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TESTING FOR COMMON ARRIVALS OF JUMPS FOR
DISCRETELY OBSERVED MULTIDIMENSIONAL PROCESSES

BY JEAN JACOD AND VIKTOR TODOROV

UPMC (Université Paris-6) and Northwestern University

We consider a bivariate process Xt = (X1
t ,X2

t ), which is observed on a
finite time interval [0, T ] at discrete times 0,�n,2�n, . . . . Assuming that its
two components X1 and X2 have jumps on [0, T ], we derive tests to decide
whether they have at least one jump occurring at the same time (“common
jumps”) or not (“disjoint jumps”). There are two different tests for the two
possible null hypotheses (common jumps or disjoint jumps). Those tests have
a prescribed asymptotic level, as the mesh �n goes to 0. We show on some
simulations that these tests perform reasonably well even in the finite sample
case, and we also put them in use for some exchange rates data.

1. Introduction. It seems more and more apparent, as high-frequency data
become available at a large scale, that many processes observed at discrete times,
like stock prices or exchange rates, do have jumps. Now, finding models for dis-
continuous (continuous-time) processes that are compatible with data is a hard
task, especially if one wants tractable models. This is even more difficult if one
wants to model several processes at once.

Among models for multidimensional processes with correlated components, the
easiest ones to tackle are those for which the various components do not jump to-
gether. Indeed, [16] assumes that jumps in individual stocks do not arrive together
and can be diversified away when stocks are aggregated in a portfolio. But are
such models for asset prices compatible with financial data? The empirical studies
of [2] and [7], using high-frequency data, provide strong evidence for presence of
jumps even on aggregate stock market level, which suggests that individual stocks
contain a systematic jump component. It is clear that, if we want to formally study
the systematic and idiosyncratic jumps in individual asset prices, we need formal
tests for deciding whether the jumps in the different assets arrive together or not.
Recently, [6] analyzed the relationship between the jumps in individual stocks and
a portfolio of these stocks and similarly concluded for the need of formal tests
about the possible common arrival of jumps in individual series. The main goal of
this paper is to develop such tests in a general framework.

More specifically, we consider a d-dimensional process X = (X1, . . . ,Xd) that
evolves according to a model, which we want to be as general as possible. We
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will take an Itô semimartingale, which essentially amounts to saying that it is
driven by a Wiener process and a Poisson random measure (this allows in par-
ticular for “infinite activity” of the jumps). This semimartingale is observed at
regularly spaced times i�n, where i = 0,1, . . . . We provide a testing procedure,
based on the observation of the Xi�n’s up to some given terminal time T (i.e., for
i = 0,1, . . . , [T/�n]) to test the “null” hypothesis that two components, say X1

and X2, have no common jumps (meaning that they never jump together) on the
time interval [0, T ], and also the null hypothesis that they do have common jumps.

An important feature of this paper is that we want these tests to be as indepen-
dent of the underlying model as possible. An obvious second feature is that the
problem is asymptotic; that is, the time lag �n is “small” and, in fact, we study
the asymptotic properties of the tests as �n → 0, the horizon T is kept fixed. An
important third feature is that we test for common jumps or no, for the path of
t �→ Xt on [0, T ]; some models allow for a positive probability of common jumps
and simultaneously a positive probability for no common jump, and our tests try
to give an answer for the observed path and not the model itself.

It might be useful to consider the case where the horizon T = Tn also depends
on n. There are two extreme cases: first, when Tn converges to a limit T > 0, and all
of what follows applies word for word in this case, although practically speaking
this situation really amounts to considering Tn = T as being constant; and second,
when Tn → ∞. Then, what follows does not apply, and we need much stronger
assumptions on X, like ergodicity conditions, to derive any kind of results. On
the other hand, the techniques are somewhat simpler and rather different, and we
would be in a classical hypotheses testing situation instead of having “conditional”
tests, as explained below. We do not consider this situation at all in this paper.

The tests exhibited here are based upon statistics involving suitable sums of
functions of the increments of the process X between successive observations. We
will use these increments at two different scales, exactly as in [1], whose methods
are generalized here. The way the tests are conducted is, however, different and in
a sense more complicated than in that paper. Tests for deciding whether a given
path has jumps or not on the interval [0, T ] have been already developed (see [1,
3, 4, 12–15, 17] and [5] discuss some multivariate extensions of the test in [4]).
Therefore, in this paper, we focus on the problem of testing whether there is at
least one common jump time for the two components or none, supposing that there
are jumps.

The paper is organized as follows. Sections 2 and 3 describe our setup and the
test statistics we use. We provide a central limit theorem, or what plays the role of
it for our proposed statistics, in Section 4, and use them to construct the actual tests
in Section 5. We report the results of some Monte Carlo simulations in Section 6.
In Section 7, we put our tests to use on actual data, namely the exchange rates
between two pairs of currencies. Proofs are in Section 8.
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2. Setting and assumptions. Our problem in this paper is to determine
whether any two components of a multidimensional process do jump at the same
times. It thus amounts to solving this problem separately for each pair of com-
ponents. In other words, this is a truly two-dimensional problem, and it is not
a restriction to suppose that the underlying process X is two-dimensional, with
components denoted by X1 and X2.

As already mentioned, we do not want to make any specific model assumption
on X, such as assuming some parametric family of models. We do need, how-
ever, a mild structural assumption that is satisfied in all continuous-time models
with stochastic volatility used in finance, at least as long as one wants to rule out
arbitrage opportunities.

Our structural assumption is that X is an Itô semimartingale on some filtered
space (�,F , (Ft )t≥0,P), which means that it can be written as

Xt = X0 +
∫ t

0
bs ds +

∫ t

0
σs dWs +

∫ t

0

∫
κ ◦ δ(s, z)(μ − ν)(ds, dz)

(2.1)

+
∫ t

0

∫
κ ′ ◦ δ(s, z)μ(ds, dz),

where W and μ are a two-dimensional standard Wiener process and a Poisson
random measure on [0,∞)×E, with (E,E) an auxiliary measurable space, on the
space (�,F , (Ft )t≥0,P) and the predictable compensator (or intensity measure)
of μ is ν(ds, dz) = ds ⊗ λ(dz) for some given finite or σ -finite measure λ on
(E,E). Above, b is a two-dimensional adapted process, σ is a 2 × 2-dimensional
adapted process, and δ is a two-dimensional predictable function on � × R+ × E.
Moreover, κ is a continuous truncation function on R

2, that is a function from R
2

into itself with compact support and κ(x) = x on a neighborhood of 0, and κ ′(x) =
x − κ(x).

Of course b, σ and δ should be such that the integrals in (2.1) make sense (see,
e.g., [9] for a precise definition of the last two integrals). However, we need a bit
more than just the minimal integrability assumptions, and the precise hypotheses
are stated in Assumption (H) below. Before this statement, we need some further
notation. We write

�Xs = Xs − Xs−, τ = inf(t :�X1
t �X2

t 	= 0)(2.2)

for the jumps of the X process and the infimum τ of the joint jump times of the two
components. Set also 
̃ = {(ω, t, x) : δ1(ω, t, x)δ2(ω, t, x) 	= 0} and, for i = 1,2,

δ′i
t (ω) =

{∫
(κi ◦ δ1
̃)(ω, t, x)λ(dx), if the integral makes sense,

+∞, otherwise.
(2.3)

ASSUMPTION (H). (a) The paths t �→ bt (ω) are locally bounded.
(b) The paths t �→ σt (ω) are all right-continuous with left limits.
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(c) We have ‖δ(ω, t, x)‖ ≤ 
t(ω)γ (x) identically, where 
 is an adapted lo-
cally bounded process and γ is a (nonrandom) nonnegative function satisfying∫
E(γ (x)2 ∧ 1)λ(dx) < ∞.

(d) The paths t �→ δ′i
t (ω) for i = 1,2 are locally bounded on the interval

[0, τ (ω)).
(e) We have

∫ t+r
t ‖σs‖ds > 0 a.s. for all t, r > 0.

The nondegeneracy condition (e) says that, almost surely, the continuous mar-
tingale part of X has no interval of constancy. It could be weakened, and, in any
case, this condition is satisfied in all applications we have in mind. Apart from
this nondegeneracy condition, which rules out “pure jump models” like the Vari-
ance Gamma or the NIG processes sometimes used in the financial literature, As-
sumption (H) accommodates virtually all models for stochastic volatility, including
those with jumps, and allows for any kind of correlation or dependency between
the volatility and asset price processes.

REMARK 2.1. Condition (d) is implied by the others when
∫
(γ (x) ∧

1)λ(dx) < ∞, which essentially amounts to saying that (and implies that) the
jumps of X are summable (i.e.,

∑
s≤t ‖�Xs‖ < ∞ a.s.). Note that the summa-

bility of jumps in this sense implies at least that the processes δ′i are locally
bounded. Otherwise, it may appear as a strong assumption, because we can have
δ′1
t (ω) = δ′2

t (ω) = ∞ for “most” (ω, t). However, if At = ∫ t
0

∫
1
̃(s, x)μ(ds, dx),

then Aτ ≤ 1 by construction, and, by definition of the predictable compensator,
we also have E(

∫ τ
0 ds

∫
1
̃(s, x)λ(dx)) = E(Aτ ) ≤ 1. Hence,

∫ τ
0 |δ′i

s |ds < ∞ a.s.
Therefore, |δ′i

t (ω)| < ∞ for P(dω) ⊗ dt-almost all (ω, t) such that t ≤ τ(ω).
Hence, (d) is indeed a rather weak technical assumption, similar to saying that bt is
locally bounded, instead of the “minimal” assumption saying that

∫ t
0 ‖bs‖ds < ∞

a.s.

Comments on Assumption (H). The key hypothesis is that X is an Itô semi-
martingale; otherwise, everything falls apart. The nondegeneracy assumption (e)
could perhaps be weakened to be

∫ T
0 ‖σs‖ds > 0 a.s. for the final time T only, but,

without at least this weakened assumption, some of the forthcoming results are
wrong. The conditions (a), (b) and (d), as seen in the previous remark, are rather
weak, but they play an essential role in the proofs, and (b) also plays a crucial role
in some of the statements. Finally, (c), which is not so weak, is also crucial for
most proofs.

3. The test statistics.

3.1. Preliminaries. Recall that our process X is observed over a given time
interval [0, T ], at times i�n, for all i = 0,1, . . . , [T/�n]. We cannot, of course,
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do any better than if the process is observed “continuously” over [0, T ]; that is,
we can at best decide in which of the following three sets �

(j)
T (for “joint jumps”),

�
(d)
T (for “disjoint jumps”) or �

(c)
T (for “continuous”), the particular “observed”

outcome ω lies:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�

(j)
T = {ω: on [0, T ] the process �X1

s �X2
s is not identically 0},

�
(d)
T = {ω: on [0, T ] the processes �X1

s and �X2
s are not

identically 0, but the process �X1
s �X2

s is},
�

(c)
T = {ω: on [0, T ] at least one of X1 and X2 is continuous}.

(3.1)

That is, even under a “complete” observation of the path, we cannot decide whether
the actual model allows for joint jumps or not, but only that the observed path has
this property. Of course, if we decide that the observed path has joint jumps, then
the model should allow for this; however, in the other case, the model can still
allow for joint jumps.

These three sets are disjoint and form a partition of �; however, we may very
well have

P
(
�

(j)
T

)
> 0, P

(
�

(d)
T

)
> 0, P

(
�

(c)
T

)
> 0,(3.2)

at least in the case of finite activity jumps (e.g., when λ is a finite measure). When
both components have infinite activity, we have P(�

(c)
T ) = 0, but the first two prob-

abilities in (3.2) may still both be positive.
A comprehensive testing procedure should encompass all three kinds of out-

comes. However, using the procedure established in [1] (or other methods), we
can decide in principle whether we are in �

(c)
T or not. Here, we assume that this

preliminary testing has been performed. If the conclusion is that we are in �
(c)
T ,

then, of course, the procedure is ended. Otherwise, we have to decide between �
(j)
T

and �
(d)
T , which is the aim of this paper.

In a first case, we set the null hypothesis to be “joint jumps”; that is, we are
in �

(j)
T . We will take a critical (rejection) region C

(j)
n at stage n, to be defined

later, which should depend only on the observations Xi�n . Exactly as in [1], we do

a kind of “conditional” test. Note that although X, and hence �
(j)
T as well, depend

on the triple of coefficients (b, σ, δ) belonging to the set H of all coefficients
satisfying Assumption (H), the observations Xi�n , and thus C

(j)
n , do not depend

on (b, σ, δ) explicitly [the probability of C
(j)
n does depend on this triple, though].

Then, with obvious notation, we take the following as our definition of the as-
ymptotic size for a given triple of coefficients

α(j) = sup
(

lim sup
n

P
(
C(j)

n | A)
:A ∈ F ,A ⊂ �

(j)
T

)
.(3.3)

Here, P(C
(j)
n | A) is the usual conditional probability, with respect to the set A,

with the convention that it vanishes if P(A) = 0. If P(�
(j)
T ) = 0, then α(j) = 0,
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which is a natural convention, since, in this case, we want to reject the assumption
whatever the outcome ω is. Note that α(j) features some kind of “uniformity” over
all subsets A ⊂ �

(j)
T .

As for the asymptotic power, we define it as

β(j) = inf
(

lim inf
n

P
(
C(j)

n | A)
:A ∈ F ,A ⊂ �

(d)
T

)
.(3.4)

Again, this is a number. The asymptotic level and powers are defined here in
a different way than in [1], where the level and the power were, respectively,
α

(j)
0 = lim supn P(C

(j)
n | �

(j)
T ) ≤ α(j) and β

(j)
0 = lim infn P(C

(j)
n | �

(d)
T ) ≥ β(j).

The results would be unchanged if we had taken α
(j)
0 and β

(j)
0 as our definition.

In the second case, we set the null hypothesis to be “disjoint jumps”; that is, we
are in �

(d)
T . We take a critical region C

(d)
n at stage n, again to be defined later, and

the asymptotic size and power for the triple of coefficients (b, σ, δ) in H are⎧⎪⎪⎨⎪⎪⎩
α(d) = sup

(
lim sup

n
P

(
C(d)

n | A)
:A ∈ F ,A ⊂ �

(d)
T

)
,

β(d) = inf
(

lim inf
n

P
(
C(d)

n | A)
:A ∈ F ,A ⊂ �

(j)
T

)
.

(3.5)

3.2. Construction of the critical regions. We first need some notation. For any
Borel function f on R

2, we write

�n
i X = Xi�n − X(i−1)�n, V (f,�n)t =

[t/�n]∑
i=1

f (�n
i X).(3.6)

Below, we also use V (f, k�n)t for k an integer bigger than 1, meaning that we
replace the stepsize �n by k�n. That is, we have

V (f, k�n)t =
[t/k�n]∑

i=1

f
(
Xik�n − X(i−1)k�n

)
.(3.7)

Note that V (f,�n)t , and also V (f, k�n)t for all k ≥ 2, can be computed on the
basis of the observations.

The following three functions will be of particular interest:

f (x) = (x1x2)
2, g1(x) = (x1)

4 and g2(x) = (x2)
4.(3.8)

The critical regions C
(j)
n and C

(d)
n will be based upon the following two test

statistics:

�(j)
n = V (f, k�n)T

V (f,�n)T
and �(d)

n = V (f,�n)T√
V (g1,�n)T V (g2,�n)T

.(3.9)

Here, k is an integer not less than 2 (typically k = 2 or k = 3), which is fixed
throughout. Note that �

(j)
n depends on k, and both �

(j)
n and �

(d)
n depend on T .
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The asymptotic behavior of these two statistics is crucial, and in order to give
a description of it we need the notion of stable convergence in law, for which we
refer, for example, to [9]. We also need some (cumbersome) further notation to
describe the limits.

Recall that (H) is assumed. We denote by (Sq)q≥1 a sequence of stopping times
which exhausts the “jumps” of the Poisson measure μ. Hence, for each ω, we have
Sp(ω) 	= Sq(ω) if p 	= q , and that μ(ω, {t} × E) = 1 if and only if t = Sq(ω) for
some q . There are many ways of constructing those stopping times, but it turns out
that what follows does not depend on the specific description of them. Next, we
consider an auxiliary space (�′,F ′,P

′) which supports a number of variables and
processes:

• four sequences (Uq), (U ′
q), (Uq), (U

′
q) of two-dimensional N (0, I2) variables;

• a sequence (κq) of uniform variables on [0,1];
• a sequence (Lq) of uniform variables on the finite set {0,1, . . . , k − 1}, where

k ≥ 2 is some fixed integer;

and all these variables are mutually independent. Then, we put

�̃ = � × �′, F̃ = F ⊗ F ′ and P̃ = P ⊗ P
′.(3.10)

We extend the variables Xt, bt , . . . defined on � and Un,κn, . . . defined on �′
to the product �̃ in the obvious way, without changing the notation. We write Ẽ

for the expectation with regard to P̃. Finally, we let (F̃t ) be the smallest (right-
continuous) filtration of F̃ containing the filtration (Ft ) and such that Un, U ′

n, κn

and Ln are F̃Sn -measurable for all n. Obviously, μ is still a Poisson measure with
compensator ν, and W is still a Wiener process on (�̃, F̃ , (F̃t )t≥0, P̃). Finally, we
define the two-dimensional variables⎧⎪⎪⎨⎪⎪⎩

Rq = √
κqσSq−Uq +

√
1 − κqσSqU

′
q,

R′
q = √

LqσSq−Uq +
√

k − 1 − LqσSq U
′
q,

R′′
q = Rq + R′

q.

(3.11)

Let us next define some auxiliary processes to be used sometimes in the forth-
coming “laws of large numbers” and also later in the associated CLTs. As a rule,
processes without “tilde” are defined on the original space �, and those with
“tilde” are on the extension �̃. Below, we write ct = σtσ

�
t (the diffusion matrix

of X). Then, we set⎧⎪⎪⎪⎨⎪⎪⎪⎩
Bt = ∑

s≤t

(�X1
s )

2(�X2
s )

2, Ct =
∫ t

0

(
c11
s c22

s + 2(c12
s )2)

ds,

B ′1
t = ∑

s≤t

(�X1
s )

4, B ′2
t = ∑

s≤t

(�X2
s )

4,
(3.12)
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Ft = 1

2

∑
s≤t

(
(�X1

s )
2(c22

s− + c22
s ) + (�X2

s )
2(c11

s− + c11
s )

)
,

F ′
t = 2

∑
s≤t

(
(�X1

s )
2(�X2

s )
4(c11

s− + c11
s )

+ (�X1
s )

4(�X2
s )

2(c22
s− + c22

s ) + 2(�X1
s �X2

s )
3(c12

s− + c12
s )

)
,

(3.13)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D̃t = ∑

q : Sq≤t

(
(�X1

Sq
R2

q)
2 + (�X2

Sq
R1

q)
2)

,

D̃′′
t = ∑

q : Sq≤t

(
(�X1

Sq
R′′2

q )2 + (�X2
Sq

R′′1
q )2)

,
(3.14)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

G̃t = 2
∑

q : Sq≤t

(
(�X1

Sq
)2�X2

Sq
R′2

q + (�X2
Sq

)2�X1
Sq

R′1
q

)
,

G̃′
t = 2

∑
q : Sq≤t

(
(�X1

Sq
)4(c22

Sq− + c22
Sq

)(R2
q)2

+ (�X2
Sq

)4(c11
Sq− + c11

Sq
)(R1

q)
2)

.

(3.15)

The following theorem gives us the asymptotic behavior of our two test statis-
tics, on the union �

(j)
T ∪ �

(d)
T . As said before, we supposedly know that we are

not in �
(c)
T , so the behavior of the statistics on this set is of no importance for us.

Recall that (H) is assumed throughout.

THEOREM 3.1. (a) We have

�(d)
n

P−→
⎧⎨⎩BT /

√
B ′1

T B ′2
T > 0, on �

(j)
T ,

0, on �
(d)
T .

(3.16)

(b) We have

�(j)
n

P−→ 1 on �
(j)
T(3.17)

and �
(j)
n converges stably in law, in restriction to the set �

(d)
T , to a variable, that

is, a.s. different from 1 and given by

�̃ = D̃′′
T + kCT

D̃T + CT

.(3.18)

The last claim means that E(h(�
(j)
n )Y1

�
(d)
T

) → Ẽ(h(�̃)Y1
�

(d)
T

) for all bounded

F -measurable variables Y and all bounded continuous functions h on R. This
is the definition of the stable convergence in law, in restriction to a subset of �

(see [9] for more details on the stable convergence in law).
Of course, if either of the two sets �

(j)
T or �

(d)
T has a vanishing probability, the

corresponding statement above is empty.
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As a consequence, we are led to take critical regions of the form C
(j)
n = {|�(j)

n −
1| ≥ εn} or C

(d)
n = {�(d)

n ≥ εn} for suitable, and possibly random, sequences εn.
However, to determine the level of such tests we need to go a bit further and give a
central limit theorem associated with the convergences established in Theorem 3.1,
at least in restriction to �

(j)
T for �

(j)
n and to �

(d)
T for �

(d)
n .

4. Central limit theorems. We have a genuine CLT for �
(j)
n , on �

(j)
T . We do

not really have it for �
(d)
n on �

(d)
T , but it is replaced by the stable convergence in

law toward a positive random variable, similar to the convergence in (3.18).
The basic theorem, about nonstandardized statistics, goes as follows.

THEOREM 4.1. (a) In restriction to the set �
(j)
T , the sequence �

(j)
n −1√
�n

con-

verges stably in law to the variable �̃ = G̃T /BT , which, conditionally on F , is
centered with variance

Ẽ(�̃2 | F ) = (k − 1)F ′
T /(BT )2(4.1)

and is even Gaussian conditionally on F if the processes X and σ have no common
jumps.

(b) In restriction to the set �
(d)
T , the sequences 1

�n
�

(d)
n converges stably in law

to the positive variable �̃′ = (D̃T + CT )/
√

B ′1
T B ′2

T , which, conditionally on F ,
satisfies

Ẽ(�̃′ | F ) = (FT + CT )/

√
B ′1

T B ′2
T .(4.2)

4.1. Some consistent estimators. To evaluate the level of tests based on the
statistic �

(j)
n or �

(d)
n , we need consistent estimators for the asymptotic mean or

variance obtained in Theorem 4.1. That is, we need to estimate F ′
T and BT , re-

spectively, FT , CT , B ′1
T and B ′2

T , on the set �
(j)
T , respectively, �

(d)
T .

For BT , B ′1
T and B ′2

T a simple extension of [8], which is also used for the first
part of (3.16) (see Section 8.3), gives us that

V (f,�n)T
P−→ BT ,

V (g1,�n)T
P−→ B ′1

T ,(4.3)

V (g2,�n)T
P−→ B ′2

T .

For CT we can use multipower variations or truncated powers. This gives rise to
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the following two alternative estimators:

Ân
T = π2

4�n

[T/�n]−3∑
i=1

(
|�n

i X
1�n

i+1X
1�n

i+2X
2�n

i+3X
2|

+ 1

8
|�n

i (X
1 + X2)�n

i+1(X
1 + X2)

× �n
i+2(X

1 + X2)�n
i+3(X

1 + X2)|

+ 1

8
|�n

i (X
1 − X2)�n

i+1(X
1 − X2)(4.4)

× �n
i+2(X

1 − X2)�n
i+3(X

1 − X2)|

− 1

4
|�n

i (X
1 + X2)�n

i+1(X
1 + X2)

× �n
i+2(X

1 − X2)�n
i+3(X

1 − X2)|
)
,

Â′n
T = 1

�n

[T/�n]∑
i=1

f (�n
i X)1{‖�n

i X‖≤α��
n },(4.5)

where, for the second one, we choose α > 0 and � ∈ (0, 1
2) arbitrarily.

For FT and F ′
T , things are more complicated, and we do as in [1] and take any

sequence kn of integers satisfying

kn → ∞, kn�n → 0(4.6)

and then let In,−(i) = {i − kn, i − kn + 1, . . . , i − 1} if i > kn and In,+(i) = {i +
2, i + 3, . . . , i + kn + 1} define two local windows in time of length kn�n just
before and just after time i�n. Then, we set, for i ≥ 1 + kn and m, l equal to 1
or 2, ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ĉ(n,−)ml
i = 1

kn�n

∑
j∈In,−(i)

�n
jX

m�n
jX

l1{‖�n
j X‖≤α��

n },

ĉ(n,+)ml
i = 1

kn�n

∑
j∈In,+(i)

�n
jX

m�n
jX

l1{‖�n
j X‖≤α��

n }.
(4.7)

Those are “estimates” of the diffusion matrix ct on the left and on the right of
time i�n, respectively. With this in mind, and with In(i) = In,−(i) ∪ In,+(i), the
desired estimators are the following:

F̂ n
t = 1

2kn�n

[t/�n]−kn−1∑
i=1+kn

∑
j∈In(i)

(
(�n

i X
1)2(�n

jX
2)2

+ (�n
i X

2)2(�n
jX

1)2)
(4.8)
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× 1{‖�n
i X‖>α��

n ,‖�n
j X‖≤α��

n },

F̂ ′n
t = 2

kn�n

[t/�n]−kn−1∑
i=1+kn

∑
j∈In(i)

(�n
i X

1)2(�n
i X

2)2

(4.9)
× (�n

i X
1�n

jX
2 + �n

i X
2�n

jX
1)21{‖�n

i X‖>α��
n ,‖�n

j X‖≤α��
n }.

The following theorem establishes the behavior of these estimators.

THEOREM 4.2. Let α > 0 and � ∈ (0,1/2).
(a) We have

Ân
T

P−→ CT , �nÂ
′n
T

P−→ 0,(4.10)

F̂ n
T

P−→ FT , F̂ ′n
T

P−→ F ′
T .(4.11)

(b) Moreover we have:

Â′n
T

P−→ CT on the set �
(d)
T ,(4.12)

the sequence of variables
(

1

�n

F̂ ′n
T 1

�
(d)
T

)
n≥1

is tight.(4.13)

REMARK 4.3. One could prove that, in restriction to the set �
(d)
T , the se-

quence of variables 1
�n

F̂ ′n
T converges stably in law to the variable G̃′

T defined
by (3.15), but this fact is not used for our tests.

The above is not quite enough for deriving tests of given asymptotic size (these
quantities give rise to tests with a size smaller, and often significantly smaller,
than the prescribed level), except in case (a) of Theorem 4.1, when X and σ do
not jump together. We need, in fact, a sort of “estimate” for the distribution of
the variables G̃T and D̃T defined on the extended space, and conditionally on F .
For this, we first denote by σ̂ (n,±)i an arbitrary (measurable) square-root of the
matrix ĉ(n,±)i in (4.7), and we define the two-dimensional variables{

R(n)i = √
κiσ̂ (n,−)iUi + √

1 − κiσ̂ (n,+)iU
′
i ,

R′(n)i = √
Liσ̂ (n,−)iU i + √

k − 1 − Liσ̂ (n,+)iU
′
i

(4.14)

[the variables (κi,Li,Ui,U
′
i ,U i,U

′
i ) are the ones defined before (3.10)]. Finally,

on the extended space, we define the following processes:

D̂n
t =

[t/�n]−kn−1∑
i=1+kn

(
(�n

i X
1R(n)2

i )
2 + (�n

i X
2R(n)1

i )
2)

1{‖�n
i X‖>α��

n },(4.15)
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Ĝn
t = 2

[t/�n]−kn−1∑
i=1+kn

�n
i X

1�n
i X

2(
�n

i X
1R′(n)2

i + �n
i X

2R′(n)1
i

)
(4.16)

× 1{‖�n
i X‖>α��

n }.

THEOREM 4.4. Assume that we have a sequence Zn of positive variables go-
ing in probability to some variable Z > 0, on the space (�,F ,P). Then

P̃(|Ĝn
T | > Zn | F )

P−→ P̃(|G̃T | > Z | F ),(4.17)

P̃(D̂n
T > Zn | F )

P−→ P̃(D̃T > Z | F ).(4.18)

4.2. CLT for the standardized statistics. Combining Theorems 4.1 and 4.2,
and in view of the properties of the stable convergence in law, we immediately get
the following (at this stage, we need no proof).

THEOREM 4.5. (a) With

V̂ (j)
n =

√
�n(k − 1)F̂ ′n

T

V (f,�n)T
,(4.19)

the variables (�
(j)
n − 1)/V̂

(j)
n converge stably in law, in restriction to the set �

(j)
T ,

to a variable which, conditionally on F , is centered with variance 1 and is even
N (0,1) if the processes X and σ have no common jumps.

(b) With

V̂ (d)
n = �n(F̂

n
T + Ân

T )√
V (g1,�n)T V (g2,�n)T

,

(4.20)

V̂ ′(d)
n = �n(F̂

n
T + Â′n

T )√
V (g1,�n)T V (g2,�n)T

,

the variables �
(d)
n /V̂

(d)
n and �

(d)
n /V̂

′(d)
n converge stably in law, in restriction to

the set �
(d)
T , to a positive variable which, conditionally on F , has expectation 1.

Another consequence of Theorems 4.1 and 4.4 is the following, which will be
important for some of the tests later.

THEOREM 4.6. Let Zn and Z be as in Theorem 4.4, and A ∈ F .
(a) If A ⊂ �

(j)
T , we have

P

(
A ∩

{ |�(j)
n − 1|V (f,�n)T√

�n

> Zn

})
→ P̃(A ∩ {|G̃T | > Z}).(4.21)



1804 J. JACOD AND V. TODOROV

(b) If A ⊂ �
(d)
T , and with either Ân = Ân

T or Ân = Â′n
T , we have

P

(
A ∩

{
�

(d)
n

√
V (g1,�n)T V (g2,�n)T

�n

> Zn + Ân

})
(4.22)

→ P̃(A ∩ {D̃T > Z}).

5. Testing for common jumps. We now use the preceding results to con-
struct actual tests, either for the null hypothesis that there are jumps but no com-
mon jumps for the two components of X, or for the null hypothesis that there are
common jumps.

5.1. When there are common jumps under the null hypothesis. In a first case,
we set the null hypothesis to be “common jumps,” that is, we are in �

(j)
T . For this,

we use the test statistics �
(j)
n and, in view of (3.17) and (3.18), we associate the

critical region of the form

C(j)
n = {∣∣�(j)

n − 1
∣∣ ≥ c(j)

n

}
(5.1)

for some sequence c
(j)
n > 0, possibly even a random sequence, but in that case

depending only on the observations Xi�n .

As usual, we fix a level α ∈ (0,1) and wish to find c
(j)
n so that (5.1) asymp-

totically achieves this level; that is, the level for which α(j) ≤ α and, of course,
α(j) = α if possible.

If we know that X and σ do not jump together, then (a) of Theorem 4.5 allows
to achieve α(j) = α, and we need the α-absolute quantile of N (0,1); that is, the
number zα such that P(|U | ≥ zα) = α for a N (0,1) variable U . Otherwise we may
rely on Bienaymé–Chebyshev inequality to construct a test for which α(j) ≤ α. Or,
we can make use of (a) of Theorem 4.6 in the following way.

Recall that at stage n we know the variables given by (4.7). Then, we can use
a Monte-Carlo procedure to simulate Nn copies of the variables R(n)i of (4.14)
(i.e., we simulate Nn copies of the variables (κi,Ui,U

′
i )1≤i≤[T/�n], and use (4.14)

and the same observed variables σ̂ (n±)i always to compute the R(n)i ’s). Plugging
these into (4.16), and again with the same observed increments �n

i X, we obtain Nn

copies (Ĝ(j)nT : 1 ≤ j ≤ Nn) of the variable Ĝn
T . Then, we take the order statistics

for the absolute values |Ĝn,1| ≥ |Ĝn,2| ≥ · · · ≥ |Ĝn,Nn | for this family, and we set

Z(j)
n (α) = ∣∣Ĝn,[αNn]

∣∣;(5.2)

that is, the α-absolute quantile of the empirical distribution of the family
(Ĝ(j)nT : 1 ≤ j ≤ Nn). With this notation, we construct three slightly different
tests.
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THEOREM 5.1. (a) Assume that the two processes X and σ do not jump to-
gether. If we set

c(j)
n = zαV̂ (j)

n ,(5.3)

where V̂
(j)
n is given by (4.19), then the asymptotic level of the critical region de-

fined by (5.1) for testing the null hypothesis “common jumps” satisfies

α(j) ≤ α(5.4)

and, if further P(�
(j)
T ) > 0, we have α(j) = α and even

A ⊂ �
(j)
T , P(A) > 0 ⇒ P

(
C(j)

n | A) → α.(5.5)

(b) If we set

c(j)
n = V̂ (j)

n /
√

α,(5.6)

where V̂
(j)
n is given by (4.19), then the asymptotic level of the critical region de-

fined by (5.1) for testing the null hypothesis “common jumps” satisfies (5.4).
(c) Take a sequence Nn → ∞. Define Z

(j)
n (α) by (5.2), and set

c(j)
n = Z(j)

n (α)

√
�n

V (f,�n)T
.(5.7)

Then, the asymptotic level of the critical region defined by (5.1) for testing the
null hypothesis “common jumps” satisfies (5.4). If further P(�

(j)
T ) > 0 we have

α(j) = α and even (5.5).

Clearly, (a) is preferable if it can be used, and, otherwise, (c) is preferable. The
choice of the sequence Nn going to infinity is asymptotically arbitrary, but n is
given in practice, and Nn should be big enough to have a good approximation
of the “true” α-quantile of the F -conditional distribution of Ĝn

T . This of course
depends on α, and taking, for example, Nn = 1000/α seems to be a reasonable
choice (if α = 0.05, this means Nn = 20,000; this looks like a big number, but the
simulation of our Nn = 20,000 copies take only a few seconds when the number
of observations [T/�n] is about 1000).

In the previous theorem, there is no statement about the power of the test, for a
good reason. Indeed, using Remark 4.3, we can show that for any A ⊂ �

(d)
T with

P(A) > 0, and if such a set exists, then P(C
(j)
n | A) converges to a limit that is

smaller than 1. However, a simple modification of the previous tests allows us to
obtain the same results under the null hypothesis, and a power equal to 1 under
the alternative. It goes as follows.
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THEOREM 5.2. Let α′ > 0 and � ′ ∈ (0, 1
2). Then, if we replace (5.3)

and (5.6), respectively, by

c(j)
n = zα

(
V̂ (j)

n ∧ (α′�� ′
n )

)
, respectively,

(5.8)

c(j)
n = 1√

α

(
V̂ (j)

n ∧ (α′�� ′
n )

)
.

Then, the claims (a) and (b) of Theorem 5.1 hold; and, furthermore, in these cases,
the asymptotic power is β(j) = 1.

Note that, in situations in which the continuous component is the dominant
part of X, �

(j)
n is expected to be very “close” to k, while V̂

(j)
n is expected to be

“sufficiently” small [if there were no jumps in both series the sequence ( 1
�n

F̂ ′n
T )n≥1

converges to 0]. As a result, we expect (and this is later confirmed in the Monte
Carlo) that the tests for common jumps, when the critical values are determined
using Theorem 5.1, still have good power against alternatives in �

(d)
T . Therefore,

for practical purposes, the critical regions of Theorem 5.1 are probably sufficient.

5.2. When there are no common jumps under the null hypothesis. In a second
case, we set the null hypothesis to be “no common jumps”; that is, we are in �

(d)
T .

We take the critical region to be

C(d)
n = {

�(d)
n ≥ c(d)

n

}
(5.9)

for some sequence c
(d)
n > 0.

Here, we have two ways for choosing c
(d)
n : first, we can use (b) of Theorem 4.5

and the Markov inequality; or second, we can use (b) of Theorem 4.6 and proceed
as in the previous subsection, in which case we simulate Nn copies of D̂n

T , giving
rise to the order statistics D̂n,1 ≥ D̂n,2 ≥ · · · ≥ D̂n,Nn of this family, and we set

Z(d)
n (α) = D̂n,[α/Nn].(5.10)

THEOREM 5.3. (a) If we set

c(d)
n = V̂n/α,(5.11)

where V̂n is either V̂
(d)
n or V̂

′(d)
n , as given by (4.20), then the asymptotic level and

power of the critical region defined by (5.9) for testing the null hypothesis “no
common jumps” satisfy

α(d) ≤ α, β(d) = 1.(5.12)

(b) Take a sequence Nn → ∞. Define Z
(d)
n (α) by (5.10), and put either Ân =

Ân
T or Ân = Â′n

T . Then, if

c(d)
n = (

Z(d)
n (α) + Ân

) �n√
V (g1,�n)T V (g2,�n)T

,(5.13)
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the asymptotic level and power of the critical region defined by (5.9) for testing
the null hypothesis “no common jumps” satisfy (5.12). If further P(�

(d)
T ) > 0, we

have α(d) = α and even

A ⊂ �
(d)
T , P(A) > 0 ⇒ P

(
C(d)

n | A) → α.(5.14)

Again, here (b) seems preferable to (a), and the simulation results given below
strongly suggest that one should use (b).

REMARK 5.4. The test statistics above are insensitive to the scales used to
measure X1 and X2. If we multiply each component Xi by a constant λi , the
test statistics are unchanged. However, this is not true of the standardized ver-
sions, because of the truncation α��

n that we use for the modulus ‖�n
i X‖ of

the increments. This presupposes that both components X1 and X2 have incre-
ments with roughly the same order of magnitude. If this is not true, we should
either first multiply the first component, say X1, by a suitable constant in such
a way that the averages of |�n

i X
1| and of |�n

i X
2| (or the averages after delet-

ing, say, the 10% biggest increments) are close one to the other, or we can use
two different levels of truncation; that is, replace the set {‖�n

i X‖ ≤ α�n} by
{|�n

i X
1| ≤ α1�

�
n , |�n

i X
2| ≤ α2�

�
n }.

REMARK 5.5. In fact, the choice of the truncation level α��
n , in order to put

our tests in use, is a difficult one. Asymptotically, this choice does not matter, but
in practice it does matter a lot. The idea is that α��

n should be slightly bigger than
“most” of the increments when there is no jump, or no big jump; those increments
being of order of magnitude ‖σt�

n
i W‖ with (i − 1)�n ≤ t ≤ i�n. A good choice,

supported by empirical evidence coming from simulation, seems to be � = 0.48
or � = 0.49, and α being of about 3 or 4 times the “average” value of ‖σt‖. The
latter is unknown, but, usually, one has a good idea of its order of magnitude.

6. Simulation results. In this section, we check the performance of our tests
on simulated data. In the simulation study, we work with the simple model

dX1
t = X1

t σ1 dW 1
t + α1

∫
R

X1
t−x1μ1(dt, dx1) + α3

∫
R

X1
t−x3μ3(dt, dx3),

dX2
t = X2

t σ2 dW 2
t + α2

∫
R

X2
t−x2μ2(dt, dx2) + α3

∫
R

X2
t−x3μ3(dt, dx3),

where cor(W 1,W 2) = ρ, the Poisson measures μ1, μ2 and μ3 are independent

with compensators νi(dt, dxi) = λi
1(xi∈[−hi ;−li ]∪[li ;hi ])

2(hi−li )
dt dxi for 0 < li < hi and i =

1,2,3. The initial values are X1
0 = X2

0 = 1. We did not make simulations with
infinite activity jumps, but we consider different values of the jump intensities λi ,
the highest being 25. This is “almost” like infinite activity.
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In the Monte Carlo study the observation length is one day (i.e., T = 1 day)
consistent with the literature on testing for jumps in individual financial series.
We simulate from the above-given process for a total of 5000 days. Since we are
interested in the behavior of the tests on the sets �

(j)
T and �

(d)
T , we discard days

in the simulation on which there is no common and/or disjoint jump in the two
series. On each day, we consider sampling n = 100, n = 1600 or n = 25,600 times,
corresponding approximately to sampling every 5 minutes, 30 seconds or 1 second
for a trading day of 6.5 hours or, equivalently, to sampling every 15 minutes, 1
minute or 3 seconds for a trading day of 24 hours. In each simulation, we compute
the raw statistics �

(j)
n and �

(d)
n as well as their standardized versions, which are

defined as

T (j)
n = �

(j)
n − 1

V̂
(j)
n

, T (d)
n = �

(d)
n

V̂
′(d)
n

,

where we use the notation (4.19) and (4.20). �
(j)
n is computed with k = 2. For the

calculation of V̂
(j)
n and V̂

′(d)
n , we use a local window kn = 1/

√
�n and truncation

level of α��
n = 0.03 × �0.49

n .
In Table 1, we report the parameter values for all cases considered. In all simula-

tion scenarios σ 2
1 = σ 2

2 = 8×10−5, and, therefore, we do not report these values in
the table. In all considered cases, the variance of the common and disjoint jumps
is 2 × 10−5. This leads to proportion of the jumps in the individual series total
variation that is similar to one estimated from real financial data (see, e.g., [7]).
Note that scenarios with higher on average number of (common or disjoint) jumps
automatically imply that the jumps are of smaller size. The different parameter

TABLE 1
Parameter setting for the Monte Carlo

Parameters

Case ρ α1 λ1 l1 h1 α2 λ2 l2 h2 α3 λ3 l3 h3

I-j 0.0 0.00 0.00 0.01 1 0.05 0.7484
II-j 0.0 0.00 0.00 0.01 5 0.05 0.3187
III-j 0.0 0.00 0.00 0.01 25 0.05 0.1238
I-m 0.5 0.01 1 0.05 0.7484 0.01 1 0.05 0.7484 0.01 1 0.05 0.7484
II-m 0.5 0.01 5 0.05 0.3187 0.01 5 0.05 0.3187 0.01 5 0.05 0.3187
III-m 0.5 0.01 25 0.05 0.1238 0.01 25 0.05 0.1238 0.01 25 0.05 0.1238
I-d0 0.0 0.01 1 0.05 0.7484 0.01 1 0.05 0.7484
II-d0 0.0 0.01 5 0.05 0.3187 0.01 5 0.05 0.3187
III-d0 0.0 0.01 25 0.05 0.1238 0.01 25 0.05 0.1238
I-d1 1.0 0.01 1 0.05 0.7484 0.01 1 0.05 0.7484
II-d1 1.0 0.01 5 0.05 0.3187 0.01 5 0.05 0.3187
III-d1 1.0 0.01 25 0.05 0.1238 0.01 25 0.05 0.1238
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settings differ in the average number of jumps (resp., their size), whether jumps
arrive together or not and in the correlation between the continuous components
of the price.

On Figures 1 and 2, we plot the Monte Carlo distributions of the raw statistics
�

(d)
n and �

(j)
n under the different scenarios. On Figures 3 and 4 we plot the rejec-

tion curves associated with the standardized tests T
(d)
n and T

(j)
n [i.e., the rejection

rates of the tests for disjoint, resp., common jumps when the critical values of the
tests are determined using Theorem 5.3, part (a), resp., Theorem 5.1, part (a)]. Fi-
nally, on Figure 5, we plot the rejection curves of the test for disjoint jumps when
the critical values are computed using the simulation approach of Theorem 5.3,
part (b). We also calculated the rejection rates for the test for common jumps when
the critical values are determined using Theorem 5.1, part (c). These rates are very
similar to the ones reported on Figure 4 and, therefore, we do not report them here.
We summarize our findings from the Monte Carlo study as follows.

FIG. 1. Kernel density estimate of �
(d)
n from the Monte carlo. The dashed line corresponds to

sampling frequency of n = 100, the dotted line to sampling frequency of n = 1600 and the solid line
to sampling frequency of n = 25,600.
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FIG. 2. Kernel density estimate of �
(j)
n from the Monte Carlo. The dashed line corresponds to

sampling frequency of n = 100, the dotted line to sampling frequency of n = 1600 and the solid line
to sampling frequency of n = 25,600.

• Testing the null of common jumps. Under the null hypothesis, �
(j)
n is concen-

trated around 1, with more dispersion from this value (and slight upward bias)
for less frequent sampling and settings with higher number of (smaller) jumps.
Under the alternative hypothesis of disjoint jumps, �(j)

n is concentrated around 2
as expected from the result in Theorem 3.1, part (b). Comparing the case of zero
correlation between the Brownian motions with that of perfect correlation, we
see that �

(j)
n is more concentrated around 2 for the case of perfect correlation.

Turning to the testing of the null of common jumps, we see that T
(j)
n has the right

size in all scenarios when the sampling frequency is n = 25,600. On the other
hand, for the case of higher number of smaller jumps (i.e., cases III-j and III-m)
and sampling frequency n = 100, the test over-rejects quite significantly. It is
interesting to note that, for n = 100, the rejection curves under cases III-j, III-m,
III-d0 and III-d1 (the dashed lines in the plots on the last row of Figure 4) look
similar. This is clearly a finite sample problem (the solid lines, corresponding to
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FIG. 3. Size and power of the test for disjoint jumps with the critical values computed using The-
orem 5.3, part (a). The x-axis shows the nominal level of the corresponding test, while the y-axis
shows the percentage of rejection in the Monte Carlo. The dashed line corresponds to sampling fre-
quency of n = 100, the dotted line to sampling frequency of n = 1600 and the solid line to sampling
frequency of n = 25,600.

sampling frequency n = 25,600 in the plots on the last row of Figure 4, behave
as expected). The reason is that, for relatively low sampling frequency (e.g.,
n = 100), the small jumps are hard to disentangle from the Brownian moves.
Finally, the last two columns of Figure 4 reveal that T

(j)
n has very good power

against all considered alternatives. This suggests that, for practical purposes,
there is no need to truncate V̂

(j)
n in the construction of the critical region, as

in Theorem 5.2 (which was done to guarantee asymptotic power of the test for
common jumps of 1).

• Testing the null of disjoint jumps. Under the null hypothesis, consistently
with the asymptotic results, �

(d)
n is concentrated around zero (see Figure 1,

columns 3 and 4). Upward bias appears when the sampling frequency is low
(n = 100), the number of jumps is higher (with smaller size) and the correlation
between the Brownian motions in the prices is perfect. Under the alternatives
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FIG. 4. Size and power of the test for common jumps with critical values computed using Theo-
rem 5.1, part (a). The x-axis shows the nominal level of the corresponding test, while the y-axis shows
the percentage of rejection in the Monte Carlo. The dashed line corresponds to sampling frequency of
n = 100, the dotted line to sampling frequency of n = 1600 and the solid line to sampling frequency
of n = 25,600.

cases I-j, II-j and III-j, �(d)
n takes values close to its asymptotic limit of 1. Under

the alternatives cases I-m, II-m and III-m, �(d)
n does not have a fixed nonrandom

limit, because we have both common and disjoint jumps on the simulated tra-
jectories. This is most clearly illustrated by the solid lines in the first and second
plot of the second column of Figure 1. Note that the limiting value of �

(d)
n is

almost surely different from 0 when we have both common and disjoint jumps.
However, in a particular realization with relatively big disjoint jumps and small
common jumps, the limiting value of �

(d)
n can get close to 0. Turning to the

standardized test T
(d)
n , we see that using the Markov inequality in Theorem 5.3,

part (a) leads to a significant underestimation of the size of the test. This holds
true for all considered simulation scenarios. Therefore, it is recommendable to
use the simulation approach in Theorem 5.3, part (b) to determine the critical
region of the test. As seen from Figure 5, when this is done, we do not have
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FIG. 5. Size and power of the test for disjoint jumps with critical values computed via the simulation
approach in Theorem 5.3, part (b). The x-axis shows the nominal level of the corresponding test,
while the y-axis shows the percentage of rejection in the Monte Carlo. The dashed line corresponds
to sampling frequency of n = 100, the dotted line to sampling frequency of n = 1600 and the solid
line to sampling frequency of n = 25,600.

size distortions anymore. The only exception is case III-d1, where, even for
n = 25,600, we have significant over-rejection. On the other hand, the first two
columns of Figure 5 show that the test has very good power against the “com-
mon jumps” alternatives considered in the Monte Carlo. The only exception is
for the lowest sampling frequency in cases III-j and III-m.

7. Empirical application. In the empirical part, we use high-frequency data
from the foreign exchange spot markets for two exchange rates DM/$ and �/$.
The data covers the period from December of 1986 through June of 1999, for a
total of 3045 trading days. In each of the days, we sample every 5 minutes in the
24-hour trading day, and thus, in each of the trading days, we have 288 return
observations. The DM/$ exchange rate data set has been used quite extensively in
recent empirical studies for testing for presence of jumps (see, e.g., [2]). Here, we
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take this analysis one step further and test whether the jumps in the two studied
exchange rate series arrive together.

First, we make several general comments on the empirical application of our
tests. As mentioned in Section 3.1, on a first step, we need to remove the days in
the sample (day is the time interval over which we apply our testing) on which at
least one of the series does not exhibit jumps. This can be done with one of the
many existing tests for presence of jumps in individual series. Once we select the
days on which both series jump, we can perform our tests. We can apply them
separately. For example, if we want to test the null of common jumps, we can
use only our test statistic for common jumps �

(j)
n . Alternatively, we can construct

a rejection region for the common jump hypothesis by intersecting the rejection
region of the test for common jumps (5.1) with the complement of the rejection
region of the test for disjoint jumps (5.9). This is particularly attractive given the
good power of both of our tests; that is, we can reduce the size with very little loss
of power [as compared with the case when the testing is performed using only the
critical region in (5.1)]. The same comments apply for the test for disjoint jumps.
The particular choice of the critical values in constructing the rejection regions in
the testing will depend on our tolerance toward Type I and Type II error.

We start the empirical analysis by identifying the days in the sample on which
both series exhibit jumps. To be consistent with previous studies on the same data
set (see [2]), we use the test based on the difference in logarithms of the realized
variance and bi-power variation. The significance level of the test we chose is 1%.
For this significance level, we found 288 days with jumps in the DM/$ exchange
rate series and 291 days with jumps in the �/$ exchange rate series. Out of these
days there are 40 days in which the tests indicate that both series contain jumps.
In Table 2, we list these days, together with the raw statistics �

(d)
n and �

(j)
n and

their p-values [which, following the conclusions from the Monte Carlo study, are
computed using Theorem 5.3, part (b) and Theorem 5.1, part (c), resp.]. �

(j)
n is

computed with k = 2. For the testing (i.e., calculation of the p-values) we set
T = 1 (i.e., one day is our unit of measurement), and we used windows of size

kn = �
−1/2
n = 16 and truncation level of α��

n = 3.0
√

BV (T )
T

�0.49
n applied to each

individual series and the estimator Â′n
T of CT . BV (T ), in the truncation level

above, is the bi-power variation of the corresponding individual series and is a mea-
sure of

∫ T
0 c

jj
s ds for j = 1,2. We use it here to determine the magnitude of c

jj
t .

Other alternative measures of
∫ T

0 c
jj
s ds can also be used, and, to reduce the effect

of measurement error, we can even use the whole sample period (and not just the
day) to determine the level of c

jj
t .

Based on level of significance of 1%, we can separate the days in Table 2 in the
following four categories.

• Category 1. The first category is of days in which the two tests find that there
is common arrival of jumps. The total number of cojumping days is 22, which
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TABLE 2
Empirical results for common jumps

p-value p-value

Date �
(d)
n �

(j)
n �

(d)
n �

(j)
n

09/11/1987 0.9938 1.0915 0.0000 0.4194
12/03/1987 0.6580 1.9831 0.0000 0.0342
12/10/1987 0.9933 1.1446 0.0000 0.2712
01/05/1988 0.5809 1.6876 0.0006 0.0276
01/15/1988 0.0040 1.6528 0.3663 0.5292
02/12/1988 0.9993 0.4100 0.0000 0.0038
05/17/1988 0.9658 1.0155 0.0000 0.8566
08/09/1988 0.5575 1.8825 0.0000 0.0404
09/14/1988 0.9984 0.7709 0.0000 0.2304
10/13/1988 0.9719 0.8011 0.0000 0.2792
10/26/1988 0.9731 1.3649 0.0000 0.1542
11/04/1988 0.9909 1.0527 0.0000 0.8476
05/17/1989 0.9860 0.6435 0.0000 0.1768
08/17/1989 0.9789 2.1938 0.0000 0.0002
09/27/1989 0.8255 1.1780 0.0000 0.6608
10/06/1989 0.9628 1.0647 0.0000 0.8320
10/17/1989 0.9732 1.4634 0.0000 0.1068
07/24/1991 0.8204 3.2959 0.0000 0.0002
08/02/1991 0.9753 1.2296 0.0000 0.3844
12/16/1991 0.2766 1.9990 0.0050 0.0002
01/10/1992 0.8595 0.6799 0.0000 0.3432
06/24/1992 0.9521 1.0435 0.0000 0.8692
08/24/1992 0.3306 2.0512 0.0018 0.0022
06/04/1993 0.9188 1.1350 0.0000 0.5880
09/16/1993 0.1866 1.2855 0.0222 0.6402
04/12/1994 0.2834 1.8069 0.0343 0.0088
06/17/1994 0.7766 2.6949 0.0000 0.0002
11/21/1994 0.1306 1.6013 0.3907 0.0834
03/17/1995 0.2787 2.7284 0.0267 0.0002
05/11/1995 0.6061 1.3020 0.0002 0.5118
11/13/1995 0.6948 2.2415 0.0000 0.0034
05/30/1996 0.5180 1.5381 0.0000 0.1440
06/27/1996 0.1544 0.7377 0.0010 0.4768
07/30/1997 0.1671 2.0925 0.7727 0.0004
03/30/1998 0.1203 2.4733 0.7621 0.0002
08/13/1998 0.1566 2.5072 0.2194 0.0006
10/05/1998 0.4035 1.4315 0.0164 0.1678
01/28/1999 0.1330 1.1790 0.0367 0.6524
03/01/1999 0.0498 1.9657 0.1661 0.0218
03/26/1999 0.2648 1.7011 0.0006 0.1178
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is significant, and the p-values associated with testing the null of disjoint jumps
are very low (in most cases virtually 0) on these days.

• Category 2. The second category consists of days on which both tests indicate
no common arrival of jumps. The number of these days is 5, which is small.
However, note that we already found quite a significant number of days on which
one of the series jumps while the other one does not. Importantly, the days in this
category illustrate the possibility that, in spite of the fact that both series exhibit
jumps during the day, they do so during different parts of the day. Note that if we
were making our decision solely on the basis of individual tests for jumps, we
would have misclassified the days in this category as days with common arrival
of jumps (i.e., category 1). Thus, days in category 2 underline the importance of
the tests developed here.

• Category 3. The third category consists of days on which the null of both tests
cannot be rejected—there are 6 days in this category. The possible explana-
tions for such an outcome are at least two. First, it can be the case that on these
days we have both common jumps and disjoint jumps with the magnitude of the
common jumps far smaller as compared with the disjoint ones. The second pos-
sible explanation is that we have common jumps with very weak dependence. In
both possible scenarios, the value of �

(j)
n is fairly close to 1, but for the above-

mentioned reasons the value of �
(d)
n is close to zero. In general we will need

more high-frequency observations for the T
(d)
n test to gain power against such

scenarios. Alternatively, we can perform the tests on different parts of the day.
• Category 4. The last category consists of days on which both tests reject their

null hypothesis. The number of these days is 7. We notice that in these days the
value of the �

(d)
n statistics is above 0.5 (i.e., it is relatively high), but the value

of the �
(j)
n test is fairly close to 2.

Finally, if we use the less conservative significance level for determining the
presence of jumps in the individual series of 5%, we find 113 days in which both
series exhibit jumps. Further, if we use 5% significance level for testing for com-
mon and disjoint jumps we find that 55 of these days are in category 1, 10 in
category 2, 11 in category 3 and 37 in category 4. Thus, our empirical study shows
overall that the exchange series have a nontrivial number of days with common
arrival of jumps, as well as days where jumps arrive at different times.

8. Proofs.

8.1. Preliminaries. We begin by showing that the processes D̃, D̃′′, G̃ and G̃′
of (3.14) and (3.15) are actually well-defined and finite-valued and by stating some
of their basic properties.

First, the process D̃ is well-defined and increasing, but it might a priori take
the value +∞. However, by taking the F -conditional expectation and using the



DETECTING COMMON JUMPING 1817

properties of the variables (κq,Uq,U
′
q), we get

Ẽ(D̃t | F ) = ∑
q : Sq≤t

E
′((�X1

Sq
)2(R2

q)
2 + (�X2

Sq
)2(R2

q)
2)

= 1
2

∑
q : Sq≤t

(
(�X1

Sq
)2(c22

Sq− + c22
Sq

) + (�X2
Sq

)2(c11
Sq− + c11

Sq
)
)

(8.1)

= Ft .

See (3.13). Then, we deduce in particular that D̃ is finite-valued, and the same
argument shows that D̃′′ and G̃′ are finite-valued as well. For G̃, things are a bit
more difficult, and we state the result in the form of a lemma (below, a process Ut ,
taking its values in the set of 2 × 2 nonnegative symmetric matrices, is said to be
increasing for the strong order in this set if Ut − Us is a nonnegative matrix for all
s ≤ t).

LEMMA 8.1. Let φ and ψ be two real-valued functions on R
2 with φ(x) =

O(‖x‖) and ψ(x) = O(‖x‖) as x → 0.
(a) The process

C(φ,ψ)t := ∑
s≤t

φ(�Xs)ψ(�Xs)(cs− + cs)(8.2)

takes its values in the set of 2 × 2 nonnegative symmetric matrices, and it is in-
creasing for the strong order in this set when ψ = φ.

(b) The formulas (for i = 1,2)

Zi(φ)t = ∑
q : Sq≤t

φ(�XSq )R
i
q, Z′i (φ)t = ∑

q : Sq≤t

φ(�XSq )R
′i
q(8.3)

define two R
2-valued processes Z(φ) and Z′(φ), and conditionally on F the eight-

dimensional process (Z(φ),Z′(φ),Z(ψ),Z′(ψ)) is a square-integrable martin-
gale with independent increments, zero mean and covariance given by⎧⎪⎪⎨⎪⎪⎩

Ẽ(Zi(φ)tZ
j (ψ)t | F ) = 1

2C(φ,ψ)
ij
t ,

Ẽ(Z′i (φ)tZ
j (ψ)t | F ) = 0,

Ẽ(Z′i (φ)tZ
′j (ψ)t | F ) = k − 1

2
C(φ,ψ)

ij
t .

(8.4)

Moreover, if X and c have no common jumps, the process
(Z(φ),Z′(φ),Z(ψ),Z′(ψ)) is a Gaussian martingale, conditionally on F .

PROOF. This is proved exactly as Lemma 5.10 of [8]. The increasingness of
C(φ,φ) for the strong order comes from the fact that cs and cs− are nonnegative
symmetric matrices. �
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Then, with the notation (8.3), we obviously have G̃ = Z′1(f ′
1) + Z′2(f ′

2) where
f ′

1 and f ′
2 and the two first partial derivatives of the function f , and further with

the notation (3.13),

Ẽ((G̃t )
2 | F ) = (k − 1)F ′

t .(8.5)

Now, we state a strengthened version of Assumption (H).

ASSUMPTION (SH). We have Assumption (H), and ‖bt‖ + ‖σt‖ + 
t ≤ K

and also γ (x) ≤ K for some constant K . Then, up to multiplying γ by a constant,
we can even assume that ‖δ(ω, t, x)‖ ≤ γ (x).

If any of our limiting results holds under Assumption (SH), a localization pro-
cedure allows to get it under (H) only. This procedure, described in detail in [8],
is omitted here. But in all the remainder of the paper we assume that Assump-
tion (SH) holds.

We end up with some more notation. If h is a function on R
2, we have de-

fined V (h,�n)t in (3.6), and when we want to emphasize the dependency on the
process X, we write it V (X;h,�n)t . We also use the following notation whenever
the right-hand side below makes sense:

V (X;h)t = V (h)t := ∑
s≤t

h(�Xs).(8.6)

Next, we choose the functions ψ on R+ and ψa on R
2, for a > 0, as follows:

ψ is decreasing, C∞, 1[0,1] ≤ ψ ≤ 1[0,2], ψa(x) = ψ(‖x‖/a).(8.7)

Finally, we set

γ0 = sup
z∈E

γ (z), Aε = {z :γ (z) ≤ ε}, 
′(ε) =
∫
Aε

γ (z)2λ(dz).(8.8)

8.2. Estimates. We derive some estimates for X, which follow from Assump-
tion (SH) and will be used often in the sequel. Below, K and Kp are constants,
changing from line to line, with Kp depending on p. If ε ∈ (0, γ0], the process

X(ε)t = Xt −
∫ t

0

∫
{z : γ (z)>ε}

δ(s, z)μ(ds, dz)(8.9)

can be written as

X(ε)t = X0 +
∫ t

0
b(ε)s ds +

∫ t

0
σs dWs +

∫ t

0

∫
Aε

δ(s, z)(μ − ν)(ds, dz),

where b(ε)t = bt + ∫
(δ(t, z)1Aε(z) − κ ◦ δ(t, z))λ(dz) is bounded by K/ε for

some K . We have X(ε) = X0 + X′(ε) + X′′(ε), where

X′(ε)t =
∫ t

0
b(ε)s ds +

∫ t

0
σs dWs,

(8.10)

X′′(ε)t =
∫ t

0

∫
Aε

δ(s, z)(μ − ν)(ds, dz).
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Note that X(γ0) = X, so we will also use the notation

X′ = X′(γ0), X′′ = X′′(γ0), implying X = X0 + X′ + X′′.(8.11)

First, ‖b(ε)‖ ≤ K/ε and the Davis–Burkholder–Gundy inequality yield for all
s, t ≥ 0 and p ≥ 1:

E
(‖X′(ε)s+t − X′(ε)s‖p | Fs

)
(8.12)

≤ Kp

(
tp/2 + tp

εp

)
,

E
(‖X′(ε)s+t − X′(ε)s − σs(Ws+t − Ws)‖p | Fs

)
(8.13)

≤ Kp

(
tp

εp
+ E

((∫ s+t

s
‖σu − σs‖2 du

)p/2 ∣∣ Fs

))
.

Next, if p ≥ 2, the Davis–Burkholder–Gundy inequality and ‖δ(t, z)‖ ≤ γ (z)

yield that E(‖X′′(ε)s+t − X′′(ε)s‖p | Fs) ≤ KpE(Z(ε)
p/2
t ) where Z(ε)t =∫ t

0
∫
Aε

γ (z)2μ(ds, dz) is a subordinator. Then, a well known result about Lévy
processes (see, e.g., the proof of Lemma 5.1 of [10], with Ht = 1 and at = t),
plus the obvious properties 
′(ε) ≤ K and

∫
Aε

γ (z)pλ(dz) ≤ K
′(ε), give us

E(Z(ε)
p/2
t ) ≤ Kt
′(ε) when t ∈ [0,1]. Then, using Hölder inequality when

p < 2, we get, for s ≥ 0, t ∈ [0,1] and p > 0,

E
(‖X′′(ε)s+t − X′′(ε)s‖p | Fs

) ≤ Kp(
′(ε)t)1∧(p/2).(8.14)

Finally, using (45) of [1] and arguing componentwise, we obtain the existence of a
an increasing function 
′′ on R+ with 
′′(ε) → 0 as ε → 0, such that for all η > 0
and θ ∈ (0,1], and all s ≥ 0 and t ∈ [0,1] and ε > 0,

E
(‖X′′(ε)s+t − X′′(ε)s‖2 ∧ η2 | Fs

) ≤ Kt

(
η2 + t

θ2 + 
′′(θ)

)
.(8.15)

LEMMA 8.2. Let m, l ≥ 2 and let j, k be two indices with values 1 or 2. Then,
for all ε ∈ (0, γ0], we have

E
(|�n

i X
′j (ε)|m|�n

i X
′′k(ε)|l | F(i−1)�n

) ≤ K
√


′(ε)�2
n

(
1 + �

1/4
n

εm

)
.(8.16)

If further the processes X1 and X2 have no common jump, then

E
(|�n

i X
′′1(ε)|m|�n

i X
′′2(ε)|l | F(i−1)�n

) ≤ K
√


′(ε)�2
n.(8.17)

PROOF. (a) When m > 2, the estimate (8.16) is a simple consequence
of (8.12), (8.14) and the Hölder inequality. When m = 2, an application of Itô’s
formula to (8.10) shows that

|�n
i X

′j (ε)|m|�n
i X

′′k(ε)|l = M(ε)n +
∫ i�n

(i−1)�n

h(n, ε)s ds,(8.18)
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where E(M(ε)n | F(i−1)�n) = 0 and, with the notation Ut = X′j (ε)t −
X′j (ε)(i−1)�n and Vt = X′′k(ε)t − X′′k(ε)(i−1)�n for t ≥ (i − 1)�n,

h(n, ε)s = 2Us |Vs |lb(ε)js + |Vs |lcjj
s

+ |Us |2
∫
Aε

(|Vs− + δk(s, z)|l − |Vs−|l − l{Vs−}l−1δk(s, z)
)
λ(dz)

(above, {v}r = |v|rsign(v) for any v ∈ R). The integrand above is smaller than
K(1 + |Vs−|l−2)γ (z)2. Then, since ct is bounded and |b(ε)

j
t | ≤ K/ε, we deduce

from (8.12), (8.14), Hölder inequality and 
′(ε) ≤ K that

E
(∣∣h(n, ε)(i−1)�n+s

∣∣ | F(i−1)�n

) ≤ Ks
√


′(ε)
(

1 + s1/4

ε2

)
,

when s ≤ 1, and (8.16) follows.
(b) For t ≥ (i − 1)�n, we write Ut = X′′1(ε)t − X′′1(ε)(i−1)�n and Vt =

X′′2(ε)t − X′′2(ε)(i−1)�n . Itô’s formula yields that |�n
i X

′′1(ε)|m|�n
i X

′′2(ε)|l
equals the right-hand side of (8.18), where M(ε)n still has a vanishing conditional
expectation, and h(n, ε)s has the form h(n, ε)s = ∫

Aε
αn,ε(s, z)λ(dz), where

αn,ε(s, z) = |Us− + δ1(s, z)|m|Vs− + δ2(s, z)|l − |Us−|m|Vs−|l
− m{Us−}m−1|Vs−|lδ1(s, z) − l|Us−|m{Vs−}l−1δ2(s, z).

Now, if X1 and X2 never jump together, the product δ1δ2 vanishes P(dω) ⊗ ds ⊗
λ(dz) almost everywhere. Hence, αn,ε is almost everywhere equal to

α′
n,ε(s, z) = |Vs−|l(|Us− + δ1(s, z)|m − |Us−|m − m{Us−}m−1δ1(s, z)

)
+ |Us−|m(|Vs− + δ2(s, z)|l − |Vs−|l − l{Vs−}l−1δ2(s, z)

)
.

It is obvious that |α′
n,ε(s, z)| is smaller than

K
(∥∥X′′(ε)s− − X′′(ε)(i−1)�n

∥∥2 + ∥∥X′′(ε)s− − X′′(ε)(i−1)�n

∥∥m+l−2)
γ (z)2.

Therefore, (8.17) is a simple consequence of (8.14) and 
′(ε) ≤ K . �

8.3. Proof of Theorem 3.1(a). Observe that B ′1
T > 0 and B ′2

T > 0 on the set

�
(j)
T ∪ �

(d)
T , whereas BT > 0 on �

(j)
T and BT = 0 on �

(d)
T . So, (3.16) is a trivial

consequence of (4.3), which in turn comes from the following lemma.

LEMMA 8.3. If h is a continuous function on R
2 such that h(x) = o(‖x‖2)

as x → 0, we have V (h,�n)t
P−→ V (h)t for each t > 0. We even have the con-

vergence in probability (for the Skorokhod topology) of the processes V (h,�n)

toward V (h).
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PROOF. Since V (h) has no fixed times of discontinuity, the last claim implies
the first one. When h vanishes around the origin the result is proved exactly as in
step 2 of Theorem 2.2 of [8]: the dimension of X plays no role here.

Next, we turn to the general case. If ε > 0, we have V (h(1 − ψε),�n)
P−→

V (h(1−ψε)) (for the Skorokhod topology) from what precedes, whereas V (h(1−
ψε)) obviously converges locally uniformly in time (for each ω) to V (h)t as ε → 0
by our assumptions on h, and hence, it is enough to prove that

lim
ε→0

lim sup
n

P

(∑
s≤T

|V (hψε,�n)t | > η

)
= 0 ∀η > 0, ∀T > 0.(8.19)

We have |h(x)| ≤ θ(x1) + θ(x2), where θ is a continuous function on R with
θ(y) = o(y2) as y → 0. It is enough to prove (8.19) with V (hψε,�n)t substituted
with V (j)(θψε,�n)t = ∑[t/�n]

i=1 θ(�n
i X

j )ψ(|�n
i X

j |/ε), for j = 1,2. That is, we
only need to prove (8.19) in the one-dimensional case, and this is a consequence
of (3.4) in [8]. �

8.4. Proof of Theorem 4.1(a). We start with a general result, of independent
interest.

THEOREM 8.4. Let φ be a C2 function on R
2 satisfying φ(0) = φ′

i (0) = 0 and
φ′′

ij (x) = o(‖x‖) as x → 0, where φ′
i and φ′′

ij are the first and second order partial
derivatives. The two-dimensional processes

1√
�n

(
V (φ,�n)t − V (φ)�n[t/�n],V (φ, k�n)t − V (φ)�n[t/k�n]

)
(8.20)

converge stably in law, on the product D(R+,R) × D(R+,R) of the Skorokhod
spaces, to the process with components(

Z1(φ′
1) + Z2(φ′

2),Z
1(φ′

1) + Z2(φ′
2) + Z′1(φ′

1) + Z′2(φ′
2)

)
.(8.21)

We have the (stable) convergence in law of the processes in (8.20), as elements
of the product functional space D(R+,R)2, but usually not as elements of the
space D(R+,R

2) with the (two-dimensional) Skorokhod topology, because a jump
of X entails a jump for both components above, but “with a probability close to
j/k” the times at which these two components jump differ by an amount j�n, for
j = 1, . . . , k − 1.

PROOF. The proof is essentially the same as for Theorem 2.12(i) of [8]. Fix
ε ∈ (0, γ0], and let S′

q = S′
q(ε) be the successive jump times of the Poisson process

μ([0, t] × Ac
ε), so that Xt = X(ε)t + ∑

q : S′
q≤t �XS′

q
[notation (8.9)]. Next, we

introduce some sets in which for this proof we could take kn = k, but which are also
needed later with kn as in (4.6). Namely, �n(t, ε) denotes the set of all ω such that
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each interval [0, t] ∩ (i�n, (i + kn)�n] contains at most one S′
q , and the intervals

(0, kn�n] and [t − (kn + 1)�n, t] contains no S′
q , and finally ‖�n

i X(ε)‖ ≤ 2ε for
all i ≤ t/�n. Then,

�n(t, ε) → � as n → ∞ ∀t, ε > 0.(8.22)

We define the following variables on each set {(ik + j)�n < S′
q ≤ (ik + j +

1)�n} (with 0 ≤ j < k) as⎧⎨⎩
• R−(n, q) = X(ε)(ik+j)�n − X(ε)ik�n,• R+(n, q) = X(ε)(i+1)k�n − X(ε)(ik+j+1)�n,• Rn

q = �n
ik+j+1X(ε), R′n

q = R−(n, q) + R+(n, q), R′′n
q = Rn

q + R′n
q .

Exactly as in [1], we have (
L−(s)−→ denoting the stable convergence in law)(

Rn
q/

√
�n,R

′n
q /

√
�n

)
q≥1

L−(s)−→ (Rq,R
′
q)q≥1.(8.23)

For any process Y , set W(Y ;φ,�n)t = V (Y ;φ,�n)t − V (Y ;φ)�n[t/�n]. On
the set �n(T , ε), we have, for all t ≤ T and for k′ = 1 and k′ = k,

W(X;φ, k′�n)t = W(X(ε);φ, k′�n)t + Y (ε)(k′�n)t ,(8.24)

where

Y (ε)(�n)t = ∑
q : S′

q≤�n[t/�n]

(
φ(�XS′

q
+ Rn

q) − φ(�XS′
q
) − φ(Rn

q)
)
,

Y (ε)(k�n)t = ∑
q : S′

q≤k�n[t/k�n]

(
φ(�XS′

q
+ R′′n

q ) − φ(�XS′
q
) − φ(R′′n

q )
)
.

Since φ is C2, we have⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Y (ε)(�n)t = ∑

q : S′
q≤�n[t/�n]

( 2∑
i=1

φ′
i (�XS′

q
+ R̃n

q )Rn,i
q − φ(Rn

q)

)
,

Y (ε)(k�n)t = ∑
q : S′

q≤k�n[t/k�n]

( 2∑
i=1

φ′
i (�XS′

q
+ R̃′′n

q )R′′n,i
q − φ(R′′n

q )

)
,

(8.25)

where R̃n
q and R̃′′n

q are between 0 and Rn
q and between 0 and �R′′n

q , respectively.
Moreover, ‖φ(x)‖ = o(‖x‖3); hence, by (8.23),

1√
�n

(
Y (ε)(�n),Y

(ε)(k�n)
) L−(s)−→

( 2∑
i=1

Z(ε)i(φ′
i ),

2∑
i=1

(
Z(ε)i(φ′

i ) + Z′(ε)i(φ′
i )

))

[for the product topology of D(R+,R)×D(R+,R)], where Z(ε)i(φ) and Z′(ε)i(φ)

are defined by (8.3), but with the sum taken only over the S′
q(ε). As ε → 0,
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the right-hand side above goes locally uniformly in time to the right-hand side
of (8.21). Hence, in view of (8.24) and (8.22), it remains to prove that

lim
ε→0

lim sup
n

P

(
sup
t≤T

1√
�n

|W(X(ε);φ, k′�n)t | > η

)
= 0(8.26)

for all η > 0 and T > 0 and for k′ = 1 and k′ = k.
Now, with the notation (8.7), we set φε(x) = φ(x)

∏2
i=1 ψ(|xi |/2kε). Then φε

is a C2 function which coincides with φ when ‖x‖ ≤ 2kε and vanishes for ‖x‖ >√
2 × 4kε. Hence for each T , on a set of probability going to 1 as n → ∞ we have

W(X(ε);φ, k′�n)t = W(X(ε);φε, k
′�n)t for all t ≤ T . Therefore it is enough to

prove (8.26) with φε instead of φ. But this is exactly the last step in the proof of
Theorem 2-11(i) of [8] (in which the dimension of X plays no role; this is where
the hypothesis φ′′

ij (x) = o(‖x‖) is used). Hence, we are done. �

LEMMA 8.5. For any real-valued continuous function φ on R
2 such that

φ(x) = O(‖x‖2) as x → 0, we have

1√
�n

∑
k�n[T/k�n]<s≤T

|φ(�Xs)| P−→ 0.(8.27)

PROOF. Denote, by Un, the left-hand side of (8.27). Assumption (SH) yields
|φ(δ(s, z))| ≤ Kγ (z)2 for some constant K (recall that here δ is bounded); hence,

E(Un) ≤ K√
�n

E

(∫ T

k�n[T/k�n]
ds

∫
γ (z)2λ(dz)

)
≤ K ′k

√
�n

for another constant K ′, and the result follows. �

PROOF OF THEOREM 4.1(a). We apply Theorem 8.4 with φ = f . Since X

has no fixed time of discontinuity, and by the previous lemma, we deduce

Gn
T := 1√

�n

(
V (f, k�n)T − V (f,�n)T

) L−(s)−→ G̃T .

We also have �
(j)
n − 1 = √

�nG
n
T /V (f,�n)T ; hence, (�

(j)
n − 1)

√
�n converges

stably in law, in restriction to the set �
(j)
T = {BT > 0}, to G̃T /BT by Lemma 8.3.

The end of the claim follows from Lemma 8.1 and from (8.5). �

8.5. Proof of Theorems 3.1(b) and 4.1(b). Equation (3.17) follows from
Lemma 8.3. For (3.18) and Theorem 4.1(b), we will use the following theorem.

THEOREM 8.6. Let h be a d-dimensional C2 function on R
2, its first compo-

nent being f , and all the others being either vanishing on a neighborhood of 0 or
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equal to x �→ xm
1 xl

2 for some m, l ≥ 2 with m + l ≥ 5. Assume also that (with h′
i

and h′′
ij being the R

d -valued partial derivatives)

x = (x1,0) or
(8.28)

x = (0, x2) ⇒ h(x) = h′
1(x) = h′

2(x) = h′′
12(x) = 0.

Then, the 2d-dimensional processes(
1

�n

V (h,�n)t ,
1

�n

V (h, k�n)t

)
t∈[0,T ]

(8.29)

converge stably in law, in restriction to the union �
(d)
T ∪ �

(c)
T and on the prod-

uct D([0, T ],R
d) × D([0, T ],R

d), to the process (D̃(h)t + C(h)t , D̃
′′(h)t +

kC(h)t )t∈[0,T ], where⎧⎪⎪⎪⎨⎪⎪⎪⎩
D̃(h)t = 1

2

∑
q : Sq≤t

(
h′′

11(�XSq )(R
1
q)

2 + h′′
22(�XSq )(R

2
q)

2)
,

D̃′′(h)t = 1
2

∑
q : Sq≤t

(
h′′

11(�XSq )(R
′′1
q )2 + h′′

22(�XSq )(R
′′2
q )2)(8.30)

and where C(h) is the process whose first component is C, as given by (3.12), and
all others are 0.

Any component of the form xm
1 xl

2 satisfies (8.28), so this condition is a condition
on the components which vanish on a neighborhood of 0.

PROOF OF THEOREM 8.6. (1) As said before, we assume Assumption (SH).
But another localization allows to do more: let τq = inf(t :‖δ′

t‖ ≥ q) [the process δ′
is defined in (2.3)]. By (d) of (H) we have limq τq ≥ τ , and of course τ > T on

the set �
(d)
T ∪ �

(c)
T , so it is enough to prove the result in restriction to each set

(�
(d)
T ∪ �

(c)
T ) ∩ {τq > T }. Now, let X(q) be the process defined by (2.1), with the

coefficients

b
(q)
t = (bt − δ′

t )1{t≤τq }, σ
(q)
t = σt , δ(q)(t, z) = δ(t, z)1
̃c (t, z).

These coefficients satisfy Assumption (SH). Moreover, we obviously have Xt =
X

(q)
t for all t ≤ T on the set (�

(j)
T )c ∩ {τq > T }; hence, the process (8.29) and also

D̃(h)t , D̃′′(h)t and C(h)t for t ≤ T are the same on that set, whether computed
on the basis of X or on the basis of X(q). This means that, for proving our result,
we can substitute X with X(q), which satisfies Assumption (SH) and whose two
components have no common jumps by construction.

In other words, we can and will assume in the rest of the proof that X satis-
fies Assumption (SH) and that X1 and X2 have no common jumps. We will then
prove that, in fact, the stable convergence in law holds everywhere [not only on
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(�
(j)
T )c], and for the time interval R+. We use the same notation as in the proof of

Theorem 8.4.
(2) Pick ε ∈ (0, γ0], and take S′

q = S′
q(ε). Exactly as for (8.24), on the set

�n(T , ε) and for t ≤ T and k′ = 1 or k′ = k, we have

V (X;h, k′�n)t = V (X(ε);h, k′�n)t + Y
(ε)

(h, k′�n)t ,(8.31)

where

Y
(ε)

(h,�n)t = ∑
q : S′

q≤�n[t/�n]

(
h(�XS′

q
+ Rn

q) − h(Rn
q)

)
Y

(ε)
(h, k�n)t = ∑

q : S′
q≤k�n[t/k�n]

(
h(�XS′

q
+ R′′n

q ) − h(R′′n
q )

)
.

By a Taylor expansion and the properties h(�XS′
q
) = h′

i (�XS′
q
) = 0, those are,

respectively, equal to

∑
q : S′

q≤�n[t/�n]

(
1
2

2∑
i,j=1

h′′
ij (�XS′

q
+ R̃n

q )Rn,i
q Rn,j

q − h(Rn
q)

)
,

∑
q : S′

q≤k�n[t/k�n]

(
1
2

2∑
i,j=1

h′′
ij (�XS′

q
+ R̃′′n

q )R′′n,i
q R′′n,j

q − h(R′′n
q )

)
,

where R̃n
q , respectively, R̃′′n

q , is between 0 and Rn
q , respectively, R′′n

q . Since we
also have h′′

12(�XS′
q
) = 0, (8.23) yields

(
�−1

n Y
(ε)

(h,�n),�
−1
n Y

(ε)
(h, k�n)

) L−(s)−→ (
D̃(ε)(h), D̃′′(ε)(h)

)
[for the product topology of D(R+,R

d) × D(R+,R
d)], where D̃(ε)(h) and

D̃′′(ε)(h) are defined by (8.30), but with the sum taken over the S′
q(ε) only. As

ε → 0, we have D̃(ε)(h)t → D̃(h)t and D̃′′(ε)(h)t → D̃′′(h)t locally uniformly
in t . Hence, in view of (8.31) and (8.22) it remains to prove that, for all η > 0 and
k′ = 1 and k′ = k,

lim
ε→0

lim sup
n

P

(
sup
t≤T

∥∥∥∥ 1

�n

V (X(ε);h, k′�n)t − k′C(h)t

∥∥∥∥ > η

)
= 0.(8.32)

(3) Obviously, it suffices to show (8.32) for each component or, equivalently, we
can assume that h is one-dimensional. If h(x) = 0 when ‖x‖ ≤ ρ, then, since X(ε)

has jumps smaller than ε, we see that if ε < ρ/2, V (X(ε);h, k′�n)t vanishes for
all t ∈ [0, T ] on the set �n(T , ε) [see (8.22)]. Therefore, in this case, (8.32) is
obvious, and it remains to study the case where h(x) = xm

1 xl
2 for m, l ≥ 2.

(4) Recall that X(ε) = X′(ε) + X′′(ε) [see (8.10)]. The process X′(ε) is a con-
tinuous Itô semimartingale with bounded coefficients and càdlàg volatility. Since h
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is homogeneous of degree r = m + l it is known (see, e.g., Theorem 2.4(i) of [8]
this theorem is for a one-dimensional process, but the multidimensional exten-
sion is straightforward; also, see [11]) that for each fixed ε > 0, the processes
�

1−r/2
n V (X′(ε);h, k′�n) converge in probability, locally uniformly in time, to a

limit, that is, k′C when r = 4 (i.e., when h is the function f ) and that need not be
specified when r ≥ 5. Then, �−1

n V (X′(ε);h, k′�n) converges to k′C(h), in prob-
ability, locally uniformly in time, and, in order to obtain (8.32), it is clearly enough
to show that

lim
ε→0

lim sup
n

P

(
sup
t≤T

1

�n

|V (X(ε);h, k′�n)t − V (X′(ε), h, k′�n)t | > η

)
(8.33)

= 0.

(5) We prove (8.33) for k′ = 1, the proof for k′ = k being similar. For all u > 0,
v,w ≥ 0 and p,q ≥ 1 we have vpwq ≤ uvp+q + wp+qu−p/q , hence since h(x) =
(x1)

m(x2)
l we see that for all u > 0 there is a constant Au (depending also on m, l)

such that, for all x, y ∈ R
2,

|h(x + y) − h(x)| ≤ u|h(x)| + Au(|x1|m|y2|l + |y1|m|x2|l + |y1|m|y1|l).
It follows that

|V (X(ε);h,�n) − V (X′(ε);h,�n)| ≤ uV (X′(ε); |h|,�n) + AuU
n(ε),(8.34)

where Un(ε)t = ∑[t/�n]
i=1 ζ n

i (ε) and

ζ n
i (ε) = |�n

i X
′′1(ε)|m|�n

i X
′′2(ε)|l + |�n

i X
′′1(ε)|m|�n

i X
′2(ε)|l

+ |�n
i X

′1(ε)|m|�n
i X

′′2(ε)|l .
First, (8.16) and (8.17) yield E(ζ n

i (ε)) ≤ K
√


′(ε)�2
n(1 + �

1/4
n /εm∨l). There-

fore, since 
′(ε) → 0 as ε → 0, we obtain

lim
ε→0

lim sup
n

E

(
1

�n

Un(ε)T

)
= 0.

Second, as seen above, Zn := �−1
n V (X′(ε); |h|,�n)T − C(h)T

P−→ 0; hence,

lim
u→0

lim sup
n

P

(
u

�n

V (X′(ε); |h|,�n)T >
η

2

)
≤ lim

u→0
lim sup

n

(
P

(
|Zn| > η

4u

)
+ P

(
C(h)T >

η

4u

))
= 0.

These two results, put together with (8.34), allow us to deduce (8.33). �

PROOF OF THEOREM 3.1(b). First, the variable �̃ defined by (3.18) on �
(d)
T

and, say 1 elsewhere, takes its values in (0,∞), and conditionally on F , and,
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in restriction to �
(d)
T , it has a density [recall (3.11) and (3.14)], so �̃ 	= 1 a.s.

on �
(d)
T . Second, the convergence �

(j)
n

L−(s)−→ �̃, in restriction to �
(d)
T is obvious

from Theorem 8.6. �

PROOF OF THEOREM 4.1(b). By Lemma 8.3 applied to h = g1 and h = g2,

and by Theorem 8.6, it is obvious that �
(d)
n /�n

L−(s)−→ �̃′ = (D̃T + CT )/
√

B ′1
T B ′2

T ,

in restriction to �
(d)
T . Finally, (4.2) follows from (8.1). �

8.6. Proof of (4.10). The first part of (4.10) is none other than a multidimen-
sional version of (26) in [1], applied with q = 4 and r = 1, and we leave the (sim-
ple) computations to the reader. As to the second part, it is almost trivial. Indeed,
setting fρ = f ψρ [notation (8.7)], for any ρ > 0 we have

�nÂ
′(�n)T ≤ V (fρ,�n)T

as soon as α��
n < ρ. Now, Lemma 8.3 yields that V (fρ,�n)T converges in prob-

ability to V (fρ)T , which in turn goes to 0 as ρ → 0; hence, we have the result.

8.7. Proof of (4.11). Both claims in (4.11) amount to prove the following
property: introduce the functions g(x) = xu

1 xv
2 where u + v ≥ 2, and g(x) = xmxl

where m, l are two indices taking the values 1 or 2. We complete this notation
with gn(x) = g(x)1{‖x‖>α��

n } and gn,ρ = gnψρ and g′
n,ρ = gn − gn,ρ for ρ > 0,

and gn(x) = g(x)1{‖x‖≤α��
n }. Then, we need to prove that

Ĥ n
t := 1

kn�n

[t/�n]−kn−1∑
i=1+kn

gn(�
n
i X)

∑
j∈In(i)

gn(�
n
jX)

(8.35)
P−→ Ht = ∑

s≤t

g(�Xs)(c
ml
s− + cml

s ).

The proof is basically the same as for (27) of [1], and goes through several steps.
Step 1. This step is devoted to showing some estimates. Recall (8.11). First,

|gn,ρ(x)| ≤ ‖x‖u+v and |g′
n,ρ(x)| ≤ ‖x‖u+v with u + v ≥ 2, and |gn(x)| ≤ ‖x‖2;

hence, (8.12) and (8.14) yield

E
(
(|gn,ρ | + |g′

n,ρ | + |gn|)(�n
i X)| | F(i−1)�n

) ≤ K�n.(8.36)

Second, when ρ ≤ 1/2, we have

|gn,ρ(x + y)| ≤ K
(‖x‖4�−2�

n + (‖y‖2 ∧ ρ2)
)
.

Using this with x = �n
i X

′ and y = �n
i X

′′, plus (8.12) and (8.15) with η = ρ and
θ = √

ρ, we obtain

E
(|gn,ρ(�n

i X)| | F(i−1)�n

) ≤ �nan(ρ), lim
ρ→0

lim
n→∞an(ρ) = 0,(8.37)
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provided we take an(ρ) = K(�1−2�
n + ρ + �n

ρ
+ 
′′(ρ)).

Next, we set δn
j = σ(j−1)�n�

n
jW . It is easily checked that for all w > 0 there is

a constant Aw such that for x, y, z ∈ R
2,

|gn(x + y + z) − g(x)| ≤ w‖x‖2 + Aw

(‖x‖4 + ‖y‖4

�2�
n

+ ‖y‖2 + (‖z‖2 ∧ �2�
n )

)
.

If we apply this with x = δn
j and y = �n

jX
′ − δn

j and z = �n
jX

′′, plus (8.13)

and (8.15) with η = θ2 = ��
n , we obtain, with a′

n = �
�∧(1−2�)
n + 
′′(��/2

n ),

E
(|gn(�

n
jX) − g(δn

j )| | F(j−1)�n

)
≤ K�nw + Kw�na

′
n + KwYn

j ,(8.38)

Yn
j = E

(∫ j�n

(j−1)�n

∥∥σs − σ(j−1)�n

∥∥2
ds | F(j−1)�n

)
.

Step 2. For each ρ > 0, we set

Ĥ (ρ)nt = 1

kn�n

[t/�n]−kn−1∑
i=1+kn

gn,ρ(�n
i X)

∑
j∈In(i)

gn(�
n
jX),

Ĥ (ρ)′nt = 1

kn�n

[t/�n]−kn−1∑
i=1+kn

g′
n,ρ(�n

i X)
∑

j∈In(i)

(
gn(�

n
jX) − g(δn

j )
)
,

H(ρ)nt = 1

kn�n

[t/�n]−kn−1∑
i=1+kn

g′
n,ρ(�n

i X)
∑

j∈In(i)

g(δn
j ),

H(ρ)t = ∑
q : Sq≤t

(gψρ)(�XSq )(c
ml
Sq− + cml

Sq
), H(ρ) = H − H(ρ).

We have Ĥ n = Ĥ (ρ)n + Ĥ (ρ)′n + H(ρ)n; hence, for (8.35), it is enough to prove
the following four properties:

ρ → 0 ⇒ H(ρ)t
P−→ 0,(8.39)

lim
ρ→0

lim sup
n

E(|Ĥ (ρ)nt |) = 0,(8.40)

lim
ρ→0

lim sup
n

E(|Ĥ (ρ)′nt |) = 0,(8.41)

ρ ∈ (0,1), n → ∞ ⇒ H(ρ)nt
P−→ H(ρ)t .(8.42)

Note that the property (8.39) readily follows from Lebesgue theorem.
Step 3. Here, we prove (8.40) and (8.41). First, by successive conditioning, we

deduce from (8.36) and (8.37) that

j 	= i ⇒ E(|gn,ρ(�n
i X)gn(�

n
jX)|) ≤ K�2

nan(ρ).
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Since limρ→0 limn an(ρ) = 0, we readily deduce (8.40). Second, again by succes-
sive conditioning, we deduce from (8.36) and (8.38) that, for all w > 0,

j 	= i ⇒ E
(∣∣g′

n,ρ(�n
i X)

(
gn(�

n
jX) − g(δn

j )
)∣∣)

≤ K�2
nw + Kw�2

na
′
n + Kw�nE(Y n

j ).

This readily yields

E(|Ĥ (ρ)′nt |) ≤ Ktan(ρ) + Ktw + Kwta′
n + KwE

(∫ t

0

∥∥σs − σ�n[s/�n]
∥∥2

ds

)
.

Observe that ‖σs − σ�n[s/�n]‖ is bounded [uniformly in (ω, s, n)], and goes to 0
for P(dω) ⊗ ds almost all (ω, s) as n → ∞ because σs is right continuous with
left limits. Then, by Lebesgue convergence theorem and a′

n → 0, we get

lim sup
n

E(|Ĥ (ρ)′nt |) ≤ Kt lim
n

an(ρ) + Ktw

and since w > 0 is arbitrary and limρ→0 limn an(ρ) = 0, we deduce (8.41).
Step 4. It remains to prove (8.42). Fix ρ ∈ (0,1) and t > 0, and recall the jump

times S′
q = S′

q(ρ/2) and the set �n(T ,ρ/2) of the proof of Theorem 8.4. On
�n(t, ρ/2) there is no S′

q in (0, kn�n], nor in (t − (kn + 1)�n, t] and there is at
most one S′

q in an interval ((i − 1)�n, i�n] with i�n ≤ t , and if ((i − 1)�n, i�n]
contains no S′

q we have ψρ(�n
i X) = 1. Hence, on �n(t, ρ/2),

H(ρ)nt = ∑
q : kn�n<S′

q≤t−(kn+1)�n

g′
n,ρ

(
�n

i(n,q)X
) 1

kn�n

∑
j∈In(i(n,q))

g(δn
j ),

where i(n, q) = inf(i : i�n ≥ S′
q). Observe also that

H(ρ)t = ∑
q : S′

q≤t

(
g(1 − ψρ)

)
(�XS′

q
)(cml

S′
q− + cml

S′
q
).

The sum over q with S′
q ≤ t is finite, and obviously g′

n,ρ(�n
i(n,q)X) → (g(1 −

ψρ))(�XS′
q
)) pointwise. Hence, for (8.42), and since �n(t, ρ/2) → � as n → ∞,

we need only to prove that

1

kn�n

∑
j∈In,−(i(n,q))

g(δn
j )

P−→ cS′
q−,

(8.43)
1

kn�n

∑
j∈In,+(i(n,q))

g(δn
j )

P−→ cS′
q
.

This is proved in (71) of [1] when X is one-dimensional, and the two-dimensional
extension is straightforward.

At this point, the proof of (4.11) is finished. However, we will now derive a
consequence of (8.43), to be used later.
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LEMMA 8.7. In the previous setting, and in particular with ρ > 0 fixed, for
any q ≥ 1, we have

ĉ(n,−)i(n,q)
P−→ cS′

q−, ĉ(n,+)i(n,q)
P−→ cS′

q
.(8.44)

PROOF. In view of (8.43), this is a simple consequence of

U(n, q,±) := 1

kn�n

∑
j∈In,±(i(n,q))

|gn(�
n
jX) − g(δn

j )| P−→ 0.(8.45)

We have a problem here: we cannot apply (8.38) without care, because the
integer i(n, q) is random, as it is a function of S′

q . We set ζ(n, q,+) =
sup(‖σs − σS′

q
‖2 : s ∈ [S′

q, S′
q + kn�n]) and ζ(n, q,−) = sup(‖σs − σS′

q−‖2 : s ∈
[S′

q − kn�n,S
′
q)), which are bounded and converge to 0 pointwise as n → ∞, and

Yn
j ≤ �nζ(n, q,±) when j ∈ In,±(i(n, q)).

For U(n, q,+), (8.45) is easy. Indeed, if 2 < j ≤ kn +1, we deduce from (8.38)
and from the property {i(n, q) = r} ∈ F(r+1)�n that

E
(∣∣gn

(
�n

i(n,q)+jX
) − g

(
δn
i(n,q)+j

)∣∣)
= ∑

r≥1

E
(|gn(�

n
r+jX) − g(δn

r+j )|1{i(n,q)=r}
)

= ∑
r≥1

E
(
E

(|gn(�
n
r+jX) − g(δn

r+j )| | F(r+1)�n

)
1{i(n,q)=r}

)
(8.46)

≤ �n

∑
r≥1

E
((

Kw + Kwa′
n + Kwζ(n, q,+)

)
1{i(n,q)=r}

)
= �n

(
Kw + Kwa′

n + KwE(ζ(n, q,+))
)
.

This holds for all w > 0, and E(ζ(n, q,+)) → 0, we have (8.45).
For U(n, q,−) things are more difficult. We replace the Poisson measure μ by

its restriction μ to R+ × Aρ/2, which is again Poisson, and we define X by (2.1),
with μ substituted with μ, and we associate ζ (n, q,−) and U(n,q,−) as above.
We consider the filtration F t = Ft ∨ σ(μ([0, s] × A) : s ≥ 0,A ∈ E ,A ∩ Aρ/2 =
∅). Then, due to the independence properties of the jumps of the Poisson mea-
sure μ and of W and μ, X is again an Itô semimartingale relative to the filtration
(F t ), and thus all estimates for X, relative to the filtration (Ft ), also hold for X,
relative to the filtration (F t ).

Now, the random variable i(n, q) becomes F 0-measurable, so we can argue as
in (8.46) for the process X, using in particular (8.38) with F (j−1)�n , even when j

is negative, between −kn and −1, provided we add the indicator function of the set
{i(n,p − 1)+ kn < i(n,p)}. Hence, we deduce as before that E(U(n, q,−)) → 0.
It remains to observe that on the set �n(t, ρ/2) we have U(n, q,−) = U(n, q,−)

as soon as S′
q ≤ t , and (8.45) for U(n, q,−) is deduced from (8.22) and from the

above. �
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8.8. Proof of Theorem 4.2(b). For (b) Theorem 4.2, and exactly as in the proof
of Theorem 8.6, we can assume Assumption (SH) and also that X1 and X2 do
not jump together, and, under this additional assumption, we prove following two
convergences on �:

Â′n
t

P−→ Ct,(8.47)

the sequence of variables
(

1

�n

F̂ ′n
t

)
n≥1

is tight.(8.48)

We begin with (8.48), which is easy. Indeed, it suffices to prove that E(F̂ ′n
t ) ≤

Kt�n for some constant K . In view of (4.9), this amounts to proving that

E((�n
i X

m)4(�n
i X

l)2(�n
jX

l)2) ≤ K�3
n,(8.49)

if (m, l) equals (1,2) or (2,1) and i 	= j . Since X1 and X2 have no common jumps,
(8.12) and (8.17) applied with ε = γ0 yield that

E
(
(�n

i X
m)4(�n

i X
l)2 | F(i−1)�n

) ≤ K�2
n, E

(
(�n

jX
l)2 | F(j−1)�n

) ≤ K�n

and by successive integration we get (8.49).
The proof of (8.47) necessitates several steps.
Step 1. Observe that f , of course, but also fρ = f ψρ for any ρ > 0, satis-

fies (8.28). Then, by Theorem 8.6, the pairs ( 1
�n

V (f,�n),
1

�n
V (f − fρ,�n))

converge stably in law to (D̃(f ) + C, D̃(f − fρ)), for the Skorokhod topology

on D(R+,R
2) (since we assume that �

(j)
T = ∅ for all T ). Taking the difference of

the two components, we deduce that, for any ρ > 0,

1

�n

V (fρ,�n)
L−(s)−→ D̃(fρ) + C.(8.50)

Step 2. Now, we prove that, for any A > 1 and t > 0,

1

�n

V
(
fA

√
�n

,�n

)
t

P−→
∫ t

0
ρσs (fA)ds,(8.51)

where for any 2 × 2 matrix σ we have set ρσ (fA) = E(fA(σU)), where U is an
N (0, I2) variable [hence, ρσs (fA) = ρσs(ω)(fA) is a process].

Recalling (8.11), and by Theorem 2.4(i) of [8] (see [11] for the multidimen-
sional version),

1

�n

V
(
X′;fA

√
�n

,�n

)
t

P−→
∫ t

0
ρσs (fA)ds;

hence, it is enough to prove that

Gn := 1

�n

∣∣V (
X;fA

√
�n

,�n

)
t − V

(
X′;fA

√
�n

,�n

)
t

∣∣ P−→ 0.(8.52)
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It is obvious that |fη(x + y) − fη(x)| ≤ Kη3(‖y‖ ∧ η) for all x, y ∈ R
2, η > 0.

Then, if we use (8.15) for ε = γ0, we see that

E(Gn) ≤ 1

�n

[t/�n]∑
i=1

E
(∣∣fA

√
�n

(�n
i X

′ + �n
i X

′′) − fA
√

�n
(�n

i X
′)

∣∣)

≤ KA3
√

�n

[t/�n]∑
i=1

√
E

(‖�n
i X

′′‖2 ∧ (A2�n)
)

≤ KtA3
(

A
√

�n

θ
+ √


′′(θ)

)
for all θ ∈ (0,1]. Taking θ = θn = �

1/4
n , so 
′′(θn) → 0, we deduce E(Gn) → 0;

hence, we have (8.52).
Step 3. Observe that, for all A > 1 and ρ > 0, we have

1

�n

V
(
fA

√
�n

,�n

)
T ≤ Â′(�n)T ≤ 1

�n

V (fρ,�n)T

as soon as 2A
√

�n ≤ α��
n ≤ ρ, that is for all n large enough. We also, obviously,

have (for each ω)

D̃(fρ)T
ρ→0→ 0,

∫ T

0
ρσs (fA)ds

A→∞→ CT .

At this stage, (8.47) readily follows from (8.50) and (8.51). Hence, we are finished.

8.9. Proof of Theorem 4.4. Both (4.17) and (4.18) amount to proving

Vn := P̃(|Ĥ n
t | > Zn | F )

P−→ V := P̃(|Ht | > Z | F )(8.53)

for Zn and Z as in the statement of the theorem, and with

Ĥ n
t =

[t/�n]∑
i=1

2∑
j=1

gj
n(�n

i X)φj (R̂(n)i), Ht = ∑
q : Sq≤t

2∑
j=1

gj (�XSq )φ
j (R̂q)

for the following choices of the R
2-valued gn, φ, R̂(n)i and R̂q : we refer to case 1

or 2, if we want to prove (4.18) or (4.17); then, we take gn(x) = g(x)1{‖x‖>α��
n }

and:

• for case 1: gj (x) = x2
j , φj (x) = x2

3−j , R̂(n)i = R(n)i, R̂q = Rq ,

• for case 2: gj (x) = x2
j x3−j , φ

j (x) = x3−j , R̂(n)i = R(n)′i , R̂q = R′
q .

Step 1. In a first step, we truncate the functions gn at some level ρ > 0, and the
proof is somewhat similar to the proof of (4.11), whose notation is generally used,
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like an(ρ) or �n(t, ρ/2), and S′
q and i(n, q) when ρ is fixed. We define a number

of processes:

Ĥ (ρ)′nt =
[t/�n]∑
i=1

2∑
j=1

(gj
nψρ)(�n

i X)φj (R̂(n)i), Ĥ (ρ)n = Ĥ n − Ĥ (ρ)′n,

H(ρ)nt = ∑
q : S′

q≤t

2∑
j=1

(
gj (1 − ψρ)

)
(�XS′

q
)φj (

R̂(n)i(n,q)

)
,

H(ρ)′n = Ĥ n − H(ρ)n.

H(ρ)t = ∑
q : Sq≤t

2∑
j=1

(
gj (1 − ψρ)

)
(�XSq )φ

j (R̂q), H(ρ)′ = H − H(ρ).

We obviously have, for all ρ, ε > 0,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

P̃
(|H(ρ)nt | > Zn + ε | F ) − P̃

(|H(ρ)′nt | > ε | F )
≤ Vn

≤ P̃
(|H(ρ)nt | > Zn − ε | F ) + P̃

(|H(ρ)′nt | > ε | F )
,

P̃
(|H(ρ)t | > Z + ε | F ) − P̃

(|H(ρ)′t | > ε | F )
≤ V

≤ P̃
(|H(ρ)t | > Z − ε | F ) + P̃

(|H(ρ)′t | > ε | F )
.

(8.54)

Step 2. Observe that |(gnψρ)(x + y)| ≤ K(‖x‖m+2�−2�
n + (‖y‖2 ∧ ρ2)) for

m = 2 or m = 3, according to cases 1 or 2, and when ρ ≤ 1/2. Then, we deduce,
exactly as for (8.37), that Ẽ(|Ĥ (ρ)′nt |) ≤ an(ρ), and thus

lim
ρ→0

lim sup
n

Ẽ(|Ĥ (ρ)′nt |) = 0.(8.55)

Next, we consider the set B of all ρ > 0 such that outside a P-null set we have
‖�Xs(ω)‖ /∈ B for all s > 0. This set B has an at most countable complement.
Suppose that ρ is fixed in B . On the set �n(t, ρ/2), we have

Ĥ (ρ)nt = ∑
q : S′

q≤�n[t/�n]

2∑
j=1

(
gj

n(1 − ψρ)
)(

�n
i(n,q)X

)
φj (

R̂(n)i(n,q)

)
.

We have (gn(1 − ψρ))(�n
i(n,q)X) → (g(1 − ψρ))(�XS′

q
) a.s. for each q (because

ρ ∈ B). Recalling (8.22), we deduce that Ĥ (ρ)nt −H(ρ)nt
P̃−→ 0 as n → ∞. Com-

bining this with (8.55), we obtain

lim
ρ→0,ρ∈B

lim sup
n

P̃
(|H(ρ)′nt | > η

) = 0 ∀η > 0.(8.56)

Step 3. The variable H(ρ)t has the same form than H(ρ)nt , except that
R̂(n)i(n,q) is substituted with R̃′

q , the variable equal to R̂l on the set {S′
q = Sl}.
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There is no connection between R̂(n)i(n,q) and R̃′
q . However, there is a strong con-

nection between their F -conditional laws, and hence between the F -conditional
laws ζ n

ρ (ω, dy) of |H(ρ)nt | and ζρ(ω, dy) of |H(ρ)t |.
More precisely, let σ and σ ′ be two 2 × 2 matrices with squares c = σσ� and

c′ = σ ′σ ′�. The variable φ(
√

κ1σU1 + √
1 − κ1σ

′U ′
1) in case 1 or φ(

√
L1σU1 +√

1 − k − L1σ
′U ′

1) in case 2 has a law θc,c′ which depends only on (c, c′) and is
continuous in (c, c′) (for the weak convergence). Moreover, since U1 and U ′

1 are
independent standard two-dimensional Gaussian variables, the following property
is immediate. If we have a sequence (�q) of independent variables, each �q being
distributed according to θcq,c′

q
, and if (x(q)) is a sequence of nonrandom vectors

taking values in R
2, then

Q ≥ 1, a > 0 ⇒ P

(∣∣∣∣∣
Q∑

q=1

2∑
j=1

x(q)j�
j
q

∣∣∣∣∣ = a

)
= 0.(8.57)

With this in mind, we see that ζ n
ρ (ω, .) is in fact the law of∣∣∣∣∣ ∑

q : S′
q (ω)≤t

2∑
j=1

(
gj (1 − ψρ)

)
(�XS′

q
(ω))�j

q

∣∣∣∣∣,
where the �q are independent variables conditionally on F , with the laws
θĉ(n,−)i(n,q)(ω),̂c(n,+)i(n,q)(ω). Of course ζρ is the same, with ĉ(n,−)i(n,q) and
ĉ(n,+)i(n,q) substituted with cS′

q− and cS′
q
. Then, in view of (8.44) and of

the continuity of θc,c′ in (c, c′) and of (8.57), we readily deduce that, for any

F -measurable variables Zn
P−→ Z > 0,

ζ n
ρ ((Zn,∞))

P−→ ζρ((Z,∞)).(8.58)

Step 4. At this stage, we deduce from (8.54) that

|Vn − V | ≤ ∣∣ζ n
ρ

(
(Zn + ε,∞)

) − ζρ

(
(Z + ε,∞)

)∣∣
+ ∣∣ζ n

ρ

(
(Zn − ε,∞)

) − ζρ

(
(Z − ε,∞)

)∣∣
+ ζρ([Z − ε,Z + ε]) + P̃

(|H(ρ)′nt | > ε | F ) + P̃
(|H(ρ)′t | > ε | F )

.

Then, in view of (8.58), and since {|H(ρ)t − Z| ≤ ε} ⊂ {|Ht − Z| ≤ 2ε} ∪
{|H(ρ)′t | > ε}, we obtain

lim sup
n

E(|Vn − V |) ≤ P̃(|Ht − Z| ≤ 2ε)

+ 2P̃
(|H(ρ)′t | ≥ ε

) + lim sup
n

P̃
(|H(ρ)′nt | ≥ ε

)
.

This holds for all ρ > 0 and ε > 0. But the F -conditional law of |Ht | is either the
Dirac mass ε0 or it has a density, whereas Z > 0 by hypothesis, hence P̃(|Ht −Z| ≤
2ε) → 0 as ε → 0. Moreover H(ρ)′t

P−→ 0 as ρ → 0, hence by (8.56) we obtain
lim supn E(|Vn − V |) = 0, which implies (8.53).
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8.10. Proof of Theorem 4.6. Let us prove (4.22). Set

�n = 1

�n

�(d)
n

√
V (g1,�n)T V (g2,�n)T .

By Theorems 4.1 and 4.2 and by (4.3), the variables �n − Ân converge stably in
law, in restriction to �

(d)
T , to D̃T , for the two possible choices of Ân whereas on

�
(d)
T the F -conditional law of D̃T admits a density. Therefore,

P(A ∩ {�n > Zn + Ân}) → P̃(A ∩ {D̃T > Z}),
which is (4.22). The proof of (4.21) is similar.

8.11. Proof of Theorem 5.1. Set Un = (�
(j)
n − 1)/V̂

(j)
n , and let A ∈ F .

PROOF OF (b). We use (5.6), so we have

P
(
C(j)

n ∩ A
) = P

({|Un| ≥ 1/
√

α
} ∩ A

)
.

Theorem 4.5(a) yields that Un converges stably in law, in restriction to �
(j)
T , to a

variable U with E(U2 | F ) = 1; hence, if A ⊂ �
(j)
T

lim sup
n

P
(
C(j)

n ∩ A
) ≤ P̃

({|U | ≥ 1/
√

α
} ∩ A

) ≤ αP(A),

where the last inequality follows from Bienaymé–Chebyshev applied to the condi-
tional law of U knowing F . This clearly yields α(j) ≤ α. �

PROOF OF (a). Now, we use (5.3), so we have

P
(
C(j)

n ∩ A
) = P({|Un| ≥ zα} ∩ A)

for each A ∈ F . If X and σ do not jump together, Theorem 4.5(a) yields that Un

converges stably in law, in restriction to �
(j)
T , to a variable which is N (0,1) con-

ditionally on F . Then if A ⊂ �
(j)
T we have

P
(
C(j)

n ∩ A
) → P̃({|U | ≥ zα} ∩ A) = αP(A).

This yields (5.5), and hence (5.4) as well. �

PROOF OF (c). (1) By (5.7), we have

P
(
C(j)

n ∩ A
) = P

(
A ∩

{ |�(j)
n − 1|V (f,�n)T√

�n

> Z(j)
n (α)

})
.

Hence, in view of (4.21), the property (5.5), and thus (5.4) as well, will follow if
we prove that⎧⎪⎨⎪⎩

Z
(j)
n (α)

P−→ Z(α), in restriction to �
(j)
T ,

where Z(α) is a positive and F -measurable variable,
with P̃(|G̃T | > Z(α) | F ) = α in restriction to �

(j)
T .

(8.59)
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By (3.11) and (3.15) and also (e) of Assumption (H), we see that the law of |G̃T |,
conditional on F and in restriction to �

(j)
T , has no atom (and indeed has a positive

density on R+), so Z(α) satisfying P̃(|G̃T | > Z(α) | F ) = α is uniquely defined
and positive a.s. on �

(j)
T . By (4.16), it is also obvious that the law of |Ĝn

T |, con-
ditional on F , has no atom except possibly {0}: hence if 0 < γ < 1, the variable
Z′

n(γ ) = sup(a : P̃(|Ĝn
T | > a | F ) ≥ γ ) satisfies P̃(|Ĝn

T | > Z′
n(γ ) | F ) ≤ γ , with

equality as soon as Z′
n(γ ) > 0. Then, (4.17) applied with Zn = Z = γ , yields

γ ∈ (0,1) �⇒ Z′
n(γ )

P−→ Z(γ ) on the set �
(j)
T .(8.60)

(2) Consider an i.i.d. sequence of positive variables Yi with a purely nonatomic
law, and denote by Z the unique (decreasing) function such that P(Yi > Z(x)) = x

for all x ∈ (0,1). We set Un(x) = 1
Nn

∑Nn

i=1 1{Yi>x}, and call Vn(α) the [αNn]th
variable, after they have been rearranged in decreasing order, for some α ∈ (0,1).
Assume that Nn > 4/α(1−α) and take ε ∈ (4/Nn,α(1−α)). If Vn(α) > Z(α−ε),
we have

Un

(
Z(α − ε)

) ≥ Un(Vn(α)) = [αNn] − 1

Nn

≥ α − 2

Nn

≥ α − ε

2
,

that is, Un(Z(α − ε)) − (α − ε) ≥ ε/2. In a similar way, if Vn(α) < Z(α + ε) we
have Un(Z(α+ε))−(α+ε) ≤ −ε. Since the variables Un(Z(x)) have mean x and
variance smaller than 1/4Nn, it follows from the Bienaymé–Chebyshev inequality
that

P
(
Vn(α) /∈ [Z(α + ε),Z(α − ε)])

≤ P
(
Un

(
Z(α − ε)

) − (α − ε) ≥ ε/2
)

(8.61)
+ P

(
Un

(
Z(α + ε)

) − (α + ε) ≤ ε
)

≤ 5

4Nnε2 .

(3) Now, recall from (5.2) that Z
(j)
n (α) is the [αNn]th absolute order statistics

for Nn independent draws of Ĝ(�n)T , conditionally on F . Then, (8.61) with the
choice ε = 1/N

1/4
n , together with (8.60), imply that

P̃
(
Z(j)

n (α) /∈ [Z(α − N−1/4
n ) − η,Z(α + N−1/4

n ) + η] | F ) P−→ 0

for all η > 0, on the set �
(j)
T , and (8.59) follows. �

8.12. Proof of Theorem 5.2. (1) The first thing is that the new cutoffs give
us the same level as the old ones. But, on the set �

(j)
T , we know that V̂

(j)
n /

√
�n

converges in probability to a finite limit; hence,

P
({

V̂ (j)
n = (

V̂ (j)
n ∧ (α′�� ′

n )
)} ∩ �

(j)
T

) → P
(
�

(j)
T

)
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and the result is obvious.
(2) The second thing we have to prove is β(j) = 1. This amounts to proving that

P(C
(j)
n ∩ �

(d)
T ) → P(�

(d)
T ), or equivalently that P({|Un| ≥ η} ∩ �

(d)
T ) → P(�

(d)
T )

for any fixed η > 0, where here Un = (�
(j)
n −1)/(V̂

(j)
n ∧ (α′�� ′

n )). Since �
(j)
n −1

converges stably in law to an almost surely nonvanishing limit by Theorem 3.1(b),
on �

(d)
T , the result will be implied by the property that (V̂

(j)
n ∧ (α′�� ′

n )) → 0,
which is obvious.

8.13. Proof of Theorem 5.3. The proof is the same as for Theorem 5.1, with a
few changes. In case (a), that is of (5.11), we set Un = �

(d)
n /V̂n, so

P
(
C(d)

n ∩ A
) = P({|Un| ≥ 1/α} ∩ A).

Theorem 4.5(b) yields that Un converges stably in law, in restriction to �
(d)
T , to a

variable U > 0 with Ẽ(U | F ) = 1; hence, if A ⊂ �
(d)
T ,

lim sup
n

P
(
C(d)

n ∩ A
) ≤ P̃({|U | ≥ 1/α} ∩ A) ≤ αP(A),

(use again the Markov inequality), and thus α(d) ≤ α. The property β(d) = 1
amounts to having P({Un ≥ η} ∩ �

(j)
T ) → P(�

(j)
T ) for any fixed η > 0. By The-

orem 3.1(a), we have �
(d)
n

P−→ BT /
√

B ′1
T B ′2

T > 0 on �
(j)
T , and also V̂n

P−→ 0 on

this set by (4.3), so Un
P−→ +∞ on �

(j)
T , and the result readily follows.

Finally, in case (b) of (5.13), the proof is exactly the same as for case (c) of
Theorem 5.1.
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