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Markov Chain Monte Carlo: Can We Trust
the Third Significant Figure?
James M. Flegal, Murali Haran and Galin L. Jones

Abstract. Current reporting of results based on Markov chain Monte Carlo
computations could be improved. In particular, a measure of the accuracy
of the resulting estimates is rarely reported. Thus we have little ability to
objectively assess the quality of the reported estimates. We address this issue
in that we discuss why Monte Carlo standard errors are important, how they
can be easily calculated in Markov chain Monte Carlo and how they can be
used to decide when to stop the simulation. We compare their use to a popular
alternative in the context of two examples.
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1. INTRODUCTION

Hoaglin and Andrews (1975) consider the general
problem of what information should be included in
publishing computation-based results. The goal of their
suggestions was “...to make it easy for the reader to
make reasonable assessments of the numerical quality
of the results.” In particular, Hoaglin and Andrews sug-
gested that it is crucial to report some notion of the ac-
curacy of the results and, for Monte Carlo studies this
should include estimated standard errors. However, in
settings where Markov chain Monte Carlo (MCMC)
is used there is a culture of rarely reporting such in-
formation. For example, we looked at the issues pub-
lished in 2006 of Journal of the American Statistical
Association, Biometrika and Journal of the Royal Sta-
tistical Society, Series B. In these journals we found 39
papers that used MCMC. Only three of them directly
addressed the Monte Carlo error in the reported esti-
mates. Thus it is apparent that the readers of the other
papers have little ability to objectively assess the qual-
ity of the reported estimates. We attempt to address this
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issue in that we discuss why Monte Carlo standard er-
rors are important, how they can be easily calculated
in MCMC settings and compare their use to a popular
alternative.

Simply put, MCMC is a method for using a computer
to generate data and subsequently using standard large
sample statistical methods to estimate fixed, unknown
quantities of a given target distribution. (Thus, we ob-
ject to calling it “Bayesian Computation.”) That is, it
is used to produce a point estimate of some character-
istic of a target distribution π having support X. The
most common use of MCMC is to estimate Eπg :=∫

X g(x)π(dx) where g is a real-valued, π -integrable
function on X.

Suppose that X = {X1,X2,X3, . . .} is an aperiodic,
irreducible, positive Harris recurrent Markov chain
with state space X and invariant distribution π (for de-
finitions see Meyn and Tweedie, 1993). In this case X

is Harris ergodic. Typically, estimating Eπg is natural
since an appeal to the Ergodic Theorem implies that if
Eπ |g| < ∞, then, with probability 1,

ḡn := 1

n

n∑
i=1

g(Xi) → Eπg as n → ∞.(1)

The MCMC method entails constructing a Markov
chain X satisfying the regularity conditions described
above and then simulating X for a finite number of
steps, say n, and using ḡn to estimate Eπg. The popu-
larity of MCMC largely is due to the ease with which
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such an X can be simulated (Chen, Shao and Ibrahim,
2000; Robert and Casella, 1999; Liu, 2001).

An obvious question is when should we stop the sim-
ulation? That is, how large should n be? Or, when is
ḡn a good estimate of Eπg? In a given application we
usually have an idea about how many significant fig-
ures we want in our estimate, but how should this be
assessed? Responsible statisticians and scientists want
to do the right thing but output analysis in MCMC has
become a muddled area with often conflicting advice
and dubious terminology. This leaves many in a posi-
tion where they feel forced to rely on intuition, folk-
lore and heuristics. We believe this often leads to some
poor practices: (A) stopping the simulation too early,
(B) wasting potentially useful samples, and, most im-
portantly, (C) providing no notion of the quality of ḡn

as an estimate of Eπg. In this paper we focus on issue
(C) but touch briefly on (A) and (B).

The rest of this paper is organized as follows. In Sec-
tion 2 we briefly introduce some basic concepts from
the theory of Markov chains. In Section 3 we consider
estimating the Monte Carlo error of ḡn. Then Section 4
covers two methods for stopping the simulation and
compares them in a toy example. In Section 5 the two
methods are compared again in a realistic spatial model
for a data set on wheat crop flowering dates in North
Dakota. We close with some final remarks in Section 6.

2. MARKOV CHAIN BASICS

Suppose that X = {X1,X2, . . .} is a Harris ergodic
Markov chain with state space X and invariant distrib-
ution π . For n ∈ N := {1,2,3, . . .} let P n(x, ·) be the
n-step Markov transition kernel; that is, for x ∈ X and a
measurable set A, P n(x,A) = Pr(Xn+i ∈ A | Xi = x).
An extremely useful property of X is that the chain will
converge to the invariant distribution. Specifically,

‖P n(x, ·) − π(·)‖ ↓ 0 as n → ∞,

where the left-hand side is the total variation distance
between P n(x, ·) and π(·). (This is stronger than con-
vergence in distribution.) The Markov chain X is geo-
metrically ergodic if there exists a constant 0 < t < 1
and a function M : X → R

+ such that for any x ∈ X,

‖P n(x, ·) − π(·)‖ ≤ M(x)tn(2)

for n ∈ N. If M(x) is bounded, then X is uniformly er-
godic. Thus uniform ergodicity implies geometric er-
godicity. However, as one might imagine, finding M

and t directly is often quite difficult in realistic settings.
There has been a substantial amount of effort de-

voted to establishing (2) in MCMC settings. For ex-

ample, Hobert and Geyer (1998), Johnson and Jones
(2008), Jones and Hobert (2004), Marchev and Hobert
(2004), Mira and Tierney (2002), Robert (1995), Rob-
erts and Polson (1994), Roberts and Rosenthal (1999),
Rosenthal (1995, 1996), Roy and Hobert (2007) and
Tierney (1994) examined Gibbs samplers while
Christensen, Moller and Waagepetersen (2001), Douc
et al. (2004), Fort and Moulines (2000, 2003), Geyer
(1999), Jarner and Hansen (2000), Jarner and Roberts
(2002), Meyn and Tweedie (1994) and Mengersen and
Tweedie (1996) considered Metropolis–Hastings algo-
rithms.

3. MONTE CARLO ERROR

A Monte Carlo approximation is not exact. The num-
ber ḡn is not the exact value of the integral we are
trying to approximate. It is off by some amount, the
Monte Carlo error, ḡn − Eπg. How large is the Monte
Carlo error? Unfortunately, we can never know unless
we know Eπg.

We do not know the Monte Carlo error, but we can
get a handle on its sampling distribution. That is, as-
sessing the Monte Carlo error can be accomplished by
estimating the variance of the asymptotic distribution
of ḡn. Under regularity conditions, the Markov chain
X and function g will admit a CLT. That is,

√
n(ḡn − Eπg)

d→ N(0, σ 2
g )(3)

as n → ∞ where σ 2
g := varπ {g(X1)} +

2
∑∞

i=2 covπ {g(X1), g(Xi)}; the subscript π means
that the expectations are calculated assuming X1 ∼ π .
The CLT holds for any initial distribution when ei-
ther (i) X is geometrically ergodic and Eπ |g|2+δ < ∞
for some δ > 0 or (ii) X is uniformly ergodic and
Eπg2 < ∞. These are not the only sufficient condi-
tions for a CLT but are among the most straightfor-
ward to state; the interested reader is pointed to the
summaries provided by Jones (2004) and Roberts and
Rosenthal (2004).

Given a CLT we can assess the Monte Carlo error
in ḡn by estimating the variance, σ 2

g . That is, we can
calculate and report an estimate of σ 2

g , say σ̂ 2
g , that

will allow us to assess the accuracy of the point es-
timate. There have been many techniques introduced
for estimating σ 2

g ; see, among others, Bratley, Fox and
Schrage (1987), Fishman (1996), Geyer (1992), Glynn
and Iglehart (1990), Glynn and Whitt (1991), Mykland,
Tierney and Yu (1995) and Roberts (1996). For exam-
ple, regenerative simulation, batch means and spectral
variance estimators all can be appropriate in MCMC
settings. We will consider only one of the available



252 FLEGAL ET AL.

methods, namely non-overlapping batch means. We
chose this method because it is easy to implement
and can enjoy desirable theoretical properties. How-
ever, overlapping batch means has a reputation of
sometimes being more efficient than nonoverlapping
batch means. On the other hand, currently the spec-
tral variance and overlapping batch means estimators
require stronger regularity conditions than nonoverlap-
ping batch means.

3.1 Batch Means

In nonoverlapping batch means the output is broken
into blocks of equal size. Suppose the algorithm is run
for a total of n = ab iterations (hence a = an and b =
bn are implicit functions of n) and define

Ȳj := 1

b

jb∑
i=(j−1)b+1

g(Xi) for j = 1, . . . , a.

The batch means estimate of σ 2
g is

σ̂ 2
g = b

a − 1

a∑
j=1

(Ȳj − ḡn)
2.(4)

Batch means is attractive because it is easy to imple-
ment (and it is available in some software, e.g., Win-
BUGS) but some authors encourage caution in its use
(Roberts, 1996). In particular, we believe careful use
is warranted since (4), in general, is not a consistent
estimator of σ 2

g . On the other hand, Jones et al. (2006)
showed that if the batch size and the number of batches
are allowed to increase as the overall length of the
simulation increases by setting bn = 
nθ� and an =

n/bn�, then σ̂ 2

g → σ 2
g with probability 1 as n → ∞.

In this case we call it consistent batch means (CBM)
to distinguish it from the standard (fixed number of
batches) version. The regularity conditions require that
X be geometrically ergodic, Eπ |g|2+ε1+ε2 < ∞ for
some ε1 > 0, ε2 > 0 and (1 + ε1/2)−1 < θ < 1; often
θ = 1/2 (i.e., bn = 
√n� and an = 
n/bn�) is a conve-
nient choice that works well in applications. Note that
the only practical difference between CBM and stan-
dard batch means is that the batch number and size are
chosen as functions of the overall run length, n. A sim-
ple R function for implementing CBM or a faster com-
mand line C version of this function is available from
the authors upon request.

Using CBM to get an estimate of the Monte Carlo
standard error (MCSE) of ḡn, say σ̂g/

√
n, we can form

an asymptotically valid confidence interval for Eπg.
The half-width of the interval is given by

tan−1
σ̂g√
n

(5)

where tan−1 is an appropriate quantile from Student’s t

distribution with an − 1 degrees of freedom.

3.2 How Many Significant Figures?

The title of the paper contains a rhetorical question;
we do not always care about the third significant fig-
ure. But we should care about how many significant
figures there are in our estimates. Assessing the Monte
Carlo error through (5) gives us a tool to do this. For
example, suppose ḡn = 0.02; then there is exactly one
significant figure in the estimate, namely the “2,” but
how confident are we about it? Letting hα denote the
half-width given in (5) of a (1 − α)100% interval, we
would trust the one significant figure in our estimate if
0.02±hα ⊆ [0.015,0.025) since otherwise values such
as Eπg = 0.01 or Eπg = 0.03 are plausible through
rounding.

More generally, we can use (5) to assess how many
significant figures we have in our estimates. This is il-
lustrated in the following toy example that will be used
several times throughout the rest of this paper.

3.2.1 Toy example. Let Y1, . . . , YK be i.i.d. N(μ,λ)

and let the prior for (μ,λ) be proportional to 1/
√

λ.
The posterior density is characterized by

π(μ,λ|y) ∝ λ−(K+1)/2 exp

{
− 1

2λ

K∑
j=1

(yj − μ)2

}
(6)

where y = (y1, . . . , yK)T . It is easy to check that this
posterior is proper as long as K ≥ 3 and we assume
this throughout. Using the Gibbs sampler to make
draws from (6) requires the full conditional densities,
f (μ|λ,y) and f (λ|μ,y), which are as follows:

μ|λ,y ∼ N(ȳ, λ/K),

λ|μ,y ∼ IG
(

K − 1

2
,
(K − 1)s2 + K(ȳ − μ)2

2

)
,

where ȳ is the sample mean and (K − 1)s2 = ∑
(yi −

ȳ)2. [We say W ∼ IG(α,β) if its density is propor-
tional to w−(α+1)e−β/wI (w > 0).] Consider estimat-
ing the posterior means of μ and λ. It is easy to prove
that E(μ|y) = ȳ and E(λ|y) = (K − 1)s2/(K − 4) for
K > 4. Thus we do not need MCMC to estimate these
quantities but we will ignore this and use the output of
a Gibbs sampler to estimate E(μ|y) and E(λ|y).

Consider the Gibbs sampler that updates λ then μ;
that is, letting (λ′,μ′) denote the current state and
(λ,μ) denote the future state, the transition looks like
(λ′,μ′) → (λ,μ′) → (λ,μ). Jones and Hobert (2001)
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established that the associated Markov chain is geo-
metrically ergodic as long as K ≥ 5. If K > 10, then
the moment conditions ensuring the CLT and the regu-
larity conditions for CBM (with θ = 1/2) hold.

Let K = 11, ȳ = 1, and (K − 1)s2 = 14 so that
E(μ|y) = 1 and E(λ|y) = 2; for the remainder of this
paper these settings will be used every time we con-
sider this example. Consider estimating E(μ|y) and
E(λ|y) with μ̄n and λ̄n, respectively, and using CBM
to calculate the MCSEs for each estimate. Specifically,
we will use a 95% confidence level in (5) to construct
an interval estimate. Let the initial value for the sim-
ulation be (λ1,μ1) = (1,1). When we ran the Gibbs
sampler for 1000 iterations we obtained λ̄1000 = 2.003
with an MCSE of 0.055 and μ̄1000 = 0.99 with an
MCSE of 0.016. Thus we would be comfortable report-
ing two significant figures for the estimates of E(λ|y)

and E(μ|y), specifically 2.0 and 1.0, respectively. But
when we started from (λ1,μ1) = (100,100) and ran
Gibbs for 1000 iterations we obtained λ̄1000 = 13.06
with an MCSE of 11.01 and μ̄1000 = 1.06 with an
MCSE of 0.071. Thus we would not be comfortable
with any significant figures for the estimate of E(λ|y)

but we would trust one significant figure (i.e., 1) for
E(μ|y). Unless the MCSE is calculated and reported
a hypothetical reader would have no way to judge this
independently.

3.2.2 Remarks.

1. A common concern about MCSEs is that their use
may require estimating Eπg much too precisely rel-
ative to

√
varπ g. Of course, it would be a rare prob-

lem indeed where we would know
√

varπ g and not
Eπg. Thus we would need to estimate

√
varπ g and

calculate an MCSE (via the delta method) before
we could trust the estimate of

√
varπ g to inform us

about the MCSE for Eπg.
2. We are not suggesting that all MCMC-based esti-

mates should be reported in terms of significant fig-
ures; in fact we do not do this in the simulations
that occur later. Instead, we are strongly suggesting
that an estimate of the Monte Carlo standard error
should be used to assess simulation error and re-
ported. Without an attached MCSE a point estimate
should not be trusted.

4. STOPPING THE SIMULATION

In this section we consider two formal approaches to
terminating the simulation. The first is based on calcu-
lating an MCSE and is discussed in Section 4.1. The

second is based on the method introduced in Gelman
and Rubin (1992) and is one of many so-called conver-
gence diagnostics (Cowles and Carlin, 1996). Our rea-
son for choosing the Gelman–Rubin diagnostic (GRD)
is that it appears to be far and away the most popular
method for stopping the simulation. GRD and MCSE
are used to stop the simulation in a similar manner. Af-
ter n iterations either the value of the GRD or MCSE
is calculated and if it is not sufficiently small then we
continue the simulation until it is.

4.1 Fixed-Width Methodology

Suppose we have an idea of how many significant
figures we want in our estimate. Another way of say-
ing this is that we want the half-width of the inter-
val (5) to be less than some user-specified value, ε.
Thus we might consider stopping the simulation when
the MCSE of ḡn is sufficiently small. This, of course,
means that we may have to check whether this criterion
is met many times. It is not obvious that such a proce-
dure will be guaranteed to terminate the computation
in a finite amount of time or whether the resulting in-
tervals will enjoy the desired coverage probability and
half-width. Also, we do not want to check too early in
the simulation since we will run the risk of premature
termination due to a poor estimate of the standard error.

Suppose we use CBM to estimate the Monte Carlo
standard error of ḡn, say σ̂g/

√
n, and use it to form a

confidence interval for Eπg. If this interval is too large,
then the value of n is increased and simulation contin-
ues until the interval is sufficiently small. Formally, the
criterion is given by

tan−1
σ̂g√
n

+ p(n) ≤ ε(7)

where tan−1 is an appropriate quantile, p(n) = εI (n <

n∗) where n∗ > 0 is fixed, I is the usual indicator func-
tion on Z+ and ε > 0 is the user-specified half-width.
The role of p is to ensure that the simulation is not ter-
minated prematurely due to a poor estimate of σ̂g . The
conditions which guarantee σ̂ 2

g is consistent also im-
ply that this procedure will terminate in a finite amount
of time with probability 1 and that the resulting in-
tervals asymptotically have the desired coverage (see
Glynn and Whitt, 1992). However, the finite-sample
properties of (5) have received less formal investiga-
tion but simulation results suggest that the resulting
intervals have approximately the desired coverage and
half-width in practice (see Jones et al., 2006).
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4.1.1 Remarks.

1. The CLT and CBM require a geometrically ergodic
Markov chain. This can be difficult to check directly
in any given application. On the other hand, consid-
erable effort has been spent establishing (2) for a
number of Markov chains; see the references given
at the end of Section 2. In our view, this is not the
obstacle that it was in the past.

2. The frequency with which (7) should be evalu-
ated is an open question. Checking often, say every
few iterations, may substantially increase the over-
all computational effort.

3. Consider p(n) = εI (n < n∗). The choice of n∗ is
often made based on the user’s experience with the
problem at hand. However, for geometrically er-
godic Markov chains there is some theory that can
give guidance on this issue (see Jones and Hobert,
2001; Rosenthal, 1995).

4. Stationarity of the Markov chain is not required for
the CLT or the strong consistency of CBM. One
consequence is that burn-in is not required if we can
find a reasonable starting value.

4.1.2 Toy example. We consider implementation of
fixed-width methods in the toy example introduced in
Section 3.2.1. We performed 1000 independent repli-
cations of the following procedure. Each replication
of the Gibbs sampler was started from ȳ. Using (7),
a replication was terminated when the half-width of a
95% interval with p(n) = εI (n < 400) was smaller
than a prespecified cutoff, ε, for both parameters. If
both standard errors were not less than the cutoff, then
the current chain length was increased by 10% before
checking again. We used two settings for the cutoff,
ε = 0.06 and ε = 0.04. These settings will be denoted
CBM1 and CBM2, respectively.

First, consider the estimates of E(μ|y). We can
see from Figure 1(a) and (b) that the estimates of
E(μ|y) are centered around the truth with both set-
tings. Clearly, the cutoff of ε = 0.04 is more strin-
gent and yields estimates that are closer to the true
value. It should come as no surprise that the cost of
this added precision is increased computational effort;
see Table 2. The corresponding plots for λ̄n yield the
same results and are therefore excluded.

Consider CBM2. In this case, 100% of the estimates,
μ̄n, of E(μ|y) and 96% of the estimates, λ̄n, of E(λ|y)

are within the specified ε = 0.04 of the truth. In every
replication the simulation was stopped when the crite-
rion (7) for E(λ|y) dropped below the cutoff. Similar
results hold for the CBM1 (ε = 0.06) setting.

4.2 The Gelman–Rubin Diagnostic

The Gelman–Rubin diagnostic (GRD) introduced in
Gelman and Rubin (1992) and refined by Brooks and
Gelman (1998) is a popular method for assessing the
output of MCMC algorithms. It is important to note
that this method is also based on a Markov chain CLT
(Gelman and Rubin, 1992, page 463) and hence does
not apply more generally than approaches based on cal-
culating an MCSE.

GRD is based on the simulation of m independent
parallel Markov chains having invariant distribution π ,
each of length 2l. Thus the total simulation effort is
2lm. Gelman and Rubin (1992) suggest that the first
l simulations should be discarded and inference based
on the last l simulations; for the j th chain these are de-
noted {X1j ,X2j ,X3j , . . . ,Xlj } with j = 1,2, . . . ,m.
Recall that we are interested in estimating Eπg and de-
fine Yij = g(Xij ),

B = l

m − 1

m∑
j=1

(Ȳ·j − Ȳ··)2 and W = 1

m

m∑
j=1

s2
j

where Ȳ·j = l−1 ∑l
i=1 Yij , Ȳ·· = m−1 ∑m

j=1 Ȳ·j and

s2
j = (l − 1)−1 ∑l

i=1(Yij − Ȳ·j )2. Note that Ȳ·· is the
resulting point estimate of Eπg. Let

V̂ = l − 1

l
W + (m + 1)B

ml
, d ≈ 2V̂

ˆvar(V̂ )
,

and define the corrected potential scale reduction fac-
tor

R̂ =
√

d + 3

d + 1

V̂

W
.

As noted by Gelman et al. (2004), V̂ and W are essen-
tially two different estimators of varπ g; not σ 2

g from

the Markov chain CLT. That is, neither V̂ nor W ad-
dress the sampling variability of ḡn and hence neither
does R̂.

In our examples we used the R package coda which
reports an upper bound on R̂. Specifically, a 97.5% up-
per bound for R̂ is given by

R̂0.975 =
√

d + 3

d + 1

[
l − 1

l
+ F0.975,m−1,w

(
m + 1

ml

B

W

)]
,

where F0.975,m−1,w is the 97.5% percentile of an Fm−1
w

distribution, w = 2W 2/σ̂ 2
W and

σ̂ 2
W = 1

m − 1

m∑
j=1

(s2
j − W)2.
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FIG. 1. Histograms from 1000 replications estimating E(μ|y) for the toy example of Section 3.2.1 with CBM and GRD. Simulation sample
sizes are given in Table 2.

In order to stop the simulation the user provides a cut-
off, δ > 0, and simulation continues until

R̂0.975 + p(n) ≤ δ.(8)

As with fixed-width methods, the role of p(n) is to en-
sure that we do not stop the simulation prematurely due
to a poor estimate, R̂0.975. By requiring a minimum
total simulation effort of n∗ = 2lm we are effectively

setting p(n) = δI (n < n∗) where n indexes the total
simulation effort.

4.2.1 Remarks.

1. A rule of thumb suggested by Gelman et al. (2004)
is to set δ = 1.1. These authors also suggest that a
value of δ closer to 1 will be desirable in a “final
analysis in a critical problem” but give no further
guidance. Since neither R̂ nor R̂0.975 directly esti-
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mates the Monte Carlo error in ḡn it is unclear to us
that R̂ ≈ 1 implies ḡn is a good estimate of Eπg.

2. How large should m be? There seem to be few
guidelines in the literature except that m ≥ 2 since
otherwise we cannot calculate B . Clearly, if m is too
large then each chain will be too short to achieve
any reasonable expectation of convergence within a
given computational effort.

3. The initial values, Xj1, of the m parallel chains
should be drawn from an “overdispersed” distrib-
ution. Gelman and Rubin (1992) suggest estimating
the modes of π and then using a mixture distribu-
tion whose components are centered at these modes.
Constructing this distribution could be difficult and
is often not done in practice (Gelman et al., 2004,
page 593).

4. To our knowledge there has been no discussion in
the literature about optimal choices of p(n) or n∗.
In particular, we know of no guidance about how
long each of the parallel chains should be simulated
before the first time we check that R̂0.975 < δ or
how often one should check after that. However, the
same theoretical results that could give guidance in
item 3 of Section 4.1.1 would apply here as well.

5. GRD was originally introduced simply as a method
for determining an appropriate amount of burn-in.
However, using diagnostics in this manner may in-
troduce additional bias into the results; see Cowles,
Roberts and Rosenthal (1999).

4.2.2 Toy example. We consider implementation of
GRD in the toy example introduced in Section 3.2.1.
The first issue we face is choosing the starting values
for each of the m parallel chains. Notice that

π(μ,λ|y) = g1(μ|λ)g2(λ)

where g1(μ|λ) is a N(ȳ, λ/K) density and g2(λ) is an
IG((K − 2)/2, (K − 1)s2/2) density. Thus we can se-

quentially sample the exact distribution by first draw-
ing from g2(λ), and then conditionally, draw from
g1(μ|λ). We will use this to obtain starting values for
each of the m parallel chains. Thus each of the m

parallel Markov chains will be stationary and hence
GRD should be at a slight advantage compared to CBM
started from ȳ.

Our goal is to investigate the finite-sample properties
of the GRD by considering the estimates of E(μ|y)

and E(λ|y) as in Section 4.1.2. To this end, we took
multiple chains starting from different draws from the
sequential sampler. The multiple chains were run un-
til the total simulation effort was n∗ = 400 draws; this
is the same minimum simulation effort we required of
CBM in the previous section. If R̂0.975 < δ for both, the
simulation was stopped. Otherwise, 10% of the current
chain length was added to each chain before R̂0.975 was
recalculated. This continued until R̂0.975 was below δ

for both. This simulation procedure was repeated inde-
pendently 1000 times with each replication using the
same initial values. We considered four settings using
the combinations of m ∈ {2,4} and δ ∈ {1.005,1.1}.
These settings will be denoted GRD1, GRD2, GRD3
and GRD4; see Table 1 for the different settings along
with summary statistics that will be considered later.

Upon completion of each replication, the values of
μ̄n and λ̄n were recorded. Figure 1(c)–(f) show his-
tograms of μ̄n for each setting. We can see that all
the settings center around the true value of 1, and set-
ting δ = 1.005 provides better estimates. Increasing the
number of chains seems to have little impact on the
quality of estimation, particularly when δ = 1.1. His-
tograms of λ̄n for each setting show similar trends.

In the settings we investigated, GRD often termi-
nated the simulations much sooner than CBM. Ta-
ble 2 shows the percentage of the 1000 replications
which were stopped at their minimum (n∗ = 400) and

TABLE 1
Summary table for all settings and estimated mean-squared error for estimating E(μ|y) and E(λ|y) for the toy example of Section 3.2.1

Stopping MSE for MSE for
Method Chains rule E(μ|y) S.E. E(λ|y) S.E.

CBM1 1 0.06 9.82e-05 4.7e-06 1.03e-03 4.5e-05
CBM2 1 0.04 3.73e-05 1.8e-06 3.93e-04 1.8e-05
GRD1 2 1.1 7.99e-04 3.6e-05 8.7e-03 4e-04
GRD2 4 1.1 7.79e-04 3.7e-05 8.21e-03 3.6e-04
GRD3 2 1.005 3.49e-04 2.1e-05 3.68e-03 2e-04
GRD4 4 1.005 1.34e-04 9.2e-06 1.65e-03 1.2e-04

Standard errors (S.E.) shown for each estimate.
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TABLE 2
Summary of the proportion (and standard error) of the observed

estimates which were based on the minimum number (400) of
draws, less than or equal to 1000 draws, and the average total

simulation effort for the toy example in Section 3.2.1.

Prop. Prop.
Method at min. S.E. ≤1000 S.E. N S.E.

CBM1 0 0 0.011 0.0033 2191 19.9
CBM2 0 0 0 0 5123 33.2
GRD1 0.576 0.016 0.987 0.0036 469 4.1
GRD2 0.587 0.016 0.993 0.0026 471 4.2
GRD3 0.062 0.0076 0.363 0.015 2300 83.5
GRD4 0.01 0.0031 0.083 0.0087 5365 150.5

the percentage with less than 1000 total draws. The
data clearly show that premature stopping was com-
mon with GRD but uncommon with CBM. This is es-
pecially the case for GRD1 and GRD2 where over half
the replications used the minimum simulation effort.

Also, the simulation effort for GRD was more vari-
able than that of CBM. In particular, the average sim-
ulation effort was comparable for CBM1 and GRD3
and also CBM2 and GRD4 but the standard errors are
larger for GRD. Next, Figure 2(a) and (b) show a plot
of the estimates, μ̄n, versus the total number of draws
in the chains for CBM2 and GRD4. The graphs clearly
show that the total number of draws was more vari-
able using GRD4 than using CBM2. From a practical
standpoint, this implies that when using GRD we are

likely to run a simulation either too long or too short.
Of course, if we run the simulation too long, we will
be likely to get a better estimate. But if the simulation
is too short, the estimate can be poor.

Now we compare GRD and CBM in terms of the
quality of estimation. Table 1 gives the estimated
mean-squared error (MSE) for each setting based on
1000 independent replications described above. The
estimates for GRD were obtained using the methods
described earlier in this subsection while the results for
CBM were obtained from the simulations performed
for Section 4.1.2. It is clear that CBM results in supe-
rior estimation. In particular, note that using the set-
ting CBM1 results in better estimates of E(μ|y) and
E(λ|y) than using setting GRD4 while using approxi-
mately half the average simulation effort [2191 (19.9)
versus 5365 (150.5)]; see Table 2.

Consider GRD4 and CBM2. Note that these two set-
tings have comparable average simulation effort. The
MSE for μ̄n using GRD was 0.000134 (s.e. = 9.2 ×
10−6) and for CBM we observed an MSE of 0.0000373
(1.8 × 10−6). Now consider λ̄n. The MSE based on us-
ing GRD was 0.00165 (1.2 × 10−4) and for CBM we
observed an MSE of 0.000393 (1.8 × 10−5). Certainly,
the more variable simulation effort of GRD contributes
to this difference but so does the default use of burn-in.

Recall that we employed a sequential sampler to
draw from the target distribution implying that the
Markov chain is stationary and hence burn-in is un-
necessary. To understand the effect of using burn-in

FIG. 2. Estimating E(μ|y) for the toy example of Section 3.2.1. Estimates of E(μ|y) versus number of draws for the CBM2 and GRD4
settings.
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we calculated the estimates of E(μ|y) using the en-
tire simulation; that is, we did not discard the first l

draws of each of the m parallel chains. This yields an
estimated MSE of 0.0000709 (4.8 × 10−6) for GRD4.
Thus, the estimates using GRD4 still have an estimated
MSE 1.9 times larger than that obtained using CBM2.
The standard errors of the MSE estimates show that
this difference is still significant, indicating CBM, in
terms of MSE, is still a superior method for estimat-
ing E(μ|y). Similarly, for estimating E(λ|y) the MSE
using GRD4 without discarding the first half of each
chain is 2.1 higher than that of CBM2.

Toy examples are useful for illustration; however, it
is sometimes difficult to know just how much credence
the resulting claims should be given. For this reason,
we turn our attention to a setting that is “realistic” in
the sense that it is similar to the type of setting encoun-
tered in practice. Specifically, we do not know the true
values of the posterior expectations and implementing
a reasonable MCMC strategy is not easy. Moreover,
we do not know the convergence rate of the associated
Markov chain.

5. A HIERARCHICAL MODEL FOR
GEOSTATISTICS

We consider a data set on wheat crop flowering dates
in the state of North Dakota (Haran et al., 2007). These
data consist of experts’ model-based estimates for the
dates when wheat crops flower at 365 different loca-
tions across the state. Let D be the set of N sites and
the estimate for the flowering date at site s be Z(s) for
s ∈ D. Let X(s) be the latitude for s ∈ D. The flower-
ing dates are generally expected to be later in the year
as X(s) increases so we assume that the expected value
for Z(s) increases linearly with X(s). The flowering
dates are also assumed to be spatially dependent, sug-
gesting the following hierarchical model:

Z(s) | β, ξ(s) = X(s)β + ξ(s) for s ∈ D,

ξ | τ 2, σ 2, φ ∼ N(0,(τ 2, σ 2, φ)),

where ξ = (ξ(s1), . . . , ξ(sN))T with (τ 2, σ 2, φ) =
τ 2I + σ 2H(φ) and {H(φ)}ij = exp((−‖si − sj‖)/φ),
the exponential correlation function. We complete the
specification of the model with priors on τ 2, σ 2, φ,
and β ,

τ 2 ∼ IG(2,30), σ 2 ∼ IG(0.1,30),

φ ∼ Log-Unif(0.6,6), π(β) ∝ 1.

Setting Z = (Z(s1), . . . ,Z(sN)), inference is based on
the posterior distribution π(τ 2, σ 2, φ,β | Z). Note that

MCMC may be required since the integrals required
for inference are analytically intractable. Also, sam-
ples from this posterior distribution can then be used
for prediction at any location s ∈ D.

Consider estimating the posterior expectation of
τ 2, σ 2, φ and β . Unlike the toy example considered
earlier, these expectations are not analytically avail-
able. Sampling from the posterior is accomplished via
a Metropolis–Hastings sampler with a joint update for
the τ 2, φ, β via a three-dimensional independent Nor-
mal proposal centered at the current state with a vari-
ance of 0.3 for each component and a univariate Gibbs
update for σ 2.

To obtain a high-quality approximation to the de-
sired posterior expectations we used a single long
run of 500,000 iterations of the sampler and obtained
23.23 (0.0426), 25.82 (0.0200), 2.17 (0.0069) and 4.09
(4.3e-5) as estimates of the posterior expectations of
τ 2, σ 2, φ and β , respectively. These are assumed to
be the truth. We also recorded the 10th, 30th, 70th and
90th percentiles of this long run for each parameter.

Our goal is to compare the finite-sample properties
of GRD and CBM in terms of quality of estimation
and overall simulation effort. Consider implementation
of GRD. We will produce 100 independent replications
using the following procedure. For each replication we
used m = 4 parallel chains from four different starting
values corresponding to the 10th, 30th, 70th and 90th
percentiles recorded above. A minimum total simula-
tion effort of 1000 (250 per chain) was required. Also,
no burn-in was employed. This is consistent with our
finding in the toy example that estimation improved
without using burn-in. Each replication continued until
R̂0.975 ≤ 1.1 for all of the parameter estimates. Esti-
mates of the posterior expectations were obtained by
averaging draws across all four parallel chains.

Now consider the implementation of CBM. For the
purpose of easy comparison with GRD, we ran a total
of 400 independent replications of our MCMC sam-
pler, where the 10th, 30th, 70th and 90th percentiles of
the parameter samples from the long run were used as
starting values for 100 replications each. Each replica-
tion was simulated for a minimum of 1000 iterations
so p(n) = εI (n < 1000). Thus the minimum simula-
tion effort is the same as that for GRD. Using (7), a
single replication (chain) was terminated when each of
the half-widths of a 95% interval was smaller than 0.5,
0.5, 0.05 and 0.05 for the estimates of the posterior
expectations of τ 2, σ 2, φ and β , respectively. These
thresholds correspond to reasonable desired accuracies
for the parameters. If the half-width was not less than
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TABLE 3
Summary of estimated mean-squared error obtained using CBM

and GRD for the model of Section 5

Method GRD CBM

Parameter MSE S.E. MSE S.E.

E(τ2|z) 0.201 0.0408 0.0269 0.00185
E(σ 2|z) 0.0699 0.0179 0.00561 0.00039
E(φ|z) 0.00429 0.00061 0.000875 5.76e-05
E(β|z) 1.7e-07 3.09e-08 3.04e-08 1.89e-09

Standard errors (S.E.) shown for each estimate.

the cutoff, then 10 iterations were added to the chain
before checking again.

The results from our simulation study are summa-
rized in Table 3. Clearly, the MSE for estimates using
GRD are significantly higher than the MSE for esti-
mates obtained using CBM. However, CBM required
a greater average simulation effort 31,568.9 (177.73)
than did GRD 8,082 (525.7). To study whether the
CBM stopping rule delivered confidence intervals at
the desired 95% levels, we also estimated the coverage
probabilities for the intervals for the posterior expecta-
tions of τ 2, σ 2, φ and β , which were 0.948 (0.0112),
0.945 (0.0114), 0.912 (0.0141) and 0.953 (0.0106), re-
spectively. The coverage for all parameters is fairly
close to the desired 95%.

Finally, we note that this simulation study was con-
ducted on a Linux cluster using R (Ihaka and Gen-
tleman, 1996), an MCMC package for spatial mod-
eling, spBayes (Finley, Banerjee and Carlin, 2007)
and the parallel random number generator package
rlecuyer (L’Ecuyer et al., 2002).

6. DISCUSSION

In our view, the point of this paper is that those ex-
amining the results of MCMC computations are much
better off when reliable techniques are used to estimate
MCSEs and then the MCSEs are reported. An MCSE
provides two desirable properties: (1) It gives useful in-
formation about the quality of the subsequent estima-
tion and inference; and (2) it provides a theoretically
justified, yet easily implemented, approach for deter-
mining appropriate stopping rules for their MCMC
runs. On the other hand, a claim that a test indicated the
sampler “converged” is simply nowhere near enough
information to objectively judge the quality of the sub-
sequent estimation and inference. Discarding a set of
initial draws does not necessarily improve the situation.

A key requirement for reporting valid Monte Carlo
standard errors is that the sampler mixes well. Find-
ing a good sampler is likely to be the most challenging
part of the recipe we describe. We have given no guid-
ance on this other than one should look within the class
of geometrically ergodic Markov chains if at all possi-
ble. This is an important matter in any MCMC setting;
that is, a Markov chain that converges quickly is key
to obtaining effective simulation results in finite time.
Thus there is still a great deal of room for creativity
and research in improving samplers but there are al-
ready many useful methods that can be implemented
for difficult problems. For example, one of our favorite
techniques is simulated tempering (Geyer and Thomp-
son, 1995; Marinari and Parisi, 1992) but many others
are possible.
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