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Bayesian inference for the MAPK/ERK

pathway by considering the dependency of the

kinetic parameters

Vilda Purutçuoǧlu∗ and Ernst Wit†

Abstract. The MAPK/ERK pathway is one of the major signal transduction
systems which regulates the cellular growth control of all eukaryotes like the cell
proliferation and the apoptosis. Because of its importance in cellular lifecycle,
it has been studied intensively, resulting in a number of qualitative descriptions
of this regulatory mechanism. In this study we describe the MAPK/ERK path-
way as an explicit set of reactions by combining different sources. Our reaction
set takes into account the localization and different binding sites of the molecules
in the cell by implementing the multiple parametrization. Then we estimate the
model parameters of the network in a Bayesian setting via MCMC and data aug-
mentation schemes. In the estimation we apply the Euler approximation, which
is the discretized version of the diffusion technique. Additionally in inference of
such a realistic and complex system we consider all possible kinds of dependencies
coming from distinct stages of updates. To test the inference method we use the
simulated data generated by the Gillespie algorithm. From the analysis it is clear
that the sampler mixes well and partially is able to identify the dynamics of the
MAPK/ERK pathway.

Keywords: MCMC, MAPK/ERK pathway, diffusion approximation, data augmen-
tation, dependency in diffusion matrix

1 Introduction

The biochemical reaction is the discrete event which is occurred by molecular collisions
in continuous time. A set of reactions which builds a system can be mathematically
modelled in different ways (Orton et al. 2005). There are mainly three types of tech-
niques to model biochemical reactions. These are the Boolean, differential equations,
and stochastic methods (Bower and Bolouri 2001). Among these main approaches the
random nature of microscopic molecular collisions is taken into account by stochas-
tic methods. These methods constitute a probabilistic model of the reaction kinetics,
thereby capture the small and heterogenous environment of reactions (Turner et al.
2004). In stochastic methods the reaction rate constants (Section 2.2) have crucial
importance in the analysis of a system.

The stochastic property of biochemical reactions can be generated by different exact
simulation techniques
(Gillespie 1977, 1992; Gibson and Bruck 2000; Morton-Firth and Bray 1998). The Gille-
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spie algorithm (Gillespie 1977) is an accurate and the most common simulator. How-
ever its performance in estimation is not computationally efficient (Gillespie 2001;
Tian and Burrage 2004; Cao et al. 2005). The diffusion method is an approximation
technique whose performance is not as accurate as Gillespie in simulation, whereas, is
computationally less demanding in estimation (Wilkinson 2006; Golightly and Wilkinson
2005). Therefore in this study we implement it to infer the model parameters of a spe-
cific network structure. Our network of interest is the MAPK/ERK pathway.

In estimation of the model parameters, i.e. stochastic rate constants denoted as
cj , we typically face with both quite imprecise and scarce observations in addition to
the associated levels of uncertainty. The underlying uncertainty is mainly caused by
distinct sources of variations for measuring proteins (Wit and McClure 2004), and the
limited knowledge of the system (Vyshemirsky et al. 2006; Endy and Brent 2001; Brent
2005). In order to make inference under the available information and to deal with
the problem of missing data, we use the Bayesian methodology based on the diffusion
approximation.

In the presentation of this study we use the following structure. Section 2 pro-
vides the details about the MAPK/ERK pathway and its modelling via the stochastic
approach. Section 3 outlines the formulation of the diffusion approximation, the descrip-
tion of the hierarchical model, and details about the update of the system. In Section 4,
we propose two algorithms for the MAPK/ERK pathway considering its realistic com-
plexity. Then in Section 5 we describe the simulated data which we use in inference. We
present our results from the application of this dataset in Section 6. Section 7 concludes
and discusses possible extensions of the proposed algorithms.

2 Modelling the MAPK/ERK pathway

2.1 Features of the MAPK/ERK pathway

The cellular signal transduction is the process of carrying over of information (signal)
in the cell’s environment for taking an appropriate response (Lawrence 2005). This
signalling process is typically started by an external stimulus of the pathway leading to
a binding of the signal to a receptor, i.e. hormones or growth factors, and is ended up by
a binding of a target protein. All cellular decisions such as the cell proliferation, which
refers to a frequent and repeated reproduction of the cell, the differentiation, which is
the development of the cell with specialized structure, or the apoptosis, which implies
the cell death as a result of an intracellular suicide programme, are directed by different
levels of transductions (Hornberg 2005). Because of their underlying importance in
the cellular lifecycle, any malfunction in these structures has a direct influence on the
expression or on the function of gene products which are components of these regulatory
mechanisms. As a result it may lead to many illnesses such as heart diseases and cancer
(Kolch 2000; Schoeberl et al. 2002). Therefore the knowledge about pathways can be
very helpful for understanding the behaviour of distinct biological activations and for
developing drugs, which target the proteins involved in associated illnesses (Hornberg
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2005).

Figure 1: Main components of the MAPK/ERK pathway.

The MAPK (mitogen-activated protein kinase) or its synonymous ERK (extracel-
lular signal regulated kinase) pathway is one of the major signal transduction systems
which regulates the cellular growth control of all eukaryotes from the reproduction to
the death of the cell. The major components of this mechanism involve Ras, Raf, MEK,
and ERK proteins (Fig. 1). But apart from these substrates, there are a number of
other species in the activation of the pathway (Fig. 2).

In the MAPK system phosphorylations at various locations in the cell, such as near
the cell membrane or in the cytosol, typically enable the activation or inhibition of
subsequent major proteins in the chain, resulting in a regulatory flow. An external
stimulus of the EGF (growth factor) protein, which binds to the activated tyrosine
receptor (EGFR), triggers the activation of the pathway. Then this signal is transferred
within the cell until it arrives in the nucleus to produce the target protein c-Fos. During
this process, most components in the system are regulated by directly ERK and RKIP
proteins or ERK and RKIP with SOS, Raf or MEK proteins. Moreover negative and
positive feedback loops are typically used (Kolch et al. 2005; Yeung et al. 1999, 2000).

The proteomic functionality in the MAPK pathway is stochastic in nature. Also
the structure of the pathway is too complex for implementing a simple representation
(Fig. 2) to explain its organizational behaviours. The characteristics of this system
involve non-linear features like ultrasensitivities, bistabilities, periodic behaviours and
existences of location-depended proteins (Kolch et al. 2005).

The MAPK pathway has been intensively studied, particularly, in cancer researches
(Kolch 2000; Yeung et al. 1999; Chang and Karin 2001; Schoeberl et al. 2002). Thus
there are lots of biological sources which describe this mechanism. However most of
these sources give qualitative information about the structure and do not explain the
system by an explicit set of reactions. In this study by combining the qualitative
knowledge, we represent biochemical activations of the pathway as a list of reactions
(Purutçuoğlu and Wit 2006). However we call our list a quasi list due to the fact
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Figure 2: Simple representation of the structure of the MAPK/ERK pathway.

that it can explain the main topology of the pathway according to the current biological
theories. While biochemists do not know yet the complete picture about all interactions,
they continue to discover more details about the underlying system (Vyshemirsky et al.
2006). In this set of reactions we indicate each protein by a simple notation. For instance
known theories accept that Raf protein becomes active when its inhibitory binding side
is closed before it is recruited from the cytosol to the membrane by membrane resident
GT-Pase Ras. PP2A, a protein located both at the cell membrane and in the cytosol,
takes away the inhibitory phosphorylate of the inactive Raf at the S259 site, thereby
enables Raf to be made active. (Kolch et al. 2005; Kolch 2000). So when we use this
qualitative information, we summarize it as Raf + PP2A −→ Raf.I + PP2A denoting
that Raf indicates the inactive and non-phosphorylated Raf protein in the cytosol and
Raf.I is the inactive Raf phosphorylated on the S259 binding site in the cytosol.

Furthermore as a novelty we implement multiple parametrization in order to ex-
press distinct localizations of the protein in the cell and to describe the protein using
different binding sites and various phosphorylations. Indeed the importance of this
kind of spatial localization for the substrate has been mentioned by earlier studies of
Endy and Brent (2001) and it has been suggested that such an artificial construction of
a real system would be the only way to understand the actual function of the pathway
and to exhibit its complex dynamical behaviour (Endy and Brent 2001; Brent 2004). As
implementations of the multiple parametrization, we use the abbreviation m to denote
the translocation of the protein from the cytosol to the membrane. On the other hand
different levels of the phosphorylation of the same protein are represented by the index
p or p1 and p2 in which the first two notations indicate the mono phosphorylation and
the latter shows the double phosphorylation. The set of reactions given in Section 2.2
is an example of this description for the MAPK system. The complete list of reactions,
on the other side, is presented in the Appendix.
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2.2 Stochastic approach for modelling the pathway

A general biochemical reaction can be defined as

k1R1 + k2R2 + . . . + klRl
c

−→ s1P1 + s2P2 + . . . + spPp (1)

where the terms on the left side, denoted as R, are called the reactants and the ones
on the right side, denoted as P , are named as the products. Accordingly l refers to
the number of required reactants and p stands for the number of resulting products.
ki (i = 1, . . . , l) is the number of molecules of Ri consumed in a single reaction step,
whereas sj (j = 1, . . . , p) represents the number of molecules of Pj produced in a single
reaction step. These ki and sj terms are also known as the stoichiometric coefficients

associated with the ith reactant Ri and the jth product Pj , respectively. Finally c
is the stochastic reaction rate constant which indicates the speed of the execution of
the reaction and depends on physical properties of reactants and the temperature of
the system (Gillespie 1977). So the chemical interpretation of this equation is that ki

molecules of the type Ri collide with each other and produce sj molecules of the type Pj

with speed c while molecules move around randomly by the Brownian motion (Wilkinson
2006). Therefore under a thermal equilibrium and fixed volume a biochemical reaction
shows which species and in what proportions react together and what they produce in
a particular speed (Bower and Bolouri 2001; Wilkinson 2006).

For a set of r reactions and n species, accordingly, we can show the molecular transfer
from reactant to product species as a net change of V = S − K where V is called the
n × r dimensional net effect matrix when S denotes the n × r dimensional matrix of
stoichiometries of products and K is the n× r dimensional matrix of stoichiometries of
reactants.

For instance, in the following set of equations, we demonstrate the activation of the
MAPK pathway by EGF receptor (EGFR) with r = 6 reactions and n = 10 species.

(a) EGFR + Shc
c1−→ EGFR + Shcm

(b) Grb2 + SOS
c2−→ Grb2-SOS

(c) EGFR + Grb2-SOS
c3−→ EGFR + Grb2-SOSm

(d) Shcm + Grb2-SOSm
c4−→ Shc-Grb2-SOSm

(e) Shc-Grb2-SOSm + Ras.GDP
c5−→ Shc-Grb2-SOSm + Ras.GTP

(f) Grb2-SOSm + Ras.GDP
c6−→ Grb2-SOSm + Ras.GTP.

Here Grb2, SOS, Shc, Ras.GTP, and Ras.GDP are single proteins and Gr2-SOS, Shc-
Grb2-SOS are protein complexes in the cytosol. From the implementation of the mul-
tiple parametrization we use Shcm and Shc-Grb2-SOSm for the single protein Shc and
protein complex Shc-Grb2-SOS, respectively, near the cell membrane. Similarly MEK
and MEK.p2 proteins describe the inactive and non-phosphorylated MEK and the dou-
ble phosphorylated MEK (active MEK) on the S218 and S222 binding sites in the
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cytosol, in the order given. With respect to this explanation we present the 10 × 6
dimensional reactant K, product S, and net effect V matrix as follows (for the species
EGFR, Shc, Shcm, Grb2, SOS, Grb2-SOS, Grb2-SOSm, Shc-Grb2-SOSm, Ras.GDP,
and Ras.GTP, respectively, and the reactions from (a) to (f)):

K =

































1 0 1 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 0 0 0

































, S =

































1 0 1 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 1
0 0 0 1 1 0
0 0 0 0 0 0
0 0 0 0 1 1

































,

and

V =

































0 0 0 0 0 0
−1 0 0 0 0 0
1 0 0 −1 0 0
0 −1 0 0 0 0
0 −1 0 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 1
0 0 0 1 0 0
0 0 0 0 −1 −1
0 0 0 0 1 1

































.

In these representations, for instance, the first column of K shows stoichiometric co-
efficients of reactants of the first reaction (Reaction (a)). In this equation one molecule
of EGFR and Shc proteins are consumed in a single reaction step and the remaining
proteins are not used. Therefore we put 1 in associated rows of EGFR and Shc species
in the first column and set to 0 for the rest. The first column of S, on the other hand,
displays stoichiometric coefficients of products of Reaction (a). So seeing that in each
reaction step a single molecule of EGFR and Shcm proteins is produced, correspond-
ing rows of EGFR and Shcm species in the first column of S are equated to 1, and
the remaining rows set to 0. Finally in the first column of V , we summarize the net
change of the system as a result of Reaction (a). As the net change is found by the
substraction of molecules produced and used in the associated single reaction step, we
take the difference between the first columns of S and K. This calculation corresponds
to (1, 0, 1, 0, 0, 0, 0, 0, 0, 0)′ − (1, 1, 0, 0, 0, 0, 0, 0, 0, 0)′ = (0,−1, 1, 0, 0, 0, 0, 0, 0, 0)′ which
is written in the first column of V where (′) indicates the transpose of the selected
vector.
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In a biological sense, on the other side, this reaction set states that the activation
of the MAPK pathway is triggered by an external stimulus of the growth factor EGF
which binds to activated tyrosine kinase receptors. EGFR phosphorylates Shc, hereby,
recruits it from the cytosol to the cell membrane (Reaction (a)). In the cytosol, SOS,
whose function is an exchange factor, forms a complex with the adaptor protein Grb2
(Reaction (b)). This complex (Grb2-SOS) is then phosphorylated and recruited by
EGFR (Reaction (c)). By this way SOS in the cytosol is translocated near the cell
membrane (Grb2-SOSm) where it enables to activate Ras. During these reactions Shc
pathway (Reaction (a)) and Grb2 pathway (Reaction (a)-(b)) can run in parallel at the
same time and can bind in the membrane to make a complex (Reaction (d)). Finally
SOS, which forms a complex with either adaptor proteins Shc and Grb2 (Reaction (e))
or only adaptor protein Grb2 (Reaction (f)), activates Ras by promoting the exchange
of GDP for GTP.

Similarly, we define our pathway by 51 species in which 34 of them are major proteins
and 94 reactions where 65 of them represent changes in activities and translocations of
species, and the rest indicates their degradations after dissociation. The full list of
proteins and the quasi set of reactions are given in the Appendix.

When we model a biochemical system like the MAPK pathway, the randomness of
molecular collisions is captured by stochastic approaches. The stochastic behaviour is
included into the model via the master equation (Wilkinson 2006; Turner et al. 2004)
which describes the stochasticity by

∂P (Y, t)

∂t
=

r
∑

j=1

{hj(Y − vj , Θ)P (Y − vj , t) − hj(Y, Θ)P (Y, t)} (2)

where the n-dimensional vector Y = (Y1, Y2, . . . , Yn) represents the state of the system
at time t, thereby P (Y, t) is the probability distribution of states which is described
by discrete number of molecules and continuous time t. Θ = (c1, c2, . . . , cr) stands for
the r-dimensional vector of reaction rates, and vj denotes the jth column of the net
effect matrix V. n and r show the total number of substrates and the total number of
reactions in the system, respectively. Accordingly hj(Y, Θ) describes the hazard, also
called the rate law of reaction, which is the product of the number of distinct molecular
reactant combinations available in the state Y with the stochastic rate constant Θ for
the reaction j, i.e. cj . For instance, the hazard of Reaction (b) at time t is computed by

h2(Y, Θ) = c2×
(

[Grb2]
1

)

×
(

[SOS]
1

)

where
(

[A]
b

)

denotes the molecular combination and [A]
stands for the number of present molecules of A. c2, on the other hand, is the stochastic
reaction rate constant of this reaction. As a result the term hj(Y − vj , Θ)P (Y − vj , t)
indicates the probability that the jth reaction occurs over time interval [t, t+dt] moving
the state from Y − vj to Y (Turner et al. 2004; Kampen 1981).
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3 Inference of the system

Under the assumption of continuous number of molecules Y , the probability distribution
of the number of molecules at time t, i.e. P (Y, t), can be described via differential equa-
tion models. If the probability distribution P (Y, t) is expanded by a second-order Taylor
expansion and the change in states for each species at t is found by a Fokker-Planck
approach (Kampen 1981; Bower and Bolouri 2001) and finally this stochastic expression
is solved by Itô or Stratonovich integrals (Kampen 1981; Risken 1984; Gillespie 1996;
Golightly and Wilkinson 2005), we get the following diffusion formulation of the system

dY (t) = µ(Y, Θ)dt + β
1
2 (Y, Θ)dW (t). (3)

In a diffusion equation µ(Y, Θ) = V ′h(Y, Θ) and β(Y, Θ) = V ′diag{h(Y, Θ)}V are mean,
or drift, and variance, or diffusion, matrices, respectively, both explicitly depending on
states Y = (Y1, . . . , Yn) at time t and the parameter vector Θ = (c1, c2, . . . , cr)

′. n and
r are the total number of substrates and the total number of reactions in the system, in
order as used beforehand. The notation (′) in Θ, on the other side, shows the transpose
vector of reaction rates. dW (t) represents the change of a Brownian motion during the
time interval dt and dY (t) shows the change in state Y over time dt. V is the net effect
matrix, accordingly, each row of V , vj (an n-dimensional vector whose components
are vij , i = 1, . . . , n), represents associated stoichiometric coefficients of the reaction j
(j = 1, . . . , r) and similarly V ′ is the transpose of this matrix. Finally h(Y, Θ) indicates
the r-dimensional vector of hazards whose component hj(Y, Θ) stands for the hazard of
the jth reaction (Gillespie 2000; Golightly and Wilkinson 2005; Wilkinson 2006).

In a diffusion process, we need continuous time observations. But in practice we
have discrete time measurements, thereby we have to employ the discretized version of
the diffusion process, so called the Euler-Maruyama approximation represented by

∆Yt = µ(Yt, Θ)∆t + β
1
2 (Yt, Θ)∆Wt (4)

where ∆Yt is the change of the state Y over small time interval ∆t and ∆Wt is an
n-dimensional independent identically distributed Brownian random vector ∆Wt ∼
N(0, I∆t) (Wilkinson 2006; Eraker 2001).

For the update of the system according to Equation 4, we cannot directly use a
Gibbs sampling as we have a large number of missing values
(Wilkinson 2006; Golightly and Wilkinson 2005). But we can perform a special type of
the Metropolis sampling in which a Metropolis-Hastings step is implemented at each
Gibbs step of the update. This algorithm is known as the Metropolis-within-Gibbs tech-
nique (Carlin and Louis 2000). Furthermore in order to get a more precise estimate from
the Euler method, we use the data augmentation for non-observed states by putting la-
tent states within time-course measurements. The right number of augmented states,
which balances the high dependence between states and parameters on the one hand and
the accuracy of the Euler approximation on the other, is a matter of discussion. Addi-
tional details about this problem and the suggested solution in a Bayesian methodology
can be found in Roberts and Stramer (2001), and Golightly and Wilkinson (2008).
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3.1 Model description

In the estimation of reaction rates of the MAPK pathway we define an observation
matrix Y consisting of observed X and unobserved Z components at given time t (t =
t0, t1, . . . , tT ) with the dimension d1 and d2, respectively, without any augmented state.
Thus Y can be described as

Y =





























X1(t0) X1(t1) X1(t2) . . . X1(tT )
X2(t0) X2(t1) X2(t2) . . . X2(tT )

...
...

...
...

...
Xd1

(t0) Xd1
(t1) Xd1

(t2) . . . Xd1
(tT )

Z1(t0) Z1(t1) Z1(t2) . . . Z1(tT )
Z2(t0) Z2(t1) Z2(t2) . . . Z2(tT )

...
...

...
...

...
Zd2

(t0) Zd2
(t1) Zd2

(t2) . . . Zd2
(tT )





























.

We increase the number of states, and accordingly the dimension of Y , by introducing
augmented states at every ∆t time interval between observed states. In our simulated
data since the observations are taken at evenly spaced times, the number of augmented
states m is the same in every pair of observed time points. Therefore we get the following
matrix Y

Y =





























x1(t0) X1(t1) . . . x1(tm) X1(tm+1) . . . X1(tmT−1) x1(tT )
x2(t0) X2(t1) . . . x2(tm) X2(tm+1) . . . X2(tmT−1) x2(tT )

...
...

...
...

...
...

...
...

xd1
(t0) Xd1

(t1) . . . xd1
(tm) Xd1

(tm+1) . . . Xd1
(tmT−1) xd1

(tT )
Z1(t0) Z1(t1) . . . Z1(tm) Z1(tm+1) . . . Z1(tmT−1) Z1(tT )
Z2(t0) Z2(t1) . . . Z2(tm) Z2(tm+1) . . . Z2(tmT−1) Z2(tT )

...
...

...
...

...
...

...
...

Zd2
(t0) Zd2

(t1) . . . Zd2
(tm) Zd2

(tm+1) . . . Zd2
(tmT−1) Zd2

(tT )





























in which xi denotes the observed data by observed components, whereas Xi stands for
the augmented data by observed components. So each Yi ≡ (Xi, Zi)

′ indicates the ith
column of Y . In the estimation we use 20 data points and set ∆t = 0.25, thereby add
3 states between each pair of observed t. In that way the number of columns of Y is
enlarged from 20 to 77.

Although rate constants are positive by definition, there is no further information for
choosing an appropriate prior distribution for those rates. In order not to favour one Θ
over another, a noninformative or Jeffreys prior can be seen as an option. But the former
may cause the problem of improper prior in inference and the latter is not practical
for multivariate situations (Carlin and Louis 2000; Gelman et al. 2004). Therefore, we
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choose the exponential distribution as a heavy tailed (Exp(1)) prior information for our
rates. So our joint posterior density is written by

π(Y, Θ) =
π(Θ)π(Z0)

∏T
i=1 f(Yi|Yi−1, Θ)

∫

π(Θ)π(Z0)
∏T

i=1 f(Yi|Yi−1, Θ)dΘ
(5)

where π(Y, Θ) and π(Θ) represent the likelihood and prior density of the vector of
model parameters, i.e. stochastic reaction rates, respectively, π(Z0) shows the prior
density of Z0, Z0 denotes the d2-dimensional vector of the augmented data by observed
components at time zero t0, and f is the transition density which has the form

f(Yi|Yi−1, Θ) = |β(Yi−1, Θ)|−1/2 × exp

{

−
1

2
(Yi − Yi−1 − µ(Yi−1, Θ)∆t)′

(β(Yi−1, Θ)∆t)−1(Yi − Yi−1 − µ(Yi−1, Θ)∆t)
}

. (6)

In Equation 5 the posterior density π(Y, Θ) is practically intractable. In this expression
we denote the numerator of π by p which is the unnormalized π. In implementations
we use p, rather than π, to infer conditional densities of parameters and latent states
since π(Y, Θ) ∝ p(Y, Θ) directly.

3.2 Updates of the system

In the update of the MAPK pathway we use roughly the same sampling steps which are
given in the study of Golightly and Wilkinson (2005) and are listed below. In their paper
the method has been used for a simple model of the prokaryotic autoregulation which
consists of 7 reactions and 5 species in which only one of them is linearly dependent on
other species. From the analysis it has been shown that as the number of observations
increases and the number of unobserved species decreases, the method works well for
estimating parameters.

Step 1: We initialize the model parameters Θ and the augmented data whose
components are observed X and unobserved Z values. Then we set the counter of the
iteration g to 0.

Step 2: In the update of the model parameters we use the random walk algorithm
by drawing the candidate values from the normal distribution.

Step 3: Apart from the final state YT , each ith column of Y is updated via the
Metropolis-Hastings algorithm. We sample the augmented state, which is composed of
missing X and Z terms, from the proposal density q(Yi|Yi−1, Yi+1). Then we calcu-
late the acceptance probability of the candidate state α by using the full conditional
density of Y as presented in Equation 10. If the updated state includes observed com-
ponents X = x, the sampling is done from the conditional distribution of Y , denoted
as q(Zi|xi, Yi−1, Yi+1, Θ), given the previous and next state as well as x terms in the
current state. Then the α is computed as before by using the Metropolis-Hastings step.
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On the other hand in the final state of Y , since all previous states are already updated,
we implement the Gibbs sampling for simulating new values of YT . In this case YT is
directly generated from the conditional normal distribution.

Step 4: We increase the counter from g to (g + 1) and turn back Step 2 until we
satisfy the convergence.

After initializing system parameters and missing values as stated in Step 1, we move
to Step 2 which updates the model parameter Θ. To update Θ, we select the normal
distribution as a candidate generator because of its simplicity. In every iteration of the
MCMC run we use block updates to sample the parameter vector, hereby do not face
with bad mixing as both the local and global update have. In our block scheme we
divide the vector Θ into small and equally-sized groups with the dimension d, and then
simulate each d-dimensional group sequentially according to the conditional posterior

π(Θ|Y ) ∝
T

∏

i=1

f(Yi|Yi−1, Θ)π(Θ)

∝
T

∏

i=1

exp







−
r

∑

j=1

Θj







× exp

{

−
1

2
(Yi − Yi−1 − µ(Yi−1, Θ)∆t)′

(β(Yi−1, Θ)∆t)−1(Yi − Yi−1 − µ(Yi−1, Θ)∆t)
}

× |β(Yi−1, Θ)|−1/2 (7)

where T and r are the total number of time points and the total number of reactions,
respectively. In the MAPK pathway, T = 77 and r = 66. The system accepts the
candidate Θ∗ with an acceptance probability

α(Θ, Θ∗|Y ) = min

{

1,
π(Θ∗|Y )

π(Θ|Y )

}

(8)

in which a proposal Θ∗ is proposed via Θ∗
j = Θj+wj (j = 1, . . . , r), where wj ∼ N(0, γj).

The variance γj in sampling wj is a tuning parameter which has a significant effect on
the mixing property of the algorithm. If γj is too small, the acceptance probability given
in Equation 8 will be very high but won’t explore the posterior efficiently. Whereas if γj

is too big, then the acceptance probability can be very low. For good mixing in random
walk chains although an acceptance rate of around 24% is optimal in univariate cases
(Gamerman and Lopes 2006), it is known that with respect to the complexity of the
network structure, i.e. the associated high dimensionality of variables, very low ratios
such as 5% for some parameters can be tolerable when candidate values for particular
reaction rates are hardly proposed. For the MAPK pathway while choosing a sensible
tuning parameter for each cj , we track acceptance rates, α’s, separately and adjust them
adaptively in the burn-in phase. The candidate proposal variance γj is multiplied by
1.1, if α is greater than 60%, and divided by 1.1, if α is lower than our cut-off 5%. On
the other hand if the corresponding α is within these two critical values (0.05, 0.60), we
keep the current γj . We do this adaptation periodically at every 100th iteration during
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burn-in of the first 20,000 MCMC runs. At the end of 20,000 runs the final γj ’s are
kept fixed and used for the rest of the algorithm.

In the update of Θ, the acceptance probability α(Θ, Θ∗|Y ) of each d-dimensional
group is compared with a random value u from the uniform distribution U(0, 1), i.e.
u ∼ U(0, 1). The candidate reaction rates are accepted if u < α, otherwise current rates
are preserved at the (g+1)th iteration. After the renewal of those parameters, we move
to the update of Y in Step 3.

The candidate generator of Y for the given Θ is sampled from the multivariate normal
distribution and is updated column by column as described in Golightly and Wilkinson
(2005). The full conditional density for each column of Y , Yi, is given as

π(Yi|Yi−1, Yi+1, Θ) ∝ p(Yi|Yi−1, Yi+1, Θ) (9)

where

p(Yi|Yi−1, Yi+1, Θ) = exp

{

−
1

2
(Yi − Yi−1 − µi−1∆t)′(βi−1∆t)−1(Yi − Yi−1 − µi−1∆t)

}

× exp

{

−
1

2
(Yi+1 − Yi − µi∆t)′(βi∆t)−1(Yi+1 − Yi − µi∆t)

}

×|βi−1|
−1/2 × |βi|

−1/2
. (10)

In Equation 10, µi−1 = µ(Yi−1, Θ), µi = µ(Yi, Θ), βi−1 = β(Yi−1, Θ), and finally
βi = β(Yi, Θ).

If Yi is completely composed of the augmented data, the candidate Y ∗
i ,

q(.|Yi−1, Yi+1, Θ), which converges pointwise to π(.|Yi−1, Yi+1, Θ) when ∆t → 0, is gen-
erated from

Y ∗
i ∼ N

(

1

2
(Yi−1 + Yi+1),

1

2
∆tβ(Yi−1, Θ)

)

(11)

and is accepted with probability α(Y ∗
i |Yi) = min

{

1,
p(Y ∗

i
|Yi−1,Yi+1,Θ)q(Yi|Yi−1,Yi+1,Θ)

p(Yi|Yi−1,Yi+1,Θ)q(Y ∗

i
|Yi−1,Yi+1,Θ)

}

.

If the column i (i 6= 0, T ) is partially observed, then we only sample a candidate
value for Zi conditional on Xi = xi , q(.|xi, Yi−1, Yi+1, Θ), which converges pointwise to
π(.|Yi−1, Yi+1, Θ), via

Z∗
i ∼ N(ηZ∗

i
, ΣZ∗

i
) (12)

with mean ηZ∗

i
= 1

2 (Zi−1 + Zi+1) + βzx
i−1(β

xx
i−1)

−1(xi −
1
2 [Xi−1 + Xi+1]) and variance

ΣZ∗

i
= 1

2∆t(βzz
i−1 − βzx

i−1(β
xx
i−1)

−1βxz
i−1), then we decide on the acceptance or rejection of

the step with probability

α(Z∗
i |Zi) = min

{

1,
p(Z∗

i |xi, Yi−1, Yi+1, Θ)q(Zi|xi, Yi−1, Yi+1, Θ)

p(Zi|xi, Yi−1, Yi+1, Θ)q(Z∗
i |xi, Yi−1, Yi+1, Θ)

}

. (13)
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Here βxx
i−1 = β(Y xx

i−1, Θ) and has full rank, βzz
i−1 = β(Y zz

i−1, Θ), βzx
i−1 = β(Y zx

i−1, Θ), and
βxz

i−1 = β(Y xz
i−1, Θ).

On the other hand the proposals of the first (i = 0) and the last column (i = T ) are
generated from their associated conditional normal distributions and their acceptance
probabilities are calculated similar to Equation 13. More details about candidate gener-
ators and corresponding formulations can be found in Golightly and Wilkinson (2005)
and Eraker (2001). After the update of the last column i = T , we control the conver-
gence of the chain as done in Step 4. If the chain converges, we stop the algorithm,
otherwise we turn to Step 2 and move the iteration from g to g + 1.

4 MCMC algorithms for the MAPK/ERK pathway

Although we basically apply the MCMC methods described in Section 3.1 and 3.2 for
the MAPK pathway, we extend the underlying plan as we face with challenges in the
updates because of the complexity of our system. Therefore we suggest two MCMC
sampling schemes. The first plan (Scheme 1) rejects any kind of linear dependence in
the update. In other word it puts a zero prior probability on a singular diffusion matrix.
The second plan (Scheme 2), on the other hand, considers all possible sources of the
dependence appearing at distinct stages of updates of time states and model parameters.
So when the proposal leads to the dependence, the algorithm calculates the acceptance
probability under a nonsingular diffusion matrix which has lower dimension.

4.1 Scheme 1: MCMC runs under complete independence

1. Structural dependence. The structural dependence results from the rank of V ′V
where V is the net effect matrix and V ′ is its transpose. So the substrates which
are linearly dependent on other species and thereby decrease the rank of the diffusion
matrix β(Y, Θ) are excluded at the beginning of the algorithm. This dependence causes
zero value in the determinant of β(Y, Θ), resulting in problems in the calculation of the
likelihood function. Moreover the underlying singularity also causes infeasible candidate
generators due to the linear dependence of some state values. Therefore the dependent
substrates are eliminated and the MCMC sampler is run only for the substrates that
are linearly independent.

2. Incidental dependence. After omitting the dependent substrates at the be-
ginning, all unknowns, assigned for either missing states or reaction rate constants are
initialized. These initial values are checked whether they cause any new dependency
in the system. We call this second type of the dependence the incidental dependence

which is due to the rank of V ′diag{h(Y, Θ)}V originating from the numeric value of
h(Y, Θ). h(Y, Θ) denotes the hazard of the system for a given state Y = (Y1, . . . , Yn)
and reaction rate Θ = (c1, . . . , cr). During the update of Y or Θ, the hazard h(Y, Θ)
can be equal or close to zero such that the product of V and a lower dimensional matrix
diag{h(Y, Θ)} results in a singular matrix.
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If the non-singularity of the system is still preserved after the initialization, the
iteration counter g is set to 0. Otherwise new initial values are proposed in place of the
dependent ones until the singularity completely disappears.

3. Block update. d deviance terms are sampled from the normal N(0, γj) (j =
1, . . . , r) to generate d candidate values for Θ where d is the number of reaction rates
which are simultaneously updated by blocks and γj is the tuning parameter of the jth
reaction (Section 3.2). The new Θ for each d-dimensional group is tested whether it
causes dependency in Y . If the candidate Θ, Θ∗, maintains independence, it is taken
as the proposal candidate value for the calculation of the acceptance probability α.
Otherwise a new Θ∗ is proposed till the underlying condition is satisfied.

4. Acceptance probability. The acceptance probability α of rate constants is
evaluated according to Equation 8. If the move is accepted, Θ(g) = Θ∗, if not, the chain
does not move at the gth iteration.

5. Update latent states. After updating the rate constants, the algorithm
moves to the update of the state Y by the Metropolis-within-Gibbs sampling. In
each augmented or partially missing column, the corresponding candidates, Y ∗

i or Z∗
i

(i = 0, 1, . . . , T ), are checked for being positive definite and are tested beforehand
whether their candidate diffusion matrices and βxx

i−1 = β(Y xx
i−1, Θ) submatrices where

necessary have full rank. As long as they maintain the positivity and the non-singularity,
the associated α is calculated by using the associated expression of the given state. Oth-
erwise the candidate state is rejected even before computing the acceptance probability.

6. Iterate. The counter moves from g to (g + 1) and the algorithm is repeated
from Step 2 until the chain converges to the stationary distribution.

4.2 Scheme 2: MCMC runs under dependence

Scheme 2 controls the singularity of the system in every MCMC run as already applied
in Scheme 1. But, particularly, in the update of reaction rates and state values, different
from Scheme 1, the dependencies of each d-dimensional group of reaction rates as well
as dependent substrates of the current state Yi, previously updated state Yi−1, and
candidate current state Y ∗

i are considered separately. If any dependence is observed,
then the calculation of α is merely based on the independent reaction rates and the
substrates which are linearly independent of Yi, Yi−1, and Y ∗

i seeing that the accepted
new rate or state can have singular diffusion matrices.

The steps below briefly describe our second updating scheme:

1. Structural and incidental dependence. The substrates that indicate depen-
dency with regard to the initial diffusion matrix are eliminated at the beginning of the
algorithm as similarly applied in Scheme 1 (under Structural dependence). Then all
unknown missing and reaction rate constants are initialized and the iteration counter
g is set to 0. Finally the incidental dependency in the system is solved as explained in
Scheme 1 (under Incidental dependence).
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2. Block update. The candidate reaction rate Θ∗ is generated by sequentially
adding d-dimensional deviances to the current rate constant Θ. The calculation of like-
lihoods in the acceptance probability (Equation 8) is computed by using lower dimen-
sional diffusion matrices if the associated diffusion terms have singularity. In other words
the acceptance probability for each d-dimensional reaction rate is computed by taking
into account merely linearly independent reaction rates as long as βxx

i−1 = β(Y xx
i−1, Θ) of

each state is non-singular if we accept candidate rates. By this implementation since
the likelihood of the dependent rate given the remaining rates is 1, there is no lost
of information after the highlighted exclusion. Moreover when the reaction rate is ac-
cepted, i.e. Θ = Θ∗, including both dependent and independent terms as long as its
corresponding α is high, the update can preserve the dependent structure of the system
without affecting the convergent feature of the algorithm. This dependent structure can
be important in the estimation.

3. Update latent states. The algorithm updates the column of Y sequentially
by the Metropolis-within-Gibbs sampling. If the corresponding βxx

i−1 = β(Y xx
i−1, Θ) is

non-singular, the diffusion matrices of Yi−1, Yi, and Y ∗
i are controlled separately. Then

if there is any substrate which destroys the nonsingularity, the underlying substrate(s)
is/are excluded only from the calculation of the associated part of likelihoods, that is
the corresponding computation of Yi, Yi+1, or Y ∗

i . This calculation enables to preserve
dependencies of the states without changing the convergence of the system as similarly
implemented in the update of rates in Step 2. If the move is accepted with probability
α, Yi is set to Y ∗

i , otherwise, the chain keeps current values at the gth iteration.

4. Iterate. The counter goes from g to (g + 1) and the algorithm is repeated from
the control of the incidental dependence in Step 1 until the convergence is satisfied.

5 Description of the simulated data

We simulate the MAPK pathway by using the Gillespie algorithm since this algorithm
gives an exact result of the system (Gillespie 1977; Wilkinson 2006). In our simulation
we choose 3 gradations of reaction time speeds, namely slow, normal, and fast. Then
we assume that the initial hazards hj(Y, Θ), j = 1, . . . , r, are constant for each level by
arbitrarily assigning hj(Y, Θ) = 50, 100, and 150 for slow, normal, and fast reactions,
respectively. Then for the selected constant hazards, the reaction rate constants c’s are
calculated with respect to the order of reactions, the given hazards, and the number of
molecules which is initialized at 100 for all substrates. For instance, if the reaction is
the first-order reaction like S1 → S2 and has normal speed, the reaction rate is taken
as cj = hj(Y, Θ)/100 = 100/100 = 1.000. If the reaction is the second-order reaction
having normal speed, then cj is calculated via cj = hj(Y, Θ)/1002 = 100/1002 = 0.010.
Similarly if the reaction is the second-order but also fast, then we compute cj by cj =
hj(Y, Θ)/1002 = 150/1002 = 0.015. Considering the underlying distinction in speeds
and orders of reactions, the reaction rates are set to 0.500 (for the first-order slow
reaction), 0.005 (for the second-order slow reaction), 1.000 (for the first-order normal
reaction), 0.010 (for the second-order normal reaction), or 0.015 (for the second-order
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fast reaction) where necessary. In our description since none of the reaction is of first-
order and fast simultaneously, cj does not equal to 1.500 for any case.

Moreover in simulation we run the algorithm merely including the EGFR degrada-
tion. Because in biochemical reactions, apart from the EGFR degradation, the reactions
of degradation are much slower than the time periods during which biochemical activa-
tion and de-activation processes take place. Therefore ignoring these reactions in the
MAPK pathway is realistic. However the effect of the EGF dissociation from its recep-
tor is a direct result of the activation of the MAPK pathway via the internalization into
vesicles of this receptor and is very fast with respect to any kind of degradations. The
lists of reactions as well as substrates used in this model are given in the Appendix.

Finally in order to get a data matrix Y , the Gillespie algorithm is run until each
protein achieves a convergent distribution. According to the plot of every species which
shows the changes in activities through time, we set the total time interval t to 20 and
observe the steady-state period from t = 15.

5.1 Data generation for inference

In inference considering the number of variables, the necessity of augmented states
for the accuracy of estimated parameters, and the possible computational cost of the
Bayesian inference for such a complex system, we generate a time-course dataset which
has many more observed substrates than any real dataset has currently. Because in a real
time-course dataset like a western blotting data, the number of observed substrates is
less due to the technical limitations for measuring the protein levels (Vyshemirsky et al.
2006). The implementation of the method in a real western-blot data set can be found
in Purutçuoğlu and Wit (2008).

In our simulated data we sample 20 time points of the selected proteins by mov-
ing 0.05 unit of time from t = 19.05 to t = 20. The observed substrates are chosen
in such a way that most of them can be used in inference after the elimination of
the structural dependent ones. We start our MCMC with 35 measured MAPK pro-
teins (chosen as Ras.GDP, Ras.GTP, Raf, Raf.I, Raf.I-Ras.GTPm, Raf.Am, Raf.I-RKIP,
MEK, MEKF , MEKS , MEK.p2, MEK-RKIP, ERK, ERK.p2, ERK.p2-TF.p2, ERK.p2-
RSK.A, ERK.p2-RSK.A-TF.p2, Grb2, Shc, Shcm, SOS, Grb2-SOS, Grb2-SOSm, c-Fos,
c-Fos.RNA, MKP, MKP.RNA, EGFR, TF, PAK, PP5, RKIP, RKIP.p, PKC, and RSK)
among 51 species that represent the whole pathway. When the inference begins, 7 pro-
teins (ERK.p2-RSK.A-TF.p2, TF, PAK, PP5, RKIP.p, PKC, and RSK) are discarded
within this initial observed set due to their structural dependencies (see Section 4 for de-
tails) on other proteins. Therefore the estimation is, indeed, based on 28 observed and 6
(Raf.Im, Raf.A-Ras.GTPm, MEKF -RKIP, MEKS-RKIP, ERK.p1, c-Fos.p) unobserved
substrates.

Finally in our analysis we assume that the observed values do not have any mea-
surement error, such that the noise of the data merely originates from the stochasticity
of the protein interactions. Although this assumption can be regarded as strong, we
use it for simplicity. The additional error term for each observation would increase
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the computational time due to the increase of the number of estimated parameters in
such a complex system where the current estimation is already computationally very
demanding.

6 Application to the simulated data

The estimated parameters via two inference algorithms are presented in Table 1 and
Table 2. The results from two schemes mostly indicate the success of Scheme 2 with re-
spect to Scheme 1 in terms of the precision. This shows that often there is dependence
within the states and within the reaction rates in the sense that the dependency in
the algorithm significantly affects the outputs. However typically Scheme 1 has higher
acceptance ratios than Scheme 2 owns. This implies the difficulty of proposing the
candidate values under the dependent structure. Moreover in terms of the computa-
tional cost, Scheme 1 is more efficient (Table 3). On the other hand when comparing
the estimates with true values, we see that some of the estimates are precise in both
schemes, whereas some of them have a very large bias. Figure 3 and Figure 4 display
several examples from probability distributions of rate constants of two schemes with
different acceptance ratios. The average errors of each estimate from both schemes,
on the other side, are represented in Figure 5. In these plots the errors are calculated
as Average error = |Estimated value − True value|/True value where |.| indicates the
absolute value of the given number. In the assessment we consider that the average
errors less than 60% can be seen as precise estimates for this number of iterations. The
study of Golightly and Wilkinson (2005) shows that the performance of algorithms is
significantly dependent on the number of observations, iterations, and augmented states
between each pair of observed time points. They find that as the underlying values in-
crease, the estimates improve considerably. Therefore with respect to their analysis, we
already work with a small dataset and a smaller number of augmented states as well
as a smaller number of iterations. Moreover our system of interest has more complex
structure than the network which they use in their evaluation. Consequently from the
beginning of the application, it is expected that the accuracies of estimates may not be
satisfied for all parameters and is considered that the imprecise estimates are mostly
caused by our preferences for the underlying variables, rather than the limitation of
the method. We see that even when the number of observed time points is slightly
increased, the accuracy of estimates is higher than that in Table 1 and Table 2. The
estimated values via Scheme 1 for 50 time points under the same conditions (i.e. m = 3
thereby T = 197, 35 observed substrates with the common initial rate constants and
number of molecules) are displayed in Table 6 and Figure 6 in the Appendix. From
the comparison of results of Figure 5(a) and Figure 6, it is also observed that the gain
from the accuracy is particularly seen for the estimates whose average errors lie be-
tween 0.32 and 0.61 although the estimates whose errors are greater than 0.61 do not
change very much. The reason can be explained as the direct influence of such an im-
provement (i.e. the increase of the observed measurements) on the model parameters
whose convergence rates are faster than those of other components. From our analysis
we find that even though all the estimates indicate good mixing properties at the end



868 Bayesian inference of the realistic biochemical system

of burn-in, i.e. the acceptance ratios are between 5% and 60%, some of the estimates
reach convergence very fast, whereas some of them have very slow convergence. Hence
it is concluded that in order to get higher convergence rates from the imprecise results,
we should not use only more observations but also utilize higher number of iterations
and higher number of augmented states between each observed pair despite of the high
computational cost in estimation of such a complex system. Therefore we believe that
our finding can be evaluated as one of the worst scenario in inference of the realistic
complexity and the performance of algorithms can be better displayed at least, for in-
stance, by raising the number of iterations like 1,000,000 or 10,000,000 MCMC runs as
Golightly and Wilkinson (2005) applied in their study. However if we prefer such a high
number of iterations in our inference for improving accuracies, we suggest an efficient
programme language like C, in place of R, to reduce the computational cost efficiently.
In this study where we execute our R codes on a high power computer, the calculation
takes at least seven days (Table 3).

In our assessment, apart from the highlighted reasons of the inaccuracy of estimates,
we investigate other sources of imprecisions, analysing each reaction and its correspond-
ing substrates one by one. We find that, particularly, when more than one substrate
is missing in a reaction due to the exclusion of structurally dependent substrates (Sec-
tion 4), the relevant estimated rate constant typically has large error. For instance, in
Reaction 9, 12, 18, 26, 31, 51, 54, 59, and 65 from the list of reactions in the Appendix,
we have more than one missing substrate according to the classification in Table 5.
Accordingly we get a low accuracy of estimates of related rates as stated in Table 1 and
Table 2. Moreover since we allow unobserved substrates in our model, the reactions
whose components consist of both linearly dependent and unobserved substrates such
as Reaction 16, 42, and 43 from the same list (Appendix) indicate inaccurate estimates.

According to the individual evaluation of each parameter, seeing that the precision of
reaction rates is highly dependent on the number of missing species in relevant reactions,
we consider comparing the ratios of rate constants. The reason is that the ratios of rates
could be more invariant to missing substrates if the reactions share the same missing
terms. In order to decide on the pairs of rate constants for comparison, we consider the
following scenarios whose associated reactions have common species:

(a) A
c1−→ B

(b) B
c2−→ C + D

(c) E
c3−→ F

(d) G
c4−→ F

(e) H + J
c5−→ K

(f) H + M
c6−→ K.

Among those reactions we expect a constant ratio between c1 and c2 since there
is a positive correlation between Reaction (a) and (b) as both own the species B. On
the other hand since a negative correlation exists between Reaction (c) and (d) because
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Table 1: Posterior means (µ), standard deviations (σ), and acceptance ratios (p) of
estimated reaction rate constants of the MAPK/ERK pathway from the simulated data.
The estimates are based on algorithms in Scheme 1 and Scheme 2 with 100, 000 MCMC
runs in which the first 85, 000 runs are taken as burn-in.

Scheme 1 Scheme 2

Reaction True rate µ σ p µ σ p

c1 0.010 0.007 0.000 0.545 0.009 0.000 0.526
c2 0.010 0.055 0.001 0.541 0.060 0.001 0.523
c3 0.010 0.009 0.000 0.545 0.023 0.001 0.521
c4 0.010 0.022 0.001 0.541 0.020 0.001 0.525
c5 1.000 2.744 0.022 0.496 4.239 0.077 0.517
c6 1.000 2.252 0.093 0.583 1.221 0.011 0.342
c7 1.000 1.539 0.007 0.500 1.058 0.010 0.354
c8 1.000 0.680 0.019 0.590 0.979 0.010 0.390
c9 0.010 0.198 0.004 0.577 0.202 0.007 0.388
c10 0.010 0.000 0.000 0.596 0.000 0.000 0.395
c11 1.000 1.469 0.010 0.562 1.035 0.006 0.425
c12 0.015 0.653 0.022 0.632 0.116 0.010 0.527
c13 0.010 3.933 0.079 0.614 0.949 0.032 0.532
c14 0.010 0.058 0.001 0.629 0.054 0.001 0.528
c15 0.010 0.059 0.001 0.627 0.058 0.001 0.529
c16 0.010 3.080 0.126 0.814 1.149 0.027 0.377
c17 1.000 0.272 0.006 0.803 0.912 0.006 0.388
c18 0.010 2.871 0.093 0.807 1.161 0.022 0.371
c19 1.000 0.264 0.007 0.812 0.864 0.016 0.394
c20 1.000 1.450 0.025 0.737 0.966 0.004 0.389
c21 0.010 0.001 0.001 0.568 0.014 0.010 0.141
c22 0.010 0.702 0.021 0.564 5.155 0.066 0.140
c23 0.015 0.827 0.084 0.567 0.228 0.016 0.140
c24 0.010 0.008 0.000 0.565 0.008 0.001 0.141
c25 0.010 0.190 0.005 0.544 0.265 0.009 0.140
c26 0.010 4.132 0.082 0.601 5.487 0.070 0.267
c27 0.010 0.434 0.004 0.598 0.438 0.015 0.268
c28 0.010 0.058 0.003 0.615 0.050 0.008 0.269
c29 0.010 0.046 0.002 0.614 0.041 0.009 0.269
c30 0.010 0.013 0.000 0.592 0.013 0.001 0.268
c31 0.010 0.027 0.008 0.609 0.114 0.039 0.278
c32 0.010 0.012 0.000 0.575 0.014 0.002 0.278
c33 1.000 4.706 0.053 0.583 5.214 0.083 0.276
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Table 2: Posterior means (µ), standard deviations (σ), and acceptance ratios (p) of
estimated reaction rate constants of the MAPK/ERK pathway from the simulated data.
The estimates are based on algorithms in Scheme 1 and Scheme 2 with 100, 000 MCMC
runs in which the first 85, 000 runs are taken as burn-in.

Scheme 1 Scheme 2

Reaction True rate µ σ p µ σ p

c34 0.010 1.101 0.007 0.503 0.684 0.051 0.278
c35 0.010 1.695 0.041 0.577 2.567 0.023 0.271
c36 0.010 0.207 0.006 0.516 0.291 0.040 0.323
c37 0.010 0.372 0.014 0.518 0.351 0.035 0.323
c38 1.000 0.981 0.012 0.520 0.774 0.055 0.324
c39 1.000 0.946 0.016 0.519 1.287 0.028 0.316
c40 1.000 0.021 0.001 0.515 0.025 0.006 0.324
c41 1.000 0.002 0.000 0.174 0.003 0.001 0.211
c42 0.010 0.028 0.002 0.174 0.056 0.021 0.211
c43 0.010 0.019 0.003 0.174 0.037 0.011 0.211
c44 1.000 0.528 0.002 0.172 0.492 0.018 0.210
c45 0.015 1.588 0.021 0.168 1.726 0.022 0.205
c46 0.010 1.621 0.016 0.766 1.845 0.052 0.305
c47 0.010 0.176 0.002 0.787 0.142 0.008 0.307
c48 0.010 5.426 0.116 0.829 3.396 0.052 0.307
c49 0.010 3.321 0.080 0.827 1.702 0.141 0.308
c50 1.000 1.357 0.028 0.798 1.248 0.038 0.305
c51 0.010 3.972 0.156 0.685 2.732 0.055 0.282
c52 1.000 0.187 0.002 0.651 0.233 0.012 0.285
c53 1.000 0.165 0.003 0.653 0.174 0.004 0.282
c54 0.010 0.171 0.004 0.668 0.216 0.004 0.282
c55 0.010 1.932 0.060 0.665 1.456 0.024 0.275
c56 0.015 0.019 0.001 0.388 0.016 0.008 0.249
c57 0.010 1.453 0.028 0.370 3.475 0.189 0.249
c58 0.010 1.723 0.014 0.357 1.777 0.114 0.248
c59 0.010 0.956 0.010 0.387 4.372 0.102 0.248
c60 0.010 0.000 0.000 0.392 0.016 0.013 0.249
c61 0.010 0.265 0.010 0.544 0.948 0.146 0.274
c62 0.010 0.007 0.000 0.551 0.021 0.005 0.275
c63 0.010 1.338 0.007 0.467 1.271 0.084 0.273
c64 0.010 0.758 0.017 0.547 0.344 0.215 0.275
c65 0.010 1.157 0.012 0.485 1.839 0.104 0.273
c66 1.000 5.338 0.185 0.714 17.706 0.153 0.280
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Figure 3: Probability distribution of the reaction rate (a) 3, (b) 15, (c) 32, (d) 40, (e)
56, and (f) 62, respectively, by using Scheme 1 after 100,000 MCMC runs in which the
first 85,000 runs are burn-in.
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Figure 4: Probability distribution of the reaction rate (a) 3, (b) 15, (c) 32, (d) 40, (e)
56, and (f) 62, respectively, by using Scheme 2 after 100,000 MCMC runs in which the
first 85,000 runs are burn-in.
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Table 3: Total CPU (Central processing unit) time and total real computational time
of Scheme 1 (with 20 and 50 observed time points) and Scheme 2, respectively, in R

and with a high power computer (3.00 GHz Dual Core Xeon Process - Single Trade
Application) for estimating rate constants via 100,000 MCMC runs.

Total CPU Total computational time

Scheme 1 with 20 observed time points 135.06 175 hr 8 min 1 sec
Scheme 1 with 50 observed time points 360.63 230 hr 47 min 29 sec
Scheme 2 with 20 observed time points 183.67 231 hr 1 min 36 sec
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Figure 5: Frequencies of average errors for the estimates presented in Table 1 and 2.
Figure (a) shows the results obtained by Scheme 1 and Figure (b) indicates the results
found by Scheme 2. The estimates are based on 20 observed time points and 100,000
MCMC runs in which the first 85,000 runs are burn-in.
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Table 4: Posterior means (µ) and standard deviations (σ), of ratios of estimated reaction
rate constants of the MAPK/ERK pathway from the simulated data. The estimates
are based on algorithms in Scheme 1 and Scheme 2 with 100, 000 MCMC runs in which
the first 85, 000 runs are taken as burn-in.

Scheme 1 Scheme 2

Ratio of reaction rate True ratio µ σ µ σ

c4/c5 0.010 0.008 0.001 0.005 0.000
c3/c7 0.010 0.006 0.000 0.022 0.001
c1/c8 0.010 0.010 0.000 0.009 0.000

c14/c15 1.000 0.977 0.026 0.927 0.018
c30/c38 0.010 0.013 0.000 0.017 0.002
c52/c53 1.000 1.132 0.015 1.342 0.067
c57/c58 1.000 0.844 0.011 1.960 0.108

of the species F, similarly between Reaction (e) and (f) due to the species H and K,
we suggest that the ratios of associated rates (i.e. the ratios of c3/c4 and c5/c6) may
not be constant. Therefore in our analysis we couple the parameters whose common
terms have the form as given in Reaction (a) and (b) without additionally investigating
whether our selected ratios have any biological meaning. Table 4 shows examples of
those estimated ratios and their corresponding true values. The results show that the
selected ratios are precise.

7 Conclusion and discussion

We have illustrated the implementation of MCMC algorithms and data augmentation
schemes in the estimation of reaction rates of the MAPK/ERK pathway, which was
described as a set of quasi reactions by integrating several sources from the biological
literature. Due to the size and complexity of the MAPK/ERK network, any diffusion
approximation of its dynamic progression is riddled with singularities of the diffusion
matrix, i.e. effective linear dependencies in the states. Therefore, we have introduced
two MCMC updating regimes that deal with these singularities at different stages of the
update. The first plan simply rejects states or rates that lead to singular diffusions. The
second one, tolerates reaction rates and states with singular diffusions by temporarily
reducing the dimension of the state space. In simulation studies, it has been observed
that the second plan is more accurate than the first updating scheme.

The Euler method with data augmentation for approximating diffusions is a promis-
ing inference tool. But the large number of missing values and high correlations between
substrates can cause biased estimates, particularly obvious when the amount of obser-
vations of the system are realistically small. Performance of the estimation improves,
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when the number of observations increases. Apart from an increase of the sample size,
estimates can also be improved by updating the missing data in blocks of random size,
rather than single block at a time (Golightly and Wilkinson 2006a,b), which enables
better mixing in the end.

The existence of linear dependencies in the system is always a serious problem in
estimation. Therefore we suggest that when estimating model parameters of a complex
stochastic dynamic system, like our pathway, the substrates that are eliminated because
of their structural dependencies, can be implicitly updated within the MCMC algorithm,
rather than completely excluded from the dataset. Every dependent substrate can be
simulated as a linear combination of other substrates. In that way, linearly dependent
substrates can be included in the computation of acceptance probabilities of reaction
rates and states when calculating the ratio of both likelihoods and transition kernels.
The implementation of this type of the inference, i.e. the inference under structural
dependency, is the topic of ongoing research.

8 Appendix

8.1 Description of the MAPK/ERK pathway and related estimates
with a larger dataset

We use the following list of reactions for estimating reaction rates of the MAPK/ERK
pathway. The estimated rates and associated statistics are summarized in Table 1 and
Table 2. The list of substrates, on the other hand, is given in Table 5.

In Table 6 we list the estimated model parameters and associated statistics calculated
by Scheme 1 from a dataset which has 50 time points.

1. Grb2 + SOS −→ Grb2-SOS

2. EGFR + Shc −→ EGFR + Shcm

3. EGFR + Grb2-SOS −→ EGFR + Grb2-SOSm

4. Shcm + Grb2-SOSm −→ Shc-Grb2-SOSm

5. Shc-Grb2-SOSm −→ Shcm + Grb2-SOSm

6. Shcm −→ Shc

7. Grb2-SOSm −→ Grb2-SOS

8. Grb2-SOS −→ Grb2 + SOS

9. Shc-Grb2-SOSm + Ras.GDP −→ Shc-Grb2-SOSm + Ras.GTP

10. Grb2-SOSm + Ras.GDP −→ Grb2-SOSm + Ras.GTP
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11. Ras.GTP −→ Ras.GDP

12. GAP + Ras.GTP −→ GAP + Ras.GDP

13. Raf + PP2A −→ Raf.I + PP2A

14. Raf.I + Ras.GTP −→ Raf.Im + Ras.GTP

15. Raf.Im + Ras.GTP −→ Raf.I-Ras.GTPm

16. Raf.I-Ras.GTPm + PAK −→ Raf.A-Ras.GTPm + PAK

17. Raf.A-Ras.GTPm −→ Raf.Am + Ras.GTP

18. PP5 + Raf.Am −→ PP5 + Raf.Im

19. Raf.Im −→ Raf

20. Raf.I-Ras.GTPm −→ Raf.Im + Ras.GTP

21. Raf.Am + MEK −→ Raf.Am + MEK.p2

22. PAK + MEK −→ PAK + MEKF

23. MEKF + Raf.Am −→ MEK.p2 + Raf.Am

24. Raf.I + RKIP −→ Raf.I-RKIP

25. Raf.I-RKIP + Ras.GTP −→ Raf.I-RKIPm + Ras.GTP

26. Raf.I-RKIPm + Ras.GTP −→ Raf.I-RKIP-Ras.GTPm

27. MEK + RKIP −→ MEK-RKIP

28. MEKF + RKIP −→ MEKF -RKIP

29. MEKS + RKIP −→ MEKS-RKIP

30. MEK.p2 + RKIP −→ MEK.p2-RKIP

31. PKC + Raf.I-RKIP −→ PKC + Raf.I + RKIP.p

32. ERK.p2 + Raf.I-RKIP −→ ERK.p2 + Raf.I + RKIP.p

33. Raf.I-RKIP-Ras.GTPm −→ Raf.I-RKIPm + Ras.GTP

34. Raf.I-RKIPm −→ Raf.I-RKIP

35. MEK-RKIP −→ MEK + RKIP

36. MEKF -RKIP −→ MEKF + RKIP

37. MEKS-RKIP −→ MEKS + RKIP

38. MEK.p2-RKIP −→ MEK.p2 + RKIP
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39. RKIP.p −→ RKIP

40. MEK.p2 + ERK −→ MEK.p2 + ERK.p1

41. MEK.p2 + ERK.p1 −→ MEK.p2 + ERK.p2

42. MEK.p2-RKIP + ERK −→ MEK.p2-RKIP + ERK.p1

43. MEK.p2-RKIP + ERK.p1 −→ MEK.p2-RKIP + ERK.p2

44. ERK.p2 + MEK −→ ERK.p2 + MEKS

45. MEKS + Raf.Am −→ MEK.p2 + Raf.Am

46. ERK.p2 + Shc-Grb2-SOSm −→ ERK.p2 + Shc-Grb2m + SOS

47. ERK.p2 + Grb2-SOSm −→ ERK.p2 + Grb2m + SOS

48. Shc-Grb2m −→ Shc + Grb2

49. Grb2m −→ Grb2

50. ERK.p2 + TF −→ ERK.p2-TF.p2

51. ERK.p2-TF.p2 + c-Fos.DNA −→ ERK.p2-TF.p2 + c-Fos.DNA + c-
Fos.RNA

52. c-Fos.RNA −→ c-Fos

53. ERK.p2 + c-Fos −→ ERK.p2 + c-Fos.p

54. ERK.p2-TF.p2 + MKP.DNA −→ ERK.p2-TF.p2 + MKP.DNA + MKP.RNA

55. MKP.DNA −→ MKP

56. MKP + ERK.p2 −→ MKP + ERK

57. ERK.p2 + RSK −→ ERK.p2-RSK.A

58. ERK.p2-RSK.A + TF −→ ERK.p2-RSK.A-TF.p2

59. ERK.p2-RSK.A-TF.p2 + c-Fos.DNA −→ ERK.p2-RSK.A-TF.p2 + c-
Fos.DNA

+ c-Fos.RNA

60. ERK.p2-RSK.A + c-Fos −→ ERK.p2-RSK.A + c-Fos.p

61. ERK.p2-RSK.A-TF.p2 + MKP.DNA −→ ERK.p2-RSK.A-TF.p2 +
MKP.DNA

+ MKP.RNA

62. MKP + ERK.p2-RSK.A −→ MKP + ERK + RSK
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63. ERK.p2-TF.p2 −→ ERK.p2 + TF

64. ERK.p2-RSK.A −→ ERK.p2 + RSK

65. ERK.p2-RSK.A-TF.p2 −→ ERK.p2-RSK.A + TF

66. EGFR −→ ∅

8.2 Reaction of degradations of the MAPK/ERK pathway

Apart from the degradation of EGFR which is denoted as the 66th reaction in Sec-
tion 8.1, we define the following list of degradations which may execute after dissocia-
tions of proteins for the MAPK/ERK pathway.

1. Grb2 −→ ∅

2. SOS −→ ∅

3. Shc −→ ∅

4. Ras.GDP −→ ∅

5. GAP −→ ∅

6. Raf −→ ∅

7. Raf.I −→ ∅

8. Raf.Am −→ ∅

9. PP2A −→ ∅

10. PAK −→ ∅

11. PP5 −→ ∅

12. MEK −→ ∅

13. MEKF −→ ∅

14. MEKS −→ ∅

15. MEK.p2 −→ ∅

16. RKIP −→ ∅

17. Raf.I-RKIP −→ ∅

18. PKC −→ ∅
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Table 5: List of proteins used in inference of the MAPK/ERK pathway. The proteins
written in bold type are taken as measured proteins in the computation.

Indep- Ras.GDP, Ras.GTP, Raf, Raf.I, Raf.Im, Raf.I-Ras.GTPm, Raf.Am,
endent Raf.A-Ras.GTPm, Raf.I-RKIP, RKIP, MEK, MEKF , MEKS , MEK.p2,

MEK-RKIP, MEKF -RKIP, MEKS-RKIP, EGFR, ERK, ERK.p1, ERK.p2,
ERK.p2-TF.p2, ERK.p2-RSK.A, Grb2, Shc, Shcm, SOS, Grb2-SOS,
Grb2-SOSm , c-Fos, c-Fos.RNA, c-Fos.p, MKP, MKP.RNA.

Dep- Raf.I-RKIPm, Raf.I-RKIP-Ras.GTPm, MEK.p2-RKIP, MKP.DNA, TF, PAK,
endent ERK.p2-RSK.A-TF.p2, Shc-Grb2-SOSm, Grb2m, Shc-Grb2m, GAP, PKC,

c-Fos.DNA, PP2A, PP5, RKIP.p, RSK.

19. ERK −→ ∅

20. ERK.p1 −→ ∅

21. ERK.p2 −→ ∅

22. TF −→ ∅

23. c-Fos.RNA −→ ∅

24. c-Fos −→ ∅

25. MKP.RNA −→ ∅

26. MKP −→ ∅

27. c-Fos.p −→ ∅

28. RSK −→ ∅

8.3 Description of protein states used in the MAPK/ERK pathway

We use the following substrates in the description of the MAPK/ERK pathway with
the degradation of the EGF receptor.

1. Ras protein states

(a) Ras.GDP: The inactive Ras protein near the cell membrane

(b) Ras.GTP: The active Ras near the cell membrane

2. Raf protein states

(a) Raf: The inactive and non-phosphorylated Raf protein in the cytosol
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Table 6: Posterior means (µ), standard deviations (σ), and acceptance ratios (p) of
estimated reaction rate constants of the MAPK/ERK pathway from the simulated data
which have 50 time points. The data are generated from the Gillespie simulation of the
system and are gathered by moving 0.05 unit of time between t = 17.55 and t = 20 under
the same condition given in Section 5 and 5.1. The estimates are based on algorithms in
Scheme 1 with 100, 000 MCMC runs in which the first 85, 000 runs are taken as burn-in.

Reac- True Reac- True
tion rate µ σ p tion rate µ σ p

c1 0.010 0.009 0.000 0.536 c34 0.010 1.155 0.015 0.458
c2 0.010 0.051 0.000 0.531 c35 0.010 1.846 0.038 0.497
c3 0.010 0.038 0.001 0.530 c36 0.010 0.285 0.005 0.497
c4 0.010 0.031 0.001 0.535 c37 0.010 0.448 0.009 0.501
c5 1.000 3.876 0.085 0.529 c38 1.000 0.880 0.008 0.499
c6 1.000 1.178 0.005 0.133 c39 1.000 0.998 0.010 0.488
c7 1.000 1.144 0.003 0.125 c40 1.000 0.020 0.001 0.498
c8 1.000 0.968 0.002 0.144 c41 1.000 0.002 0.000 0.159
c9 0.010 0.268 0.001 0.142 c42 0.010 0.001 0.001 0.159
c10 0.010 0.000 0.000 0.146 c43 0.010 0.006 0.002 0.159
c11 1.000 1.815 0.038 0.563 c44 1.000 0.471 0.002 0.156
c12 0.015 0.727 0.022 0.589 c45 0.015 0.979 0.012 0.158
c13 0.010 3.554 0.071 0.574 c46 0.010 1.033 0.018 0.705
c14 0.010 0.037 0.001 0.585 c47 0.010 0.074 0.001 0.773
c15 0.010 0.054 0.001 0.583 c48 0.010 7.443 0.171 0.773
c16 0.010 2.603 0.092 0.774 c49 0.010 3.641 0.148 0.774
c17 1.000 0.265 0.003 0.760 c50 1.000 1.118 0.013 0.659
c18 0.010 2.467 0.086 0.773 c51 0.010 4.574 0.182 0.645
c19 1.000 0.276 0.003 0.747 c52 1.000 0.187 0.004 0.624
c20 1.000 1.240 0.022 0.698 c53 1.000 0.194 0.006 0.627
c21 0.010 0.002 0.001 0.440 c54 0.010 0.209 0.004 0.624
c22 0.010 1.026 0.018 0.402 c55 0.010 2.713 0.103 0.637
c23 0.015 0.632 0.019 0.434 c56 0.015 0.018 0.001 0.205
c24 0.010 0.004 0.000 0.432 c57 0.010 1.563 0.026 0.199
c25 0.010 0.193 0.008 0.428 c58 0.010 1.958 0.008 0.188
c26 0.010 3.143 0.083 0.465 c59 0.010 0.315 0.005 0.203
c27 0.010 0.452 0.002 0.447 c60 0.010 0.000 0.000 0.205
c28 0.010 0.065 0.001 0.472 c61 0.010 0.223 0.017 0.539
c29 0.010 0.106 0.003 0.457 c62 0.010 0.009 0.000 0.540
c30 0.010 0.009 0.000 0.470 c63 0.010 1.118 0.005 0.412
c31 0.010 0.004 0.003 0.522 c64 0.010 0.826 0.015 0.538
c32 0.010 0.009 0.000 0.518 c65 0.010 1.196 0.005 0.425
c33 1.000 3.491 0.058 0.504 c66 1.000 5.860 0.233 0.673
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Figure 6: Frequencies of average errors for the estimates presented in Table 6. Figure
shows the results calculated by Scheme 1. The estimates are based on 50 observed time
points and 100,000 MCMC runs in which the first 85,000 runs are burn-in.
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(b) Raf.Am: The active Raf phosphorylated on the S338 and the S471 binding
sites near the cell membrane

(c) Raf.A-Ras.GTPm: The complex of the active Raf and Ras.GTP near the cell
membrane

(d) Raf.I: The inactive Raf phosphorylated on the S259 binding site in the cytosol

(e) Raf.Im: The inactive Raf phosphorylated on the S259 binding site and re-
cruited from the cytosol to the cell membrane by Ras.GTP

(f) Raf.I-Ras.GTPm: The complex of the inactive Raf and Ras.GTP near the
cell membrane

(g) Raf.I-RKIP: The complex of the inactive Raf and RKIP, whose binding site
is S338, in the cytosol

(h) Raf.I-RKIPm: The complex of the inactive Raf and RKIP which is recruited
to the membrane by Ras.GTP

(i) Raf.I-RKIP-Ras.GTPm: The complex of the inactive Raf, RKIP, and Ras.GTP
near the cell membrane

3. MEK protein states

(a) MEK: The inactive and non-phosphorylated MEK protein in the cytosol

(b) MEKF : The inactive MEK in the cytosol which is mono phosphorylated by
the activator PAK on the S298 binding site

(c) MEKS: The inactive MEK in the cytosol which is mono phosphorylated by
the active ERK on the T292 binding site

(d) MEK.p2: The double-phosphorylated MEK (active MEK) on the S218 and
S222 binding sites in the cytosol

(e) MEK-RKIP: The complex of MEK and RKIP in the cytosol

(f) MEKF -RKIP: The complex of MEKF and RKIP in the cytosol

(g) MEKS-RKIP: The complex of MEKS and RKIP in the cytosol

(h) MEK.p2-RKIP: The complex of the active MEK.p2 and RKIP in the cytosol

4. ERK protein states

(a) ERK: The inactive and non-phosphorylated ERK protein in the cytosol

(b) ERK.p1: The inactive, mono phosphorylated ERK in the cytosol

(c) ERK.p2: The double phosphorylated ERK (active ERK) in the cytosol

(d) ERK.p2-RSK.A: The complex of the active ERK and active RSK, which is
activated by ERK, in the nucleus

(e) ERK.p2-RSK.A-TF.p2: The complex of the active ERK, active RSK, and
double phosphorylated transcription factor in the nucleus

(f) ERK.p2-TF.p2: The complex of the active ERK and a transcription factor
(like Elk or SAP proteins), which is double phosphorylated by the active
ERK, in the nucleus
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5. Grb2, Shc, and SOS protein states

(a) Grb2: A protein in the cytosol

(b) Grb2m: Grb2 near the cell membrane after dissociation of SOS by active
ERK

(c) Grb2-SOS: The complex of Grb2 and SOS in the cytosol

(d) Grb2-SOSm: The complex of Grb2 and SOS near the cell membrane, where
it is able to activate Ras

(e) Shc: A protein in the cytosol

(f) Shcm: Shc near the cell membrane after the activation of EGFR

(g) Shc-Grb2m: The complex of Shc and Grb2 near the cell membrane after the
dissociation of SOS by the active ERK

(h) Shc-Grb2-SOSm: The complex of Shc, Grb2, and SOS near the cell mem-
brane, where it is able to activate Ras

(i) SOS: A protein, which is an exchange factor, in the cytosol

6. c-Fos and MKP protein states

(a) c-Fos: A protein in the nucleus

(b) c-Fos.DNA: The gene sequence of c-Fos

(c) c-Fos.p: c-Fos phosphorylated by ERK

(d) c-Fos.RNA: The transcription of c-Fos gene into mRNA

(e) MKP: A protein in the cytosol

(f) MKP.DNA: The gene sequence of MKP

(g) MKP.RNA: The transcription of MKP gene into mRNA

7. Other proteins

(a) EGF: A protein which triggers the activation of the pathway by attaching
its receptor (EGFR) in the cell membrane

(b) EGFR: A receptor that is equated with activated tyrosine kinase receptors

(c) GAP: A protein near the cell membrane

(d) PAK: A protein near the cell membrane

(e) PKC: A protein in the cytosol

(f) PP2A: A protein near the cell membrane or in the cytosol

(g) PP5: A protein near the cell membrane

(h) RKIP: A protein in the cytosol

(i) RKIP.p: RKIP mono phosphorylated either by PKC or ERK on the binding
sites S153 and S99, respectively

(j) RSK: An inactive protein in the cytosol

(k) RSK.A: The active RSK, which is activated by ERK.p2

(l) TF: A transcription factor (like Elk or SAP proteins), which will be double
phosphorylated by the active ERK, in the nucleus
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