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How many clusters?

Peter McCullagh∗ and Jie Yang†

Abstract. The title poses a deceptively simple question that must be addressed by
any statistical model or computational algorithm for the clustering of points. Two
distinct interpretations are possible, one connected with the number of clusters in
the sample and one with the number in the population. Under suitable conditions,
these questions may have essentially the same answer, but it is logically possible
for one answer to be finite and the other infinite. This paper reformulates the
standard Dirichlet allocation model as a cluster process in such a way that these
and related questions can be addressed directly. Our conclusion is that the data
are sometimes informative for clustering points in the sample, but they seldom
contain much information about parameters such as the number of clusters in the
population.

Keywords: Cluster process; Dirichlet partition; Gauss-Ewens process; Random
sub-clusters; Species-counting model

1 Gaussian mixtures

The basic problem of cluster analysis is to identify subsets or clusters in a finite set of
points y1, . . . , yn in Rd, with the idea that a cluster might plausibly represent an iden-
tifiable homogeneous sub-population. No external information in the form of covariates
or relationships among the units is available to assist in the formation of clusters. One
way to formulate this exercise as a statistical problem is to assume that the points
Y1, Y2, . . . are independent and identically distributed with distribution f , which is a
mixture of k Gaussian components

f(y) =

k∑

r=1

πr φ(y − ξr, Σ0),

in which φ(y, Σ) is the Gaussian density at y ∈ Rd with covariance Σ. The mixture
proportions are π = {π1, . . . , πk}, and ξr is the mean of the rth component. For a
good summary of finite mixture models, see Titterington, Smith, and Makov (1985),
chapters 1 & 2. This paper considers only the simplest form of the mixture model in
which each component has the same covariance matrix. However, the effect of variable
cluster shape is achieved by the simple modification of the Dirichlet cluster process
described in section 5.

Technically speaking π is an unordered set of non-negative numbers adding to one,
and ξ is a parallel set of points in Rd. Equivalently, the unordered set of ordered
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pairs {(π1, ξ1), . . . , (πk , ξk)}, along with Σ0, is sufficient to determine f . In practice, the
elements of π are listed in some definite order, and the elements of ξ in the corresponding
order. Since a simultaneous permutation of the components of π and ξ has no effect
on the density f , it is evident that the individual components such as (ξ1, π1) or πk

are not identifiable. Lack of identifiability can be evaded but not entirely avoided by
the imposition of order constraints on π or on a component of ξ (Richardson and Green
1997). One logical difficulty with constraints is that a component with low weight might
not occur in the sample, which makes it difficult to match up the ordered sample values
with the ordered components of the population parameter. Stephens (2000a, section 3)
also argues against the imposition of constraints, but for more concrete reasons.

The Gaussian mixture model can be obtained from several different routes. One
method is to begin with a list of labels {xi} chosen randomly and independently from
a finite set of labels, and to assume that the observed values Yi are independent Gaus-
sian with mean ξ(xi) depending on the label (Scott and Symons 1971; Binder 1978;
Banfield and Raftery 1993). The covariance matrix may also depend on the label, and
the conditional distribution need not be Gaussian, but this level of generality is not
used here.

Since the problem is unaffected by permutation of mixture components, it is natu-
ral to exploit this additional symmetry by using an exchangeable model for the mix-
ture components, and most authors do so. However, it is desirable to go further by
removing labels entirely (MacEachern 1994; Dahl 2005; McCullagh and Yang 2006;
Booth, Casella, and Hobert 2007). We formulate the problem as an exchangeable clus-
ter process in such a way that the mixture components occur as unlabelled blocks. Two
problems arise in the Bayesian analysis of Gaussian mixtures, one conceptual connected
with label-switching (Stephens 2000a,b), and one computational connected with the
variable dimension of the parameter space (Richardson and Green 1997). The formu-
lation as a cluster process rather than a mixture model avoids both problems at once
without imposing constraints on the parameter space. The effect is to make the model
simpler and the desired inferences more direct, at least in principle.

2 Cluster processes

2.1 Random partition

Consider a set U = {1, 2, 3, 4} consisting of four units. A function or vector x : U →
{a, b, c} with components (x1, x2, x3, x4) determines a partition of the units into three
disjoint labelled classes. For example, if x = (a, b, b, a), the classes are

x−1(a) = {1, 4}, x−1(b) = {2, 3}, x−1(c) = ∅,

while the function x′ = (b, c, c, b) gives the same classes with permuted labels. All told,
there are 34 = 81 labelled partitions x : U → {a, b, c}.

For certain purposes, it is more natural to focus on the partition, disregarding the
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labels, and this is certainly true for cluster analysis problems in which the labelling of
clusters is purely arbitrary. In the example shown above, the functions x and x′ are
regarded as equivalent because they induce the same unlabelled partition. For n ≥ 1,
a partition B of the set [n] = {1, , . . . , n} is a set of disjoint non-empty subsets, called
blocks, whose union is [n]. The set Bn of partitions of [n], called the partition lattice,
arises naturally in connection with moments and cumulants (McCullagh 1984). For
n ≤ 4 the sets Bn are as follows

B2 : 12, 1|2
B3 : 123, 12|3 [3], 1|2|3
B4 : 1234, 123|4 [4], 12|34 [3], 12|3|4 [6], 1|2|3|4

where 12|34 is an abbreviation for the partition {{1, 2}, {3, 4}}, and 12|34 [3] is an
abbreviation for the three partitions

12|34 [3] = {12|34, 13|24, 14|23},

each having two blocks of size two. Thus B3 has 5 elements and B4 has 15.

Every function x : [n] → C determines an equivalence relation B : [n] × [n] → {0, 1}
by the label-forgetting transformation

B(i, j) =

{
1 ifx(i) = x(j)

0 otherwise.

Note that x determines B, but not conversely. No distinction is made in the notation
between B as an equivalence relation, B as a set of subsets, and B as a symmetric
binary matrix. Thus #B is both the number of blocks and the rank of the matrix.

A permutation σ : [n] → [n] acts on partitions B 7→ Bσ in the obvious way by
permuting rows and columns of the matrix Bσ(i, j) = B(σi, σj). The number of blocks
and the block sizes are unaffected. A probability distribution Pn on the set Bn is said
to be symmetric if, for each permutation σ, Pn(Bσ) = Pn(B) for all B ∈ Bn. Symmetry
implies that two partitions having the same block sizes also have the same probability.

To each partition B′ ∈ Bn+1 there corresponds a partition B ∈ Bn obtained by
deleting the element n+1, i.e. by deleting the last row and column from the matrix B ′. In
this way, every distribution on Bn+1 induces a marginal distribution on Bn. A partition
process is a sequence of distributions {Pn} on Bn in which Pn is the marginal distribution
of Pn+1, and an exchangeable partition process is one in which each distribution Pn is
also invariant under permutation of units.

Examples of exchangeable partition processes are given in the next section. It suffices
for the moment to observe that the distribution induced from the uniform distribution
on B3 is not uniform on B2. The uniform distributions are symmetric for each n,
but they do not determine a partition process. Another case is Hartigan’s product
partition model (Hartigan 1990; Crowley 1997; Quintana and Iglesias 2003) determined
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by a cohesion function c(·) defined on subsets. The product partition model is infinitely
exchangeable only if c(b) = λΓ(#b) which leads to the Ewens family.

2.2 Dirichlet cluster process

As a model for cluster analysis, the Gaussian mixture formulation is a natural place to
begin, but it is not entirely satisfactory because it fails to account for the symmetries
that are usually present in clustering problems. For example, the labelling of clusters is
unnecessary and in most respects undesirable. One way to avoid labels is to construct
an exchangeable cluster process consisting of an infinite sequence Y1, Y2, . . . of points in
Rd, together with a random partition of the integers into k blocks. The simplest way
to generate the leading sequence of length n from such a process is to select the value
of k and proceed as follows.

1. Generate the cluster proportions π = (π1, . . . , πk) from the exchangeable Dirichlet
distribution Dir(λ/k, . . . , λ/k), where λ > 0.

2. Given π, generate the sequence of labels independently from the multinomial
distribution with proportions π. For a set of n units, the probability of observing
the label sequence x = (x1, . . . , xn) is πn1

1 · · ·πnk

k , where nr ≥ 0 is the number of
occurrences of label r. The unconditional probability is

Pn(x) =
Γ(λ)

∏
r Γ(nr + λ/k)

Γ(n + λ) (Γ(λ/k))k
.

3. Now forget the labels and let B be the random partition of [n] induced by x. The
distribution is

Pn(B; λ, k) =
k!

(k − #B)!

Γ(λ)
∏

b∈B Γ(#b + λ/k)

Γ(n + λ) (Γ(λ/k))#B
. (1)

In this context, #B ≤ k is the number of blocks in B, and for each block b ∈ B,
the number of elements is #b ≥ 1.

4. For the same set of n units, the conditional distribution of Y = (Y1, . . . , Yn) given
the sequence of n labels x1, . . . , xn, depends only on the partition B of the given
set of n units. The conditional distribution is Gaussian with constant mean vector
1µ, and covariance matrix ΣB = In ⊗ Σ0 + B ⊗ Σ1 whose components are

cov(Yir , Yjs |B) = δijΣ0 rs + BijΣ1 rs ,

where Σ0, Σ1 are the within- and between-cluster covariance matrices of order d.
In other words, Y (u) = µ+ε(u)+ξ(x(u)) where ξ and ε are independent processes,
both with independent Gaussian components. Consequently the joint distribution
of (Y, B) is

pn(y, B) = φ(y − 1µ, ΣB) × Pn(B; λ, k) (2)
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where φ(·, ·) denotes the normal density in Rnd.

5. For clustering problems in which only Y is observed, the marginal density at
y ∈ Rnd is

pn(y) =
∑

B∈Bn

φ(y − 1µ, In ⊗ Σ0 + B ⊗ Σ1) Pn(B; λ, k) . (3)

The density (3) determines an exchangeable process and serves as the likelihood func-
tion for cluster analysis. In a partially supervised design where B is observed for some
but not all units, the likelihood has an additional factor (2) for the supervised points. In
practice, we often work with the marginal likelihood function (Tunnicliffe Wilson 1989;
McCullagh 2008) based on the configuration statistic (y − 1y)S−1/2, where y is the list
of points arranged as a matrix of order n × d, y is the mean vector in Rd, and S is
the sample covariance matrix. The main advantage is that the marginal distribution
depends only on (Σ−1

0 Σ1, λ, k), and the conclusions are unaffected by affine transforma-
tion of points in Rd. The marginal likelihood is effective in clustering problems where
d is small relative to n, say d < n/2. Its effectiveness diminishes if d > n/2, and it is
completely uninformative if d ≥ n (McCullagh 2008).

The parameter space for the cluster model (2) consists of the components (k, λ, µ,
Σ0, Σ1), which is a union of manifolds, one for each positive integer k. Each of these
manifolds has the same dimension regardless of k, so the problem of variable dimension
does not arise. One minor complication arises due to the fact that the parameter is not
identifiable: for k = 1 the distribution does not depend on λ. Otherwise the model is
regular for k ≥ 2, which is assumed where necessary.

Although λ is identifiable for k ≥ 2, it is not consistently estimable in (1) unless

k = ∞, and even then the rate of convergence is such that var(λ̂) = O(1/ log(n)).
If there was a compelling need to estimate λ accurately, this rate would be a serious
drawback. However, the reason that the parameter is effectively unidentifiable is that
its effect on distributions is slight, and this remark applies to both λ and k provided
that k is not too small. Consequently the value has only a modest effect on conditional
distributions. Consider for example, the partition B having five blocks of size 20. For
λ = 1 the likelihood has a maximum at k = 8, but the ratio P (B; 8)/P (B;∞) is finite,
in fact only 1.78. For certain purposes such as classification it may be sufficient to set
k = ∞ and λ = #B/ log(n) if B is observed, leaving only Σ−1

0 Σ1 to be estimated.

The partition distribution Pn in (1) depends only on the block sizes, so it is symmet-
ric. In addition Pn is equal to the marginal distribution of Pn+1, so these distributions
determine an exchangeable partition process. The limit as k → ∞ is the Ewens pro-
cess (Ewens 1972; Ishwaran and Zarepour 2002; Pitman 2006), also called the Chinese
restaurant process (Aldous 1985; Pitman 2006, section 3.1). Likewise, each distribution
pn in (2) is invariant under coordinate permutation, pn(yσ , Bσ) = pn(y, B), so each
distribution is symmetric. In addition, pn is the marginal distribution of pn+1, so these
distributions determine an exchangeable cluster process.
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For cluster analysis purposes, the Gauss-Ewens process is a special case of the Dirich-
let process mixture models (MacEachern 1994; Neal 2000; Blei and Jordan 2006). The
latter is an infinite mixture model using the Dirichlet process prior (Ferguson 1973;
Antoniak 1974) for cluster centroids. In the Bayesian literature, most authors construct
their hierarchical models using cluster labels. Exceptions include MacEachern (1994)
who explicitly uses partitions with a conjugate style Dirichlet process prior, and Dahl
(2005) who provides samplers for updating partitions with nonconjugate prior.

The first three steps of our construction are essentially the same as the model sug-
gested by Fisher, Corbet, and Williams (1943) for estimating the number of species in
a population, a model subsequently developed by Good and Toulmin (1956).
Richardson and Green (1997) allow within-cluster covariance matrices to vary from clus-
ter to cluster, but otherwise their construction follows the same lines and is formally
equivalent for fixed k. Apart from our emphasis on the cluster process (2), and the
distribution (3) as a model for the observations, there are other differences that have
a substantial effect on conclusions. Richardson and Green use a parameterization in
which δ = λ/k is held fixed, so the relation between their process for k and k + 1 is
different from ours. This difference is quite substantial, so much so that the partition
model has a non-trivial limit as k → ∞ for fixed λ, but there is no similar limit as
k → ∞ for fixed δ. For that reason, a Bayesian model in which (k, δ) are a priori
independent may be very different from a model in which (k, λ) are independent.

3 Cluster analysis

3.1 Aims and objectives

The key idea is to use the family of Dirichlet cluster processes as a statistical model to
address the sorts of questions posed in cluster analysis and related problems that are
often addressed by Gaussian mixture models. In other words, given that (y1, . . . , yn)
is observed from the marginal process with distribution (3), what can be said about
the clusters? With a suitable prior distribution on the parameters θ = (k, λ, µ, Σ0, Σ1),
specific issues that may be addressed include the following.

1. Find the posterior distribution for k.

2. Find the posterior conditional distribution pn(B | y) for the clustering B of the
sampled units.

3. Find the posterior conditional distribution for #B, the number of clusters that
occur among the sampled units.

4. Find the posterior conditional mean E(B | y) for the sampled units.

5. Find the posterior modal clustering relative to a suitable baseline, either uniform
or (1).

6. Predict the response value for a subsequent unit by computing the conditional
density pn+1

(
yn+1 | y1, . . . , yn

)
for the process (3).
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If the Gauss-Ewens process is employed as a model, the answer to question 1 is k = ∞
with probability one, whereas the answer to question 3 is evidently finite. For large n,
the unconditional distribution of #B implied by the Ewens process is approximately
Poisson with parameter λ log(n), so the number of sample clusters increases rather
slowly with the sample size (Arratia, Barbour, and Tavaré 2003, chapter 4; Pitman
2006, section 3.3).

In ecological applications, most authors make a strong distinction between the num-
ber of species in the population and the number that occur in a sample of individuals
(Fisher, Corbet, and Williams 1943; Good and Toulmin 1956). However, few papers on
mixture models and cluster analysis emphasize this distinction, or discuss which ques-
tion is relevant for what purpose. For example, Tibshirani, Walther, and Hastie (2001)
avoid formal models, so questions such as 1 or 6 cannot easily be addressed. Instead,
they use a gap statistic for estimating ‘the number of clusters in a set of data’ making
it clear that the gap statistic aims to answer question 3. Most proponents of formal
models for cluster analysis appear to take a different view of the matter because ques-
tion 3 is seldom considered. Banfield and Raftery (1993) use a Bayesian model in which
the number of components is the number in the population, so their posterior distri-
bution for k clearly addresses question 1. Similar remarks apply to Binder (1978) and
to Richardson and Green (1997). Our experience is that undifferentiated data without
class information can sometimes be mildly informative for question 3 and other matters
related to the clustering of the sampled units. But question 1 is much more difficult.
Even with the advantage of strong parametric assumptions embedded in the Dirichlet
cluster process, the data seldom contain much information to address the matter.

The emphasis on question 1 over question 3 is defensible if k is small relative to n,
and the model is such that n min{πr} is large with high probability. This implies
that the number of blocks in the sample is small, and the smallest block contains an
appreciable number of units. But the Dirichlet allocation scheme does not guarantee
this, so there could be numerous small blocks. In specific applications, it may be feasible
to set a finite upper bound on the number of clusters based on physical or biological
considerations, and it is then reasonable to restrict attention to prior distributions such
that pr(k < ∞) = 1. But in general, if there is substantial uncertainty about the
number of clusters, it is mathematically more natural to allocate non-zero prior mass
to the event that k is very large. Fisher, Corbet, and Williams (1943, pg. 54) favours
k = ∞ for entomological applications, and the same assumption is widely used in
connection with alleles in population genetics (Ewens 1972; Kingman 1978).

For the cluster model (2), the difference between the number of clusters in the
population and the number that occur in a large sample is typically rather large. For
the model considered by Richardson and Green (1997), the difference is not entirely
negligible even for fairly large samples unless δ = λ/k is large. For example, if k = 10,
the expected number of clusters occurring in a sample of size n = 200 is around 4.4
if λ = 1, and around 9.6 if λ/k = 1. Even if the cluster membership information is
available for the sampled units, it is often difficult to say much about k other than
k ≥ #B, without knowing λ.
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Although the clusters are unlabelled, it may sometimes be necessary to make in-
ferences about the mean of the cluster that contains a specific unit. Questions of this
sort are best addressed directly in the following manner without recourse to labels. To
each sample unit u there corresponds a block b(u) = {u′ : B(u, u′) = 1} consisting of
all units in the population belonging to the same block. The Dirichlet cluster model
implies that Y (u) = ε(u) + ξ(b(u)) is the sum of two independent Gaussian processes,
each with independent and identically distributed components. In principle, the block
mean ξ(b(u)) = E(Y (u′) |B(u, u′) = 1) can be estimated from the data by weighting
each sample unit u′ in proportion to the estimate of B(u, u′). However, it would be
naive to think that the block mean can be estimated accurately unless that particular
block is well separated from the others that occur in the sample.

3.2 Identification of clusters

We consider in this section the problem of identifying clusters in a given sample. For
this purpose, we suppose that the points in Rd are in fact generated independently from
two normal populations, both with covariance matrix Id. The two samples determine
the true partition B∗ having two blocks of equal size, one with mean ∆/2 the other
with mean −∆/2. The true partition is not observed, but we look to the conditional
distribution pn(B | y) to see whether B∗ has appreciable conditional probability. Even
if n is large, we should not expect B∗ to be the modal partition, but we might expect it
and nearby partitions to have greater probability than the one-block partition. In the
Dirichlet cluster model (2) we proceed as if Σ0 = Id, and Σ1 = θId with θ arbitrary but
known.

For any partition B, the weighted sum of squares for blocks is

S2
B =

∑

b∈B

n2
bθ|yb|2

1 + nbθ

where yb ∈ Rd is the block mean, nb is the block size, and |yb| is the usual norm in Rd.
Thus S2

1 = n2θ|y|2/(1 + nθ) for the one-block partition, and S2
B − S2

1 is approximately
the conventional between-blocks sum of squares when d = 1. The Gaussian density
with covariance matrix In + θB can be simplified so that the marginal density (3) of
the observations at y ∈ Rnd satisfies

pn(y; λ, k) = φnd(y; 0, 1) ×
∑

B∈Bn

eS2

B/2

∏
b∈B(1 + nbθ)d/2

Pn(B; λ, k). (4)

The factor (1 + nbθ)
d/2 comes from the determinant of the covariance matrix, and

φnd(y; 0, 1) is the spherical Gaussian density. In other words, the likelihood for (λ, k)
is a linear combination of Dirichlet partition probabilities Pn(B; λ, k) with coefficients
depending on the weighted sum of squares for blocks.
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The conditional distribution on sample partitions

pn(B | y) ∝ eS2

B/2 k!

(k − #B)!

∏

b∈B

Γ(nb + λ/k)

Γ(λ/k) (1 + nbθ)d/2
(5)

is governed partly by the Dirichlet distribution (1) and partly by the between-blocks
sum of squares. For k = ∞, the one-block partition has conditional probability propor-
tional to eS2

1
/2λΓ(n)/(1 + nθ)d/2 and a two-block partition has conditional probability

proportional to

λ2 Γ(n1)Γ(n2) eS2

B/2

(1 + n1θ)d/2(1 + n2θ)d/2
.

Thus, the conditional probability of B exceeds that of the one-block partition if the
between-blocks sum of squares is sufficiently large, i.e. if

e(S2

B−S2

1
)/2 ≥ Γ(n) (1 + n1θ)

d/2(1 + n2θ)
d/2

λΓ(n1)Γ(n2) (1 + nθ)d/2
.

If n1 = n2 = n/2 are both large, this condition is satisfied if

e(S2

B−S2

1
)/2 ≥ n(d+1)/2 2n−d−1 θ

λ
√

2π

or S2
B − S2

1 > 2n log(2) + (d + 1) log(n) + O(1). For a three-block partition with blocks
of equal size, the critical value is S2

B − S2
1 > 2n log(3) + 2(d + 1) log(n).

For the true partition B∗, the between-blocks sum of squares is n|∆|2/4 + Op(1),
so pn(B∗ | y) ≥ pn(1 | y) if |∆|2 > 8 log(2) or |∆| > 2.355 regardless of the parameters.
Note that the mixture density is bimodal if |∆| > 2 (Helguero 1904; Konstantellos
1980), so bimodality is not enough to guarantee that the two-block partition B∗ has
greater posterior probability than the one-block partition. The ratio pn(B∗ | y)/pn(1 | y)
increases with n if |∆| exceeds the critical value 2.355; otherwise it decreases. Even if
|∆| exceeds the critical value, B∗ is usually not the modal partition. Accordingly,
consistent identification of clusters is not feasible unless the clusters are well separated.
Even then ambiguous points are inevitable. In this respect, the problem of cluster
identification is fundamentally different from the problem of distribution estimation
in a finite-dimensional Gaussian mixture model because the mixture model does not
determine the clusters.

A more realistic target allows a small fraction of points to remain unclassified, recog-
nizing that any point roughly equi-distant from two cluster centers cannot be assigned
with certainty to either cluster. For n − m points unambiguously classified into two
blocks, and the remaining m assigned to one or other block, there are 2m partitions to
be considered, all having roughly the same value of S2

B . The total probability of this set
exceeds that of the one-block partition if |∆|2 > 8(1−m/n) log(2), so the conclusion is
not greatly affected.
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These calculations are based on the assumption that both covariance matrices are
known. In the more realistic model with these as unknown parameters, the posterior
conditional distribution gives a more honest assessment of the information available
about clusters in the sample. Although consistent identification of clusters is clearly
a hopeless task, the conditional distribution is sometimes quite informative, depending
on the configuration of points. In some cases most elements of the matrix E(B | y) are
close to either zero or one, so the status of most pairs is well determined.

If ∆ = 0, the observations come from a single cluster with distribution N(0, Id), S2
B is

a weighted sum of χ2
d random variables with weights nbθ/(1 + nbθ) strictly less than

one, and E(exp(S2
B/2)) =

∏
b∈B(1 + nbθ)

d/2 for each fixed partition B. The quadratic
form S2

B(y) is not a symmetric function of y, so S2
B(y) 6= S2

B(σy) although they have
the same expectation. Averaging over permutations suggests the approximation

ave
σ

eS2

B(σy) '
∏

b∈B

(1 + nbθ)
d/2

for large n. The accuracy of this approximation deteriorates as θ → ∞. Using this
approximation in (5), we find that the conditional distribution of the block sizes is
approximately equal to the unconditional distribution, i.e. the distribution on integer
partitions implied by (1):

Qn(1m12m2 · · ·nmn ; λ, k) = Pn(B; λ, k) × n!∏n
j=1(j!)

mj mj !

where B is any partition having m1 blocks of size one, m2 blocks of size two, and
so on. For a large sample from a homogeneous population, this calculation implies
that the conditional distribution of the number of sample clusters does not converge
to one as might have been expected. Instead, the conditional probability of the one-
block partition is approximately Qn(n1) ' n−λ(1−1/k), i.e. negligible for large n. This
large-sample theoretical calculation ignores the normalizing constant in (5). However,
the conclusions have been confirmed by simulation, and the phenomenon persists for
moderate values of ∆. This failure is not the result of a deficiency in the Dirichlet
model; it is an honest recognition of the difficulty of the task.

3.3 Application to classification

Although the clusters in (2) are unlabelled, the model is simple and effective for classi-
fication or supervised learning in which (y, B) are both observed for the sampled units
(Blei, Ng, and Jordan 2003). Any reasonable estimate of the parameters suffices, for
example maximum likelihood or residual maximum likelihood. If there is appreciable
uncertainty regarding k, an effective remedy is to set k = ∞ even if the number of
classes is known to be finite. Suppose that (y, B) is observed on an initial set of n units,
and that we wish to classify a subsequent out-of-sample unit u′ with feature value y(u′).
The conditional distribution pn+1(· | data) is determined by the probabilities assigned
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to the events u′ 7→ b for b ∈ B and b = ∅:

pn+1(u
′ 7→ b | data) ∝

{
(#b + λ/k) φn+1(y

′ − 1µ, ΣBb
) b ∈ B,

λ(1 − #B/k) φn+1(y
′ − 1µ, ΣB∅

) b = ∅,

where φn+1 is the Gaussian density in R(n+1)d and y′ is the complete list of features.
The notation Bb denotes the partition of order n + 1 in which the observed partition B
is the leading sub-matrix, and the last element belongs to block b.

If the matrices Σ0, Σ1 are proportional, the conditional distribution can be simplified
using properties of the normal density. In that case, the probability assigned to the new
class is small unless y(u′) is sufficiently far from the observed cluster means. Apart from
a small shrinkage factor for the cluster means, the conditional probabilities are similar
to those obtained from the classical Fisher discriminant model.

4 Numerical illustrations

4.1 Best-case scenario

The most optimistic scenario for estimating k is one in which the observed points fall into
distinct clusters sufficiently well separated in Rd that the partition B can be determined
with negligible error. In the calculations that follow, it is assumed that B is observed
without error for the sampled units. The likelihood (2) has two factors, only one of which
includes the target parameter k. Given B, the y-values are irrelevant for estimating k,
and the likelihood function for (λ, k) is given by the the Dirichlet partition model (1). We
aim to compute the posterior distribution for k under a range of assumptions about λ.

For numerical illustration we take n = 100 with two partitions into five blocks,
the first uniform with five blocks of 20 points each, and the second with block sizes
{50, 30, 15, 4, 1}. Figure 1 shows the contour plot of the log likelihood relative to the
value at (k = ∞, λ = 0.948). The log likelihood is plotted for two parameterizations
(log k, log λ) in the top row, and (log k, log(λ/k)) in the second row.

It is helpful for present purposes to distinguish between normal partitions whose
block sizes are over-dispersed, and exceptional partitions whose block sizes are under-
dispersed. Over-dispersion means that the sample variance of the block sizes exceeds
the sample mean n/#B. From a range of simulations using over-dispersed partitions it
is invariably observed that the likelihood has an infinite ridge oriented horizontally or
diagonally as shown in the right panels of Figure 1. A unique maximum occurs along
the ridge, frequently at k = #B or at k = ∞ depending on the number and size of the
small blocks. If the smallest block is sufficiently large, the profile likelihood decreases
sharply from k = #B, and is usually fairly flat over the remainder of the range. Over-
dispersed partitions exist for which the likelihood has a maximum at an interior point,
e.g. {60, 30, 5, 4, 1}, but the profile likelihood for k in such cases is usually flat over
the entire range. For the uneven partition shown in Figure 1, the profile likelihood
for k decreases monotonically, but the total decrease is less than one log likelihood
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Figure 1: Contour plots of the log likelihood for two parameterizations (log k, log λ) in the
top row and (log k, log(λ/k)) in the bottom row. The configurations consist of 100 points
in five blocks of equal size (left), and unequal sizes {50, 30, 15, 4, 1} (right).

unit. The implication is that such sample partitions contain little information about
the population parameter.

If the block sizes, considered as a set of size k ≥ #B with k −#B zeros, are under-
dispersed, the likelihood for fixed k has a maximum at λ̂k = ∞. In such cases, the
overall maximum usually occurs at k̂ = #B, in which case the profile likelihood for k
decreases monotonically as illustrated in the left panel of Figure 1. But if the number
of blocks is very large, e.g. 33 blocks of size 3, the maximum may occur at a finite
value k̂ > #B. For the under-dispersed partition of n = 10 with one block of size four
and six of size one, the maximum occurs at k̂ = ∞, and the profile likelihood increases
monotonically.

A pronounced infinite ridge in the likelihood function has a number of consequences
for Bayesian inference. Consider first a prior distribution such that log λ is independent
of k, say standard Cauchy. It is evident from the upper panels of Figure 1 that the
marginal likelihood for k after integrating out λ is non-negligible as k → ∞. If there
are sufficiently many small blocks, the marginal likelihood is approximately constant for
k ≥ #B. Consider now a second prior distribution such that δ = λ/k is independent
of k. It is evident from the lower panels in Figure 1, that the marginal likelihood for k
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after integrating out λ is such that large values of k have negligible marginal likelihood.
Regardless of the observation, a large value of k having substantial prior probability
has negligible posterior probability. In particular, the value k = ∞ has zero marginal
likelihood whatever the observed partition. In the usual circumstance where the sample
partition includes a few small blocks, the conclusion that k is finite is seldom supported
by the likelihood function alone, but this conclusion is an inevitable consequence of the
assumption of prior independence of δ and k. The difficulty cannot be evaded by the
use of improper priors because the likelihood function for given finite k is not integrable.

All aspects of a stochastic model are arbitrary to some degree, and most compelling
arguments are based on notions of symmetry whose relevance to the application must
be gauged on a case-by-case basis. The arguments leading to (1) and (2) are based
on exchangeability (permutation of units and irrelevance of block labels), so the model
is reasonably firmly grounded in symmetry. In the absence of further symmetry argu-
ments, it is difficult to make an equally compelling argument for one prior over another.
However, it seems ill-advised to use a prior guaranteeing a conclusion that may not
be supported by the likelihood. Since the Dirichlet partition process (1) has a non-
degenerate limit for each λ as k → ∞, this argument suggests that the conditional
prior for λ given k should also have a non-degenerate limit. Prior information about
the magnitude of k can be incorporated into the marginal prior where its effect is more
readily apparent.

The problem of estimating k based on an observed partition B is formally equiva-
lent to the classical problem of estimating the number of unseen species. The solution
due to Fisher, Corbet, and Williams (1943) is essentially the Dirichlet partition model
described in section 2. The set partition B induces a partition 1m12m2 , . . . , nmn of the
integer n in which mr is the number of blocks of size r, and the integer partition is the
sufficient statistic. The Dirichlet partition model implies that the expected frequencies
decrease according to a negative binomial distribution. For a literary application, see
Efron and Thisted (1976), who set out to estimate the number of words that Shake-
speare knew based on the frequency of usage in the Shakespearean canon. The negative
binomial model fits the observed frequencies exceptionally well, but even with n ' 106,
the target parameter is extraordinarily difficult to estimate accurately and considerable
ingenuity is required to obtain a finite estimate.

4.2 Counting sample clusters

Figure 2 shows four datasets of 60 points each from the Dirichlet cluster model with
λ = 1, µ = 0, Σ0 = I2, Σ1 = 9I2, and k = 1, 2, 3, 4. For illustrative purposes, these were
selected so that the number of sample clusters is equal to k: the block sizes are {60},
{35, 25}, {35, 17, 8}, and {25, 19, 11, 5}.

We proceed as if B is not observed, aiming to infer B from the point configuration
alone. For illustrative purposes, we assume that the true values of µ, and Σ0 are known,
and B is a Ewens partition with λ = 1. The choice of λ is not critical, but it is worth
bearing in mind that two distinct units from the Ewens process belong to the same



114 How many clusters

−10 −5 0 5

−1
0

−5
0

5

(a)

 1
11 1 111
1

1
11

1
11 1

1

1
1 1

11
1111

1
11 1111

11
1

11
1

111 1 11 1
11

1

1
1
1

11111
11 11

−10 −5 0 5

−1
0

−5
0

5

(b)

 

1

2

1 1 1

22
22

1

2

1 1

22

1
1

1

2

1

2

11 11

2

1

2

1

2
2

2

1

2

11

2
2

1
1

1

22

1
1

2 2

1
1 11

1

2

11
1

2
2

1 1

−10 −5 0 5

−1
0

−5
0

5

(c)

1
1

2

11

2 3

1

3

1

2

1

2

1
1

2
3
3

11

3

2
2

11
1

2

11

2
2

1

3

2

11
1
1

2

1

22

1
111

2

1

32

1
1 111 1

32

11

−10 −5 0 5

−1
0

−5
0

5

(d)

2

1

2 4

3

11

3

1
1

3

1 1

2 2

1

22

1
1

1

3

1

4

1
1

3

2 4

3

1

2

3

1

22

1
11

2 22
4

2

111

2

1
1

3

4
2 2

3

2

33

2

1

Figure 2: Simulated data sets of 60 points in 1–4 clusters. Points are simulated from
the Dirichlet cluster model with λ = 1, µ = 0, Σ0 = I2, Σ1 = 9I2 and k = 1, 2, 3, 4 as
described in section 2.2.
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cluster with probability 1/(λ + 1). Finally, Σ1 = θΣ0 for some scalar θ with prior
density 1/(1 + θ)2 chosen to be proper but minimally informative.

Table 1: pn(#B|y) × 1000
#B 1 2 3 4 5 6 7 8 9 10 11 E(#B|y)
Case(a) 18 74 158 217 213 157 92 44 18 6 2 4.76
Case(b) 0 87 336 327 175 58 15 3 0 0 0 3.84
Case(c) 0 0 213 366 272 113 30 5 1 0 0 4.40
Case(d) 0 0 0 376 392 177 46 7 1 0 0 4.92
Ewens 17 78 168 225 213 152 86 40 15 5 1 4.68

Table 2: Pairwise probabilities pn(i ∼ j|y) × 100 for case (b)
i\j 1 7 14 21 28 35 42 47 49 56 60
1 100 99 99 99 99 99 0 10 0 0 0
7 99 100 99 99 99 99 0 10 0 0 0
14 99 99 100 99 99 99 0 10 0 0 0
21 99 99 99 100 99 99 0 10 0 0 0
28 99 99 99 99 100 99 0 10 0 0 0
35 99 99 99 99 99 100 0 10 0 0 0
42 0 0 0 0 0 0 100 14 75 73 76
47 10 10 10 10 10 10 14 100 12 14 14
49 0 0 0 0 0 0 75 12 100 84 84
56 0 0 0 0 0 0 73 14 84 100 85
60 0 0 0 0 0 0 76 14 84 85 100

Markov chain Monte Carlo with Metropolis-Hastings updates (Hastings 1970; Neal
2000) was used to approximate the posterior conditional distribution pn(B | y), from
which the marginal distribution pn(#B | y) was obtained. Note that the state space of
the Markov chain consists only of partitions of {1, 2, . . . , 60} as in the collapsed Gibbs
sampler proposed by MacEachern (1994). In our case, the prior is not conjugate.

From the posterior distribution of B, we can compute the distribution of averages
such as E(Bij | y) = pn(i ∼ j | y), the conditional probability that two units belong
to the same cluster. Table 1 shows the results for the number of blocks based on the
average of 5 independent chains. The small part of the matrix E(B | y) shown in Table 2
demonstrates that the conditional distribution of B given y is very different from the
unconditional distribution in which all off-diagonal elements are equal to 1/(λ + 1).

For the homogeneous case (a), the posterior conditional distribution pn(#B|y) is
fairly close to the Ewens distribution shown in the last row of Table 1. This surprising
result is explained by the argument in section 3.2. For the other configurations, the
posterior distribution is quite different from the Ewens distribution, though it is not
nearly so concentrated on the true value as might be expected. However, the posterior
distribution establishes a clear minimum for the number of clusters in non-homogeneous
configurations.

An alternative analysis uses the marginal likelihood based on the residual configura-
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tion statistic or maximal invariant under affine transformation of points in R2, thereby
avoiding the need for a prior on µ or Σ0. This analysis is preferred because the conclu-
sions are unaffected by affine transformation of the points in R2. However, qualitatively
similar conclusions are obtained under the assumption that θ = Σ−1

0 Σ1 is a scalar with
prior density 1/(1 + θ)2. The main difference is that for the two, three and four-cluster
datasets, the posterior conditional distribution of the number of clusters is a little more
diffuse in both tails.

If we change the prior for θ from the original 1/(1 + θ)2 with median 1 to 1/[9(1 +
θ/9)2] with median 9, the posterior conditional distribution for #B is not greatly af-
fected. However, it would be a mistake to deduce that the conclusions are robust to the
choice of prior. A prior that puts negligible mass on small values of θ, say zero for θ < 9
and 2/[9(1 + θ/9)2] for θ > 9, implies that clusters are unlikely to have much overlap.
For such a prior, the upper tail of the conditional distribution of #B is greatly reduced,
and the conclusions are much tighter for all configurations. A sharply peaked posterior
distribution for the number of sample clusters requires an informative prior.

To understand why pn(#B = 3|y) is so much bigger than pn(#B = 2|y) in case (b),
we list part of the matrix E(B | y) in Table 2. Point number 47 from cluster 2, which
is circled in Figure 2(b), lies equi-distant between two clusters but, as indicated by the
marginal posterior pn(47 ∼ j | y), it is an outlier from both clusters. It could belong
to either cluster, but it could equally plausibly belong to a new cluster. In fact, the
true clustering B∗ has less posterior probability than the three-block partition B ′ in
which point 47 comprises a separate block. The ratio pn(B′ | y)/pn(B∗ | y) is equal to
2.27, so the three-block partition is preferred. In large samples, this phenomenon is not
uncommon.

5 Extensions

The Gaussian Dirichlet model (2) has the property that the clusters are geometri-
cally congruent, all having the same within-cluster covariance matrix. If the appli-
cation demands non-congruent clusters, the conventional modification is to associate
with each cluster an independent random covariance matrix (Banfield and Raftery 1993;
Richardson and Green 1997). A simpler solution is to formulate a model in which each
cluster is a microcosm of the population, consisting of an independent random configu-
ration of sub-clusters. The primary clusters are determined by a random partition B1,
and the sub-clusters by a random sub-partition B2 ≤ B1 in which each block of B2 is
a subset of some block of B1. For simplicity we consider the case k = ∞ in which the
distribution of the primary clusters is

Pn(B1; λ1) =
λ#B1

1 Γ(λ1)

Γ(n + λ1)

∏

b∈B1

Γ(#b).
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Given B1, the distribution on sub-clusters is

Pn(B2 |B1, λ2) = λ#B2

2

∏

b∈B1

Γ(λ2)

Γ(#b + λ2)
×

∏

b′∈B2

Γ(#b′).

In the population, i.e. in the limit as n → ∞, each primary cluster has an infinite
number of sub-clusters in a distinct random configuration. For finite n, it is possible
that B2 = B1, in which case no primary cluster contains a proper sub-cluster. In
any event, the larger the primary cluster the more likely it is to be split into proper
sub-clusters.

The two-level Gaussian cluster process is such that the conditional distribution of
Y given the pair B1, B2 is Gaussian with constant mean and covariance

cov(Yir, Yjs |B1, B2) = δijΣ0 rs + B1 ijΣ1 rs + B2 ijΣ2 rs.

Variability between units in the same sub-cluster is determined by Σ0, and between units
in different sub-clusters of the same primary cluster by Σ0+Σ2. Evidently, the sequence
of clusters and sub-clusters can be extended indefinitely by recursive partitioning. Each
of these processes is exchangeable.

6 Conclusions

In Bayesian calculations connected with the Dirichlet partition model, careful attention
to the prior is required. Regardless of the marginal prior for the number of population
clusters, a prior in which k, λ/k are independent effectively guarantees the conclusion
that k is not much larger than the number of sample clusters. It is not unreasonable
in certain applications to expect that the difference between k and #B might be small,
but there is ample evidence in other applications that the difference is sometimes large.
It is best if the information in support of this conclusion comes primarily from the
configuration of sample clusters in the data, not from a property of the prior distribu-
tion introduced for convenience of computation. On balance, a prior in which k, λ are
independent seems preferable for inferences concerning k.

The variance ratio parameter θ = Σ−1
0 Σ1 is a critical component of the Dirichlet

cluster process, and conclusions about the number and configuration of sample clusters
can be substantially altered by changing the prior distribution. If the prior puts ap-
preciable mass on small values, say θ < 4, a sample configuration y that appears to
be homogeneous has as much chance of occurring as the superposition of two or more
coincident clusters as it does from a single cluster: pn(y |#B = 1) ' pn(y |#B = 2).
Accordingly, if θ is small with appreciable probability, a homogeneous configuration of
points conveys little information about the number of sample clusters. If the model is
to be used for counting sample clusters, this phenomenon is best avoided, and to do so
the prior for θ must put negligible mass on small values.
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