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PROPERTIES AND REFINEMENTS OF THE FUSED LASSO

BY ALESSANDRO RINALDO1

Carnegie Mellon University

We consider estimating an unknown signal, both blocky and sparse,
which is corrupted by additive noise. We study three interrelated least squares
procedures and their asymptotic properties. The first procedure is the fused
lasso, put forward by Friedman et al. [Ann. Appl. Statist. 1 (2007) 302–332],
which we modify into a different estimator, called the fused adaptive lasso,
with better properties. The other two estimators we discuss solve least squares
problems on sieves; one constrains the maximal �1 norm and the maximal to-
tal variation seminorm, and the other restricts the number of blocks and the
number of nonzero coordinates of the signal. We derive conditions for the
recovery of the true block partition and the true sparsity patterns by the fused
lasso and the fused adaptive lasso, and we derive convergence rates for the
sieve estimators, explicitly in terms of the constraining parameters.

1. Introduction. We consider the nonparametric regression model

yi = μ0
i + εi, i = 1, . . . , n,

where μ0 ∈ R
n is the unknown vector of mean values to be estimated using the ob-

servations y, and the errors εi are assumed to be independent with either Gaussian
or sub-Gaussian distributions and bounded variances. We are concerned with the
more specialized settings where μ0 can be both sparse, with a possibly very large
number of zero entries, and blocky, meaning that the number of coordinates where
μ0 changes its values can be much smaller than n. Figure 1 shows an instance of
data generated by corrupting a blocky and sparse signal with additive noise (see
Section 2.4 for details about this example). Formally, we assume that there exists
a partition {B0

1 , . . . ,B0
J0

} of {1, . . . , n} into sets of consecutive indexes, from now

on called a block partition, and a vector ν0 ∈ R
J0 , which may be sparse, such that

the true mean vector can be written as

μ0 =
J0∑

j=1

ν0
j 1B0

j
,(1.1)

where 1B is the indicator function of the set B ⊆ {1, . . . , n} (i.e., the n-
dimensional vector whose ith coordinate is 1 if i ∈ B and 0 otherwise). The
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FIG. 1. Signal (solid line) plus noise for the example described in Section 2.4.

partition {B0
1 , . . . ,B0

J0
}, its size J0, the vector ν0 of block values and its zero

coordinates are all unknown, and our goal is to produce estimates of those or
related quantities that are accurate when n is large enough.

In particular, we investigate the asymptotic properties of three different but in-
terrelated methods for the recovery of the unknown mean vector μ0 under the
assumption (1.1).

The first methodology we study, which is the central focus of this work, is the
fused lasso procedure of Friedman et al. (2007). The fused lasso is the penalized
least squares estimator

μ̂FL = arg min
μ∈Rn

{
n∑

i=1

(yi − μi)
2 + 2λ1,n‖μ‖1 + 2λ2,n‖μ‖TV

}
,(1.2)

where ‖μ‖1 ≡∑n
i=1 |μi | is the �n

1 norm and ‖μ‖TV ≡∑n
i=2 |μi − μi−1| the total

variation seminorm of μ, respectively, and (λ1,n, λ2,n) are positive tuning parame-
ters to be chosen appropriately. The solution to the convex program (1.2) can be
computed in a fast and efficient way using the algorithm developed in Friedman et
al. (2007), where the properties of the fused lasso solution are considered from the
optimization theory standpoint. Our analysis has led us to propose a modified ver-
sion of the fused lasso, which we call the fused adaptive lasso, that has improved
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FIG. 2. A fusion adaptive lasso estimate for the example from Section 2.4, using the most biased
fusion estimator shown in Figure 3 the oracle threshold for the lasso penalty, as described in Sec-
tion 2.3.

properties. Figure 2 shows an example of a fused adaptive lasso fit to the the data
displayed in Figure 1.

In our second approach, we turn to a different convex optimization program,
namely

arg min
μ∈Rn

n∑
i=1

(yi − μi)
2

(1.3)
s.t. ‖μ‖1 ≤ Ln,‖μ‖TV ≤ Tn

for some nonnegative constants Ln and Tn. Notice that, in this alternative formula-
tion, which is akin to the least squares method on sieves, a solution different from y

is obtained provided that ‖y‖1 > Ln or ‖y‖TV > Tn. The link with the fused lasso
estimator is clear. The objective function in the fused lasso problem (1.2) is the
Lagrangian function of (1.3), and, in fact, the two problems are equivalent from
the point of view of convexity theory.

Our third and final method for the recovery of a sparse and blocky signal is also
related to sieve least square procedures, and is more naturally tailored to the model
assumption (1.1). Specifically, we study the solution to the highly nonconvex op-
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timization problem

arg min
μ∈Rn

n∑
i=1

(yi − μi)
2

(1.4)
s.t. |{i :μi �= 0}| ≤ Sn,1 + |{i :μi − μi−1 �= 0,2 ≤ i ≤ n}| ≤ Jn,

where Sn and Jn are nonnegative constants. Although lack of convexity makes this
problem computationally difficult when n is large, the theoretical relevance of this
third formulation stems from the fact that (1.3) is, effectively, a convex relaxation
of (1.4).

Our approach to the study of the estimators defined by (1.2), (1.3) and (1.4) is
asymptotic, as we allow the block representation for the unobserved signal μ0

to change with n in such a way that the recovery of a noisy signal under the
model (1.1) may become increasingly difficult. Despite being quite closely related
as optimization problems, from an inferential perspective, the three procedures
under investigation each shed some light on different and, in some way, comple-
mentary aspects of this problem.

Overall, our analysis yields conditions for consistency of the block partition and
block sparsity estimates by model (1.2) and its variant described in Section 2.3,
and explicit rates of consistency of both sieve solutions (1.3) and (1.4). In essence,
our results provide conditions for the sequences of regularization parameters λ1,n,
λ2,n, Ln, Jn and Sn to guarantee various degrees of recovery of μ0.

The article is organized as follows. In Section 2, we study the fused lasso esti-
mator. After deriving an explicit formula for the fused lasso solution in Section 2.1,
we establish conditions under which the fused lasso procedure is both sparsistent,
in the sense of being a weakly consistent estimator of the partitions, and of the set
of nonzero coordinates of μ0. In Section 2.3, we propose a simple modification of
the fused lasso, which we call the fused adaptive lasso, that achieves sparsistency
under milder conditions and also allows us to derive an oracle inequality for the
empirical risk. Finally, in Section 3, we derive consistency rates for the estimators
defined in (1.3) and (1.4), which depend explicitly on the parameters Ln and Tn,
and of Sn and Jn, respectively. The proofs are relegated to the Appendix.

We conclude this introductory section by fixing the notation that we will be
using throughout the article. For a vector μ ∈ R

n, we let S(μ) = {i :μi �= 0} denote
its support and J(μ) = {i :μi = μi−1 �= 0, i ≥ 2} the set of coordinates where μ

changes its value. Furthermore, notice that we can always write

μ =
J∑

j=1

νj 1Bj

from some (possibly trivial) block partition {B1, . . . ,BJ }, with 1 ≤ J ≤ n, and
some vector ν ∈ R

J . Then, we will write JS(μ) = {j :νj �= 0} for the sets of
nonzero blocks of μ. On a final note, although all the quantities defined so far may
change with n, for ease of readability, we do not always make this dependence
explicit in our notation.
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1.1. Previous works and comparison. The idea of using the total variation
seminorm in penalized least squares problem has been exploited and studied in
many applications (e.g., signal processing, parametric regression, nonparametric
regression and image denoising). From the algorithmic viewpoint, this idea was
originally brought up by Rudin, Osher and Fatemi (1992) [for more recent devel-
opments, see, e.g., Dobson and Vogel (1997) and Caselles, Chambolle and No-
vaga (2007), and also DeVore (1998)]. The original motivation for this article was
the recent work by Friedman et al. (2007), who devise efficient coordinate-wise
descent algorithms for a variety of convex problems. In particular, they propose a
novel approach based on a penalized least squares problems using simultaneously
the total variation and the �1 penalties, which favors solutions that are both blocky
and sparse. In the classical nonparametric framework of function estimation, two
important contributions in the development and analysis of total variation-based
methods come from Mammen and van de Geer (1997) and Davies and Kovac
(2001a). Specifically, Mammen and van de Geer (1997) show that least squares
splines with adaptively chosen knots are solutions to nonparametric least squares
penalized regression problems with total variation penalties and derive, among
other things, consistency rates for both the one- and two-dimensional case. Using
a different approach, Davies and Kovac (2001a) devise a very simple and effec-
tive procedure with O(n) complexity, called the taut-string algorithm, which ef-
fectively solves least squares problems with total variation penalty. The taut-string
can be used to consistently estimate at an almost optimal rate the number and loca-
tion of local maxima of an unknown function on [0,1]. Both methods impose very
little assumptions on the degree of smoothness of the true underlying function.
More recently, Boysen et al. (2009) study jump-penalized least squares regression
problems, where the underlying function is assumed to be a linear combination of
indicator functions of intervals in [0,1], and derive consistency rates under differ-
ent metrics on functional spaces.

Our work differs from the contributions based on a nonparametric function esti-
mation framework of, in particular, Mammen and van de Geer (1997) and Davies
and Kovac (2001a) in various aspects, some of which are closely related to the
methodology and scope of Friedman et al. (2007). First and foremost, we are in-
terested in the asymptotic recovery of the coordinates of the mean vector μ0 under
the model assumption (1.1), and do not necessarily view them as n evaluations of
an unknown function defined on [0,1]. Secondly, we explicitly impose a double
asymptotic framework in which the model complexity and the features of the un-
derlying signal change with n. This, in particular, allows us to include cases in our
analysis where the number of blocks or the number of local extremes grow un-
bounded with n, a feature which typically cannot be directly accommodated in the
nonparametric framework. Nonetheless, we remark that there is a simple reformu-
lation of our problem as nonparametric function estimation one. In fact, suppose
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that we observe n datapoints of the form

yi = n

∫ i/n

(i−1)/n
μ0(t) dt + εi, i = 1, . . . , n,

from an unknown function μ0 : [0,1] → R. Setting μ0
i = n

∫ i/n
(i−1)/n μ0(t) dt would

return our original model [see also Boysen et al. (2009) for a similar model]. Fur-
thermore, for the analysis of Section 2, we are only concerned with the simulta-
neous recovery of both the block partition and of the sparsity pattern of μ0 and
virtually ignore any other features of the signal. On the one hand, this allows us
to derive rather strong results, namely sparsistency and the oracle inequality of
Theorem 2.7. On the other hand, those results are truly meaningful only when our
modeling assumptions (1.1) of a blocky and sparse signal hold, and our analysis
should not be expected to be robust to mispecification. In particular, the fused lasso
and adaptive fused lasso algorithms should not be expected to work well, both in
practice and in theory, with different kinds of signals.

2. Properties and refinements of the fused lasso estimator. The crucial fea-
ture of the fused lasso solution (1.2), which makes it ideal for the present problem,
is that it is simultaneously blocky, because of the total variation penalty ‖·‖TV, and
sparse, because of the �1 penalty ‖ · ‖1. The central goal of this section is to char-
acterize the asymptotic behavior of the regularization parameters λ1,n and λ2,n, so
that, as n → ∞, the blockiness and sparsity pattern of the the fused lasso estimates
match the ones of the unknown signal μ0 with overwhelming probability. We first
consider the fused lasso estimator as originally proposed in Friedman et al. (2007)
and then a simple variant, the fused adaptive lasso, which has better asymptotic
properties. For this modified version, we also derive an oracle inequality. We will
make the following simplifying assumption on the errors:

(E) The errors εi , 1 ≤ i ≤ n are identically distributed centered Gaussian variables
with variance σ 2

n such that σn → 0.

In the typical scenario we have in mind, σn = σ√
n

. Assumption (E) is by no means
necessary, and it can be easily relaxed to the case of sub-Gaussian errors.

2.1. The fused lasso solution. Below, we provide an explicit formula for the
fused lasso solution that offers some insight on its properties and suggests possible
improvements. By inspecting (1.2), as both penalty functions ‖ · ‖1 and ‖ · ‖TV are
convex and the objective function is strictly convex, μ̂FL is uniquely determined
as the solution to the subgradient equation

μ̂FL = y − λ1,ns1 − λ2,ns2,(2.1)

where s1 ∈ ∂‖μ̂FL‖1 and s2 ∈ ∂‖μ̂FL‖TV. For a vector x ∈ R
n, the subgradient

∂‖x‖1 is a subset of R
n consisting of vectors s such that si = sgn(xi), where,
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with some abuse of notation, we will denote with sgn(·) the (possibly set-valued)
function on R given by

sgn(x) =
⎧⎨⎩

1, if x > 0,
−1, if x < 0,
z, if x = 0,

where z is any number in [−1,1]. The subgradient ∂‖x‖TV has a slightly more
elaborated form, which is given in Lemma A.1 in the Appendix.

An explicit expression for μ̂FL can be obtained in terms of the fusion estimator

μ̂F = arg min
μ∈Rn

{
n∑

i=1

(yi − μi)
2 + 2λ2‖μ‖TV

}
.(2.2)

Notice that, by the same arguments used above, μ̂F is also unique. This fusion
estimator solves a regularized least squares problem with a penalty on the total
variation of the signal and works by fusing together adjacent coordinates that
have similar values to produce a blocky estimate of the form (1.1). We remark
that, in the nonparametric function estimation settings, one can obtain μ̂F as a
piecewise-constant variable-knot spline function on [0,1] [see Mammen and van
de Geer (1997), Proposition 8] and that the taut-string algorithm of Davies and
Kovac (2001a) solves the constrained version of (2.2).

For a given solution μ̂F to (2.2), there exists a block partition {B̂1, . . . , B̂Ĵ } and
a unique vector ν̂ ∈ R

Ĵ such that

μ̂F =
Ĵ∑

j=1

ν̂j 1B̂j
.(2.3)

We take note that both the number Ĵ and the elements of the partition {B̂1, . . . , B̂Ĵ }
are random quantities, and that, by construction, no two consecutive entries of ν̂

are identical. Using (2.3), the individual entries of the vector ν̂ can be obtained
explicitly, as shown next.

LEMMA 2.1. Let ν̂ ∈ R
Ĵ satisfy (2.3) and b̂j = |B̂j | for 1 ≤ j ≤ Ĵ . Then,

ν̂j = 1

b̂j

∑
i∈B̂j

yi + ĉj ,

where

ĉ1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−λ2,n

b̂j

, if ν̂2 − ν̂1 > 0,

λ2,n

b̂j

, if ν̂2 − ν̂1 < 0,
(2.4)
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ĉĴ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ2,n

b̂j

, if ν̂J − ν̂J−1 > 0,

−λ2,n

b̂j

, if ν̂J − ν̂J−1 < 0,
(2.5)

and, for 1 < j < Ĵ ,

ĉj =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2λ2,n

b̂j

, if ν̂j+1 − ν̂j > 0, ν̂j − ν̂j−1 < 0,

−2λ2,n

b̂j

, if ν̂j+1 − ν̂j < 0, ν̂j − ν̂j−1 > 0,

0, if (̂νj − ν̂j−1)(̂νj+1 − ν̂j ) = 1.

(2.6)

By Proposition 1 in Friedman et al. (2007), the fused lasso estimator is obtained
by soft-thresholding of the individual coordinates of μ̂F , so that we immediately
obtain the next result.

COROLLARY 2.2. The fused lasso estimator μ̂FL is

μ̂FL
i =

⎧⎪⎨⎪⎩
μ̂F

i − λ1,n, μ̂F
i ≥ λ1,

0, |μ̂F
i | < λ1,n,

μ̂F
i + λ1,n, μ̂F

i ≤ −λ1,
i = 1, . . . , n,(2.7)

where μ̂F is the fusion estimator.

REMARKS.

1. As is apparent from Lemma 2.1, the individual blocks found by the fusion so-
lution μ̂F are each biased by a term whose magnitude depends directly on the
regularization parameter λ2,n and, inversely, on the size of the estimated block
itself. That is, the larger the estimated blocks the smaller the effect of the bias.
This term is simply a vertical shift, which is positive if the block is a local
maximum, negative if it is a local minimum, and is zero otherwise. See Fig-
ure 3. It is worth pointing out that, as expected, the solution obtained using the
taut-string algorithm of Davies and Kovac (2001a) with global squeezing ex-
hibits exactly the same behavior, with the magnitude of the vertical shift being
controlled by the size of the tube around the integrated process instead of the
penalty term λ2,n.

2. The regularization parameter λ1,n modulates the magnitude of the sparsity
penalty and induces some bias effect as well. However, unlike the bias deter-
mined by the total variation penalty, this second type of bias is of the same
magnitude for all the nonzero coordinates, a fact that can be seen directly from
(2.7). An easy fix, which is considered in Section 2.3, is to adaptively penalize
the estimated blocks differently, depending on their sizes, with larger blocks
penalized less.
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FIG. 3. Different fusion estimates for the data described in Section 2.4. The dashed line corre-
sponds to the true mean vector, while the three lines correspond to the fusion estimates with different
regularization parameters.

2.2. Sparsistency for the fused lasso. In this section, we provide conditions
under which the block partition {B0

1 , . . . ,B0
J0

} and the block sparsity pattern

JS(μ0) of μ0 can be estimated consistently [see (1.1)] by the fused lasso pro-
cedure. We break down our analysis into two parts, dealing separately with the
fusion estimator μ̂F first, which can be used to recover {B0

1 , . . . ,B0
J0

}, and then

with the fused lasso solution μ̂FL, from which the set JS(μ0) can be estimated. In
Section 2.3, we show how this second task can be accomplished more effectively
by a modified version of the fused lasso estimator.

2.2.1. Recovery of true blocks by fusion only. We first derive sufficient con-
ditions for the fusion estimator to recover correctly the block partition of μ0. Let
J0 = J(μ0) be the set of jumps of μ0 and J0 = |J0| + 1 the cardinality of the
associated block partition. Similarly, let Ĵ = J(μ̂F ) be the set of jumps for the
fusion estimate given in (2.3).

THEOREM 2.3. Assume (E) and (1.1). If, for some δ > 0:

1. λ2,n

σn
→ ∞ and λ2,n

σn

√
log(n−J0)

> 1
2
√

2
(1 + δ),

2.
b0

minαn

σn
→ ∞,

b0
minαn

σn

√
logJ0

>
√

16(1 + δ) and λ2,n < b0
min

αn

4 ,
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where αn = mini∈J0 |μ0
i − μ0

i−1| and b0
min = min1≤j≤J0 b0

j . Then,

lim
n

P
({Ĵ = J0} ∩ {sgn(μ̂F

i − μ̂F
i−1) = sgn(μ0

i − μ0
i−1),∀i ∈ J0})= 1.(2.8)

REMARKS.

1. In the proof of Theorem 2.3, instead of Slepian’s inequality, one could use
Markov’s inequality and well-known bounds on the supremum of centered sub-
Gaussian vectors [see, e.g., Lemma 2.3 in Massart (2007)] to derive slightly
stronger sufficient conditions for (2.8), which however hold for the larger class
of sub-Gaussian errors. We give the following conditions without a proof:

(a) limn
σn

√
2 log |J(μ0)|+2λ2,n

b0
minαn

= 0,

(b) limn
λ2,n

σn

√
log |Jc

0|
= ∞.

Furthermore, the errors need not be identically distributed. In fact, the proof of
the theorem holds almost unchanged if, for example, one only assumes that the
individual variances are of order O(1/

√
n).

2. Equation (2.8) actually implies not only that J0 can be consistently estimated,
but also that the true signs of the jumps can be recovered with overwhelming
probability, a feature known in the lasso literature as sign consistency [see, e.g.,
Wainwright (2006) and Zhao and Yu (2006)]. In the present settings, sign con-
sistency of the fusion estimate implies the following desirable feature of μ̂F :

COROLLARY 2.4. The fusion estimator μ̂F can consistently recover the
local maxima and local minima of μ0.

3. The magnitude αn of the smallest jumps of μ0 is a fundamental quantity, whose
asymptotic behavior determines whether recovery of the true blocks obtains. In

particular, if αn vanishes at a rate faster than
√

b0
min/σn, then no recovery is

possible. In a way, this guarantees some form of asymptotic distinguishability
that prevents adjacent blocks from looking too similar.

4. The larger the minimal size of a block b0
min, the easier the recovery of the blocks

by fusion.

2.2.2. Recovery of true blocks and true nonzero coordinates by the fused lasso.
Let JS0 = JS(μ0) be set of nonzero blocks of μ0 and K0 = |JS0| its cardinal-
ity. Let ĴS = JS(μ̂FL) be the equivalent quantity defined using the fused lasso
estimate μ̂FL. Consider the event

R1,n = {JS0 = ĴS} ∩ {sgn(̂νj ) = sgn(ν0
j ),∀j ∈ JS0}

that soft-thresholding μ̂F with penalty λ1,n will return the nonzero blocks of μ0.
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THEOREM 2.5. If the conditions of Theorem 2.3 are satisfied and, for some
δ > 0:

1.
λ1,n

√
b0

min
σn

→ ∞ and
λ1,n

√
b0

min

σn

√
log(J0−K0)

> 2
√

2(1 + δ);

2. 2λ2,n

b0
min

<
λ1,n

2 , for all n large enough;

3.
ρn

√
b0

min
σn

→ ∞,
ρn

√
b0

min

σn

√
logK0

>
√

18(1 + δ) and λ1,n <
ρn

3 for all n large enough;

4. 2λ2,n

b0
min

<
ρn

3 , for all n large enough,

where ρn = minj∈K0 |ν0
j |; then,

lim
n

P(R1,n) = 1.

REMARKS.

1. As was the case for Theorem 2.3, the assumption of Gaussian errors is not
essential and can be relaxed, and, in fact, Remark 1 above still applies.

2. The previous result implies that the fused lasso is not only consistent but, in fact,
sign consistent, so that the signs of the nonzero blocks are estimated correctly.

3. The magnitude ρn of the smallest nonzero block value cannot decrease to zero
too fast, otherwise the sparsity pattern cannot be fully recovered, just as we
pointed out above in Remark 3 for the fusion solution.

4. The conditions of Theorem 2.5 appear to be quite cumbersome for two main
reasons. First, the regularization parameters λ1,n and λ2,n interact with each
other. As a result, it appears necessary to impose assumption 2 in order to guar-
antee that the two different bias terms they each determine will not disrupt
the recovery process. Secondly, one has to keep track of the size b0

min of the
minimal block. This additional bookkeeping is due to the fact that the sparsity
penalty is enforced globally, in the sense that all coordinates are penalized in
equal amount, thus ignoring the fact that longer blocks require less regulariza-
tion (see Remark 1 after Lemma 2.1).

2.3. The fused adaptive lasso: Sparsistency and an oracle inequality. Moti-
vated by the stringent nature of the conditions of Theorem 2.5, below we propose
a refinement of the fused lasso estimator, which we call the fused adaptive lasso.
Overall, this slightly different estimator enjoys better asymptotic properties than
the fused lasso, at no additional complexity cost.

The fused adaptive lasso is obtained with the following two-step procedure:

1. Fusion step. Compute the fusion solution μ̂F using the fusion regularization pa-
rameter λ2,n, as in (2.2), and the corresponding block-partition (B̂1, . . . , B̂Ĵ )

[see (2.3)]. Obtain

μ̂AF =
Ĵ∑

j=1

ȳj 1B̂j
,(2.9)
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where

ȳj = 1

b̂j

∑
i∈B̂j

yi, 1 ≤ j ≤ Ĵ .

2. Adaptive lasso step. Compute the fused adaptive lasso solution

μ̂FAL = arg min
μ∈Rn

‖μ̂AF − μ‖2
2 +

n∑
i=1

λ̃i |μi |,(2.10)

where the n-dimensional random vector λ̃ of penalties is

λ = λ1

Ĵ∑
j=1

1√
b̂j

1B̂j
(2.11)

with λ1,n as the �1 regularization parameter.

REMARKS.

1. The fused adaptive lasso differs from the fused lasso in two fundamental as-
pects. First, as easily seen from (2.9), the bias term in the fusion solution due
to the terms cj , which depends on the regularization parameter λ2,n, is absent
(see Lemma 2.1). Equivalently, the fusion estimator is only used to estimate the
block partition of μ0, and, provided this estimate is correct, the block values
are estimated unbiasedly with the sample averages. Using the fusion procedure
as an estimator of the block partition has the other advantage of decoupling the
estimation from the model selection problem, thus freeing, to some extent, the
user from the task of carefully choosing an optimal penalty λ2,n. In fact, recov-
ery of the true partition can be obtained even if the problem is overpenalized,
and, therefore, the resulting estimator μ̂F is highly biased.

Secondly, the penalty terms used for thresholding individual blocks are
rescaled by the squared root of the length of the estimated blocks. The rationale
for using this rescaling is very simple. In fact, suppose that, for some j1, j2,

bj1 � bj2 . Since the variance of the j th block average ȳj is σ 2
n

bj
, ȳj1 has a much

smaller standard error than ȳj2 and, therefore, should be penalized less heavily.
The adequate reduction in the sparsity penalty of ȳj1 versus ȳj2 is precisely the
difference in their standard errors, hence the choice of rescaling by the square
root of the block lengths. The advantage of adaptively thresholding the block
values in this manner is that the procedure will be more effective at identifying
longer nonzero blocks whose values are quite close to 0.

In Section 2.4 we explain both these improvements concretely with a numer-
ical example.
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2. In step 2 the vector μ̂ is straightforward to compute via soft-thresholding of the
individual coordinates of μ̂AF with coordinate-dependent thresholds

μ̂FAL
i =

⎧⎪⎨⎪⎩
μ̂AF

i − λi, μ̂AF
i ≥ λi ,

0, |μ̂AF
i | < λi ,

μ̂AF
i + λi, μ̂AF

i ≤ −λi ,
1 ≤ i ≤ n.

3. Instead of the soft-thresholded block estimate of step 2, one may consider in-
stead the corresponding estimate μ̃ based on the hard-threshold where

μ̃i = μ̂AF
i 1{|μ̂AF

i | ≥ λi}, 1 ≤ i ≤ n.

One of the asymptotic advantages of the fused adaptive lasso versus the ordi-
nary fused lasso is that block recovery obtains under milder conditions than The-
orem 2.5, without the need to consider the fusion penalty parameter λ2,n and the
length of the minimal block. In some sense, the fused adaptive lasso can adapt
more flexibly to the block sparsity than the fused lasso.

PROPOSITION 2.6. Assume that the conditions of Theorem 2.3 are satisfied.
Then,

lim
n

P{R1,n} = 1,

if, for some δ > 0,

1. λ1,n

σn
→ ∞ and λ1,n

σn

√
log(J0−K0)

>
√

2(1 + δ);

2. ρn

σn
→ ∞, ρn

σn

√
logK0

> 2
√

2(1 + δ) and λ1,n <
ρn

2 for all n large enough,

where ρn = minj∈K0 |ν0
j |.

A second advantage of the fused adaptive lasso stems from the oracle property
derived below. Consider the ideal situation where we have access to an oracle who
lets us know the K0 sets B0

jk
, k = 1, . . . ,K0, of the true block partition of μ0 for

which |ν0
jk

| > σn/
√

b0
jk

. Notice that, from this information, one can recover the true

partition. The oracle estimate μ̂O is the vector with coordinates

μ̂O
i =

⎧⎪⎨⎪⎩
1

b0
jk

∑
z∈B0

jk

yz, if i ∈ Bjk
,

0, otherwise.

This procedure amounts to setting to 0 the estimates for the coordinates belonging

to the blocks whose true mean value is smaller than σn/
√

b0
j . The corresponding
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ideal risk is

E‖μ̂O − μ0‖2
2 =∑

i

∑
jk

1{i ∈ B0
jk

}min
{

σ 2
n

b0
jk

, (ν0
j )2
}

(2.12)
= K0σ

2
n + ∑

j /∈JS0

b0
j (ν

0
j )2.

Note, in particular, that

E‖μ̂O − μ0‖2
2 ≤∑

i

min{σ 2
n ,μ2

i }

with equality if and only if b0
j = 1 for all j , where the expression on the right-hand

side is the ideal risk for the oracle estimator based on thresholding of individual
coordinates rather than of blocks. Therefore, if μ0 has a block structure, as is
assumed here, this different oracle will be able to achieve a smaller ideal risk.

Before stating our oracle result, we need some additional notation. Recall that
any μ ∈ R

n can always be written as

μ =
J∑

j=1

νj 1Bj
(2.13)

for some (possibly trivial) block partition (B1, . . . ,BJ ) of {1, . . . , n}, with
J ≤ n. Let μ1 and μ2 be vectors in R

n with block partitions {B1
1 , . . . ,B1

J1
} and

{B2
1 , . . . ,B2

J2
}, respectively, where J1, J2 ≤ n. Then, they satisfy (2.13), for some

vectors ν1 ∈ R
J1 and ν2 ∈ R

J2 , respectively. Let {L1, . . . ,Lm} be the partition of
{1, . . . , n} obtained as the refinement of the block partitions of μ1 and μ2, that is,
for every l = 1, . . . ,m, Ll = B1

j1
∩B2

j2
, for some j1 and j2. We define the quantity

JS(μ1;μ2) = {l :Ll = B1
j1

∩ B2
j2

, ν1
j1

�= 0}.

THEOREM 2.7. Assume that μ0 satisfies (1.1) and that

αn = O

(√
logn

n

)
.(2.14)

Let σ 2
n = σ 2

n
, λ2,n = A

√
σ 2

n logn, with A > 0 such that λ2,nαn < 1/4 and λ1,n =
2
√

σ 2
n log Ĵ , where Ĵ is obtained by solving the fusion problem (2.2) in the first

step of the adaptive fused-lasso procedure. For any vector μ ∈ R
n, set

V (μ) = 32|JS(μ;μ0)|σ 2
n logJ0.

Then, for any δ ∈ [0,1),

lim
n

P

{
‖μ̂FAL − μ0‖2

2 ≤ 2 + δ

2 − δ
inf

μ∈Rn
{V (μ) + ‖μ − μ0‖2

2}
}

= 1.(2.15)
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REMARKS.

1. The assumption in (2.14) stems from Theorem 2.3 and is crucial in our proof,
as it guarantees that recovery of the true block partition of μ0 by fusion, which
is necessary for mimicking the oracle solution μ̂O , is feasible. It essentially
allows for consecutive blocks to differ by a vanishing quantity of smaller order
than

√
logn/n. If the minimal jump size is bounded away from zero, uniformly

in n, then the condition λ2,nαn < 1/4 is redundant.
2. The proof of Theorem 2.7 shows that V (μ) is minimized by vectors such that

|JS(μ;μ0)| = |JS(μ0)| = K0;
that is, vectors whose block partition matches the the true block partition.
Therefore, (2.15) shows that the adaptive fused-lasso achieves the same ora-
cle rates granted by ideal risk (2.12) up to a term that is logarithmic in J0.

3. If it is further assumed that ‖μ0‖∞ < C uniformly in n, for some constant C,
the result (2.15) can be strengthened to

E‖μ̂ − μ0‖2
2 ≤ 2 + δ

2 − δ
inf

μ∈Rn
{V (μ) + ‖μ − μ0‖2

2} + o(1).

2.4. A toy example. We discuss a stylized numerical example for the purpose
of clearly illustrating the two advantages of the fused adaptive lasso, namely the
use of the fusion penalty only for recovering the true block partition and the block-
dependent rescaling of the lasso penalty. See Remark 1 before Proposition 2.6 for
details.

We simulate one sample according to the model

yi = μ0
i + εi,

where

μ0
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 1 ≤ i ≤ 100,
2, 101 ≤ i ≤ 110,
−0.1, 111 ≤ i ≤ 210,
−2, 211 ≤ i ≤ 220,
0, 221 ≤ i ≤ 320,
2, 321 ≤ i ≤ 330,
0.1, 331 ≤ i ≤ 430,

and the errors are independent Gaussian variables with mean zero and standard
deviation σ = 0.2. Figure 1 shows the data along with the true signal. Notice that
some of the coordinates of μ0 are in absolute value less than σ , a fact that, as
we will see, if μ0 were not blocky, would make the recovery of those coordinates
infeasible. Figure 3 portrays the simulated data and three fusion estimates μ̂F ,
each of them solving (2.2) for three different values of λ2,n: 4.8, 6.8 and 7.8.
The dashed line corresponds to the true mean vector μ0. The excessive amount
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FIG. 4. The modified fusion estimate μ̂AF of (2.9), using the fusion estimate from Figure 3 with
the lowest total variation. The dashed gray line, which is almost indistinguishable from the estimate,
is the true signal μ0. The vertical lines enclose the third and seventh blocks, whose value is in
magnitude half the standard deviation of the errors.

of penalization is apparent from the large bias in all these estimates, especially in
the smaller blocks. Nonetheless, the block partitions that each of these estimates
produce match, in fact, very closely the true block partition.

Figure 4 shows the modified fusion estimate μ̂AF given in (2.9) using the fusion
estimate from Figure 3 with the largest amount of bias, along with the true mean
vector μ0, displayed as a dashed line. Because the block partition was estimated
correctly, the estimate μ̂AF is almost indistinguishable from the true vector μ0.
For this particular dataset, the adaptive lasso step would set to zero correctly the
first and fifth block, but not the third and seventh blocks, which in Figure 4 are
enclosed by black vertical lines. In fact, although the true value of those blocks
is in magnitude half the standard deviation of the errors, σ , the standard error for
both the block estimates is roughly σ/10. This is taken into account in the adaptive
lasso step, but not in the lasso step, where even the ideal soft threshold, that is σ ,
would be too high, thus incorrectly setting to zero both of these blocks.

Finally, we simulated 1000 datasets according to the model described here and
computed the empirical mean squared errors for the fused adaptive lasso estimates,
using for the penalty terms the values indicated in Theorem 2.7. Figure 5 shows
the histogram of the empirical mean squared errors, with the vertical line repre-
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FIG. 5. Distributions of the empirical mean squared errors from 1000 simulations from the model
described on Section 2.4 using the fused adaptive lasso with penalty parameters chosen according to
Theorem 2.7. The vertical line represents σ 2.

senting the true mean squared error 1
n
E‖y − μ0‖2, namely σ 2. Notice how the

empirical mean squared errors are larger then the true value, the usual price paid
for adaptivity.

2.5. How to choose λ1,n and λ2,n. From the practical standpoint, the choice
of the regularization parameters is crucial. For the fused adaptive lasso, one can
infer from the proof of Theorem 2.7 that the optimal choice for the vector of lasso
penalty terms λ is given by

(
2σn

√
log Ĵ

) Ĵ∑
j=1

1√
b̂j

1B̂j
,

with 1B̂j
denoting the indicator vector of the estimated block B̂j , 1 ≤ j ≤ Ĵ . This

choice corresponds to soft-thresholding Ĵ independent Gaussian variables with

variances σ 2
n√
b̂j

, j = 1, . . . , Ĵ .

Admittedly, for the total variation penalty term λ2,n the theoretical results pre-
sented here, being of asymptotic nature, may not directly lead to procedures that
are effective in practice, unless n is very large. Choosing optimal values for the
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penalty parameters remains an important open problem in much of the penalized
least-squares literature, where the theoretical (e.g., asymptotic) results may offer
little guidance in practice. Cross validation is certainly a viable way of choosing
both λ1,n and λ2,n, as recommended in Friedman et al. (2007), and as is almost
exclusively done in practice (although it remains to be seen whether this proce-
dure leads to optimal estimators). Nonetheless, an automatic procedure for choos-
ing λ2,n that exhibits reasonable performance still eludes us. However, our theo-
retical analysis, and the toy example presented above, shows that, if the signal is
comprised mostly of long blocks, a large value of λ2,n will lead to accurate esti-
mates of the block partition, and the results should be relatively robust to different
choices.

An interesting possibility suggested by a referee, which is beyond the scope of
this article, is to replace the overall total variation parameter λ2,n with a series of
data-driven parameters, one for each term of the total variation seminorm. Specif-
ically, one can consider the penalized problem

arg min
μ∈Rn

{
n∑

i=1

(yi − μi)
2 + 2

n∑
i=2

λ2,i |μi − μi−1|
}
,(2.16)

where {λ2,i , i = 2, . . . , n} are possibly different coefficients that modulate the ef-
fect of the total variation penalty at different locations along the signal, so that
the solution is more robust to spurious local extreme due to unusually large er-
rors. In fact, as pointed out by Davies and Kovac (2001b), the taut-string algorithm
with local squeezing approximates the solution to this problem. Although local
squeezing increases the complexity of the algorithm, it has been shown to enjoy a
better performance than the problem with an omnibus total variation penalty. The
choice of the regularization parameters {λ2,i , i = 2, . . . , n} can be done iteratively,
starting with all λ2,i ’s being identical and very large (thus producing an estimate
with constant entries) and then, at every step, shrinking them differently based on
the features of the residuals, such as the multiresolution coefficients as defined in
Davies and Kovac (2001a).

3. Sieve methods. In this section, we study the rates of convergence for the
sieve least squares solutions (1.3) and (1.4). For convenience, consistency is mea-

sured with respect to the normalized Euclidean norm ‖x‖n = 1√
n

√∑n
i=1 x2

i . Ac-
cordingly, we change our assumption on the errors as follows:

(E′) The errors (ε1, . . . , εn) are independent sub-Gaussian variables with vari-
ances bounded by σ 2, uniformly in n.

Notice that the results and settings of previous sections can be adapted in a straight-
forward way to the present framework.

We first study the estimator given in (1.3). To that end, consider the class of
vectors

CTV(Tn) = {μ ∈ R
n :‖μ‖TV ≤ Tn,‖μ‖∞ ≤ C},
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where C is a finite constant that does not depend on n, and the �1-ball of radius Ln

C�1(Ln) = {μ ∈ R
n :‖μ‖1 ≤ Ln}

with both numbers Tn and Ln being allowed to grow unboundedly with n. Then,
we can rewrite (1.3) as

μ̂T L = arg min
μ∈CTV(Tn)∩C�1 (Ln)

‖y − μ‖2
2.

Below, we derive the consistency rate for μ̂T L in terms of the sequences Tn and Ln

by dealing separately with the two sieves.

THEOREM 3.1. Assume (E′) and μ0
n ∈ C�1(Ln) ∩ CTV(Tn). Let

μ̂T = inf
μ∈CTV(Tn)

‖y − μ‖2
2(3.1)

and

μ̂L = arg min
μ∈C�1 (Ln)

‖y − μ‖2.

Then,

‖μ̂T − μ0‖n = OP (T 1/3
n n−1/3),

so that μ̂T is consistent provided that Tn = o(n), and

‖μ̂L − μ0‖n = OP

(√
Ln(logn)3/2

n

)
,(3.2)

so that μ̂L is consistent provided that

Ln = o

(
n

(logn)3/2

)
.

As a result,

‖μ̂T L − μ0‖n = OP

(
Ln(logn)3/2

n
∧
(

Tn

n

)1/3)
.(3.3)

REMARKS.

1. It appears that the requirement for the vectors in CTV(Tn) to be uniformly
bounded cannot be relaxed without negatively affecting the rate of consistency
or without introducing additional assumptions [see, e.g., Theorem 9.2 in van de
Geer (2000)].

2. The rate of consistency for μ̂F should be compared with the analogous rate
derived in Theorem 9 of Mammen and van de Geer (1997) for the penalized
version of the least squares problem (3.1).
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3. The rate given in (3.2) is not the sharpest possible. In fact, an application of
Theorem 5 of Donoho and Johnstone (1994) yields for μ̂L the improved mini-
max rate √

Ln

n
(logn)1/4

for the case of i.i.d. Gaussian errors, from which we can infer a maximal rate
of growth Ln = o( n√

logn
).

4. We make no claims that the rate given in equation (3.3), which is just the mini-
mum of the rates for two separate sieve least squares problems, is sharp. Better
rates may be obtained from better estimates of the metric entropy of the set
C�1(Ln) ∩ CTV(Tn).

5. On the relationship between Ln and Tn. The total variation and �1 constraints
are not independent of each other. One can easily verify that

T max
n ≡ max

x∈C�1 (Ln)
‖x‖TV = 2Ln.

On the other hand, every vector x ∈ R
n such that ‖x‖TV = Tn can be written as

x = m + t,

where ‖t‖TV = Tn, m = 1nx̄n, with x̄n = 1
n

∑
i xi , and 1

n

∑
i miti = 0. Notice

that m can be estimated at the rate 1√
n

, so the convergence rates for μ̂T depend
on how well t can be estimated. Next, notice that

Lmax
n ≡ max

x∈CTV(Tn),x=m+t
‖t‖1 = Tn

2

n

n − 1
,

where m + t is the decomposition of x discussed above. Therefore, over the set
CTV(Tn) ∩ C�1(Ln), we obtain the relationship

T max
n ∼ 2Lmax

n .(3.4)

Our final result concerns the estimator resulting from the nonconvex sieve least
squares problem (1.4). Define the set

C(Sn, Jn) = {μ ∈ R
n : |Sn(μ)| ≤ Sn} ∩ {μ ∈ R

n : |Jn(μ)| + 1 ≤ Jn},
consisting of vectors in R

n that have at most Sn nonzero coordinates and take on at
most Jn different values. For convenience, we further impose the following, fairly
weak assumption, which does not preclude the coordinates of μ0 from becoming
increasingly large in magnitude with n:

(R) the set C(Sn, Jn) is contained in a Sn-dimensional cube centered at the origin
with volume Rn such that

logRn = o(n).



2942 A. RINALDO

THEOREM 3.2. Assume (E′) and (R) and let μ̂SJ = arg minμ∈C(Sn,Jn) ‖y −
μ‖2

2.

1. If Sn = o( n
logn

), then

‖μ̂SJ − μ0‖n = OP

(√
Jn

n

)
.(3.5)

2. When Sn = n, (3.5) still holds, provided Jn = o( n
logn

).

REMARKS.

1. The rate on Sn is in accordance with the persistence rate derived in Greenshtein
(2006), Theorem 1, for related least squares regression problems on sieves.

2. If J0 is bounded, uniformly in n, the consistency rate we obtain is parametric.
See Boysen et al. (2009) for a similar result.

4. Discussion and future directions. In this work, we tackle the task of es-
timating a blocky and sparse signal using three different methodologies, whose
asymptotic properties we investigate. We study the fused lasso estimator proposed
in Friedman et al. (2007) and a simple variant of it, with better properties. For both
procedures, we provide conditions under which they recover with overwhelming
probability as n gets larger the block partition. We also study consistency rates of
sieve least square problems under two types of constraints, one on the maximal ra-
diuses of the �1- and ‖ · ‖TV-balls, and the other on the maximal number of blocks
and nonzero coordinates. Overall, these results complement each other in provid-
ing different types of asymptotic information for the task at hand and complement
other analyses already existing in the statistical literature.

There are a number of generalizations of the results presented. We mention only
the ones that seem the most natural to us. A first extension involves considering
a corrupted version of a signal μ0 ∈ R

n × R
n, corresponding to the problem of

denoising a sparse, blocky image over a n×n grid, for which total variation meth-
ods have proven quite effective. Another interesting direction would be to assume
a known slowly-varying variance function, for example, with given Lipschitz con-
stant, and incorporate this information directly into the penalty functions in both
the fusion and adaptive lasso steps. Furthermore, under this heteroschedastic sce-
nario, one could first build a consistent estimator of the variance function and then,
in the fusion step, use it to penalize the individual jumps adaptively. We think that
our techniques and results can be directly generalized to study these more complex
settings. Finally, we believe it would be quite valuable to investigate the possibility
of building confidence balls and, in particular, confidence bands for the entire sig-
nal or for some of its local maxima or minima based on the estimators considered
here.
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APPENDIX: PROOFS

LEMMA A.1. Let ‖ · ‖TV : Rk → R be the fused penalty ‖x‖TV =∑k
i=2 |xi −

xi−1|. Then, ‖ · ‖TV is convex and, for any x ∈ R
k , the subdifferential ∂‖x‖TV is

the set of all vectors s ∈ R
k such that

si =
⎧⎨⎩

−w2, if i = 1,
wi − wi+1, if 1 < i < k,
wk, if i = k,

(A.1)

where wi = sgn(xi − xi−1), for 2 ≤ i ≤ k.

PROOF. Let L be a (k − 1) × k matrix with entries Li,i = −1 and Li,i+1 = 1
for 1 ≤ i ≤ (k − 1) and 0 otherwise. Then, for any x ∈ R

k , ‖x‖TV = ‖Lx‖1. Con-
vexity of ‖ · ‖TV follows from the fact that it is the composition of a linear func-
tional by the �1 norm, which is convex. Next, by the definition of the subdifferential
of the �1 norm, for any y ∈ R

k ,

‖Ly‖1 ≥ ‖Lx‖1 + 〈L(y − x),w〉(A.2)

holds if and only if w ∈ Wx ⊂ R
k−1, where Wx is the set of all vectors w such that

wi = sgn((Lx)i). Equation (A.2) is equivalent to

‖y‖TV ≥ ‖x‖TV + 〈y − x, s〉
for each k-dimensional vector s such that s = L�w for some w ∈ Wx . This set is
described by (A.1) and is, therefore, ∂‖x‖TV. �

PROOF OF LEMMA 2.1. From the subgradient condition (2.1) with λ1,n = 0,
we obtain

ν̂j = 1

b̂j

∑
i∈B̂j

μ̂F
i = 1

b̂j

∑
i∈B̂j

yi − λ2,n

b̂j

∑
i∈B̂j

si .

Using (A.1), a simple telescoping argument leads to

∑
i∈Bj

si = wij − wij+1 =
⎧⎨⎩

2, if (̂νj+1 − ν̂j ) > 0, (̂νj − ν̂j−1) < 0,
−2, if (̂νj+1 − ν̂j ) < 0, (̂νj − ν̂j−1) > 0,
0, if (̂νj − ν̂j−1)(̂νj+1 − ν̂j ) = 1,

where ij = min{i : i ∈ B̂j }. This gives (2.6). It remains to consider the cases j = 1
and j = Ĵ . If j = 1,

∑
i∈B1

si = −wi2 , and if j = Ĵ ,
∑

i∈BJ
si = wiJ , form which

(2.4) and (2.5) follow, respectively. �

PROOF OF THEOREM 2.3. Let

Rλ2,n
= {Ĵ = J0} ∩ {sgn(μ̂F

i − μ̂F
i−1) = sgn(μ0

i − μ0
i−1),∀i ∈ J0}(A.3)
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and, for 2 ≤ i ≤ n, let d0
i = μ0

i −μ0
i−1, d̂i = μ̂F

i − μ̂F
i−1 and dε

i = εi − εi−1. Using
the subgradient conditions (A.1), the event Rλ2,n

occurs if and only if

dε
i = λ2,n

(
2 sgn(d0

i ) − sgn(d̂i−1) − sgn(d̂i+1)
) ∀i /∈ J0,

where, for x = 0, sgn(x) is the set [−1,1], and

|d̂i | > 0 ∀i ∈ J0.

Next, in virtue of Lemma 2.1, on Rλ2,n
we can write

d̂i = 1

b0
j (i)

∑
k∈B0

j (i)

yk + c0
j (i) − 1

b0
j (i−1)

∑
k∈B0

j (i−1)

yk − c0
j (i−1)

= d0
i + 1

b0
j (i)

∑
k∈B0

j (i)

εk − 1

b0
j (i−1)

∑
k∈B0

j (i−1)

εk + c0
j (i) − c0

j (i−1),

where the index j (i) identifies the block to which i belongs; that is, B0
j (i) is the

block such that i ∈ Bj (i) for all i = 1, . . . , n. Accordingly, bj (i) = |B0
j (i)| and c0

j (i)

denotes the bias term in the fusion estimate as given in Lemma 2.1, with b̂j and ν̂j

replaced by b0
j and ν0

j , respectively, for j = 1, . . . , J0.
As a result, the event Rλ2,n

occurs in probability if both

max
i /∈J0

|dε
i | < λ2,n|2 sgn(d0

i ) − sgn(d̂i−1) − sgn(d̂i+1)| < 4λ2,n(A.4)

and

min
i∈J0

∣∣∣∣d0
i + 1

b0
j (i)

∑
k∈B0

j (i)

εk − 1

b0
j (i−1)

∑
k∈B0

j (i−1)

εk + c0
j (i) − c0

j (i−1)

∣∣∣∣> 0(A.5)

hold with probability tending to 1 and n → ∞.
We first consider (A.4). Notice that, for each 2 ≤ i �= j ≤ n, Edε

i = 0, Vardε
i =

2σ 2
n and

Cov(dε
i , dε

j ) =
{−σ 2

n , if |i − j | = 1,
0, otherwise.

For 2 ≤ i ≤ n, let d∗
i ∼ N(0,2σ 2

n ) be independent, so that{
E(dε

i dε
j ) ≤ E(d∗

i d∗
j ), for all 2 ≤ i �= j ≤ n,

E(dε
i )2 = E(d∗

i )2, for all 2 ≤ i ≤ n.

Then, by Slepian’s inequality [see, e.g., Ledoux and Talagrand (1991)]

P

{
max
i∈Jc

0

|dε
i | ≥ 4λ2,n

}
≤ P

{
max
i∈Jc

0

|d∗
i | ≥ 4λ2,n

}
.
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By Chernoff’s bound for standard Gaussian variables, followed by the union
bound

P

{
max
i∈Jc

0

|d∗
i | ≥ 4λ2,n

}
≤ 2 exp

{
−8

λ2
2,n

σ 2
n

+ log |Jc
0|
}
,

which vanishes if condition 1 is satisifed.
In order to verify (A.5), it is sufficient to show that, with probability tending

to 1 as n → ∞,

max
i∈J0

∣∣∣∣ 1

b0
j (i)

∑
k∈B0

j (i)

εk − 1

b0
j (i−1)

∑
k∈B0

j (i−1)

εk + c0
j (i) − c0

j (i−1)

∣∣∣∣≤ αn,

where αn = mini∈J0 |d0
i |. By the triangle inequality, it is enough to show that

max
i∈J0

∣∣∣∣ 1

b0
j (i)

∑
k∈B0

j (i)

εk − 1

b0
j (i−1)

∑
k∈B0

j (i−1)

εk

∣∣∣∣≤ αn/2(A.6)

and

max
i∈J0

∣∣c0
j (i) − c0

j (i−1)

∣∣≤ αn/2.(A.7)

The previous inequality is implied by the last inequality in condition 2 in virtue of
the bound

max
i∈J0

∣∣c0
j (i) − c0

j (i−1)

∣∣≤ 2λ2,n

1

b0
min

.

Next, we turn to (A.6). Set Xi = 1
b0
j (i)

∑
k∈B0

j (i)
εk − 1

b0
j (i−1)

∑
k∈B0

j (i−1)
εk , with

i ∈ J0. Then, EXi = 0 for all i and

max
i∈J0

VarXi ≤ 2
σ 2

n

b0
min

.

Therefore, letting X∗
i ∼ N(0,2 σ 2

n

b0
min

), i ∈ J0, be independent, we obtain, using stan-

dard Gaussian tail bounds,

P

{
max
i∈J0

|Xi | ≥ αn

2

}
≤ P

{
max
i∈J0

|X∗
i | ≥

αn

2

}
≤ 2 exp

{
−b0

minα
2
n

16σ 2
n

+ log |J0|
}
.

Under condition 2, the above probability vanishes. This, combined with (A.7)
shows that (A.5) holds with probability tending to 1 if condition 2 is verified.

�

PROOF OF THEOREM 2.5. It is enough to show that the event

Rλ1,n
∩ Rλ2,n
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occurs in probability for n → ∞. Because the conditions of Theorem 2.3 are as-
sumed, limn P{Rλ2,n

} = 1, which implies that we can restrict our analysis to the
set Rλ2,n

, where Ĵ = J0 and B̂j = B0
j , for 1 ≤ j ≤ J0. Next, from Corollary 2.2,

it is immediately verified that the fused-lasso solution is

μ̂FL =
Ĵ∑

j=1

1B̂j
ν̂T
j ,

where ν̂T
j = sgn(̂νj )(̂νj = λ1,n)+ is the soft-thresholded version of ν̂j . Therefore,

in order to verify the claim, one needs to consider the simpler lasso problem ap-
plied to the vector ν̂. Inspecting the sub-gradient condition for this problem, and by
arguments similar to the ones used above, it follows that limn P(Rλ1,n

) = 1 obtains
provided both

max
j∈Kc

0

∣∣∣∣ 1

b0
j

∑
i∈B0

j

εi + cj

∣∣∣∣< λ1,n(A.8)

and

max
j∈K0

∣∣∣∣ 1

b0
j

∑
i∈B0

j

εi + cj − λ1,n

∣∣∣∣< ρn(A.9)

hold with probability tending to 1 as n → ∞, where the quantities cj are given

in Lemma 2.1. Letting Xj = 1
b0
j

∑
i∈B0

j
εi , notice that Xj ∼ N(0,

σ 2
n

b0
j

) and that

(X1, . . . ,XJ0) are independent. Then, a combination of the Chernoff’s and the
union bounds yields

P

{
max
j∈JSc

0

∣∣∣∣ 1

b0
j

∑
i∈B0

j

εi

∣∣∣∣≥ λ1,n

2

}
≤ ∑

j∈JSc
0

exp
{
−λ2

1,nb
0
j

8σ 2
n

}

≤ exp
{
−λ2

1,nb
0
min

8σ 2
n

+ log |JSc
0|
}

and

P

{
max
j∈JS0

∣∣∣∣ 1

b0
j

∑
i∈B0

j

εi

∣∣∣∣≥ ρn

3

}
≤ ∑

j∈JS0

exp
{
−ρ2

nb0
j

18σ 2
n

}
≤ exp

{
−ρ2

nb0
min

18σ 2
n

+ log |JS0|
}
,

which give large deviations bounds for the error sums in (A.8) and (A.9). Condi-
tions 1 and 3 guarantee that the above probabilities vanish for n → ∞. Thus, with
the additional conditions 2 and 4, the inequalities (A.8) and (A.9) are verified in
probability. �
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PROOF OF PROPOSITION 2.6. The proof is virtually identical to the proof of
Theorem 2.5, the main differences stemming from the facts that the bias terms
cj = 0 for all 1 ≤ j ≤ J0 and

1√
b0
j

∑
i∈B0

j

εi ∼ N(0, σ 2
n ).

We omit the details. �

PROOF OF THEOREM 2.7. Let μ̂F be the fusion estimate using the penalty
λ2,n. Then, because of assumption (2.14), and with the specific choice of λ2,n

and σ 2
n given in the statement, it can be verified that the conditions of Theorem 2.3

are met. Thus, the event

F = {Ĵ = J 0} ∩ {B̂j = B0
j ,1 ≤ j ≤ J 0}

has probability arbitrarily close to 1, for all n large enough. On this event F , we
next investigate the adaptive fused-lasso μ̂. Because μ̂ is the minimizer of (2.10),
for any μ ∈ R

n,

‖μ̂AF − μ̂‖2
2 + 2

∑
i

λi |μ̂i | ≤ ‖μ̂AF − μ‖2
2 + 2

∑
i

λi |μi |,

where μ̂AF and λ are given in (2.9) and (2.11), respectively. Adding and subtracting
μ0 inside both terms ‖μ̂AF − μ̂‖2

2 and ‖μ̂AF − μ‖2
2 yields

‖μ̂ − μ0‖2
2 ≤ ‖μ − μ0‖2

2 + 2
∑
i

λi(|μi | − |μ̂i |) + 2〈ε∗, μ̂ − μ〉,(A.10)

where, on F , ε∗ = μ̂AF − μ0 =∑J0
j=1 Xj 1B0

j
, with Xj ∼ N(0,

σ 2
n

b0
j

) and (X1, . . . ,

XJ 0) independent. Next, consider the sub-event A ⊆ F given by

A = {|ε∗
i | ≤ λi, for each i = 1, . . . , n}

= {|Xj | ≤ λ1,n/
√

b0
j , for each j = 1, . . . , J0

}
.

Then,

P(A) = P

{
max

j
|ζj | ≤ λ1,n

}
,

where (ζ, . . . , ζJ0) are i.i.d. N(0, σ 2
n ). Notice that because of the choice of λ1,n,

limn PA = 1 by standard large deviation bounds for Gaussians (see also the proof
of Theorem 2.3). Next, on A, we have

2〈ε∗, μ̂ − μ〉 ≤ 2
∑

i∈S(μ)

λi |μ̂i − μi | + 2
∑

i /∈S(μ)

λi |μ̂i |.(A.11)
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The decomposition

2
∑
i

λi(|μi | − |μ̂i |) = 2
∑

i∈S(μ)

λi |μi | − 2
∑

i∈S(μ)

λi |μ̂i | − 2
∑

i /∈S(μ)

λi |μ̂i |,

along with (A.11) and the triangle inequality, yields, on A,

2
∑
i

λi(|μi | − |μ̂i |) + 2〈ε∗, μ̂ − μ〉 ≤ 4
∑

i∈S(μ)

λi |μ̂i − μi |.

The previous display and (A.10) lead to the inequality

‖μ̂ − μ0‖2
2 ≤ ‖μ − μ0‖2

2 + 4
∑

i∈S(μ)

λi |μ̂i − μi |(A.12)

valid on A. Next, it is easy to see that∑
i∈S(μ)

λ2
i = ∑

j∈JS(μ)

bjλ
2
i ≤ λ2

1,n

∑
l∈JS(μ;μ0)

1 = λ2
1,n|JS(μ;μ0)|,

and, in particular, ∑
i∈S(μ)

λ2
i = λ2

1|JS(μ0)|,

if and only if JS(μ) = JS(μ0).
Therefore, by the Cauchy–Schwarz inequality, the second term on the right-

hand side of (A.12) can be bounded on A as follows:

4
∑

i∈S(μ)

λi |μ̂i − μi | ≤ 4λ1,n

√
|JS(μ;μ0)|‖μ̂ − μ‖2.

Then, using the triangle inequality, (A.12) becomes

‖μ̂ − μ0‖2
2 ≤ ‖μ − μ0‖2

2 + 4λ1,n

√
|JS(μ;μ0)|(‖μ̂ − μ0‖2 + ‖μ0 − μ‖2).

On A, the same arguments used in the second part of the proof of Lemma 3.7 in
van de Geer (2007) establish the inequality in the claim. Since limn P(A) = 1, the
first result follows. �

PROOF OF THEOREM 3.1. Let N(δ,Fn,‖ · ‖n) denote the δ-covering number
of the set Fn ⊂ R

n with respect to the norm ‖ · ‖n and notice that, for any C > 0,

N(δ,CFn,‖ · ‖n) = N

(
δ

C
,Fn,‖ · ‖n

)
.

Furthermore, observe that CTV(Tn) = TnC(1). By a theorem of Birman and
Solomjak (1967) [see, e.g., Lorentz, Golitschek and Makovoz (1996), Theo-
rem 6.1], the δ-metric entropy of CTV(Tn) with respect to the L2(Pn) norm is

C
Tn

δ
,
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for some constant C independent of n. Letting �(δ) = ∫ δ
0

√
C Tn

δ
= √

TnCδ, the
solution to

√
nδ2

n � �(δn)

gives

δn � T
1/3
n

n1/3 ,

where the symbol � indicates inequality up to a universal constant. The result
now follows from Theorem 3.4.1 of van der Vaart and Wellner (1996) (see also the
discussion on pages 331 and 332 of the same reference). In order to establish (3.2),
we use Lemma 4.3 in Loubes and van de Geer (2002) to get that the metric entropy
of C�1(Ln) is

H(δ,C�1(Ln),‖ · ‖n) ≤ C
L2

n

nδ2

(
logn + log

Ln√
nδ

)
for some constant C independent of n. Notice that the entropy integral of√

H(δ,C�1(Ln),‖ · ‖n) diverges on any neighborhood of 0. By Theorem 9.1 in
van de Geer (2000), the rate of consistency δn for μ̂L with respect to the norm
‖ · ‖n is given by the solution to

√
nδ2

n � �(δn),(A.13)

where

�(δn) ≥
∫ δn

Aδ2
n

√
H(x,C�1(Ln)) dx

with A a constant independent of n. Equation (A.13) is satisfied for a sequence δn

satisfying

√
nδ2

n � Ln

√
logn√
n

log 1/δn,

which gives the rate (3.2). �

PROOF OF THEOREM 3.2. Let H(δn,C(Sn, Jn),‖ · ‖n) denote the metric en-
tropy of C(Sn, Jn) with respect to the norm ‖ · ‖n. By Lemma A.2 and assump-
tion (C2), for δn < 1, the equation

√
nδ2

n �
∫ δn

0

√
logH(x,C(Sn, Jn),‖ · ‖n) dx

leads to

δn �
√

Sn

n
log

√
1

δn

+ o(1),
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because Sn = o( n
logn

) and jn ≤ sn. The sequence δn =
√

Jn

n
satisfies the conditions

of Theorem 3.4.1 of van der Vaart and Wellner (1996), thus proving (3.5). The
second claim in the theorem is proved similarly, where the left-hand side of (A.14)
in Lemma A.2 is now bounded by C1,n only. �

LEMMA A.2. For the distance induced by the norm ‖x‖n = 1√
n

√∑n
i=1 x2

i , the

metric entropy of C(Sn, Jn) satisfies

H(δ,C(Sn, Jn),‖ · ‖n) ≤ C1,n + C2,n,(A.14)

where

C1,n = Jn

Sn

logRn + Jn

(
log

√
n

δ
+ 1

2
logSn

)
+ Sn log(Sn + Jn − 1)

and

C2,n = logSn + Sn logn.

PROOF. For fixed δ > 0, we will construct an δ-grid of C(Sn, Jn) based on the
Euclidean distance. For every choice of Sn nonzero entries of μ, we regard μ as
a vector in R

Sn which is block-wise constant with Jn blocks. Then, there exist Jn

positive integer numbers d1, . . . , dJn such that
∑

l dl = Sn and one can think of μ

as the concatenation of Jn vectors μ1, . . . ,μJn each having constant entries, where
μl ∈ R

dl , l = 1, . . . , Jn. Each μl can be any point along the main diagonal of the
dl-dimensional cube center at 0 with edge length R

1/Sn
n and volume R

dl/Sn
n . The

length of the main diagonal of each such cube is R
1/Sn
n

√
dl . Therefore, for any

specific choice of Sn nonzero coordinates, the slice in the corresponding Sn-di-
mensional cube centered at 0 and with edge length R

1/Sn
n consisting of the set of

vectors in Bn with discontinuity profile (d1, . . . , dJn) is the set

Rn =
Jn∏
l=1

�(R1/Sn
n , dl),

where �(R,dl) denotes the closed line segment in R
Sn between the points πdl

(1R)

and πdl
(−1R), where 1 is the Sn-dimensional vector with coordinates all equal

to 1 and πdl
the function from R

Sn onto R
Sn given by πdl

(x) = y with yi = 0 for
i ≤∑l

j=1 dl − 1 or i ≥∑l+1
j=1 dl and yi = xi otherwise. Notice that the length of

each �(R
1/Sn
n , dl) is precisely R

1/Sn
n

√
dl . If Jn = Sn, Rn is the Sn-dimensional cube

centered at 0 with volume Rn, while if Jn < kn the set Rn is a hyper-rectangle (not
full dimensional) which can be embedded as a hyper-rectangle in R

Jn centered at 0
and with edge lengths equal to the lengths of �(R

1/kn
n , dl), for l = 1, . . . , Jn. As a

result, it is immediate to see that the volume of Rn can be calculated as∏
l

R1/Sn
n

√
dl = RJn/Sn

n

∏
l

√
dl.
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Next, partition each of the Jn perpendicular sides of Rn into intervals of length

δ
√

dl

Sn
, l = 1, . . . , Jn. This gives a partition of Rn into smaller hyper-rectangle of

edge lengths δ
√

dl

Sn
, for l = 1, . . . , Jn. Every point in Rn is within Euclidean dis-

tance δ from the center of one of the small hyper-rectangles, which therefore form
an δ-grid for Rn. By a volume comparison, the cardinality of such a grid is

R
Jn/Sn
n

∏
l

√
dl∏

l δ
√

dl/Sn

=
(
R1/Sn

n

√
Sn

δ

)Jn

.

For fixed Sn, the number of distinct block patterns with cardinality at most Jn

is equal to the the number of nonnegative solutions to d1 + d2 + · · · + dJn = Sn,
which can bounded as (

Sn + Jn − 1
Jn

)
≤ (Sn + Jn − 1)Jn

[see, e.g., Stanley (2000)]. Thus, the logarithm of cardinality of this δ-grid is

Jn

Sn

logRn + Jn

(
log

1

δ
+ 1

2
logSn

)
+ Jn log(Sn + Jn − 1).(A.15)

Next, the number of subsets of {1, . . . , n} of size at most Sn is

Sn∑
i=1

(
n

i

)
≤ Snn

Sn.

Thus, the logarithm of the cardinality for an δ grid over Bn is bounded by (A.15)
plus the quantity

logSn + Jn logn.

The result for the ‖ · ‖n norms now follows by replacing δ with δ/
√

n in (A.15).
�
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