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Comment: Quantifying the Fraction of
Missing Information for Hypothesis Testing
in Statistical and Genetic Studies
I-Shou Chang, Chung-Hsing Chen, Li-Chu Chien and Chao A. Hsiung

Nicolae, Meng and Kong are to be congratulated on
having treated an important practical problem in many
scientific inquiries in which the investigator has cho-
sen the testing procedure, but needs to know the impact
of the missing data on the test in terms of the relative
loss of information. To measure the relative informa-
tion, they propose to compare how the observed-data
likelihood deviates from flatness relative to the same
deviation in the complete-data likelihood. Several mea-
sures of this deviation expressed by Bayesian method
are explored and applied to the study of genetics and
genomics. As noted in their paper, these measures are
especially needed in small-sample problems with in-
complete data.

We would like to explore the use of this type of mea-
sure in two examples to indicate its wide applicability
and some computational issues. One concerns infec-
tious disease data, which are usually highly dependent
and incomplete; the investigators often need to decide
if more data are needed, and in case they are, to know
the type of data that is most desirable. The other con-
cerns a test on the shape of a regression function; we
will apply the Bayesian measure of relative informa-
tion to select design points for collecting more data.

Because Bayesian tests are more tractable and nat-
ural than a frequentist approach in these two examples,
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we consider the following extensions of their (25) for
the measure of relative information:
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Here E0 means average over θ0 from the conditional
posterior distribution on the null hypothesis. To shorten
the presentation, we use only (BI3) in the following
discussion.

1. INFECTIOUS DISEASE DATA

As discussed in Rhodes, Halloran and Longini
(1996), there are several levels of information in the
study of infectious disease data and it is of interest to
decide the level of information in the study. We con-
sider two levels of information in a simple model to
illustrate the way that (BI3) may be used in this situ-
ation. Suppose there is a collection of disjoint house-
holds that suffer a transmissible disease and an indi-
vidual can only be infected by members in the same
household. We assume an S–I–R model; at any time
point, each individual is in one of the three states: sus-
ceptible (S), infectious (I) or removed (R); a suscep-
tible individual may become infectious and an infec-
tious individual may become removed. Assume there
are m people in one household. The transition of the
health status of people in one household is described
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by the following counting process. We note that count-
ing process modeling of infectious disease data is dis-
cussed in Becker (1989) and Andersson and Britton
(2000), among others.

For i = 1, . . . ,m, let Ni(t) be 1 if the ith individ-
ual has been infected at time t and be 0 if not; for
i = m + 1, . . . ,2m, let Ni(t) be 1 if the (i − m)th
individual has been removed at time t and be 0 if
not. Let I (t) denote the number of infectious peo-
ple at time t . Here t ≥ 0. Assume N1(0) = 1, which
means this individual is the first infected person. As-
sume that P(Ni(t + h) − Ni(t)|Ft ) = hλi(t) + o(h).
Here λi(t) = β0 exp(β1Zi)I (t−)(1 − Ni(t−)) for i =
1, . . . ,m, and λi(t) = γ0(Ni−m(t−) − Ni(t−)) for i =
m + 1, . . . ,2m; Ft is the history up to time t . The pa-
rameters β0 and γ0 are respectively called the infection
rate and the removal rate.

Assuming the covariate Zi has value 0 or 1, we are
interested in testing the hypothesis H0 that β1 is less
than 0. When Zi = 1 means that the ith individual has
been vaccinated, β1 may represent the efficacy of the
vaccine.

We assume the removal times of all the removed in-
dividuals are observable and their infection times are
not observable except the first one in the household,
which is assumed to be zero. We note that it is often
easier to obtain removal times than infection times; the
latter are often hard, if not impossible, to get; the sole
purpose of assuming that the first infection time is ob-
servable is to simplify the presentation.

Suppose we have collected the observed data and de-
cided to test the hypothesis H0 by considering the ratio
of the posterior probability to the prior probability of
the event [β1 < 0].

Viewing all the infection times except the first one
in each household as missing data, we can use (BI3) to
measure the fraction of missing information. Alterna-
tively, we may consider the removal times of additional
four, say, households as missing data and calculate its
(BI3). These two (BI3)s might be useful in deciding,
when additional data are needed, which type of addi-
tional data is more desirable. We illustrate this method
in the following simulation studies.

Assuming β0 = 1, β1 = −0.5, γ0 = 1, there are 6
members in each household and there are 20 house-
holds, we generate a set of observed data; assuming
the priors for β0 and γ0 are exponentially distributed
as Exp(1) and that for β1 is standard normal, we use
MCMC to generate the posterior distributions of the
parameters.

The relative information (BI3) has values 0.795 and
0.288, respectively, for the missing data being infection
times and for that being additional four household re-
moval times. This seems to suggest that obtaining addi-
tional four household removal times is more desirable
for this set of observed data. By the way, the prior prob-
ability of [β1 < 0] is 0.5 and the posterior probability
of [β1 < 0], given the removal times of the 20 house-
holds, is 0.739. Although we have treated only an over-
simplified example, this simulation study seems to sug-
gest that the relative information measure proposed by
Nicolae, Meng and Kong (2008) is useful in infectious
disease data analysis.

2. A TEST FOR MONOTONICITY OF A
REGRESSION FUNCTION

Let S denote the set of all continuous functions on
[0,1] and I denote the set of all nondecreasing contin-
uous functions on [0,1]. Consider the regression model

Yk = F(Xk) + σεk,

for some F in S. Here for k = 0, . . . ,K , Yk is a re-
sponse variable, Xk is a constant design point in [0,1],
and the errors {εk} are assumed to be independent and
standard normal; σ is a positive constant.

We are interested in testing the hypothesis H0 that
the regression function F is nondecreasing and wish to
know the way to collect more data properly. We will
introduce a probability measure on S, and consider a
Bayesian approach.

Let B = ⋃∞
n=1({n} × R

n+1) and ϕi,n(t) = Cn
i t i(1 −

t)n−i for t ∈ [0,1]. For bn = (b0,n, . . . , bn,n), we define
Fbn(t) = Fbn(n, b0,n, . . . , bn,n, t) = ∑n

i=0 bi,nϕi,n(t).
We note Fbn is called a Bernstein polynomial with co-
efficients b0,n, . . . , bn,n. It is readily seen that Fbn(·)
is a member of S and it is a member of I, if bn ∈
{bn|b0,n ≤ · · · ≤ bn,n}. Let Sn = {Fbn |bn ∈ R

n+1}. It is
clear that S ⊃ ⋃∞

n=1 Sn. A probability measure π can
be introduced on S as follows. Let πn be a conditional
density on R

n+1 and p a probability mass function
on {1,2, . . .}; define π(n, bn) = p(n)πn(bn), which in-
troduces a probability measure on

⋃∞
n=1({n} × R

n+1).
Identifying a Bernstein polynomial with its order and
coefficients, we can regard π as a probability on⋃∞

n=1 Sn, hence on S. Priors of this form are referred
to as Bernstein priors.

Chang et al. (2007) showed that suitably introduced
Bernstein priors facilitate the estimation of F under
various shape restrictions. In fact, this approach also
provides a direct assessment of the hypothesis H0 that
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F is in I by considering the ratio of the posterior prob-
ability to the prior probability of the set I. We note
that the Bernstein priors used in Chang et al. (2005)
and Chang et al. (2007) have large supports and, yet,
take into consideration the shape restrictions, and the
prior on S that we use in the following simulation is
constructed in the spirit of these references and moti-
vated by the simple observation that if bi,n is in [τ1, τ2]
for every i, then Fbn is in [τ1, τ2], and a continuous
function with values in [τ1, τ2] can be approximated
by Bernstein polynomials with coefficients contained
in [τ1, τ2].

Suppose we have collected response variables at
X0, . . . ,XK and would like to know the relative infor-
mation of the observed data when more response vari-
ables are taken at additional design points x0, . . . , xL.
The following simulation studies are meant to illustrate
the use of (BI3) in this problem. Assume F(t) = 0.6t

for t in [0,1] and σ = 0.4. Let K = 9 and Xk = k/9
for k = 0, . . . ,9. We generate one set of data accord-
ing to this specification, and then calculate (BI3) un-
der several missing data scenarios. When L = K and
x0 = X0, . . . , xL = XL, we find (BI3) is equal to 0.139.
When (0, x0, . . . , x4,0.5) form an equal length parti-
tion of the interval [0,0.5] and (0.5, x5, . . . , x9,1) form
an equal length partition of the interval [0.5,1], we find
(BI3) is equal 0.346. This shows that the former design
points would be preferable to the latter when additional
data are needed.

To have some idea for the case L = 2K , we find
(BI3) is 0.052 if x2k = x2k+1 = Xk for k = 0, . . . ,K ,
and is 0.217 if (0, x0, . . . , x9,0.5) form an equal length
partition of the interval [0,0.5] and (0.5, x10, . . . ,

x19,1) form an equal length partition of interval
[0.5,1]. We note that the prior probability of I is
0.0006 and the posterior probability of I is 0.0015. In
summary, we find the measure of relative information
(BI3) useful in selecting extra design points for data
collection in this regression example.

3. SOME COMPUTATIONAL REMARKS

Nicolae, Meng and Kong (2008) pointed out that (24)
may be problematic because of the large variability in

the likelihood ratios. That this problem does appear in
the above two examples is the sole reason that only
extensions of (25) are used here.

Because we work with Bayesian tests, in which there
are already specified priors, it seems natural to use
the corresponding posteriors in the calculation of (24)
and (25) and their extensions like (BI3) and (BI4).
In particular, the E0 in (BI3) and (BI4) is the condi-
tional posterior probability on the null hypothesis. It
may happen that the (unconditional) posterior proba-
bility of the null hypothesis is so small that sampling
from the conditional posterior probability needs large
computation time, which may make the calculation of
(BI3) hard. In this connection, we would like to note
that although the posterior probability for the above re-
gression problem is somewhat small, it is still manage-
able.
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