45 (0.04) 0.12 (0.03) 0.76 56 (6)
CARA 2 0.48 (0.03) 0.49 (0.04) 0.12 (0.03) 0.81 60 (6)
CARA 3 0.48 (0.03) 0.49 (0.04) 0.12 (0.03) 0.81 60 (6)
CARA 4 0.45 (0.03) 0.48 (0.04) 0.12 (0.03) 0.80 58 (6)
CARA 5 0.47 (0.03) 0.50 (0.04) 0.12 (0.04) 0.81 60 (6)
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TABLE 4
Simulation results for Model 3 with αA − αB = −1.25 and n = 160

Procedure NA(n)
n (S.D.) NA0(n)

N0(n)
(S.D.) dKS(z2) (S.D.) Power F(n) (S.D.)

CRD 0.50 (0.04) 0.49 (0.05) 0.14 (0.04) 0.89 54 (6)
SPBD 0.50 (0.01) 0.50 (0.01) 0.12 (0.03) 0.89 54 (6)
P–S 0.50 (0.01) 0.50 (0.01) 0.11 (0.03) 0.90 54 (6)
CARA 1 0.39 (0.04) 0.43 (0.04) 0.13 (0.04) 0.86 50 (6)
CARA 2 0.47 (0.03) 0.48 (0.04) 0.13 (0.04) 0.90 53 (6)
CARA 3 0.48 (0.03) 0.48 (0.04) 0.13 (0.04) 0.90 54 (6)
CARA 4 0.44 (0.03) 0.45 (0.04) 0.13 (0.04) 0.89 51 (6)
CARA 5 0.47 (0.02) 0.50 (0.03) 0.12 (0.03) 0.91 53 (5)

can see from our simulations that such an impact is not
dramatic.

For CARA procedures, it is essential that the first al-
locations to treatment groups are made by using some
covariate-adaptive procedure or the stratified block de-
sign, so that some data accrue and one can estimate
the unknown model parameters with reasonable ac-
curacy. From numerical experiments we have found
that at least 80 patients must be randomized to treat-
ment groups before m.l.e.’s can be computed. Alter-
natively, one can check after each allocation the con-
vergence of the iteratively reweighted least squares
algorithm for fitting the logistic model, as Rosenberger,
Vidyashankar and Agarwal (2001) did. However, due
to the slow convergence of m.l.e.’s, we have found that
it is better, first, to achieve reasonable quality estima-
tors by using a covariate-adaptive randomization pro-
cedure with good balancing properties (such as Pocock
and Simon’s method).

From our simulations one can see that there are
CARA procedures (such as CARA 4 procedure) which
have the same average power as complete randomiza-
tion, but at the same time they result in three to four
fewer failures than the balanced allocations. Such ex-
tra ethical savings together with high power for show-
ing treatment efficacy can be a good reason for using
CARA procedures to design efficient and more ethi-
cally attractive clinical trials.

10. DISCUSSION

The design of clinical trials has become a rote ex-
ercise, often driven by regulatory constraints. Boiler-
plate design sections in protocols and grant proposals
are routinely presented to steering committees, review
committees, and data and safety monitoring boards. It
is not uncommon for the randomization section of a

protocol to state “double-blinded randomization will
be performed” with no further details. The fact that
randomization is rarely if ever used as a basis for infer-
ence means that the particular randomization sequence
is not relevant in the analysis, with the exception that
stratified designs typically lead to stratified tests. Bal-
ance among important baseline covariates is seen to be
an essential cosmetic component of the clinical trial,
and many statisticians recommend adjusting for imbal-
anced covariates following the trial, even if such analy-
ses were not planned in the design phase. While effi-
ciency is usually gauged by a sample size formula, the
role that covariates play in efficiency, and the idea that
imbalances may sometimes lead to better efficiency
and more patients assigned to the superior treatment,
are not generally considered in the design phase of typ-
ical clinical trials.

In clinical trials with normally distributed outcomes,
where it is assumed that the variability of the outcomes
is similar across treatments, a balanced design across
treatments and covariates will be the most efficient. In
these cases, if there are several important covariates,
stratification can be employed successfully, and if there
are many covariates deemed of sufficient importance,
covariate-adaptive randomization can be used to create
balanced, and therefore efficient, designs.

However, as we have seen, these simple ideas break
down when there are heterogeneous variances, includ-
ing those found in commonly performed trials with bi-
nary responses or survival responses. The good news is
that there are new randomization techniques that can be
incorporated in the design stage that can lead to more
efficient and more ethically attractive clinical trials.
These randomization techniques are based on the opti-
mal design of experiments and also tend to place more
patients on the better treatment (Zhang et al., 2007).
While more work needs to be done on the properties
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of these procedures, we agree with Senn’s comments
that efficiency is much more important than cosmetic
balance.

The design of clinical trials is as important as the
analysis of clinical trials. Ethical considerations and
efficiency should dictate the randomization procedure
used; careful selection of a good design can save
time, money, and in some cases patients’ lives. As Hu
and Rosenberger (2006) point out, modern information
technology has progressed to the point where logistical
difficulties of implementing more complex randomiza-
tion procedures are no longer an issue. Careful design
involves an understanding of both the theoretical prop-
erties of a design in general, and simulated properties
under a variety of standard to worst-case models. In
some cases, the trade-offs in patient benefits and effi-
ciency are so modest compared to the relative gravity
of the outcome, that standard balanced designs may be
acceptable. However, when outcomes are grave, and
balanced designs may produce severe inefficiency or
too many patients assigned to the inferior treatment,
careful design is essential.
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