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Directional Log-Spline Distributions

José T.A.S. Ferreira∗, Miguel A. Juárez† and Mark F.J. Steel‡

Abstract. We introduce a new class of distributions to model directional data,
based on hyperspherical log-splines. The class is very flexible and can be used to
model data that exhibit features that cannot be accommodated by typical para-
metric distributions, such as asymmetries and multimodality. The distributions
are defined on hyperspheres of any dimension and thus, include the most common
circular and spherical cases. Due to the flexibility of hyperspherical log-splines,
the distributions can closely approximate observed behaviour and are as smooth
as desired. We propose a Bayesian setup for conducting inference with directional
log-spline distributions where we pay particular attention to the prior specification
and the matching of the priors of the log-splines model and an alternative model
constructed through a mixture of von Mises distributions. We compare both mod-
els in the context of three data sets: simulated data on the circle, circular data
on the movement of turtles and a spherical application to the arrival direction of
cosmic rays.

Keywords: Directional distributions, hyperspherical splines, mixture of distribu-
tions, prior matching, von Mises distributions.

1 Introduction

In this article we introduce a new class of flexible distributions for modelling directional
phenomena, i.e. phenomena that are characterised by directions in multidimensional
real spaces. The most common examples are in the plane and in three-dimensional space,
and are usually called circular and spherical, respectively. These types of applications
are common in fields such as geology, meteorology, medicine, biology and astronomy.
Examples of directional applications in higher dimensional spaces have been documented
in quantum physics.

Without loss of generality, directional phenomena can be seen as taking place on
unit hyperspheres Sm = {d ∈ <m+1 : ‖d‖ = 1}, m = 1, 2, . . ., where ‖ · ‖ denotes the
usual Euclidean or l2-norm. For example, circular events take place on the unit circle
(m = 1), and spherical ones on the unit sphere (m = 2). Thus, modelling directional
data is usually done through a probability distribution on Sm.

A number of distributions on hyperspheres, particularly for m = 1, 2, have been pro-
posed in the literature and we refer the reader to monographs such as Mardia and Jupp
(2000) and Jammalamadaka and SenGupta (2001). Most of the proposals have focused
on simple parametric forms, which are mainly suited for applications where complica-

∗Endeavour Capital Management, London, U.K., tome.ferreira@endeavour-capital.com .
J.T.A.S. Ferreira was affiliated to the University of Warwick at the start of this research

†Department of Statistics University of Warwick, UK, m.a.juarez@warwick.ac.uk
‡Department of Statistics University of Warwick, UK, mailto:M.F.Steel@stats.warwick.ac.uk

c© 2008 International Society for Bayesian Analysis DOI:10.1214/08-BA311

tome.ferreira@endeavour-capital.com
m.a.juarez@warwick.ac.uk
mailto:M.F.Steel@stats.warwick.ac.uk


298 Directional log-spline distributions

tions such as asymmetries and/or multimodality are absent. A general family of sym-
metric unimodal distributions on the circle was recently proposed in Jones and Pewsey
(2005). Here, we focus instead on more flexible classes of distributions, where the avail-
able toolbox is much less developed.

Early generalisations of existing distributions in order to accommodate multimodal-
ity were often based on “multiplying the angle” as in Mardia and Spurr (1973) and Wood
(1982). Potentially, the most straightforward way to define flexible distributions on hy-
perspheres is to use mixtures of simpler, parametric distributions (Mooney et al. 2003;
Peel et al. 2001). Mixture modelling is conceptually quite feasible and has a proven
track record. However, mixing inflexible distributions has the potential drawback that
the number of components required can be quite considerable, leading to both inferen-
tial and predictive problems. An alternative approach is to wrap flexible distributions
defined on the real line to the unit circle (Kent and Tyler 1988; Ravindran and Ghosh
2004). This has the slightly unattractive feature that modelling is done on a differ-
ent topological space than the one of interest. Further, as far as we are aware, there
has been no attempt to generalise this methodology to higher dimensional spaces. Re-
cently, Fernández-Durán (2004) defined circular density functions using non-negative
trigonometric sums. However, this method is limited to the circular case as results on
non-negative trigonometric sums are not available when m > 1. Also, approximating a
function, in this case a density, with finite trigonometric sums often results in a “wiggly”
approximation, unlikely to be useful in most real applications.

We propose the class of directional log-spline distributions. The class applies to any
dimension m and its members are characterised by having density functions of hyper-
spherical log-spline form, i.e. the logarithm of the densities are splines on hyperspheres
(Wahba 1990; Taijeron et al. 1994). The class borrows the flexibility of hyperspheri-
cal splines that can accurately approximate any continuous function. By controlling
the smoothness of the spline basis function, it is possible to control the smoothness
of the directional density. Finally, hyperspherical splines were shown to be numeri-
cally stable (Taijeron et al. 1994). The main computational difficulty involved is that
of an m-dimensional integral, which is unlikely to be prohibitive for the practically
relevant cases (where m is usually one or two). There is some existing literature on
the use of splines for modelling the logarithm of a density function, which is discussed
in Hansen and Kooperberg (2002), but this literature focusses on observations in real
spaces (usually univariate). An excellent review of Bayesian modelling using splines on
real spaces is given in Denison et al. (2002). Our modelling approach allows for the num-
ber of knots and their locations to be determined from the data, a characteristic which
is shared with the free-knot spline approaches on observations in real spaces, such as in
Denison et al. (1998) and the Bayesian Adaptive Regression Splines of DiMatteo et al.
(2001), which both specifically aim at curve-fitting.

Inference with hyperspherical log-spline distributions is implemented within the
Bayesian paradigm. We find Bayesian methods useful in this modelling context which
is often applied to fairly small data sets, and the concept of Bayes factors allows us
to formally compare models. We introduce a prior structure on the directional dis-
tribution through the parameters of the hyperspherical spline that generates it, thus
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facilitating the introduction of prior knowledge. The prior distribution is derived using
invariance under orthogonal transformations. In addition, we elicit the prior hyperpa-
rameters through the induced prior on the mean resultant length (a key measure of
concentration), which also allows us to match the prior with that of a competing model.
Inference for these models must be conducted using numerical methods, and we design
a reversible jump Markov chain Monte Carlo (MCMC) algorithm that allows for an
unknown number of basis functions used by the spline.

We also define a Bayesian model for directional data using mixtures of von Mises
distributions, also with an unknown number of components. This model is rather flexible
and serves as benchmark for the one employing log-spline distributions. Prior matching
allows for a fair comparison of both models through Bayes factors. The models are
compared using generated data and in the context of two real applications. The first
one is on circular data related to the movement of turtles. The other is on the sphere
and studies the arrival directions of low mu showers of cosmic rays.

A different approach is to model directional data using kernel density estimation (see
Hall et al. 1987). However, this fundamentally differs in two ways from the methods
used in this paper. Firstly, it is a method which does not allow for likelihood-based
inference, precluding a Bayesian implementation and, thus, comparison through Bayes
factors. Secondly, it is fully nonparametric and thus, in our view, not that suitable
for applications with relatively small sample sizes, as are common in this context. In
contrast, the methods used and compared in this paper are flexible, yet parametric, mod-
elling approaches (see also Denison et al., 2002). A Bayesian semiparametric approach
based on a Dirichlet process location mixture of von Mises distributions is proposed
in Ghosh et al. (2003) for circular data. However, this substantially complicates both
computation and prior elicitation, in our view. In the different context of fitting periodic
functions on the circle (i.e. with m = 1), Kaufman et al. (2005) use circular smoothing
splines and a circular version of Bayesian Adaptive Regression Splines.

Section 2 introduces the class of hyperspherical log-spline distributions, a Bayesian
model for their application and details about the numerical methods constructed for
conducting inference. Section 3 is the counterpart of Section 2 for the mixtures of
von Mises distributions. Section 4 discusses prior matching and elicitation. In Section
5 we analyse a simulated data set as well as two applications with real data and, finally,
Section 6 provides some concluding remarks.

2 Directional Log-Spline Distributions

Let d ∈ Sm and f denote a density function on Sm. In this article, we propose modelling
f through a hyperspherical log-spline as

f(d|c,B,K) = exp

{
c0 +

K∑

k=1

ckR
l
m(d|dk)

}
, (1)
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where K is a positive integer, c0 ∈ <, c = (c1, . . . , cK)′ ∈ <K , B = {d1, . . . , dK} is
a set of vectors in Sm and Rl

m(d|dk) ∈ C(l), the set of functions with l continuous
derivatives, are real valued spline basis functions defined on Sm for k = 1, . . . ,K.
Vectors dk, k = 1, . . . ,K, are usually called knots.

Despite their simplicity, hyperspherical splines are very flexible and can closely ap-
proximate any smooth function. As will be seen below, they are constructed very sim-
ilarly to splines in real spaces. As with splines on real spaces, it is possible to control
the smoothness of a hyperspherical spline. By choosing Rl

m(d|dk) ∈ C(l), f(d|c,B,K)
will also be C(l) as the exponential function is C(∞). Therefore, the smoothness of f
can easily be controlled by choosing an appropriate l. Once l is chosen, the form of the
basis functions Rl

m(d|dk) remains to be specified.

Basis functions for spline interpolation and smoothing on the circle (m = 1) and
the sphere (m = 2) were determined in Wahba (1975) and Wahba (1981), respectively.
Taijeron et al. (1994) generalised the above results and provided the solution for the
problems in any dimension m > 1. In the form of (1), the solution is provided when
Rl

m(d|dk), k = 1, . . . ,K, represent a family of reproducing kernels related to Green’s
function for the Laplacian on the hyperspheres. For m > 1, closed forms for Rl

m(d|dk)
are not known, leading to the use of approximating reproducing kernels for which a
closed form is available. For our modelling of f the use of the approximating reproducing
kernels does not lead to any modelling restrictions. Thus, we will also use the notation
Rl

m(d|dk) for the approximating kernel.

For the case in S1, the reproducing kernel is given by

Rl
1(d|dk) =

(−1)l/2(2π)l−1

(2π)!
Bl+2

(
θ

2π

)
,

with θ the angle between d and dk and Bl+2 the Bernoulli polynomial of degree l + 2
(Abramowitz and Stegun 1972).

For m > 1, Taijeron et al. (1994) indicate that the approximating reproducing ker-
nels can be defined by

Rl
m(d|dk) =

Γ
(

m+1
2

)

m− 1

[
q(l,m− 1, d′dk)

l!
− 1

(l + 1)!

]
,

where

q(r, s, z) =

∫ 1

0

(1 − h)r(1 − 2hz + h2)−s/2dh.

For r = 0, 1, . . . and m > 1, closed forms for Rl
m are available and can be calculated

easily with a symbolic mathematics package. Examples can be found in Wahba (1981)
and Taijeron et al. (1994).

To choose the coefficients in c we use the facts that f(d|c,B,K) is proportional to

exp

{
c∗ +

K∑

k=1

ckR
l
m(d|dk)

}
, (2)
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with c∗ ∈ <, and that the logarithm of (2) can be thought of as a spline interpolating
a vector of values v = (v1, . . . , vK)′ ∈ <K associated with the knots. Vector c can then
be obtained as the solution of the linear system of equations

(
1K R
0 1′K

) (
c∗

c

)
=

(
v
0

)
, (3)

where 1K is the K-dimensional vector of ones and R is a K × K matrix with entry
(i, j) equal to Rl

m(di|dj). Vector c is such that its elements add up to zero. The
incorporation of c∗ ensures that the matrix on the left-hand side of (3) is non-singular
as long as dk, k = 1, . . . ,K are distinct. So choosing c is equivalent to the easier task
of choosing v. The value of c0 is determined by the fact that f in (1) is a density, and
therefore integrates to one, which leads to

c0 = − log

∫

Sm

exp

{
K∑

k=1

ckR
l
m(d|dk)

}
dd,

and can be computed numerically.

The flexibility of spline models is well documented in the literature (see e.g. Wahba
1990). By allowing an appropriate number of knots, positioned at suitable locations,
it is possible to approximate any function in C(l). This characteristic guarantees the
flexibility of the class of directional log-spline distributions. Ferreira and Steel (2005)
use hyperspherical log-splines in a different context, namely to model the dispersion of
a new class of flexible multivariate distributions on <m.

2.1 Bayesian Model

In the remaining part of this section, we assume that the process generating the direc-
tional data has an underlying log-spline distribution with density f as in (1).

Assuming a fixed spline basis function, the density function is completely determined
by the number of knots K, the knot locations B and the knot values v. Thus, the prior
on f can be completely determined by a prior on these parameters.

If the number of knots is not fixed, then the parameter space where inference is
to take place has variable dimension. Eliciting a prior distribution is facilitated by
conditioning on the dimension of the parameter space, i.e. by focusing on

PK,B,v = PB,v|KPK .

We further assume that B and v are independent, given K.

In a Bayesian curve fitting spline setting, two prior distributions on K have often
been suggested: a Uniform prior on the set of integers between one and some Kmax,
and a Poisson prior, restricted to K > 0 (see DiMatteo et al. 2001, and references
therein). Here we use a Poisson prior with parameter λK , but restricted to K > 1,
since the model reduces to the Uniform model for K = 1. Choosing a relatively small
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λK naturally downweights models with a very large number of knots (thus avoiding
overfitting), without, however, imposing an exact upper bound.

The prior distribution on the location of the knots is set using invariance arguments.
In the absence of further information, the prior should not favour any particular set of
directions. Thus, we assume independent and Uniform priors on Sm for the elements
of B.

The prior distribution is completed by setting the prior on the knot values. For each
of the elements of v, we assume an independent Normal prior with mean log{Γ( m+1

2 )}−
(m+1

2 ) log(2π) and variance σ2
v . This prior is centred on the Uniform distribution on

the sphere, with the prior flexibility of the log-spline distribution controlled by σ2
v . As

σ2
v tends to zero, the model reduces to the Uniform on Sm. As σ2

ν increases, the prior
becomes less informative and more dispersed, which will allow for larger deviations from
uniformity. By choosing a ”reasonable” value of σ2

ν (as defined in Section 4) the prior
induces a suitable amount of structure into the problem.

By assigning a Uniform prior on the location and a jointly independent prior on the
values at the knots, we define a prior that is invariant to linear orthogonal transforma-
tions (rotations or roto-inversions) and is, therefore, uninformative about the direction.
Prior knowledge about particular directions and asymmetries could be incorporated by
making the priors on B and v dependent and varying with location. In Section 4 we
discuss how λK and σv are chosen.

2.2 Inference

Inference for the model introduced in the previous section requires numerical methods.
Further, as the number of knots K is left unknown, inference must be conducted on a
space with variable dimension. Here we briefly describe the details of a reversible jump
MCMC sampler that we use in this context.

For conducting inference, it is helpful to use a polar transformation of the direction
(see e.g. Kendall 1961, pp.15–17). Let d = [d1(ω), . . . , dm+1(ω)]′ ∈ Sm ⊂ <m+1 and let
ω = (ω1, . . . , ωm) ∈ Ω = [0, π)m−1 × [0, 2π) be such that

dj(ω) =

(
j−1∏

i=1

sinωi

)
cosωj , 1 ≤ j ≤ m and dm+1(ω) =

m∏

i=1

sinωi.

In order to parameterise the knot location dk we use polar coordinates parameterised
by ωk = (ωk

1 , . . . , ω
k
m) as above. The Uniform prior of dk on Sm is translated to the

prior on ωk given by

p(ωk) =
Γ
(

m+1
2

)

2π(m+1)/2

m−1∏

j=1

sinm−j ωk
j , k = 1, . . . ,K.

We suggest a reversible jump MCMC characterised by four move types: (a) change
values, (b) change locations, (c) introduce a new knot and (d) remove an existing
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knot. Moves (a) and (b) are fixed dimension moves and are conducted as random-
walk Metropolis-Hastings steps, whilst moves (c) and (d) change the dimension of the
parameter space.

For move (a), we select one existing knot k ∈ {1, . . . ,K} and then propose a new
knot value v∗k sampled from a Normal distribution with mean vk, the current value of
the knot, and variance tuned so as to obtain an acceptance rate close to 30%.

Moves of type (b) also start with the choice of one existing knot k ∈ {1, . . . ,K}. A
component j ∈ 1, . . . ,m of ωk is then selected and a new value for ωk∗

j is proposed from

a Normal distribution, centred at ωk
j , variance tuned to obtain a similar acceptance rate

as for move (a), and truncated to [0, π) if j ≤ m− 1 or [0, 2π) if j = m.

For the introduction of a new knot, we set K∗ = K + 1, sample a location dK∗ in
Sm from the Uniform distribution and then sample a knot value vK∗ from a Normal
distribution centred on the current value of the logarithm of (2) at dK∗ and variance
tuned as previously. The proposed new set of locations and values are then B∗ = B∪dK∗

and v∗ = (v′, vK∗)′.

The removal of an existing knot (when K > 2) is performed by selecting k ∈
{1, . . . ,K} from a discrete Uniform distribution and setting K∗ = K − 1, B∗ = B \ dk

and v∗ = (v1, . . . , vk−1, vk+1, . . . , vK)′.

The two fixed-dimensional steps of the chain propose an update of the values through
(a) and the locations through (b), and the third step proposes a new value of K: it
consists of (c) if K = 2 and for K > 2 we choose either (c) or (d) with probability 1/2.

3 Mixtures of von Mises Distributions

One of the simplest ways to create flexible distributions is to consider mixtures of other,
simpler, parametric ones. Mixtures of von Mises distributions are not new and have been
used before (see, i.a. Mooney et al. 2003). Nevertheless, in this section we introduce a
Bayesian setup for inference with mixtures of von Mises distributions which, to the
extent of our knowledge, is novel.

Let d and µ be vectors in Sm, m = 1, 2, . . ., and let τ ∈ <+. Then, d has a von Mises
distribution with mean direction µ and concentration parameter τ if its probability
density function is

f(d|µ, τ) =
(τ

2

)m−1

2 1

Γ(m+1
2 )Im−1

2

(τ)
exp{τµ′d},

where Iν denotes the modified Bessel function of the first kind and order ν defined by

Iν(τ) =
1

2π

∫ 2π

0

cos νθ exp{τ cos θ}dθ.

We define g(d|w, µ, τ) to be a mixture of von Mises distributions if its density has
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the form

g(d|w, µ, τ) =

K∑

k=1

wkf(d|µk, τk), (4)

with w = (w1, . . . , wK)′ a vector of positive constants such that
∑K

k=1 wk = 1, µ =
(µ1, . . . , µK)′ a vector of K directions in Sm and τ = (τ1, . . . , τK) ∈ <K

+ . Obviously, g
corresponds to a (single-component) von Mises distribution when K = 1.

3.1 Bayesian Model

In the Bayesian directional log-spline model, we allowed for inference on the number
of knots K in (1). In the same spirit, we will also conduct inference on the number of
von Mises components in (4). We will use the same notationK for this, even though this
is not strictly comparable to the number of knots for the log-spline model. Nevertheless,
both are indicators of the complexity of the models and will be informally compared in
the applications, where they often take rather similar values.

Thus, the unknown parameters are the number of components K, the vector of
weights w, the vector of mean directions µ and the vector of concentration parameters
τ . We assume a prior structure of the form

PK,w,µ,τ = Pw,µ,τ |KPK = Pw|KPµ|KPτ |KPK .

The prior on K is as in Subsection 2.1, except that we now only truncate to K > 0 and
allow for K = 1 (which leads to the standard von Mises model). Given K, we assume a
Dirichlet prior for w with parameter vector κ = (κ1, . . . , κK). A similar prior was used
in the context of mixtures of Normal distributions in Richardson and Green (1997).
The prior distribution is now completed by specifying the priors on the parameters of
the von Mises distributions. Conjugate priors for mean direction and concentration
parameters of a single von Mises distribution were used in e.g. Mardia and El-Atoum
(1976), Guttorp and Lockhart (1988) and Nuñez-Antonio and Gutiérrez-Peña (2005).
Here we do not need conjugacy of the prior and use invariance arguments and an elic-
itation procedure set out in Section 4. The prior on µ is selected as follows: assuming
prior ignorance about the direction of the data leads us to choose independent Uniform
priors on Sm for each of the components of µ. Finally, the components of τ are assumed
independent with each assigned an Exponential prior with mean parameter b. Section
4 will discuss how we choose b, along with λK and κ.

3.2 Inference

Inference for this class of models again requires the use of numerical methods and, as in
Subsection 2.2, we use a reversible jump MCMC sampler and we parameterise directions
through polar coordinates.

Our proposed sampler has five move types: (a) change weights, (b) change mean
directions, (c) change concentrations, (d) introduce a new component and (e) remove
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an existing component. Moves (a)-(c) are fixed dimension moves and are very similar
to the ones explained in Subsection 2.2, with the addition of the restriction that the
elements of w must add up to one.

For creating a new component, we propose new parameters µ = (µ1, . . . , µK , µK+1)
′,

w∗ = (w1, . . . , wK , u)
′/(1+u) and τ = (τ1, . . . , τK , τK+1)

′, where u is sampled from the
Uniform distribution in (0, 1) and µK+1 and τK+1 are sampled from the respective prior
distributions. Finally, removing an existing component is done by deleting a randomly
chosen component and rescaling w so that it sums to one.

The sampler is organised as before: the three fixed-dimensional steps propose an
update using the moves (a)-(c), and the fourth step proposes a new value for K, always
choosing (d) if K = 1 and selecting either (d) or (e) with probability 1/2 for larger K.

Classical ways of fitting this model are discussed in Fisher (1993) and Mooney et al.
(2003), whereas Grimshaw et al. (2001) presents likelihood ratio tests. Issues of identi-
fiability are examined in Kent (1983).

4 Prior Matching

In order to compare the models above, we will use the formal tool of Bayes factors. The
sensitivity of Bayes factors to the prior assumptions is a well-documented feature (see
e.g. Kass and Raftery 1995). Therefore, a fair comparison of the models needs to be
based on priors that are comparable. We achieve this through prior matching, which
entails that the prior distributions of both models represent very similar prior beliefs on
a certain quantity of interest. Here we will focus on the mean resultant length, defined
as

ρ = ‖E(d)‖, (5)

i.e. the Euclidean norm of the mean direction. The measure ρ ∈ [0, 1) is an important
characteristic of directional distributions (for any m), describing the dispersion of the
distribution of d (see Mardia and Jupp 2000). If the distribution is tightly concentrated
then ρ is close to one, whereas for a Uniform distribution on the sphere, the mean
resultant length will be zero.

Focusing on the implied priors for ρ also facilitates prior elicitation, as ρ is a measure
that we can interpret. We want the prior to induce a distribution for ρ with most mass
fairly close to zero (low concentration), but without totally excluding values of ρ over,
say, 0.5 (high concentration). This is in line with a lack of a strong prior belief that a
certain direction will dominate and is similar to a fairly vague prior for the spread of
observations on the real line.

The full description of the models still requires the specification of the hyperparam-
eters λK , σv, κ and b. Barring a difference in the truncation of K (K > 1 for the
log-spline model and K > 0 for the von Mises mixture), we choose the same Poisson
(λK) prior for the number of knots in the log-spline model and the number of compo-
nents in the von Mises mixture model. We choose λK = 5 reflecting our expectation
that a small number of components will be sufficient. We also select κ to be a vector of
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ones. We have experimented with different prior hyperparameters (for example, setting
λK to be different for both models), but found that we can best achieve the matching
and the desired prior for ρ by using these choices for λK and κ while adjusting the values
of σv and b. Figure 1 presents Monte Carlo simulation estimates of the prior densities
of ρ for both models in the cases with m = 1 and m = 2, covering most applications
of practical interest. To achieve a reasonable and matched prior, we recommend the
following values: σv = 1/4 and b = 1 for m = 1 and σv = 5/3 and b = 4/3 when m = 2.
For larger m the same approach can easily be followed. The consideration of ρ for prior
matching does not allow us to distinguish between, say, a Uniform distribution and a
multimodal distribution which is perfectly symmetric around the origin (called l-fold
symmetry in Mardia and Jupp, 2000, p.146). To make sure we do not confound such
very different cases in our prior matching procedure, we compute the distribution of the
Kullback-Leibler divergence between the uniform distribution and the prior predictive
directional distribution induced by both models. The distributions for both models are
very similar, with median (interquartile range) equal to 0.0086(0.026) for the log-spline
and 0.0074(0.015) for the von Mises mixture in the circular case, and 0.073(0.012) and
0.056(0.019), respectively, when m = 2.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

ρ
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

3.5

ρ

Figure 1: Prior density functions of ρ for log-spline (solid) and mixtures of von Mises
(dashed) models. The left panel is for the case m = 1 and the right panel is for m = 2.

5 Applications

In the sequel, we always make use of cubic hyperspherical spline basis functions, cor-
responding to l = 2. This generates density functions that we feel are sufficiently
smooth for most applications. Nevertheless, altering l does not imply any methodolog-
ical change.

In all cases, the prior used is as in Sections 2, 3 and 4, for the appropriate dimension
(m+ 1). In two of the applications circular data (m = 1) is considered, and in one we
have spherical data (m = 2).
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Inference is conducted using MCMC chains of 1.2 × 106 iterations, retaining every
10th sample after a burn-in period of 2× 105 draws. Convergence was never a problem:
chains of one tenth this length led to virtually identical results in all applications.

We assess the relative adequacy of different models using Bayes factors. Estimates of
marginal likelihoods are obtained using the p4 measure in Newton and Raftery (1994),
with their δ = 0.4. Various values of δ in the range (0.1, 0.8) were tried, without any
substantive effect on the results.

5.1 Simulated data

To get a first idea of the behaviour of the log-spline model, we have generated a sample
of 250 observations on the unit circle from a mixture of von Mises distributions as in
(4) with K = 2, w1 = 0.65, µ1 = π/8, τ1 = 3, µ2 = 3π/2 and τ2 = 6. We used
both the log-spline model and the mixture of von Mises model on these data. The
posterior distributions on the mean direction and the mean resultant length implied by
these models are quite close and are concentrated around their sample counterparts. As
could be expected, the von Mises mixture model (which was used to generate the data)
is favoured over the log-splines model by a log Bayes factor of 3.6.

In order to get a better feel for model fit, Figure 2 displays the data: they are
represented through a rose diagram (circular histogram with the area of each sector
proportional to the observed frequency) in the left panel and indicated by dots in the
right panel. The latter also presents the posterior predictive densities corresponding
to the two models. Predictive density values are proportional to the distance from the
centre of the unit circle (indicated by +) and illustrate that the two models lead to
quite similar distributions. The mean direction of the data is indicated by the vector in
the figure, with length equal to the observed mean resultant length.

In the sampled output we find maximum values for K (the number of knots for the
log-splines model and the number of components for the mixture of von Mises model)
of 8 for both models. The von Mises mixture model tends to have smaller K, with a
mean of 2.3 and a median of 2 (in line with the actual model that generated the data),
as opposed to 4.6 and 4, respectively, for the log-splines model.

5.2 Turtle data

Our first real data set is also circular and comprises the orientation of turtles after being
taken to a site at sea and then released. The data consist of 76 observations which can
be found in Mardia and Jupp (2000, p. 9) and have been analysed on a number of
occasions, including Stephens (1969) and, more recently, Fernández-Durán (2004). A
scatterplot of the data is presented in Figure 3. For these data, the magnitude and
direction of the mean vector are 0.5 and 0.36π, respectively. Thus, as described in
Goodall (1999), the majority of the turtles aimed “homewards”, while an important
minority simply went on the opposite direction. It then seems that this specific kind
of turtle possesses a strong sense of orientation, but sometimes just confounds left with
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Figure 2: Left panel: rose diagram of the artificial data. Right panel: circular plot of
the data (dots) and representation of the predictive directional log-spline (solid) and
mixture of von Mises (dashed) densities; the direction of the vector is the mean direction
of the data and its length is the mean resultant length.

right.

Formal comparison of the two models reveals an advantage for the directional log-
spline one, with a Bayes factor of 7. The differences between the directional log-spline
and the mixture of von Mises models are illustrated in Figure 3, where we present the
posterior predictive densities for both models. The densities are proportional to the
distance from the centre of the circle defined by the dots. Both models are in line with
the findings in Stephens (1969) and Fisher (1993) that the turtles have one preferred
direction, but some are simply going backwards. However, the directional log-spline
model produces a predictive density that is somewhat more concentrated than the one
obtained with the von Mises model. Indeed, the posterior density for the mean resultant
length, presented in the left panel of Figure 4 indicates that the concentration tends to
be slightly higher for the log-splines model. This is a consequence of the large flexibility
of the log-splines model, which allows the density to go virtually to zero in those regions
where no observations occur. To illustrate the variability of the distribution, the right
panel of Figure 4 presents 100 directional log-spline densities, corresponding to every
1000th draw of the sampler. The main characteristics of the data are consistently being
represented, leading to the two sectors with large posterior mass. The same plot for the
von Mises mixture model looks very similar.

In terms of K the results are quite close. For both models the posterior median of
K is 4 with a mean of 4.6 for the log-spline model and 4.2 for the von Mises mixture.
The main difference is that the mixture model leads to a larger maximum number of
components (14) than the log-spline one (10).
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Figure 3: Circular plot of the turtle data (dots) and representation of the mean posterior
directional log-spline (solid) and mixture of von Mises (dashed) densities. The direction
of the vector is the mean direction of the data and its length is the mean resultant
length.

5.3 Cosmic ray data

We now turn our attention to a spherical application dealing with the arrival of low
mu showers of cosmic rays. The dataset used here, with 148 observations, originates
from a NASA project (Rheinboldt and Rosenfeld 1966) and consist of arrival directions
of cosmic rays, measured at a high mountain station in Bolivia, starting in 1962 and
spanning over three years. The data can be found in Fisher et al. (1987, pp. 280-
281), and were also analysed in Boulerice and Ducharme (1994), who find that a single
von Mises distribution does not provide a reasonable fit and propose a decentred uniform
distribution. An important reason for studying these data is to ascertain their isotropy
(rotational symmetry). The mean resultant length of the data is 0.24 and the mean
direction is {0.071,−0.317,−0.946}, where the first component corresponds to the north-
south direction.

The model using directional log-spline distributions is strongly preferred by the data
to the one based on mixtures of von Mises distributions, with a Bayes factor estimated
as 3 × 1014.

Contourplots of the posterior predictive density function implied by both models
(overplotting the data) are given in Figure 5, illustrating the differences between the
models. These plots are in terms of the polar angles, where the angle ω1 in (0, π)
is the colatitude (π/2-latitude) and the angle running from 0 to 2π (ω2) denotes the
longitude (see Mardia and Jupp 2000, p. 160). Density values are lowest on the poles
(corresponding to the lines ω1 = 0 and ω1 = π), where there are very few observations
(this is, of course, at least partly induced by the topology of the polar representation, but
Boulerice and Ducharme (1994) hypothesize on the basis of astronomical considerations
that the observations are uniformly distributed over the subset of the sphere described
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Figure 4: Turtle data. Left panel: posterior density of the mean resultant length (ρ) for
log-spline (solid) and mixtures of von Mises (dashed) models. Right panel: directional
log-spline densities corresponding to 100 samples from the posterior, as a function of
the angle of the direction.

by ω1 ∈ [0.14π, 0.86π)).

Figure 6 displays the corresponding surface plots from two different viewpoints.
Clearly, the two predictive density surfaces share common characteristics, such as the
low values at the poles and the main mode around (ω1, ω2) = (5π/8, 5π/4). There
are also important differences; in particular, the models assign a secondary mode to
different locations, driven by different local subsets of the data (these locations seem
far apart in the plots, but are not so far on the sphere, of course). In addition, the
log-spline model leads to countours that are less “ridge”-shaped. Thus, the von Mises
mixture model is more in line with a “girdle” distribution than the log-spline model,
which seems to induce somewhat more irregular shapes and seems to be further from
rotational symmetry. This is, again, indicative of the great flexibility of this model.

The number of components of the von Mises model (maximum 16, mean 4.3 and
median 4) tends to be somewhat higher than the number of knots in the log-spline model
which has a maximum of 11, a mean of 3.4 and a median of 3. In particular the log-
spline model manages to produce quite complex distributional shapes with surprisingly
small values for K.

6 Conclusion

In this paper we have proposed a very flexible class of directional distributions, based
on hyperspherical log-splines. These distributions can easily deal with nonstandard
features of directional data, such as multimodality and skewness, and are applicable
in hyperspheres of any dimension. We contrast this new class of distributions with
mixtures of von Mises distributions, which is, arguably, the main competing model
currently available in the literature.
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Figure 5: Cosmic ray data. Countourplots of the predictive densities for log-spline (left
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contours relate to low density values. Selected contours are labelled with the density
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A particular challenge for a Bayesian analysis of these models is to specify reason-
able prior distributions, which are comparable across models and thus allow for model
choice or model averaging via Bayes factors. The specification of the priors is based
on invariance arguments and on the implied prior distribution for the mean resultant
length, a measure of concentration of the distribution. The latter also allows us to
match the priors for both models.

The use of reversible jump MCMC samplers makes Bayesian inference in these mod-
els quite feasible.

We compare the log-spline and the mixture of von Mises models in the context
of three data sets. One set of circular observations generated from a mixture of two
von Mises distributions, the circular turtle data and spherical data on cosmic rays. Both
of the real data sets favour the log-spline model (moderately for both circular data sets
and overwhelmingly in the cosmic ray application). Our examples illustrate the large
amount of flexibility of the log-spline model. Despite this flexibility, the number of
knots used in the log-spline model is quite small (with a mean of less than five in these
applications), facilitating the computations. In fact, with the priors proposed here,
neither model leads to overfitting the data.
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