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GOODNESS-OF-FIT PROBLEM FOR ERRORS
IN NONPARAMETRIC REGRESSION:

DISTRIBUTION FREE APPROACH

BY ESTATE V. KHMALADZE AND HIRA L. KOUL1

Victoria University of Wellington and Michigan State University

This paper discusses asymptotically distribution free tests for the clas-
sical goodness-of-fit hypothesis of an error distribution in nonparametric re-
gression models. These tests are based on the same martingale transform of
the residual empirical process as used in the one sample location model. This
transformation eliminates extra randomization due to covariates but not due
the errors, which is intrinsically present in the estimators of the regression
function. Thus, tests based on the transformed process have, generally, better
power. The results of this paper are applicable as soon as asymptotic uniform
linearity of nonparametric residual empirical process is available. In partic-
ular they are applicable under the conditions stipulated in recent papers of
Akritas and Van Keilegom and Müller, Schick and Wefelmeyer.

1. Introduction. Consider a sequence of i.i.d. pairs of random variables
{(Xi, Yi)

n
i=1} where Xi are d-dimensional covariates and Yi are the one-dimen-

sional responses. Suppose Yi has regression in mean on Xi , that is, there is a regres-
sion function m(·) and a sequence of i.i.d. zero mean innovations {ei,1 ≤ i ≤ n},
independent of {Xi}, such that

Yi = m(Xi) + ei, i = 1, . . . , n.

This regression function, as in most applications, is generally unknown and we do
not make assumptions about its possible parametric form, so that we need to use a
nonparametric estimator m̂n(·) based on {(Xi, Yi)

n
i=1}.

The problem of interest here is to test the hypothesis that the common distrib-
ution function (d.f.) of ei is a given F . Since m(·) is unknown we can only use
residuals

êi = Yi − m̂n(Xi), i = 1, . . . , n,

which, obviously, are not i.i.d. anymore. Let Fn and F̂n denote the empirical d.f.
of the errors ei,1 ≤ i ≤ n, and the residuals êi ,1 ≤ i ≤ n, respectively, and let

vn(x) = √
n[Fn(x) − F(x)], v̂n(x) = √

n[F̂n(x) − F(x)], x ∈ R,

denote empirical and “estimated” empirical processes.
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Akritas and Van Keilegom (2001) and Müller, Schick and Wefelmayer (2007)
established, under the null hypothesis and some assumptions and when d = 1, the
following uniform asymptotic expansion of v̂n:

v̂n(x) = vn(x) − f (x)Rn + ξn(x), sup
x

|ξn(x)| = op(1),(1.1)

where

Rn = Op(1).(1.2)

Basically, the term Rn is made up by the sum

Rn = n−1/2
n∑

i=1

[m̂n(Xi) − m(Xi)],

but using special form of the estimator m̂n, Müller, Schick and Wefelmeyer ob-
tained especially simple form for it:

Rn = n−1/2
n∑

i=1

ei.(1.3)

Müller, Schick and Wefelmeyer (2009) provides a set of sufficient conditions under
which (1.1)–(1.3) continue to hold for the case d > 1.

In the case of parametric regression where the regression function is of the para-
metric form, m(·) = m(·, θ), and the unknown parameter θ is replaced by its es-
timator θ̂n, similar asymptotic expansion have been established in Loynes (1980),
Koul (2002) and Khmaladze and Koul (2004). However, the nonparametric case is
more complex and it is remarkable that the asymptotic expansions (1.1) and (1.2)
are still true.

The above expansion leads to the central limit theorem for the process v̂n, and,
hence, produces the null limit distribution for test statistics based on this process.
However, the same expansion makes it clear that the statistical inference based
on v̂n is inconvenient in practice and even infeasible; not only does the limit dis-
tribution of v̂n after time transformation t = F(x) still depend on the hypothetical
d.f. F , but it depends also on the estimator m̂n (and, in general, on the regression
function m itself), that is, it is different for different estimators. Since goodness-
of-fit statistics are essentially nonlinear functionals of the underlying process with
difficult to calculate limit distributions, it is practically inconvenient to be obliged
to do substantial computational work to evaluate their null distributions every time
we test the hypothesis. Note, in particular, that if we try to use some kind of boot-
strap simulations, we would have to compute the nonparametric estimator m̂n for
every simulated subsample, which makes it especially time consuming.

Starting with asymptotic expansion (1.1) of Akritas and Van Keilegom and
Müller, Schick and Wefelmeyer, our goal is to show that the above-mentioned
complications can be avoided in the way, which is technically surprisingly simple.
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Namely, we present the transformed process wn, which, after time transformation
t = F(x), converges in distribution to a standard Brownian motion, for any esti-
mator m̂n for which (1.1) is valid. One would expect that this is done at the cost
of some power. We shall see, however, somewhat unexpectedly, that tests based
on this transformed process wn should, typically, have better power than those
based on v̂n. Perhaps it is worth emphasizing that to achieve this goal we actually
need only the smallness of the remainder process ξn and not asymptotic bounded-
ness (1.2) in the expansion (1.1).

We end this section by mentioning some recent applications of martingale trans-
form, in different types of regression problems, by Koenker and Xie (2002, 2006),
Bai (2003), Delgado, Hidalgo and Velasco (2005) and Koul and Yi (2006).

2. Transformed process. Suppose the d.f. F has an absolutely continuous
density f with a.e. derivative ḟ and finite Fisher information for location. Let
ψf = −ḟ /f denote the score function for location family F(· − θ), θ ∈ R at θ =
0—we can assume that θ = 0 without loss of generality. Then,∫

ψ2
f (x) dF (x) < ∞.(2.1)

Consider augmented score function

h(x) =
(

1
ψf (x)

)

and augmented incomplete information matrix

�F(x) =
∫ ∞
x

h(x)hT (x) dF (x) =
(

1 − F(x) f (x)

f (x) σ 2
f (x)

)
, x ∈ R,

with σ 2
f (x) = ∫ ∞

x ψ2
f (y) dF (y).

For a signed measure ν for which the following integral is well defined, let

K(x, ν) =
∫ x

−∞
hT (y)�−1

F(y)

∫ ∞
y

h(z) dν(z) dF (y), x ∈ R.

Occasionally, ν will be a vector of signed measures in which case K will be a
vector also.

Our transformed process wn is defined as

wn(x) = √
n[F̂n(x) − K(x, F̂n)], x ∈ R.(2.2)

We shall show that wn converges in distribution to the Brownian motion w in
time F , that is, wn(F

−1) converges weakly to standard Brownian motion on the
interval [0,1], where F−1(u) = inf{x;F(x) ≥ u}, 0 ≤ u ≤ 1.

To begin with observe that the process wn can be rewritten as

wn(x) = v̂n(x) − K(x, v̂n).(2.3)
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Indeed, F(x) is the first coordinate of the vector-function H(x) = ∫ x
−∞ hdF =

(F (x),−f (x))T , and we will see that

HT (x) − K(x,HT ) = 0 ∀x ∈ R.(2.4)

Subtracting this identity from (2.2) yields (2.3). Using asymptotic expansion (1.1)
we can rewrite

wn(x) = vn(x) − K(x, vn) + ηn(x), ηn(x) = ξn(x) − K(x, ξn),(2.5)

where one expects ηn to be “small” (see Section 4), and the main part on the right
not to contain the term f (F−1(t))Rn of that expansion. This is true again because
of (2.4) and because the second coordinate of H(x) is −f (x).

The transformation wn is very similar to the one studied in Khmaladze and
Koul (2004) where regression function is assumed to be parametric. However, as-
ymptotic behavior of the empirical distribution function F̂n here is more compli-
cated. As a result, we have to prove the smallness of the “residual process” ηn

in (2.5) differently (see Section 4). Here we demonstrate that although, in this
transformation, singularity at t = 1 exists, the process wn(F

−1) converges to its
weak limit on the closed interval [0,1]—see Theorem 4.1(ii). Besides, we explic-
itly consider the case of possibly degenerate matrix �F(x) and show that wn is still
well defined—see Lemma 2.1.

If �F(x) is of the full rank for all x ∈ R, then (2.4) is obvious. For most d.f.’s F ,
the matrix �F(x) indeed is not degenerate, that is, the coordinates 1 and ψf of h

are linearly independent functions on tail set {x > x0} for every x0 ∈ R. How-
ever, if (and only if) for x greater than some x0, the density f has the form
f (x) = αe−αx,α > 0, the function ψf (x) equals the constant α so that 1 and
ψf (x) become linearly dependent for x > x0. As this can indeed be the case in
applications, for example, for the double exponential distribution, it is useful to
show that (2.4) is still correct and the transformation (2.3) still can be used.

The lemma below shows, that although in this case �−1
F(x) cannot be uniquely

defined, the function hT (x)�−1
F(x)

∫ ∞
x h(y) dμ(y) with μ = vn or μ = v̂n, is well

defined. Here it is more transparent and simple to use also time transforma-
tion t = F(x). Accordingly, let un(t) = vn(F

−1(t)), ûn(t) = v̂n(F
−1(t)), γ (t) =

h(F−1(t)), and �t = ∫ 1
t γ (s)γ (s)T ds, 0 ≤ t ≤ 1.

LEMMA 2.1. Suppose, for some x0, such that 0 < F(x0) < 1, the matrix
�F(x), for x > x0 degenerates to the form

�F(x) = (
1 − F(x)

)(
1 α

α α2

)
∀x > x0, some α > 0.(2.6)

Then, the equalities (2.4) and, hence, (2.3) are still valid. Besides,

hT (x)�−1
F(x)

∫ ∞
x

h(y) dvn(y) = − vn(x)

1 − F(x)
∀x ∈ R,
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or

γ T (t)�−1
t

∫ 1

t
γ (s) dun(s) = −un(t)

1 − t
∀0 ≤ t < 1.

A similar fact holds with vn(un) replaced by v̂n(ûn).

REMARK 2.1. The argument that follows is an adaptation and simplifica-
tion of a general treatment of the case of degenerate matrices �F(x), given in
Nikabadze (1987) and Tsigroshvili (1998).

PROOF OF LEMMA 2.1. Let γ (t) = (1, α)T , t = F(x). The image and kernel
of the linear operator in R

2 of �t , respectively, are

I(�t ) = {b :b = �ta for some a ∈ R
2}

= {b :b = β(1 − t)(1, α)T , β ∈ R};
K(�t ) = {a :�ta = 0} = {a :a = c(−α,1)T , c ∈ R}.

Moreover, both
∫ 1
t γ dun and H(F−1(t)) are in I(�t ) and if b ∈ I(�t ) then �tb =

(1 − t)(1 + α2)b. Then �−1
t is any (matrix of) linear operator on I(�t ) such that

�−1
t b = 1

(1 − t)(1 + α2)
b + a, a ∈ K(�t ).

But γ (t) = (1, α)T is orthogonal to an a ∈ K(�t ) and therefore

γ T (t)�−1
t b = 1

(1 − t)(1 + α2)
γ T (t)b(2.7)

does not depend on the choice of a ∈ K(�t ) and, hence, is defined uniquely.
For b = ∫ 1

t γ (s) dun(s) this gives the equality in the lemma. Besides, for any
b ∈ I(�t ), a ∈ K(�t ),

γ T (t)�−1
t �t (b + a) = γ T (t)�−1

t �tb = γ T (t)b = γ T (t)(b + a),

which gives (2.4). The rest of the claim is obvious. �

Now consider the leading term of (2.5) in time t = F(x). It is useful to consider
its function parametric version, defined as

bn(ϕ) = un(ϕ) − Kn(ϕ), ϕ ∈ L2[0,1],(2.8)

where un(ϕ) = ∫ 1
0 ϕ(s) dun(s), and

Kn(ϕ) = K(ϕ,un) =
∫ 1

0
ϕ(t)γ T (t)�−1

t

∫ 1

t
γ (s) dun(s) dt.

With slight abuse of notation, denote bn(ϕ) when ϕ(·) = I (· ≤ t) by

bn(t) = un(t) −
∫ t

0
γ T (u)�−1

u

∫ 1

u
γ (s) dun(s) du.(2.9)
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Conditions for weak convergence of un are well known: if 
 ⊂ L2[0,1] is a
class of functions, such that the sequence un(ϕ), n ≥ 1, is uniformly in n equicon-
tinuous on 
, then un →d u in l∞(
) where u is standard Brownian bridge, see,
for example, van der Vaart and Wellner (1996). The conditions for the weak con-
vergence of Kn to great extent must be simpler, because, unlike un, Kn is contin-
uous linear functional in ϕ on the whole of L2[0,1], however, not uniformly in n.
We will see, Proposition 2.1 below, that although, for every ε > 0, the provisional
limit in distribution of Kn(ϕ), namely,

K(ϕ) = K(ϕ,u) =
∫ 1

0
ϕ(t)γ T (t)�−1

t

∫ 1

t
γ (s) du(s) dt

is continuous on L2,ε , the class of functions in L2[0,1] which are equal 0 on the
interval (1 − ε,1], it is not continuous on L2[0,1]. Therefore it is unavoidable to
use some condition on ϕ at t = 1. Condition (2.10) below still allows ϕ(t) → ∞
as t → 1 (see examples below).

THEOREM 2.1. (i) Let L2,ε ⊂ L2[0,1] be the subspace of all square inte-
grable functions which are equal to 0 on the interval (1 − ε,1]. Then, Kn →d K,

on L2,ε , for any 0 < ε < 1.
(ii) Let, for an arbitrary small but fixed ε > 0, C < ∞, and α < 1/2, 
ε ⊂

L2[0,1] be a class of all square integrable functions satisfying the following right
tail condition:

|ϕ(s)| ≤ C[γ T (s)�−1
s γ (s)]−1/2(1 − s)−1/2−α ∀s > 1 − ε.(2.10)

Then, Kn →d K , on 
ε .

PROOF. (i) The integral
∫ 1
t γ dun as process in t , obviously, converges in

distribution to the Gaussian process
∫ 1
t γ du. Therefore, all finite-dimensional

distributions of γ T (t)�−1
t

∫ 1
t γ dun, for t < 1, converge to corresponding finite-

dimensional distributions of the Gaussian process γ T (t)�−1
t

∫ 1
t γ du. Hence, for

any fixed ϕ ∈ L2,ε , distribution of Kn(ϕ) converges to that of K(ϕ). So, we only
need to show tightness, or, equivalently, equicontinuity of Kn(ϕ) in ϕ. We have

|Kn(ϕ)| ≤
∫ 1

0
|ϕ(t)|

∣∣∣∣γ T (t)�−1
t

∫ 1

t
γ (s) dun(s)

∣∣∣∣dt

≤ sup
t≤1−ε

∣∣∣∣γ T (t)�−1
t

∫ 1

t
γ (s) dun(s)

∣∣∣∣
∫ 1−ε

0
|ϕ(t)|dt,

while

sup
t≤1−ε

∣∣∣∣γ T (t)�−1
t

∫ 1

t
γ (s) dun(s)

∣∣∣∣ →d sup
t≤1−ε

∣∣∣∣γ T (t)�−1
t

∫ 1

t
γ (s) du(s)

∣∣∣∣ = Op(1).

This proves that Kn(ϕ) is equicontinuous in ϕ ∈ L2,ε and (i) follows.
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(ii) To prove (ii), what we need is to show the equicontinuity of Kn(ϕ) on 
ε .
But for this we need only to show that for a sufficiently small ε > 0, and uniformly
in n,

sup
ϕ∈
ε

∣∣∣∣
∫ 1

1−ε
ϕ(t)γ T (t)�−1

t

∫ 1

t
γ (s) dun(s) dt

∣∣∣∣,
is arbitrarily small in probability. Denote the envelope function for ϕ ∈ 
ε by � .
Then, the above expression is bounded above by∫ 1

1−ε
|�(t)|

∣∣∣∣γ T (t)�−1
t

∫ 1

t
γ (s) dun(s)

∣∣∣∣dt.

However, bearing in mind that

E

∣∣∣∣γ T (t)�−1
t

∫ 1

t
γ (s) dun(s)

∣∣∣∣2 ≤ γ T (t)�−1
t γ (t) ∀t ∈ [0,1],

we obtain that

E

∫ 1

1−ε
|�(t)|

∣∣∣∣γ T (t)�−1
t

∫ 1

t
γ (s) dun(s)

∣∣∣∣dt

=
∫ 1

1−ε
|�(t)|E

∣∣∣∣γ T (t)�−1
t

∫ 1

t
γ (s) dun(s)

∣∣∣∣dt

≤
∫ 1

1−ε
|�(t)||γ T (t)�−1

t γ (t)|1/2 dt ≤
∫ 1

1−ε

1

(1 − t)1/2+α
dt.

The last integral can be made arbitrarily small for sufficiently small ε. �

Consequently, we obtain the following limit theorem for bn. Recall, say from
van der Vaart and Wellner (1996), that the family of Gaussian random vari-
ables b(ϕ),ϕ ∈ L2[0,1] with covariance function Eb(ϕ)b(ϕ′) = ∫ 1

0 ϕ(t)ϕ′(t) dt is
called (function parametric) standard Brownian motion on 
 if b(ϕ) is continuous
on 
.

THEOREM 2.2. (i) Let 
 be a Donsker class, that is, let un →d u in l∞(
).
Then, for every ε > 0,

bn →d b in l∞(
 ∩ 
ε),

where {b(ϕ),ϕ ∈ 
} is standard Brownian motion.
(ii) If the envelope function �(t) of (2.10) tends to positive (finite or infinite)

limit at t = 1, then for the process (2.9) we have

bn →d b on [0,1].
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EXAMPLES. Here, we discuss some examples analyzing the behavior of the
upper bound of (2.10) in the right tail. In all these examples we will see that not
only the class of indicator functions satisfy (2.10) but also a class of unbounded
functions ϕ with ϕ(s) = O((1 − s)−α), α < 1/2, as s → 1, satisfy this condition.

Consider logistic d.f. F with the scale parameter 1, or equivalently ψf (x) =
2F(x) − 1. Then h(x) = (1,2F(x) − 1)T or γ (s) = (1,2s − 1)T and

�s = (1 − s)

(
1 s

s (1 − 2s + 4s2)/3

)
, det(�s) = (1 − s)4

3
,

�−1
s = 3

(1 − s)3

(
(1 − 2s + 4s2)/3 −s

−s 1

)
,

so that indeed γ T (s)�−1
s γ (s) = 4(1 − s)−1, for all 0 ≤ s < 1.

Next, suppose F is standard normal d.f. Because here ψf (x) = x, one obtains
h(x) = (1, x)T and σ 2

f (x) = xf (x) + 1 − F(x). Let μ(x) = f (x)/(1 − F(x)).
Then,

�F(x) = (
1 − F(x)

)(
1 μ(x)

μ(x) xμ(x) + 1

)
,

�−1
F(x) = 1

(1 − F(x))

1

(xμ(x) + 1 − μ2(x))

(
xμ(x) + 1 −μ(x)

−μ(x) 1

)
.

Hence

hT (x)�−1
F(x)h(x) = 1

(1 − F(x))

(1 − xμ(x) + x2)

(xμ(x) + 1 − μ2(x))
.

Using asymptotic expansion for the tail of the normal d.f. [see, e.g., Feller (1957),
page 179], for μ(x) we obtain

μ(x) = x

1 − S(x)
where S(x) =

∞∑
i=1

(−1)i−1(2i − 1)!!
x2i

= 1

x2 − 3

x4 + · · · .

From this one can derive that (1−xμ(x)+x2)/(xμ(x)+1−μ2(x)) ∼ 2, x → ∞,
and therefore hT (x)�−1

F(x)h(x) ∼ 2(1 − F(x))−1, x → ∞, or equivalently,

γ T (s)�−1
s γ (s) ∼ 2(1 − s)−1, s → 1.

Next, consider student tk-distribution with fixed number of degrees of free-
dom k. In this case,

f (x) = 1√
πk

�((k + 1)/2)

�(k/2)

1

(1 + (x2/k))(k+1)/2 ,

ψf (x) = k + 1

k

x

1 + (x2/k)
, x ∈ R.
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Using asymptotics for k fixed and x → ∞ we obtain [cf., e.g., Soms (1976)]

1 − F(x) ∼ 1 + (x2/k)

x
f (x) ∼ dk

k

1

xk
, dk = 1√

π

�((k + 1)/2)

�(k/2)
kk/2

f (x) ∼ dk

xk+1 , ψf (x) ∼ (k + 1)

x
.

Consequently,

�F(x) ∼ dk

xk+2

(
x2/k x

x (k + 1)2/(k + 2)

)
,

�−1
F(x) ∼ xk

dk

k(k + 2)

(
(k + 1)2/(k + 2) −x

−x x2/k

)
,

hT (x)�−1
F(x)h(x) ∼ 2(k + 1)

dk

xk ∼ 2(k + 1)

k
[1 − F(x)]−1, x → ∞,

or γ T (s)�−1
s γ (s) ∼ [2(k + 1)/k](1 − s)−1, as s → 1.

The two values of k = 1 and k = 2 deserve special attention because mean
and variance do not exist in these two cases. For k = 1, one obtains standard
Cauchy distribution and, as seen above, the transformation per ce remains tech-
nically sound and the proposed test to fit the standard Cauchy distribution is valid
as long as m(x) is interpreted as some other conditional location parameter of Y ,
given X = x, such as conditional median, and as long as one has an estimator of
this m(x) satisfying (1.1). A similar comment applies when k = 2.

Finally, let F be double exponential, or Laplace, d.f. with the density f (x) =
αe−α|x|, α > 0. For x > 0 we get h(x) = (1, α)T and γ (s) = (1, α)T , and �s be-
comes degenerate, equal to (2.6). Therefore again, see (2.7) with vector b = γ (t),
for s > 1/2, γ T (s)�−1

s γ (s) = (1 − s)−1.

Next, in this section we wish to clarify the question of a.s. continuity of Kn

and K as linear functionals and thus justify the presence of tail condition (2.10).
For this purpose it is sufficient to consider particular case, when γ (s) = 1 is one-
dimensional and �s = 1 − s. In this case

Kn(ϕ) = −
∫ 1

0
ϕ(s)

un(s)

1 − s
ds, K(ϕ) = −

∫ 1

0
ϕ(s)

u(s)

1 − s
ds.

The proposition below is of independent interest.

PROPOSITION 2.1. (i) Kn(ϕ) is continuous linear functional in ϕ on L2[0,1]
for every finite n.

(ii) However, the integral
∫ 1

0 u2(s)/(1 − s)2 ds is almost surely infinite. More-
over,

1

− ln(1 − s)

∫ s

0

u2(t)

(1 − t)2 dt →p 1 as s → 1.
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Therefore, K(ϕ) is not continuous on L2[0,1].

REMARK 2.2. It is easy to see that E
∫ 1

0 u2(s)/(1 − s)2 ds = ∞, but this
would not resolve the question of a.s. behavior of the integral and, hence, of K .

PROOF OF PROPOSITION 2.1. (i) From the Cauchy–Schwarz inequality we
obtain

|Kn(ϕ)| ≤
(∫ 1

0
ϕ2(s) ds

)1/2(∫ 1

0

u2
n(s)

(1 − s)2 ds

)1/2

and the question reduces to whether the integral
∫ 1

0 [un(s)/(1 − s)]2 ds is a.s. finite
or not. However, it is, as even sups |un(s)/(1 − s)| is a proper random variable for
any finite n.

(ii) Recall that u(s)/(1− s) is a Brownian motion: if b denotes standard Brown-
ian motion on [0,∞), then, in distribution,

u(t)

1 − t
= b

(
t

1 − t

)
∀t ∈ [0,1].

Hence, in distribution,∫ s

0

u2(t)

(1 − t)2 dt =
∫ s

0
b2

(
t

1 − t

)
dt =

∫ τ

0

b2(z)

(1 + z)2 dz, τ = s/(1 − s).

Integrating the last integral by parts yields∫ τ

0

b2(z)

(1 + z)2 dz = −b2(τ )

1 + τ
+ 2

∫ τ

0

b(z)

1 + z
db(z) +

∫ τ

0

1

1 + z
dz

(2.11)

= −b2(τ )

1 + τ
+ 2

∫ τ

0

b(z)

1 + z
db(z) + ln(1 + z).

Consider the martingale

M(t) =
∫ t

0

b(z)

1 + z
db(z), t ≥ 0.

Its quadratic variation process is

〈M〉t =
∫ t

0

b2(z)

(1 + z)2 dz.

Note that 〈M〉τ equals the term on the left-hand side of (2.11). Divide (2.11) by
ln(1 + τ) to obtain

〈M〉τ
ln(1 + τ)

= − b2(τ )

(1 + τ) ln(1 + τ)
+ 2

M(τ)

ln(1 + τ)
+ 1.
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The equalities

EM2(t) = E〈M〉t =
∫ t

0

z

(1 + z)2 dz = ln(1 + t) − 1

1 + t
, Eb2(t) = t,

imply that

b2(τ )

(1 + τ) ln(1 + τ)
= op(1) and

M(τ)

ln(1 + τ)
= op(1) as τ → ∞.

Hence, 〈M〉τ / ln(1 + τ) →p 1, as τ → ∞. �

3. Power. Consider, for the sake of comparison, the problem of fitting a dis-
tribution in the one sample location model up to an unknown location parameter.
More precisely, consider the problem of testing that X1, . . . ,Xn is a random sam-
ple from F(· − θ), for some θ ∈ R, against the class of all contiguous alternatives,
that is, sequences of alternative distributions An(· − θ) satisfying

(
dAn(x)

dF (x)

)1/2

= 1 + 1

2
√

n
g(x) + rn(x),

∫
g2(x) dF (x) < ∞,

∫
r2
n(x) dF (x) = o

(
1

n

)
.

As is known, and as can intuitively be understood, one should be interested only
in the class of functions g ∈ L2(F ) that are orthogonal to ψf :∫

g(x)ψf (x) dF (x) = 0.(3.1)

Indeed, as g describes a functional “direction” in which the alternative An deviates
from F , if it has a component collinear with ψf ,

g(x) = g⊥(x) + cψf (x),

∫
g⊥(x)ψf (x) dF (x) = 0,

then infinitesimal changes in the direction cψf will be explained by, or attributed
to, the infinitesimal changes in the value of parameter, that is, “within” parametric
family. Hence it cannot (and should not) be detected by a test for our parametric
hypothesis. So, we assume that g and ψf are orthogonal, that is, (3.1).

Since θ remains unspecified, we still need to estimate it. Suppose θ̄ is its MLE
under F and consider empirical process v̄n based on ēi = Xi − θ̄ , i = 1,2, . . . , n:

v̄n(x) = √
n[F̄n(x) − F(x)], F̄n(x) = 1

n

n∑
i=1

I{ēi≤x}.

One uses the empirical process vn in the case one assumes θ is known.
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It is known [see, e.g., Khmaladze (1979)] that the asymptotic shift of v̄n and
vn under the sequence of alternatives An with orthogonality condition (3.1) is the
same and equals the function

G(x) =
∫ x

−∞
g(y) dF (y).

However, the process v̄n has uniform asymptotic representation

v̄n(x) = vn(x) + f (x)

∫
ψf (y) dvn(y) + op(1)

and, the main part on the right is orthogonal projection of vn—see Khmal-
adze (1979) for a precise statement; see also Tjurin (1970). Heuristically speak-
ing, it implies that the process v̄n is “smaller” than vn. In particular, variance of
v̄n(x) is bounded above by the variance of vn(x), for all x. Therefore, tests based
on omnibus statistics, which typically measure an “overall” deviation of an empir-
ical distribution function from F , or of empirical process from 0, will have better
power if based on v̄n than vn. From a certain point of view this may seem a para-
dox, as it implies that, even if we know the parameter θ , it would still be better to
replace it by an estimator, because the power of many goodness of fit tests will thus
increase. However, note that the integral in the last display has the same asymp-
totic distribution under hypothetical F and alternatives An, and therefore the vn is
“bigger” than v̄n by the term, which is not useful in our testing problem.

Transformation of the process v̄n asymptotically coincides with the process wn

we study here, and moreover, the relationship between the two processes is one-to-
one. Therefore, any statistic based on either one of these two processes will yield
the same large sample inference.

With the process v̂n the situation is the following: although it can be shown that
the shift of this process under alternatives An with orthogonality condition (3.1) is
again function G, with general estimator m̂n and, therefore, the general form of Rn,
this process is not a transformation of vn only, and therefore is not its projection.
In other words, it is not as “concentrated” as v̄n. The bias part of Rn brings in
additional randomization, not useful for the testing problem at hand. As a result,
one will have less power in tests based on omnibus statistics from v̂n.

We illustrate this by a simulation study. In this study we chose the regression
model Y = m(X) + e, with m(x) = ex, and covariate X to be uniformly dis-
tributed on [0,2]. Let F0(�) denote d.f. of a standardized normal (standardized
double exponential) r.v. and f0(ψ) denote their densities. The problem is to test
H0 :F = F0, versus the alternatives H1 :F �= F0. In simulation below we chose a
particular member of this alternative: F1 = 0.8F0 + 0.2� . To estimate m, we used
naive Nadaraya–Watson estimator

m̂n(x) =
n∑

i=1

YiI{Xi∈[x−a,x+a]}
/ n∑

i=1

I{Xi∈[x−a,x+a]},
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FIG. 1. Null empirical d.f. (red dashed curve) and null limit d.f. (black curve) of Wn.

with a = 0.04. We shall compare the two tests based on V̂n = supx |v̂n(x)| and
Wn = supx |wn(x)|. In all simulations, n = 200, repeated 10,000 times.

First, we generated null empirical d.f.’s of both statistics under the above set up.
As seen in Figure 1, although the sample size n = 200 is not too big, the empirical
null d.f. of Wn is quite close to the d.f. of supx |b(F0(x))|, its limiting distribution.
Empirical null d.f. of V̂n is given in Figure 3.

To compare power of these tests, we generated 160 errors from F0 and 40
from � and used the above set up to compute V̂n and Wn. Figure 2 shows
the hypothetical normal density f0 versus the alternative mixture density f1 =

FIG. 2. f0 (dark curve) and 0.8f0 + 0.2ψ (red dashed curve).
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FIG. 3. Empirical d.f.’s of V̂n under H0 (black curve) and H1 (red dashed curve).

0.8f0 + 0.2ψ . Figure 3 describes empirical d.f.’s of V̂n under F0 and F1 while
Figure 4 gives the same entities for Wn.

Clearly, the alternative we consider, given that the sample size is only n = 200,
should indeed be not easy to detect, especially by a test. Besides, as the difference
between F0 and F1 occurs in the “middle” of the d.f. F0, the alternative F1 is
of a nature, favorable for application of Komogorov–Smirnov test based on v̂n.
However, Figures 3 and 4 show the effect we expected: distribution of V̂n reacts
to the alternative, that is, to the presence of double-exponential errors less than the
distribution of Wn.

FIG. 4. Empirical d.f.’s of Wn under H0 (black curve) and H1 (red dashed curve).
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TABLE 1
Empirical power of V̂n and Wn tests

f and a α V̂n Wn

f1, a = 0.04 0.10 0.1904 0.3168
0.05 0.1154 0.1920
0.025 0.0625 0.1114
0.01 0.0260 0.0523

f1, a = 0.08 0.10 0.1838 0.2115
0.05 0.1081 0.1242
0.025 0.0680 0.0744
0.01 0.0325 0.0450

f1, a = 0.12 0.10 0.1837 0.1960
0.05 0.1085 0.1150
0.025 0.0619 0.0760
0.01 0.0301 0.0480

The above figures were computed with the window width a = 0.04. To assess
the effect of window width on empirical power of these tests, we computed em-
pirical power for additional values of a = 0.08,0.12, at some empirical levels α.
Table 1 presents these numerical power values. In all cases one sees the empirical
power of Wn test to be larger than that of V̂n test at all chosen levels α, although for
a = 0.04, this difference is far more significant than in the other two cases. Criti-
cal values used in this comparison were estimated from their respective empirical
null distributions. These are not isolated findings—more examples can be found in
Brownrigg (2008).

Returning to general discussion on power, we must add that with the estima-
tor m̂n used by Müller, Schick and Wefelmeyer, and therefore, with their simple
form of Rn, the process v̂n is again asymptotically a projection, although in general
a skew one, of the process vn. As described in Khmaladze (1979), it is asymptot-
ically in one-to-one relationship with the process v̄n, and, therefore wn. Hence,
the large sample inference drawn from a statistic based on v̂n is, in this case, also
equivalent to that drawn from the analogous statistic based on either of the other
two, and the only difference between this processes is that v̂n and v̄n are not as-
ymptotically distribution free, while wn is.

4. Weak convergence of wn. In this section we prove weak convergence for
the process wn, given by (2.2) and (2.3). In view of (2.5), (2.9) and the fact that
the weak convergence of the first part in the right-hand side of (2.5) was proved in
Theorem 2.1, it suffices to show that the process ηn of (2.5) is asymptotically small.
Being the transformation of “small” process ξn, the smallness of ηn is plausible.
However, the transformation K(·, ξn) is not continuous in ξn in uniform metric.
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Indeed, although in the integration by parts formula∫ 1

t
γ (s) dξn(F

−1(s)) = ξn(F
−1(s))γ (s)|1s=t −

∫ 1

t
ξn(F

−1(s)) dγ (s),

we can show, that ξn(F
−1(1))γ (1) = 0, the integral on the right-hand side is not

necessarily small if γ (t) is not bounded at t = 1, as happens to be true for normal
d.f. F where the second coordinate of γ (t) is F−1(t). Therefore, one cannot prove
the smallness of ηn in sufficient generality, using only uniform smallness of ξn.

If we use, however, quite mild additional assumption on the right tail of ξn, or
rather of v̂n and f , we can obtain the weak convergence of wn basically under
the same conditions as in Theorem 2.2. Namely, assume that for some positive
β < 1/2,

sup
y>x

|v̂n(y)|
(1 − F(y))β

= op(1) as x → ∞,(4.1)

uniformly in n. Note that the same condition for vn is satisfied for all β < 1/2.
Denote tail expected value and variance of ψf (e1) by

E[ψf |x] = E[ψf (e1)|e1 > x], Var[ψf |x] = Var[ψf (e1)|e1 > x].
Now we formulate two more conditions on F .

(a) For any ε > 0 the function ψf (F−1) is of bounded variation on [ε,1 − ε]
and for some ε > 0 it is monotone on [1 − ε,1].

(b) For some δ > 0, ε > 0 and some C < ∞,

(ψf (x) − E[ψf |x])2

Var[ψf |x] < C
(
1 − F(x)

)−2δ ∀x :F(x) > 1 − ε.

Note that in terms of the above notation,

γ (t)T �−1
t γ (t) = 1

1 − F(x)

[
1 + (ψf (x) − E[ψf |x])2

Var[ψf |x]
]
, t = F(x).(4.2)

Hence, condition (b) is equivalent to

γ (t)T �−1
t γ (t) ≤ C(1 − t)−1−2δ ∀t > 1 − ε.(4.3)

Condition (b) is easily satisfied in all examples of Section 2, even with δ = 0.
Our last condition is as follows.
(c) For some C < ∞ and β > 0 as in (4.1),∣∣∣∣

∫ ∞
x

[1 − F(y)]β dψf (y)

∣∣∣∣ ≤ C|ψf (x) − E[ψf |x]|.
Condition (c) is also easily satisfied in all examples of Section 2, even for arbitrar-
ily small β .
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For example, for logistic distribution, with t = F(x), ψf (x) = 2t − 1 and∣∣∣∣
∫ ∞
x

[1 − F(y)]β dψf (y)

∣∣∣∣ = 2
∫ 1

t
(1 − s)β ds = 2

β + 1
(1 − t)β+1,

while |ψf (x)−E[ψf |x]| = (1− t) and their ratio tends to 0, as t → 1. For normal
distribution,∫ ∞

x
[1 − F(y)]β dψf (y) ∼

∫ ∞
x

1

yβ
f β(y) dy ≤ 1

x

∫ ∞
x

y1−βf β(y) dy,

while

|ψf (x) − E[ψf |x]| =
∣∣∣∣x − f (x)

1 − F(x)

∣∣∣∣ ∼ x

x2 − 1
, x → ∞,

and the ratio again tends to 0, as x → ∞.
Recall the notation

K(ϕ, ξn) =
∫ 1

0
ϕ(t)γ (t)T �−1

t

∫ 1

t
γ (s)ξn(F

−1(ds)) dt

and for a given indexing class 
 of functions from L2[0,1] let 
 ◦ F =
{ϕ(F (·)), ϕ ∈ 
}.

THEOREM 4.1. (i) Suppose conditions (4.1) and (a)–(c) are satisfied with
β > δ. Then, on the class 
ε as in Theorem 2.1 but with α < β − δ, we have

sup
ϕ∈
ε

|K(ϕ, ξn)| = op(1), n → ∞.

Therefore, if 
 is a Donsker class, then, for every ε > 0,

wn →d b in l∞(
 ∩ 
ε ◦ F),

where {b(ϕ),ϕ ∈ 
} is standard Brownian motion.
(ii) If, in addition, δ ≤ α, then for the time transformed process wn(F

−1(·))
of (2.2), we have

wn(F
−1(·)) →d b(·) in D[0,1].

PROOF. Note, that

γ (t)T �−1
t (0, a)T = 1

1 − F(x)

(ψf (x) − E[ψf |x])a
Var[ψf |x] , t = F(x), ∀a ∈ R.

Use this equality for a = ∫ 1
t (1− s)β dψf (F−1(s)). Then condition (c) implies that

|γ (t)T �−1
t (0, a)T | ≤ Cγ (t)T �−1

t γ (t) ∀t < 1.(4.4)

Now we prove the first claim.
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(i) Use the notation ξ ′
n(t) = ξn(x) with t = F(x). Since we expect singularities

at t = 0 and, especially, at t = 1 in both integrals in K(ϕ, ξn) we will isolate the
neighborhood of these points and consider it separately. Mostly we will take care
of the neighborhood of t = 1. The neighborhood of t = 0 can be treated more
easily (see below). First assume �−1

t nondegenerate for all t < 1. Then,

∫ 1

0
ϕ(t)γ (t)T �−1

t

∫ 1

t
γ (s)ξ ′

n(ds) dt

=
∫ 1−ε

0
ϕ(t)γ (t)T �−1

t

∫ 1−ε

t
γ (s)ξ ′

n(ds) dt

(4.5)

+
∫ 1−ε

0
ϕ(t)γ (t)T �−1

t

∫ 1

1−ε
γ (s)ξ ′

n(ds) dt

+
∫ 1

1−ε
ϕ(t)γ (t)T �−1

t

∫ 1

t
γ (s)ξ ′

n(ds) dt.

Consider the third summand on the right-hand side. First note that, when proving
that it is small, we can replace ξn by the difference v̂n − vn only. Indeed, since
df (F−1(s)) = ψf (x)f (x) dx, according to (2.4) the integral

∫ 1

1−ε
ϕ(t)γ (t)T �−1

t

∫ 1

t
γ (s) df (F−1(s)) dt

is the second coordinate of
∫ 1

1−ε ϕ(t)γ (t) dt , and is small for ε small anyway.
Monotonicity of ψf (F−1) guaranteed by assumption (a) and (2.1) justify inte-
gration by parts of the inner integral in the following derivation.

∫ 1

1−ε
ϕ(t)γ (t)T �−1

t

∫ 1

t
γ (s)ûn(ds) dt

=
∫ 1

1−ε
ϕ(t)γ (t)T �−1

t

[
−γ (t)ûn(t) −

∫ 1

t
ûn(s) dγ (s)

]
dt.

Assumption (2.10) on ϕ and (4.3) imply∣∣∣∣
∫ 1

1−ε
ϕ(t)γ (t)T �−1

t γ (t)ûn(t) dt

∣∣∣∣
≤ C

∫ 1

1−ε
[γ (t)T �−1

t γ (t)]1/2 1

(1 − t)1/2+α−β
dt sup

t>1−ε

|ûn(t)|
(1 − t)β

≤ C

∫ 1

1−ε

1

(1 − t)1+α+δ−β
dt sup

t>1−ε

|ûn(t)|
(1 − t)β

,

which is small for small ε as soon as α < β − δ.
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Now, note that
∫ 1
t ûn(s) dγ (s) = (0,

∫ 1
t ûn(s) dψf (F−1(s)))T . Using mono-

tonicity of ψf (F−1) for small enough ε we obtain, for all t > 1 − ε,∣∣∣∣
∫ 1

t
ûn(s) dψf (F−1(s))

∣∣∣∣ < C

∣∣∣∣
∫ 1

t
(1 − s)β dψf (F−1(s))

∣∣∣∣ sup
s>1−ε

|ûn(s)|
(1 − s)β

.(4.6)

Therefore, using (4.4), for the double integral we obtain∣∣∣∣
∫ 1

1−ε
ϕ(t)γ (t)T �−1

t

∫ 1

t
ûn(s) dγ (s) dt

∣∣∣∣
≤ C

∫ 1

1−ε
|ϕ(t)|γ (t)T �−1

t γ (t) dt sup
s>1−ε

|ûn(s)|
(1 − s)β

and the integral on the right-hand side, as we have seen above, is small as soon as
α < β − δ. The same conclusion is true for ûn replaced by un.

Since (4.6) implies the smallness of∫ 1

1−ε
ûn(s) dψf (F−1(s)) and

∫ 1

1−ε
un(s) dψf (F−1(s)),

to prove that the middle summand on the right-hand side of (4.5) is small one needs
only finiteness of ψf (x) in each x with 0 < F(x) < 1, which follows from (a). This
and uniform in x smallness of ξn proves smallness of the first summand as well.

The smallness of integrals∫ ε

0
ϕ(t)γ (t)T �−1

t γ (t)

∫ 1

t
γ (s)ξ ′

n(ds) dt

follows from �−1
t ∼ �−1

0 and square integrability of ϕ and γ .
If �−1

t becomes degenerate after some t0, for these t we get

γ (t)T �−1
t

∫ 1

t
γ (s)ξ ′

n(ds) = ξ ′
n(t)

1 − t

and the smallness of all tail integrals easily follows for our choice of the indexing
functions ϕ.

(ii) Since for δ ≤ α the envelope function �(t) of (2.10) satisfies inequality

�(t) ≥ (1 − t)δ−α,

it has positive finite or infinite lower limit at t = 1. But then it is possible to choose
as an indexing class the class of indicator functions ϕ(t) = I{t≤τ } and the claim
follows. �

REMARK 4.1 (Computational formula). We present here a computational for-
mula for wn. Let G(x) = ∫

y≤x �−1
F(y)h(y) dF (y). Then, using (2.3) and (2.4) one

obtains

wn(x) = n−1/2
n∑

i=1

[I (êi ≤ x) − h(êi)
T G(x ∧ êi )], x ∈ R.
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Thus to implement test based on supx |wn(x)|, one needs to evaluate G and
compute max1≤j≤n |wn(ê(j)|, where ê(j), 1 ≤ j ≤ n, are the order statistics of
êj ,1 ≤ j ≤ n.

REMARK 4.2 (Testing with an unknown scale). Here, we shall describe an
analog of the above transformation suitable for testing the hypothesis Hsc that the
common d.f. of the errors ei is F(x/σ), for all x ∈ R, and for some σ > 0. Let
φf (x) = 1 + xψf (x) and hσ (x) = (1, σ−1ψf (x), σ−1φf (x))T . Then analog of
the vector h(x) here is hσ (x/σ) and that of �t is

�t,σ =
∫
y≥x/σ

hσ (y)hσ (y)T dF (y), t = F

(
x

σ

)
.

This is the same matrix as given in Khmaladze and Koul (2004), page 1013. Akin
to the function K(x, ν) define

Kσ(x, ν) =
∫ x/σ

−∞
hT

σ (y)�−1
F(y),σ

∫ ∞
y/σ

hσ (z) dν(zσ ) dF (y), x ∈ R.

Analog of Lemma 2.1 continues to hold for each σ > 0, and hence this function is
well defined for all x ∈ R, σ > 0.

Let σ̂ be a n1/2-consistent estimator of σ based on {(Xi, Yi),1 ≤ i ≤ n}. Let
F̃n(x) be the empirical d.f. of the residuals ẽi = êi/σ̂ and let ṽn = n1/2[F̃n − F ].
Then the analog of wn suitable for testing Hsc is

w̃n(x) = n1/2[F̃n(x) − Kσ̂ (x, F̃n)] = ṽn(x) − Kσ̂ (x, ṽn).

Under conditions analogous to those given in Section 4 above, one can verify that
the conclusions of Theorem 4.1 continue to hold for w̃n also.

If we let Gσ (x) = ∫
y≤x/σ �−1

F(y),σ hσ (y) dF (y), then, one can rewrite

w̃n(x) = n−1/2
n∑

i=1

[I (̃ei ≤ x) − hσ̂ (̃ei)
T Gσ̂ (x ∧ ẽi )], x ∈ R.

Hence, supx |w̃n(x)| = max1≤j≤n |w̃n(̃e(j)|, where ẽ(j), 1 ≤ j ≤ n, are the order
statistics of ẽj ,1 ≤ j ≤ n.
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