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SOME NONASYMPTOTIC RESULTS ON RESAMPLING IN HIGH
DIMENSION, II: MULTIPLE TESTS1

BY SYLVAIN ARLOT, GILLES BLANCHARD2 AND ETIENNE ROQUAIN

CNRS ENS, Weierstrass Institute Berlin and UPMC University of Paris 6

In the context of correlated multiple tests, we aim to nonasymptotically
control the family-wise error rate (FWER) using resampling-type procedures.
We observe repeated realizations of a Gaussian random vector in possibly
high dimension and with an unknown covariance matrix, and consider the
one- and two-sided multiple testing problem for the mean values of its coor-
dinates. We address this problem by using the confidence regions developed
in the companion paper [Ann. Statist. (2009), to appear], which lead directly
to single-step procedures; these can then be improved using step-down algo-
rithms, following an established general methodology laid down by Romano
and Wolf [J. Amer. Statist. Assoc. 100 (2005) 94–108]. This gives rise to sev-
eral different procedures, whose performances are compared using simulated
data.

1. Introduction.

1.1. Framework and motivations. We consider a sample Y := (Y1, . . . ,Yn)

of n ≥ 2 i.i.d. observations of a Gaussian vector with dimensionality K , possibly
much larger than n. The common covariance matrix of the Yi is not assumed to be
known in advance. We investigate the two following multiple testing problems for
the common mean μ ∈ R

K of the Yi :

• One-sided. Test simultaneously Hk : “μk ≤ 0” against Ak : “μk > 0” for 1 ≤ k ≤
K ;

• Two-sided. Test simultaneously Hk : “μk = 0” against Ak : “μk �= 0” for 1 ≤ k ≤
K .

For simplicity, we introduce the following notation to cover both cases:

test simultaneously Hk : “[[μk]] = 0” against Ak : “[[μk]] �= 0”
for 1 ≤ k ≤ K ,

(1)
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where, for x ∈ R, [[x]] denotes either max{x,0} = x+ in the one-sided context or
|x| in the two-sided context.

In this paper, we tackle the problem (1) by building multiple testing procedures
which control the family-wise error rate (FWER). We emphasize that:

• we aim to obtain a nonasymptotic control, valid for any fixed K and n, and, in
particular, with K possibly much larger than the number of observations n;

• we do not want to make any particular prior assumption on the structure of the
covariance matrix of the Yi .

As explained in [1], this point of view is motivated by some practical appli-
cations, especially neuroimaging [5, 10, 11]. Multiple testing problems in this
field typically have parameters 104 ≤ K ≤ 107, n ≤ 100, with strong and com-
plex dependencies between the coordinates of Yi . Another motivating example is
microarray data analysis (see, e.g., [8]).

1.2. Goals. In this work, we consider thresholding-based procedures which
reject the null hypotheses Hk for indices k ∈ Rα(Y) ⊂ H := {1, . . . ,K} corre-
sponding to large values of [[Yk]], where Yk = n−1 ∑n

i=1 Yi
k denotes the vector of

empirical means, that is,

Rα(Y) = {1 ≤ k ≤ K|[[Yk]] > tα(Y)},(2)

where tα(Y) is a possibly data-dependent threshold.
The type I error of such a multiple testing procedure is measured here by the

family-wise error rate (FWER), defined as the probability that at least one hypoth-
esis is wrongly rejected:

FWER(Rα) := P
(
Rα(Y) ∩ H0 �= ∅

)
,

where H0 := {k|[[μk]] = 0} is the set of coordinates corresponding to the true
null hypotheses. The choice of this error rate is discussed in Section 5.1. Given
a level α ∈ (0,1), the goal is now to build a multiple testing procedure Rα such
that FWER(Rα) ≤ α is valid for all distributions in the family being considered
(i.e., Gaussian with arbitrary mean vector and covariance matrix); furthermore, as
many false hypotheses as possible should be rejected.

To this end, we use the family of (1 − α)-resampling-based confidence regions
for μ introduced in the companion paper [1]. Of interest here are regions taking
the following form: for some subset C ⊂ H,

G(Y,1 − α, C) :=
{
x ∈ R

K
∣∣ sup
k∈C

[[Yk − xk]] ≤ tα(Y, C)
}
,(3)

where tα is a data-dependent threshold built using a resampling principle. Several
possible choices for this threshold were proposed. The main results of [1], as well
as the link between confidence regions (3) and (single-step) multiple tests for (1),
are briefly recalled in Section 2.

1.3. Contribution in relation to previous work. Most of the existing resam-
pling-type multiple testing procedures have been developed in an asymptotic
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framework (see, e.g., [8, 13, 17–19]), while our present goal is to study proce-
dures that have nonasymptotic theoretical validity (for any K and n). The main
classical alternative approach to asymptotic validity is to use an invariance of the
null distribution under a group of transformations—that is, exact randomized tests
[14–16] (the underlying idea can be traced back to Fisher’s permutation test [7]).
Additionally, and as explained in [16], exact tests can be combined with a step-
down algorithm to build less conservative procedures while preserving the same
nonasymptotic control on their FWER (also, see [17] for a generalization to the
k-FWER).

In the case considered here, Gaussian vectors Yi have a symmetric distribution
around their mean so that the action of mirroring any subset of the vectors in the
data sample with respect to their mean constitutes such a group of distribution-
preserving transformations. In the two-sided case, this group is known under the
global null hypothesis μ = 0 and just corresponds to arbitrary sign reversal of each
data vector.

Consequently, it is possible to directly derive from [16] a step-down procedure
whose FWER is controlled in a nonasymptotic setting (see Section 3). This ap-
proach will be referred to as uncentered in this paper because the sign reversal is
applied to the (Yi )1≤i≤n themselves, without prior centering.

We observe that the principle of sign reversal was also used in [6] in order to
build an adaptive (single) test for zero mean under the assumption of symmetric
and independent errors. The setting studied here is different since we consider
multiple testing with possibly dependent errors.

Compared to this uncentered approach, most of the procedures proposed in
this paper consist of applying the sign reversal to the empirically centered data
(Yi −Y)1≤i≤n. It was proven in [1] that such an intuitive idea is theoretically valid,
despite the dependencies between the Yi −Y, 1 ≤ i ≤ n, at the cost of adding a sec-
ond order remainder term. We argue in the present paper that in some interesting
situations, the prior centering operation leads to a noticeable decrease of the com-
putation time of the step-down algorithm, up to some small loss in accuracy (due
to the remainder term) with respect to the uncentered step-down. Additionally, the
centered approach can be used both in the one-sided and two-sided contexts, while
the uncentered approach has, to the best of our knowledge, only been proven valid
in the two-sided case.

1.4. Notation. Let us now introduce some notation that will be used through-
out this paper.

• Y denotes the K × n data matrix (Yi
k)1≤k≤K,1≤i≤n. A superscript index such

as Yi indicates the ith column of a matrix. The empirical mean vector is Y :=
1
n

∑n
i=1 Yi . If μ ∈ R

K , Y −μ is the matrix obtained by subtracting μ from each
(column) vector of Y.
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• The vector σ := (σk)1≤k≤K is the vector of the standard deviations of the data:
∀k,1 ≤ k ≤ K , σk := Var1/2(Y1

k). For C ⊂ H, we also define ‖σ‖C := supk∈C σk .
• � is the standard Gaussian upper tail function: if X ∼ N (0,1), then ∀x ∈ R,

�(x) = P(X ≥ x).
• If W ∈ R

n, we define the mean of W ∈ R
n as W := 1

n

∑n
i=1 Wi and for every

c ∈ R, W − c := (Wi − c)1≤i≤n ∈ R
n.

• For a subset C ⊂ H, |C| denotes the cardinality of C .

2. Single-step procedures using resampling-based thresholds.

2.1. Connection between confidence regions and FWER control. We start with
recalling a simple device linking confidence regions to FWER control in multiple
testing. In a nutshell, the idea is that a confidence region of the form (3) directly
gives a multiple testing procedure R with controlled FWER when taking C = H0.
Since H0 is not known in advance, we actually need a confidence region (3) de-
fined for every C ⊂ H and satisfying certain properties.

More formally, let α ∈ (0,1) be fixed and Tα = (tα(Y, C), C ⊂ H,Y ∈ R
K×n) be

a family of thresholds indexed by subsets C ⊂ H. We consider threshold families
satisfying the two following key properties. First, tα(Y, H0) is a 1 − α confidence
bound on the deviations of supk∈H0

[[Yk]]:
P

(
sup
k∈H0

[[Yk]] < tα(Y, H0)
)

≥ 1 − α.(CBα)

Second, Tα is nondecreasing w.r.t. C , that is,

∀Y ∈ R
K,∀C C′ ⊂ H, C ⊂ C′ ⇒ tα(Y, C) ≤ tα(Y, C′).(ND)

We now define a single-step multiple testing procedure and establish its FWER
control.

PROPOSITION 2.1. Define the single-step multiple testing procedure associ-
ated with Tα as the procedure rejecting the set of hypotheses given by

{k ∈ H|[[Yk]] > tα(Y, H)}.(4)

If the threshold family satisfies (CBα) and (ND), then the FWER of the associated
single-step procedure is controlled at level α.

PROOF. We first use (ND), then (CBα):

P
(∃k|[[Yk]] > tα(Y, H) and [[μk]] = 0

)
= P

(
sup
k∈H0

[[Yk]] > tα(Y, H)
)

≤ P

(
sup
k∈H0

[[Yk]] > tα(Y, H0)
)

≤ α. �



RESAMPLING TESTS IN HIGH DIMENSION 87

Note that the single-step procedure only uses the value of the largest threshold
among the tα(Y, C), C ⊂ H. In Section 3, we use the iterative step-down princi-
ple to improve the procedure by making use of the thresholds tα(Y, C) for some
smaller C ⊂ H.

The condition (CBα) is, in particular, satisfied whenever, for any C ⊂ H, t (Y, C)

provides a 1 − α confidence region of the form (3) for (μk)k∈C . We use this idea
next to derive testing thresholds from the confidence regions constructed in [1].

2.2. Resampling thresholds. We first give a compact recapitulation of resam-
pling-based thresholds introduced in [1] and used to build confidence regions for
the mean of a high-dimensional, correlated vector. This is intended as a single
overall reference for all of the thresholds that we use in the present paper. Here, and
in the following, W ∈ R

n denotes a random vector independent from the data Y,
called the resampling weight vector. Moreover, in order to simplify the results
of [1], we specifically assume that the Wi are i.i.d. Rademacher random variables,
that is, that they satisfy P(Wi = 1) = P(Wi = −1) = 1/2. As first building blocks,
define the two following resampling quantities, the (scaled) resampled expectation
and quantile:

E (Y, C) := B−1
W EW

[
sup
k∈C

[[
1

n

n∑
i=1

WiYi
k

]]]
,(5)

qα(Y, C) := inf

{
x ∈ R

∣∣∣∣PW

(
sup
k∈C

[[
1

n

n∑
i=1

WiYi
k

]]
> x

)
≤ α

}
,(6)

where BW := EW [( 1
n

∑n
i=1(Wi − W))1/2] and EW [·] [resp., PW(·)] denotes the

expectation (resp., probability) operator over the distribution of W only. We also
define the following function which is the upper quantile function of a binomial
(n, 1

2) variable:

B(n, η) := max

{
k ∈ {0, . . . , n}

∣∣∣∣2−n
n∑

i=k

(
n

i

)
≥ η

}
.

Finally, we define the factor

γn(η) := 2B(n, η/2) − n

n
≤

(
2 log(2/η)

n

)1/2

,

where the last inequality, intended as a more explicit formula, is obtained via Ho-
effding’s inequality.

Table 1 gives a reference for the different rejection thresholds considered in this
paper, depending on a target type I error level α, subset of coordinates C and pos-
sibly on two arbitrary parameters α0 ∈ (0, α) and δ ∈ (0,1). The threshold (7) is
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TABLE 1
Reference table for the different rejection thresholds

tα,Bonf(Y, C) := 1√
n

‖σ‖C �
−1

(
α

c|C|
)

with
{

c = 1 (one-sided case)
c = 2 (two-sided case)

(7)

tα,conc(Y, C) := E (Y − Y, C) + ‖σ‖C �
−1

(α/2)

[
1

nBW
+ 1√

n

]
(8)

tα,conc∧Bonf(Y, C) := min
(
tα(1−δ),Bonf(Y, C),

(9)

E (Y − Y, C) + ‖σ‖C√
n

�
−1

(
α(1 − δ)

2

)
+ ‖σ‖C

nBW
�

−1
(

αδ

2

))

t∗α,quant(Y, C) := qα(Y − Y, C)(10)

tα,quant+Bonf(Y, C) := t∗α0(1−δ),quant(Y, C) + γn(α0δ)tα−α0,Bonf(Y, C)(11)

tα,quant+conc(Y, C) := t∗α0(1−δ),quant(Y, C) + γn(α0δ)tα−α0,conc(Y, C)(12)

tα,quant.uncent(Y, C) := qα(Y, C)(13)

Bonferroni’s for Gaussian variables. Thresholds (8), (9), (11) and (12) were intro-
duced in [1]. More precisely, threshold (8) is based on a Gaussian concentration
result. Threshold (9) is a compound threshold which is very close to the mini-
mum of (7) and (8). Threshold (10) is a raw resampled quantile for the empirically
centered data; it has not been proven theoretically that this threshold achieves the
correct level (this is signalled by the star symbol). The thresholds (11) and (12) are
based on the latter with an additional term which was introduced in [1] to com-
pensate (from a theoretical point of view) for the optimism in centering the data
empirically rather than using the (unknown) true mean. The thresholds (7), (8) and
(9) [and thus (11) and (12)] depend on the quantity ‖σ‖C ; if it is unknown, a confi-
dence upper bound on ‖σ‖C can be built (see Section 4.1 of [1]). Finally, note that
all of these thresholds are nondecreasing w.r.t. C , that is, they satisfy assumption
(ND). The nonasymptotic theoretical results obtained in [1] in the Gaussian case
can be summed up in the following theorem.

THEOREM 2.2. If tα(Y, C) is one of the thresholds defined by (7), (8), (9),
(11) or (12), then it holds for any C ⊂ H, in the one-sided as well as the two-sided
setting, that

P

(
sup
k∈C

[[Yk − μk]] < tα(Y, C)
)

≥ 1 − α.(14)

In particular, all of these thresholds satisfy (CBα), both in the one-sided and two-
sided cases.

Note that the results obtained in [1] have more generality. In particular, varia-
tions on the above thresholds were proposed for non-Gaussian, but bounded, data
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and weight families different from Rademacher weights can be used in (8) and (9).
For the purposes of the present work, we restrict our attention to Gaussian data and
Rademacher weights for simplicity. It is straightforward to show that (14) implies
(CBα): the two-sided case is obvious since μk = 0 for k ∈ H0; the one-sided case
is an easy consequence of the fact that the positive part is a nondecreasing func-
tion. Therefore, by an application of Proposition 2.1, the corresponding thresholds
tα(Y, H) for the full set of hypotheses can be used for multiple testing in the one-
sided as well as two-sided setting with a nonasymptotic control of the FWER.

We mentioned above that the thresholds (11) and (12), based on a resampled
quantile for the empirically centered data (Y − Y), include an additional term
in order to upper bound the variations introduced by the centering operation. In
the context of testing, however, it is important to note that the quantile for the
uncentered data defined in (13) is (without modification) a valid threshold in the
two-sided setting.

THEOREM 2.3. Assume only that Y has a symmetric distribution around its
mean μ, that is, that (Y1 −μ) ∼ (μ− Y1). If μk = 0 for all k ∈ C , then the thresh-
old tα,quant.uncent(Y, C) defined by (13) satisfies (14). In particular, the threshold
tα,quant.uncent(Y, C) satisfies (CBα) in the two-sided setting.

This result can probably be considered to be well known and corresponds, for
example, to Lemma 3.1 in [1]. Again by Proposition 2.1, the threshold defined by
(13) can therefore be used for multiple testing (although only for the two-sided
setting).

It is useful at this point to carry out a brief qualitative comparison of the uncen-
tered quantile threshold (13) and the centered quantile thresholds (11) and (12) (in
the two-sided setting). The obvious differences between the two types of thresh-
olds are:

• the data vectors are not centered around the empirical mean Y prior to comput-
ing the threshold (13);

• the centered thresholds (11) and (12) have an additional additive term with re-
spect to the main resampled quantile; furthermore, the main centered quantile is
computed at a shrunk error level α0(1 − δ) < α.

The second point is a net drawback of the “centered” family compared to the “un-
centered” one. On the other hand, empirical centering of the data has the advantage
of making the corresponding threshold tα(Y, C) translation invariant, that is, for
every Y ∈ R

K×n and x ∈ R
K , the following property holds:

∀C ⊂ H tα(Y + x, C) = tα(Y, C).(TI)

This property is also shared by the concentration-based thresholds (8) and (9).
Therefore, large values of nonzero means μk do not affect these thresholds. To
understand the practical consequences of this point, let us consider the following
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informal and qualitative argumentation. If some coordinates of (Y1
k)k∈C have a

large mean relative to the noise (i.e., a large signal-to-noise ratio or SNR), then
the corresponding coordinates of Y will have, on average, a large absolute value
relative to the coordinates with zero mean and the contribution of the former to
the threshold will make the uncentered quantile significantly larger. In contrast,
the centered quantile threshold is translation invariant and thus unaffected by the
signal itself. Hence, in this situation, it is likely that the centered quantile threshold
will be smaller. This effect is illustrated in the simulations presented in Section 4.

3. Step-down procedures. Single-step procedures can often be improved by
iteration based on the step-down principle. Roughly, the idea is to repeat the
multiple testing procedure with H replaced by H \ Rα(Y) and to iterate this
process as long as new coordinates are rejected. Again, consider a threshold family
Tα = (tα(Y, C), C ⊂ H,Y ∈ R

K×n) satisfying (CBα) and (ND).

DEFINITION 3.1. Consider the nonincreasing sequence (Cj , j ≥ 0) of subsets
of H defined by

C0 := H and ∀j ≥ 1 Cj := {k ∈ Cj−1|[[Yk]] ≤ tα(Y, Cj−1)},
and let �̂ be the stopping rule �̂ = min{j ≥ 1|Cj = Cj−1}. Then the step-down
multiple testing procedure associated with Tα rejects the hypotheses of the set
H \ C

�̂
, that is,

{k ∈ H|[[Yk]] > tα(Y, C
�̂
)}.(15)

A very general result on step-down procedures was established in [16], Theo-
rem 3, which we reproduce here using our notation.

THEOREM 3.2 (Romano and Wolf [16]). Let Tα be a threshold family satisfy-
ing (ND). The FWER of the step-down procedure (15) is then controlled by

P

(
sup
k∈H0

[[Yk]] > tα(Y, H0)
)
.

Therefore, if Tα additionally satisfies (CBα), the FWER of the associated step-
down procedure is upper bounded by α.

A sketch of the proof can be given as follows: assume that Y is such
that supk∈H0

[[Yk]] ≤ tα(Y, H0). Then H0 ⊂ Cj−1 implies that tα(Y, Cj−1) ≥
tα(Y, H0) ≥ supk∈H0

[[Yk]] and, in turn, H0 ⊂ Cj , by definition of Cj . By recur-
sion, H0 is contained in Cj for every j and the step-down procedure therefore
makes no type I error on the event {supk∈H0

[[Yk]] ≤ tα(Y, H0)}.
A direct consequence of Theorem 3.2 is that the step-down procedures based on

any of the thresholds considered in the previous section [defined by (7), (8), (9),
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(11), (12) or (13)] have a FWER controlled at level α [for (13), only in the two-
sided setting]. Note that the step-down procedure based on Bonferroni’s threshold
(7) is exactly Holm’s procedure [9].

Parallel to the discussion at the end of Section 2.2, we can carry out a short
qualitative comparison of the step-down procedure based on the uncentered quan-
tile threshold (13) and the step-down procedures based on the centered quantile
thresholds (11) and (12) (in the two-sided setting). Again, if some coordinates
have a large SNR, then they certainly contribute to making the uncentered quantile
threshold significantly larger at the first step of the step-down procedure. This time,
however, even if this first threshold is relatively large, it will still be able to rule out
at the first step precisely those coordinates having the largest means. This, in turn,
will result in an important improvement of the uncentered threshold at the second
iteration, and so on, until all coordinates with a large SNR have been weeded out.
Thus, the initial disadvantage of the uncentered threshold will be automatically
corrected along the step-down iterations and the final threshold will be close to the
ideal resampled quantile qα(Y, H0) in the last iterations. In contrast, the centered
thresholds (11) and (12) still suffer from the loss due to the remainder term and
level shrinkage along the step-down. In conclusion, in contrast to the single-step
case, we expect the uncentered procedure to eventually outperform the centered
ones after some step-down iterations. This is in accordance with the simulations of
Section 4.

At this point, it could seem that the uncentered step-down procedure is both
simpler and more effective than the centered step-down ones and thus should al-
ways be preferred. However, the above discussion gives us another insight: the
step-down procedure based on the uncentered quantile should require more itera-
tions to converge because the first iterations return inaccurate thresholds. In order
to deal with this drawback, we propose using the leverage of the centered quantile
thresholds for the first step—weeding out in a single step most of coordinates hav-
ing a large SNR—and then subsequently continuing with the uncentered threshold
in the next steps for greater accuracy. We obtain the following new algorithm.

ALGORITHM 3.3 (Hybrid approach).

1. Compute the threshold tα,quant+Bonf(Y, H) defined by (11) with a given δ ∈
(0,1), α0 ∈ (0, α) and consider R0, the corresponding single-step proce-
dure (4).

2. If R0 = H, then stop and reject all of the null hypotheses. Otherwise, consider
the set of remaining coordinates C0 = H \ R0 and apply to it the step-down
procedure associated with the threshold tα0,quant.uncent(Y, C) defined by (13) (at
level α0).

PROPOSITION 3.4. Fix δ ∈ (0,1) and α0 ∈ (0, α). In the two-sided context,
Algorithm 3.3 gives rise to a multiple testing procedure with a FWER upper
bounded by α.
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Proposition 3.4 is proved in Section 6. What we expect is that Algorithm 3.3
essentially yields the same final result as the step-down procedure using the un-
centered quantile (up to some negligible loss in the level by taking α0 close to α),
while requiring less iterations. In applications such as neuroimaging, where a sin-
gle iteration can take up to one day, this can result in a significant improvement.

4. Simulation study. The (MATLAB) code used to perform the simulations
of this section is available on the first author’s webpage (currently at http://www.
di.ens.fr/~arlot/code/CRMTR.htm).

4.1. Framework. We consider data of the form Yt = μt +Gt , where t belongs
to a d × d discretized two-dimensional torus of K = d2 pixels, identified with
T

2
d = (Z/dZ)2, and G is a centered Gaussian vector obtained by two-dimensional

discrete convolution of an i.i.d. standard Gaussian field (white noise) on T
2
d with a

function F : T2
d → R such that

∑
t∈T

2
d
F 2(t) = 1. This ensures that G is a stationary

Gaussian process on the discrete torus; it is, in particular, isotropic with E[G2
t ] = 1

for all t ∈ T
2
d .

In the simulations below, we consider, for the function F , a pseudo-Gaussian
convolution filter of bandwidth b on the torus: Fb(t) = Cb exp(−d(0, t)2/b2),
where d(t, t ′) is the flat Riemannian distance on the torus and Cb is a normal-
izing constant. We then compare the different thresholds obtained by the methods
proposed in this work for varying values of b. Remember that the algorithms con-
sidered here have no prior knowledge on the specific form of the function Fb and
would work in other, more complex, dependency contexts.

We consider the two-sided case only. In all of the simulations to come, we fix
the following parameters: the dimension is K = 1282 = 16,384, the number of
data points per sample is n = 1000 (hence significantly smaller than K) and the
width b takes even values in the range [0,40] (b = 0 is white noise; see the left-
hand side of Figure 1 for an example of noise realization when b = 18). The target
test level is α = 0.05. We report the (empirical) expectation of each threshold over
250 draws of Y.

For computation of the thresholds (9), (11) and (12), we have to choose some
parameters δ ∈ (0,1) and (for the two latter ones) α0 < α. In each case, these para-
meters establish a trade-off between a main term and a remainder term; generally
speaking, as n grows, one should choose δ → 0 and α0 → α so that the level of the
main resampled term tends to the target level α. In [1], it was suggested to take δ of
order 1/n and (1 − α0

α
) of order n−γ for some γ > 0 to ensure that the remainder

terms are indeed of lower order, but there is no exact recommendation for fixed
n. In all of the simulations below, we decided to fix δ = (1 − α0

α
) = 0.1, without

particularly trying to optimize this choice. When varying these parameter values,
we noticed that the results were not overly sensitive to them. Finally, for all of the
thresholds, the resampling quantities (quantiles or expectations) are estimated by

http://www.di.ens.fr/~arlot/code/CRMTR.htm
http://www.di.ens.fr/~arlot/code/CRMTR.htm


RESAMPLING TESTS IN HIGH DIMENSION 93

FIG. 1. Left: example of a 128 × 128 pixel image obtained by convolution of Gaussian white noise
with a pseudo-Gaussian filter with width b = 18 pixels. Right: average thresholds obtained for the
different approaches; see text.

Monte Carlo with 1000 draws (but we disregarded the additional terms proposed
in [1] to account for the Monte Carlo random error).

4.2. Simulations with unspecified alternative: Single-step, translation invariant
procedures. We first study the performance of the multiple testing procedures
which have a translation invariant threshold (TI), that is, the single-step proce-
dures using thresholds (7), (8), (9), (11) and (12), denoted, respectively, by “bonf,”
“conc,” “conc ∧ bonf,” “quant + bonf” and “quant + conc.” Their distributions do
not depend on the true mean vector μ chosen to generate data and we have fixed
μ = 0 without loss of generality. Provided that the FWER constraint is satisfied,
procedures with a smaller threshold are less conservative and hence more power-
ful.

In Figure 1, we report the (averaged) values of each threshold. In this figure,
we did not include standard deviations: they are quite low, of the order of 10−3,
although it is worth noting that the quantile threshold has a standard deviation
roughly twice as large as the concentration threshold. For comparison, we also
included an estimation of the true quantile, that is, the 1 − α quantile of the dis-
tribution of supk∈H|Yk − μk| (more precisely, an empirical quantile over 1000
samples), denoted by “ideal.” The exact threshold corresponding to K = 1 (test of
a single coordinate Gaussian mean) is also included for comparison and is denoted
by “single.” In the context of this experiment, we also computed the threshold (10),
that is, the raw symmetrized quantile obtained after empirical recentering of the
data (for which no nonasymptotic theoretical results are available). This threshold
was not reported in the plots because it turns out to be so close to the true quantile
that they are almost indistinguishable.

The overall conclusion of this first experiment is that the different thresholds
proposed in this work are relevant: they improve on the Bonferroni threshold,
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provided the vector has strong enough correlations. As expected, the quantile ap-
proach appears to lead to tighter thresholds. (This might, however, not always be
the case for smaller sample sizes because of the additional term.) One remaining
advantage of the concentration approach is that the compound threshold (9) falls
back on the Bonferroni threshold when needed, at the cost of a minimal thresh-
old increase. Finally, the remainder terms introduced by the theory in the centered
quantile thresholds appear overestimated since the raw resampled quantile is, in
fact, extremely close to the true quantile.

4.3. Simulations with a specific alternative. We consider the experiment of the
previous section, with the following choice for the vector of true means:

∀(i, j) ∈ {0, . . . ,127}2 μ(i,j) = (64 − j)+
64

× 20tα,Bonf(H).(16)

In this situation, half of the null hypotheses are true, while the nonzero means
are increasing linearly from (5/16)tα,Bonf(H) to 20tα,Bonf(H). The thresholds ob-
tained are displayed in Figure 2, along with the averaged power of the correspond-
ing procedures, defined as the expected proportion of signal correctly detected (i.e.,
averaged proportion of rejections among the false null hypotheses).

In this experiment, we concentrated on the quantile-based thresholds. We picked
the threshold (12) “quant + bonf” as a representative of the centered quantile ap-
proach and its step-down counterpart, denoted “s.d. quant + bonf.” We compare
these to the uncentered quantile threshold (13), denoted “quant.uncent,” and its
step-down version, “s.d. quant.uncent.” Bonferroni’s threshold and its step-down
version “holm” are included for comparison. The threshold denoted “ideal” is now
derived from the 1 − α quantile of the distribution of supk,μk=0 |Yk| and corre-
sponds to the optimal threshold for FWER control.

The results of the experiment can be summarized as follows:

FIG. 2. Multiple testing problem with μ defined by (16) for different approaches; see text. Left:
average thresholds. Right: average power.
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• The single-step centered quantile procedure “quant+bonf” outperforms Holm’s
procedure provided the coordinates of the vector are sufficiently correlated. Its
step-down version “s.d. quant + bonf” performs even better, although the differ-
ence is not huge.

• The single-step procedure based on the uncentered quantile “quant.uncent”
has the worst performance, confirming the qualitative analysis following Theo-
rem 2.3.

• The step-down procedure based on the uncentered quantile “s.d. quant.uncent”
seems, on the other hand, to be the most accurate among the procedures con-
sidered here, also in accordance with the qualitative analysis following Theo-
rem 3.2.

The latter point must be balanced with computation time considerations. When K

and n are large, the step-down algorithm for the uncentered quantile takes longer
to compute because of its iterative nature, while the single-step centered quantile
procedure “quant + bonf” provides a relatively good accuracy without iterating.
This brings us to the next point.

4.4. Hybrid approach. We show here, with a specific simulation study, that
the hybrid approach proposed in Algorithm 3.3 results in a speed/accuracy trade-
off which is particularly noticeable when the mean values take on a large range.

Consider the same simulation framework as above, except that the bandwidth b

is now fixed at 30, the size of the sample is n = 100 and the means are given as
follows: ∀(i, j) ∈ {0, . . . ,127}2, μ(i,j) = f (i + 128j), where

∀k ∈ {0, . . . ,1282/2} f (k) = 0.5tα,Bonf(H)
(17)

× exp
(

1282/2 − k

1282/2

r

10
log(10)

)

and f (k) = 0 for the other values of k. In this situation, the 1282/2 nonzero means
are decreasing exponentially between 0.5tα,Bonf(H)10r/10 and 0.5tα,Bonf(H),
where r is the dynamic range (in dB) of the signal.

In Figure 3, we have computed, for several values of r , the average number of
iterations for the above step-down procedures, as well as their power when these
procedures are stopped early after at most t iterations (such an early stopping is
relevant in the case of a strict computation time constraint). We can sum up these
results as follows:

• The hybrid approach needs, on average, significantly less iterations to converge
when r ≥ 10.

• Stopping the hybrid approach procedure after only two iterations results in an
average power that is virtually indistinguishable from the power obtained with-
out early stopping, uniformly over values of r . In contrast, as r increases, more
iterations are needed for the step-down quantile uncentered threshold in order
to reach full power.
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FIG. 3. Multiple testing problem with μ corresponding to (17) for the step-down procedure based
on the uncentered quantile (sdqu) and the hybrid step-down approach. Left: average number of
step-down iterations. Right: average of the ratio of power to maximum power when the step-down
is stopped after at most t iterations. Here, the maximum power is taken to be the power of “sdqu”
without early stopping. (For the hybrid approach, the first step counts as one iteration.)

While these results are certainly specific to the particular simulation setup we
used, they illustrate that the informal and qualitative analysis presented in Section 3
is correct when the signal (nonzero means) has a wide dynamic range. In particular,
the fact that the hybrid approach already gives very satisfactory results after the
first two iterations reinforces the interpretation that the first step (using the centered
quantile threshold with remainder term) immediately rules out all coordinates with
a large SNR, while the second step (using the exact, uncentered quantile) improves
the precision once these high-SNR coordinates have been eliminated.

5. Discussion and concluding remarks.

5.1. Discussion: FWER versus FDR in multiple testing. It can legitimately
be asked whether the FWER is an appropriate measure of type I error. The false
discovery rate (FDR), introduced in [2] and defined as the average proportion of
wrongly rejected hypotheses among all of the rejected hypotheses, appears to have
recently become a de facto standard, in particular, in the setting of a large number
of hypotheses to test, as we consider here. One reason for the popularity of the
FDR is that it is a less strict measure of error than the FWER and, to this extent,
FDR-controlled procedures reject more hypotheses than FWER-controlled ones.
We give two reasons why the FWER is still a quantity of interest to investigate.
First, the FDR is not always relevant, in particular, for neuroimaging data. Indeed,
in this context, the signal is often strong over some well-known large areas of the
brain (e.g., the motor and visual cortices). Therefore, if, for instance, 95 percent
of the detected locations belong to these well-known areas, FDR control (at level
5%) does not provide evidence for any new true discovery. On the contrary, FWER
control is more conservative, but each detected location outside these well-known
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areas is a new true discovery with high probability. Second, assuming that the
FDR or a related quantity is nevertheless the end goal, it can be very useful to
consider a two-step procedure, where the first step consists of a FWER-controlled
multiple test. Namely, this first step can be used as a mean to estimate the FDR or
the FDP (false discovery proportion) of another procedure used in the second step
and thus to fine-tune the parameters of this second step for the desired goal. This
approach has been advocated, for example, in [3, 4] for finding FDR controlling
procedures adaptive to the proportion of true nulls and in [12] to find specific
regions in random fields, also with application to neuroimaging data.

5.2. Conclusion. In this work, the main point was to introduce multiple test-
ing procedures based on resampling thresholds (9), (11) and (12) coming from
nonasymptotic confidence regions constructed in [1]. These confidence regions
have theoretical control of the confidence level for any n, so the FWER of the cor-
responding multiple testing procedures is also controlled nonasymptotically. This
issue is important in practice because the sample size is often much smaller than
the number of tests to perform (K � n). Nevertheless, as the simulations of Sec-
tion 4 suggest, remainder terms in the thresholds—precisely introduced to deal
with this nonasymptotic setting—are overestimated by the theory and could prob-
ably be improved.

Even in the presence of these corrective terms, we showed through experiments
that these thresholds are able to capture the unknown dependency structure of
the data and significantly outperform Holm’s procedure when this dependency is
strong enough. In comparison to exact randomization tests (based on an uncen-
tered quantile), which also provide nonasymptotic level control, we argued that
the empirical centering operation before random sign reversal results in transla-
tion invariant thresholds. These thresholds are, for this reason, unaffected by the
unknown signal and thus already relevant for testing in the first iteration of the step-
down algorithm. The method also applies to one-sided testing problems, where the
uncentered approach is not theoretically justified as far as we know. Finally, the
hybrid algorithm can approach the accuracy of the uncentered step-down thresh-
old (which does not require corrective terms) while initially taking advantage of
the centered threshold, resulting in a faster computation.

For practical purposes, it is certainly tempting to recommend using a (step-
down) procedure based on the raw, unmodified centered quantile without remain-
der terms (10): this would correspond to the principle of traditional resampling. To
this extent, and to rephrase the discussion in [1], nonasymptotic theoretical results
can also be understood from an asymptotic point of view, justifying the use of re-
sampling (in a specific setting—Gaussian variables, test for the mean, Rademacher
weights) for a regime that is not usually covered by traditional asymptotics (i.e.,
dimension Kn increasing with n).
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6. Proof of Proposition 3.4. First, note that qα0(Y, H0) ≤ qα0(Y − μ, H).
From the proof of Theorem 3.2 in [1], with probability greater than 1 − (α − α0),
we have

qα0(Y − μ, H) ≤ tα,quant+Bonf(Y, H).

Take Y in the event where the above inequality holds. If the global procedure
rejects at least one true null hypothesis, let j0 denote the first time that this occurs
(j0 = 0 if it is in the first step). There are two cases:

• if j0 = 0, then supk∈H0
|Yk| ≥ tα,quant+Bonf(Y, H) ≥ qα0(Y − μ, H) ≥ qα0(Y,

H0);
• if j0 ≥ 1, then supk∈H0

|Yk| ≥ tα0,quant.uncent(Y, Cj0−1) and H0 ⊂ Cj0−1 (from
the definition of j0) so that supk∈H0

|Yk| ≥ tα0,quant.uncent(Y, H0) = qα0(Y, H0).

In both cases, supk∈H0
|Yk| ≥ qα0(Y, H0), which occurs with probability smaller

than α0.
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