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NONPARAMETRIC ESTIMATION OF COMPOSITE FUNCTIONS1
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We study the problem of nonparametric estimation of a multivariate func-
tion g : Rd → R that can be represented as a composition of two unknown
smooth functions f : R → R and G : Rd → R. We suppose that f and G be-
long to known smoothness classes of functions, with smoothness γ and β, re-
spectively. We obtain the full description of minimax rates of estimation of g

in terms of γ and β, and propose rate-optimal estimators for the sup-norm
loss. For the construction of such estimators, we first prove an approximation
result for composite functions that may have an independent interest, and then
a result on adaptation to the local structure. Interestingly, the construction of
rate-optimal estimators for composite functions (with given, fixed smooth-
ness) needs adaptation, but not in the traditional sense: it is now adaptation
to the local structure. We prove that composition models generate only two
types of local structures: the local single-index model and the local model
with roughness isolated to a single dimension (i.e., a model containing el-
ements of both additive and single-index structure). We also find the zones
of (γ , β) where no local structure is generated, as well as the zones where
the composition modeling leads to faster rates, as compared to the classical
nonparametric rates that depend only to the overall smoothness of g.

1. Introduction. In this paper we study the problem of nonparametric estima-
tion of an unknown function g : Rd → R in the multidimensional Gaussian white
noise model described by the stochastic differential equation

Xε(dt) = g(t) dt + εW(dt), t = (t1, . . . , td) ∈ D,(1)

where D is a bounded open interval in Rd containing [−1,1]d , W is the standard
Brownian sheet in Rd and 0 < ε < 1 is a known noise level. Our goal is to esti-
mate the function g on the set [−1,1]d from the observation {Xε(t), t ∈ D}. For
d = 2 this corresponds to the problem of image reconstruction from observations
corrupted by additive noise. We consider observation set D , which is larger than
[−1,1]d in order to avoid the discussion of boundary effects.
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To measure the performance of estimators, we use the risk function determined
by the sup-norm ‖ · ‖∞ on [−1,1]d : for g : Rd → R, 0 < ε < 1, p > 0, and for
an arbitrary estimator g̃ε based on the observation {Xε(t), t ∈ D} we consider the
risk

Rε(g̃ε, g) = Eg(‖g̃ε − g‖p∞).(2)

Here and in what follows Eg denotes the expectation with respect to the distribu-
tion Pg of the observation {Xε(t), t ∈ D} satisfying (1).

We suppose the g ∈ Gs, where {Gs, s ∈ S} is a collection of functional classes
indexed by s ∈ S. The functional classes Gs that we will consider consist of smooth
composite functions and below we discuss in detail this choice.

For a given class Gs we define the maximal risk

Rε(g̃ε,Gs) = sup
g∈Gs

Rε(g̃ε, g).(3)

Our first aim is to study the asymptotics, as the noise level ε tends to 0, of the
minimax risk

inf
g̃ε

Rε(g̃ε,Gs),

where infg̃ε
denotes the infimum over all estimators of g. We suppose that pa-

rameter s is known, and therefore the functional class Gs is fixed. We find the
minimax rate of convergence φε(s) on Gs, that is, the rate that satisfies φ

p
ε (s) �

infg̃ε
Rε(g̃ε,Gs), and we construct an estimator attaining this rate, which we refer

to as a rate-optimal estimator in the asymptotic minimax sense.

2. Global rate-optimal estimation via pointwise selection. In this section
we discuss a rather general method of data-driven selection from a given family
of estimators. This method, called a pointwise selection rule,2 is at the core of the
paper. We will use it to construct our rate-optimal estimators.

To present the pointwise selection rule we need some definitions. Let D1 be an
open interval such that [−1,1]d ⊂ D1 ⊂ D . Any function K : Rd × Rd → R such
that ∫

D1

K(t, x) dt = 1 ∀x ∈ [−1,1]d,

suppK(·, x) ⊆ D ∀x ∈ D1,

will be called a weight. Let K be a given family of weights and let x ∈ [−1,1]d
be fixed. To any K ∈ K we associate a linear estimator at x:

ĝK(x) =
∫
D

K(t, x)Xε(dt).

2This selection rule was the topic of the IMS Medallion Lecture given by the second author at the
Joint Statistical Meetings in Minneapolis, 2005.
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We consider a family of linear estimators G(K) = {ĝK(x),K ∈ K}. Note that
ĝK(x) is a normal random variable with variance ε2‖K(·, x)‖2

2 where ‖ · ‖2 de-
notes the L2 norm. Define σK = supx∈D ‖K(·, x)‖2 and assume that the family K
satisfies:

sup
K∈K

σK < ∞.

For any pair of weights K1 and K2 define the function

[K1 ⊗K2](·, ·) =
∫
D1

K1(·, y)K2(y, ·) dy.

We say that K is a commutative weight system if

[K1 ⊗ K2] = [K2 ⊗ K1] ∀K1, K2 ∈ K.

We now present the pointwise selection rule and briefly discuss some examples
where it can be applied. The rule consists of the following two steps:

1. Determination of acceptable weights. Let K be a commutative weight system
and let thε(K) be a threshold whose choice will be discussed below. We say
that a weight K ∈ K [resp., the estimator ĝK(x)] is acceptable if

|ĝ
K⊗K̃

(x) − ĝ
K̃

(x)| ≤ M(K)thε(K)σ
K̃

∀K̃ ∈ K :σ
K̃

≥ σK,

where M(K) = supK∈K supx∈D ‖K(·, x)‖1 and ‖ · ‖1 denotes the L1 norm.
2. Selection from the set of acceptable estimators. Let K̂ be the set of all the

acceptable weights in K . Note that K̂ is a random set and it can be empty
with some probability. If K̂ 
= ∅ we select the estimator ĝ

K̂
(x) with K̂ such

that σ
K̂

= inf
K∈K̂ σK , that is, we choose an acceptable estimator with minimal

variance. If K̂ = ∅ we select an arbitrary fixed estimator ĝK0(x), where K0 is
a given weight from K .

There is no general receipt for the choice of the threshold thε(K). It may depend
on the weight system, on the nature of the considered problem (pointwise or global
estimation), on the loss functional, etc. However, if we consider the risk (2) and if
the weight system K is not too large (e.g., K is a metric compact with a polyno-
mial behavior of covering numbers) it can be shown that there is a universal choice
of the threshold: thε(K) = Cε

√
ln 1/ε, where C > 0 is a constant depending only

on the power p of the loss function and on the dimension d . Such a choice of the
threshold will be used in this paper.

A remarkable property of the pointwise selection rule is that it can be shown to
work for any commutative weight system. As we will see in the following exam-
ples, the commutativity property is inherent to a variety of weight systems used in
statistics.

Examples of commutative weight systems. We now consider some examples
of commutative weight systems. Let Q be any set of functions Q : Rd → R such
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that supp(Q) ⊂ [−δ, δ]d, δ > 0, and
∫
Rd Q = 1. Take D = [−a, a]d and D1 =

[−b, b]d , where a > b > 1, a − b > δ are given numbers. Define

K = {K : Rd × Rd → R :K(t, x) = Q(t − x),Q ∈ Q}.
Then K is a commutative weight system. Indeed, the integration over D1 in the
definition of the weight and in the definition of [K1 ⊗ K2] can be replaced by
integration over Rd , and the operation ⊗ reduces to the standard convolution:

[K1 ⊗ K2] = K1 ∗ K2 = K2 ∗K1 = [K2 ⊗K1].
This allows us to construct various commutative weight systems. We now consider
some of them.

The selection of an estimator from a given family first appeared in the context
of adaptive estimation. In particular, in [16] a pointwise selection rule was pro-
posed in order to construct pointwise adaptive estimators over a scale of Hölder
classes. This method was generalized in [21] to a pointwise selection rule from the
collection G(KH1) with the family of weights

KH1 =
{
h−1Q0

( · − x

h

)
, h ∈ H1

}
,

where d = 1, Q0 ∈ Q is a given function, H1 = [hmin, hmax] and the numbers
0 < hmin < hmax ≤ 1 are chosen by the statistician. In words, the family G(KH1)

consists of kernel estimators with bandwidth varying from hmin to hmax. The esti-
mator chosen from the collection G(KH1) in accordance with the pointwise selec-
tion rule of [21] is rate optimal over the Besov classes of functions; compare [19].

More recently, pointwise adaptive methods have been developed in dimensions
larger than 1. Thus, [14, 15] propose a pointwise selection rule from the collection
G(KHd

) where

KHd
=
{

d∏
i=1

h−1
i Q0

( · − xi

hi

)
, (h1, . . . , hd) ∈ Hd

}
.

Here the xi are the components of x, and Hd =∏d
i=1[h(i)

min, h
(i)
max] with the values

0 < h
(i)
min < h

(i)
max < ∞, i = 1, . . . , d, that are chosen by the statistician. The point-

wise selection rule of [14] leads to an estimator that is pointwise adaptive over the
scale of anisotropic Besov classes [14, 15].

The results of these papers show that pointwise selection is a useful tool for es-
timation of functions with inhomogeneous smoothness. Another approach to mul-
tivariate function estimation is based on structural models. Typical examples are
the single index model and the additive model (see Section 3 for more details).
For such models, an important issue is adaptation to the unknown structure, and
it can be also carried out via the pointwise selection rule [8]. The weight system
used in pointwise selection for the single-index model [8] will also appear in some
parts of the present paper. It makes use of the ridge functions. Another system of
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ridge functions is proposed in [4, 5] for the problem of recovery of functions of
two variables with discontinuities along smooth edges and smooth otherwise. Note
that the approach of [4, 5] is conceptually different, and does not rely on pointwise
selection rules. Examples of more complex commutative weight systems can be
found in [8, 20]. Another construction leading to quite an unusual commutative
weight system will be given in Section 6.2.

In the present paper we specify the pointwise selection rule for the problem of
estimation of composite functions. Our structural assumption is that the function
g : Rd → R can be represented as a composition of two unknown smooth functions
f : R → R and G : Rd → R, that is, g = f ◦ G.

3. Why smooth composite functions. We now discuss why this structural
assumption is relevant. We start with the following definition.

DEFINITION 1. Fix α > 0 and L > 0. Let �α� be the largest integer which
is strictly less than α, and for �k = (k1, . . . , kd) ∈ Nd set |�k| = k1 + · · · + kd . The
isotropic Hölder class Hd(α,L) is the set of all functions G : Rd → R having
on Rd all partial derivatives of order �α� and such that

∑
0≤|�k|≤�α�

sup
x∈Rd

∣∣∣∣ ∂ |�k|G(x)

∂x
k1
1 · · · ∂x

kd

d

∣∣∣∣≤ L,

∣∣∣∣∣G(y)− ∑
0≤|�k|≤�α�

∂ |�k|G(x)

∂x
k1
1 · · · ∂x

kd

d

d∏
j=1

(yj − xj )
kj

kj !
∣∣∣∣∣≤ L‖y − x‖α(4)

∀x, y ∈ Rd,

where xj and yj are the j th components of x and y and ‖ · ‖ is the Euclidean norm
in Rd .

Parameter α characterizes the isotropic (i.e., the same in each direction) smooth-
ness of function G.

Let now f and G be smooth functions such that f ∈ H1(γ,L1) and G ∈
Hd(β,L2) where γ,L1, β,L2 are positive constants. Here and in what follows
H1(γ,L1) and Hd(β,L2) are the Hölder class on R and the isotropic Hölder class
on Rd , respectively. The class of composite functions g = f (G(x)) with such
f and G will be denoted by H(A,L), where A = (γ,β) ∈ R2+ and L = (L1,

L2) ∈ R2+.
The performance of an estimation procedure will be measured by the sup-norm

risk (3) where we set s = (A,L) and Gs = H(A,L).

3.1. Motivation I: models of reduced complexity. It is well known that the
main difficulty in estimation of multivariate functions is the curse of dimension-
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ality: the best attainable rate of convergence of the estimators deteriorates very
fast as the dimension grows. To illustrate this effect, suppose, for example, that
the underlying function g belongs to Gs = Hd(α,L), s = (α,L), α > 0,L > 0.
Then the rate of convergence for the risk (3), uniformly on Hd(α,L), cannot be
asymptotically better than

ψε,d(α) = (ε√ln (1/ε)
)2α/(2α+d)

(cf. [6, 12, 13, 23, 25]). This is also the minimax rate on Hd(α,L); it is attained, for
example, by a kernel estimator with properly chosen bandwidth and kernel. More
results on asymptotics of the minimax risks in estimation of multivariate functions
can be found in [2, 3, 14, 15, 22]. It is clear that if α is fixed and d is large enough
this asymptotics is too pessimistic to be used for real data.

At the origin of this phenomenon is the fact that the d-dimensional isotropic
Hölder class Hd(α,L) is too massive in terms of its metric entropy. A way to cir-
cumvent the curse of dimensionality is to consider models with slimmer functional
classes (i.e., classes with smaller metric entropy). There are several ways to do it.

• A first way is to impose a restriction on the smoothness parameter of the func-
tional class. For the class Hd(α,L), a convenient restriction is to assume that
the smoothness α increases with the dimension, and thus the class becomes
smaller (its metric entropy decreases). For instance, we can suppose that α = κd

with some fixed κ > 0. Then the dimension disappears from the expression for
ψε,d(α), which means that we escape from the curse of dimensionality. How-
ever, the condition α = κd or other similar restrictions that link smoothness
and dimension are usually difficult to motivate. An interesting related exam-
ple is given by the class of functions with bounded integrals of the multivariate
Fourier transform [1].

• One can also impose a structural assumption on the function g to be estimated.
Two classical examples are provided by the single-index and additive structures
(cf., e.g., [7, 9, 11, 26]).

The single-index structure is defined by the following assumption on g: there
exist a function F0 : R → R and a vector ϑ ∈ Rd with ‖ϑ‖ = 1 such that g(x) =
F0(ϑ

T x).
The additive structure is defined by the following assumption: there exist

functions Fi : R → R, i = 1, . . . , d, such that g(x) = F1(x1) + · · · + Fd(xd),
where xj is the j th component of x ∈ Rd .

If we suppose that Fi ∈ H1(α,L), i = 0, . . . , d, then in both cases function g

can be estimated with the rate (ε
√

ln (1/ε))2α/(2α+1), which does not depend
on the dimension and coincides with the minimax rate ψε,1(α) of estimation of
functions on R.

In general, under structural assumptions the rate of convergence of estimators
improves, as compared to the slow d-dimensional rate ψε,d(α). For the above ex-
amples the rate does not depend on the dimension.
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However, it is often quite restrictive to assume that g has some simple structure,
such as the single-index or additive one, on the whole domain of its definition. In
what follows we refer to this assumption as global structure.

A more flexible way of modeling is to suppose that g has a local structure.
For instance, we can assume that g is well approximated by some single-index or
additive structure (or by a combination both) in a small neighborhood of a given
point x. Local structure depends on x and remains unchanged within the neighbor-
hood. Such an approach can be used to model much more complex objects than the
global one. However, the form of the d-dimensional neighborhood and the local
structure should be chosen by the statistician in advance, which makes the local
approach rather subjective.

In the present paper we try to find a compromise between the global and local
modeling. Our idea is to consider a sufficiently general global model that would
generate suitable local structures, and thus would allow us to construct estimators
with nice statistical properties. We argue that this program can be realized for
global models where the underlying function g is a composition of two smooth
functions.

3.2. Motivation II: structure-adaptive estimation. The problem of estimation
of a composite function can be viewed as that of structural adaptation. Indeed, let
us suppose that the function G is known and β ≥ 1. It is easy to see that in this
case the function g can be estimated with the rate ψε,1(γ ) corresponding to that of
estimation of the univariate function f of smoothness γ .

Thus, the function G can be considered as a functional nuisance parameter char-
acterizing the unknown structure of the function g. An important question in this
context is: what is the price to pay for adaptation to the unknown G?

Note that the composite model is a kind of generalization of the single-index
model; instead of the linear function in the latter model we have here a general
function G. As discussed above, for the single-index model the optimal rate equals
to ψε,1(γ ). We will show that in the general situation when G is nonlinear, the
optimal rate of convergence on H(A,L) [that we denote ψε(A)] is slower than
ψε,1(γ ), that is, ψε,1(γ )/ψε(A) → 0, ε → 0.

It is easy to see that the class H(A,L) is contained in the Hölder class
Hd(αγ,β,L3), where L3 = L3(L) and

αγ,β �
{

γβ, if 0 < γ,β ≤ 1,
min(γ,β), otherwise.

This inclusion implies that if we ignore the composition structure, that is, if we
simply suppose that g ∈ H(αγ,β,L3), then we can only guarantee the rate of con-
vergence ψε,d(αγ,β). On the other hand, it follows from our results given below
that ψε(A)/ψε,d(αγ,β) → 0, ε → 0, for various values of the regularity parame-
ter A. In other words, the knowledge of the fact that we have a composition struc-
ture allows us to improve the rate of convergence as compared to the rate of the
best estimator, which only relies on the smoothness properties of g.
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However, for certain values of the parameter A = (γ,β) no improvement due
to the structure can be expected. This happens when the structural assumption is
essentially equivalent to the fact that g belongs to some isotropic Hölder class.
This effect takes place for the following values of (γ,β) ∈ R2:

1◦. 0 < γ,β ≤ 1 (zone of slow rate). Clearly, in this zone H(A,L) ⊂
Hd(γβ,L3), where L3 is a positive constant depending only on γ,β and L. Due
to this inclusion a standard kernel estimator with properly chosen bandwidth and
the boxcar kernel converges with the rate ψε,d(γβ) = (ε

√
ln (1/ε))2γβ/(2γβ+d). It

is not hard to see (cf. Theorem 1) that this rate is optimal, that is, that a lower
bound on the minimax risk holds with the same “slow” rate ψε,d(γβ) (note that
γβ ≤ 1).

2◦. γ ≥ β,γ ≥ 1 (zone of inactive structure). In this zone we easily get the
inclusions Hd(β,L4) ⊂ H(A,L) ⊂ Hd(β,L5), where L4 and L5 are positive con-
stants depending only on β and L. To show the left inclusion it suffices to consider
a set of composite functions with linear f and G ∈ Hd(β,L). Therefore, the as-
ymptotics of the minimax risk on H(A,L) is the same as for an isotropic Hölder
class Hd(β, ·), that is, the minimax rate on this class is ψε,d(β). Note that here
we estimate as if there were no structure, and the asymptotics of the minimax risk
does not depend on γ . This explains why we refer to this zone as that of inactive
structure.

We finally remark that if β ≤ 1 the composite function g is rather nonsmooth.
The effective smoothness equals to (1 ∧ γ )β , and in view of the above discussion,
the minimax rate of convergence of estimators on H(A,L) is the same as on the
Hölder class Hd((1 ∧ γ )β, ·). This is a very slow rate ψε,d((1 ∧ γ )β). Therefore,
only for β > 1 one can expect to find estimators with interesting statistical proper-
ties.

4. Main results. In this section we state the main results and outline the esti-
mation method. The formal description of the estimation procedure and the proofs
are deferred to Sections 5 and 7.1–7.2, respectively.

4.1. Lower bound for the risks of arbitrary estimators. For any A = (γ,β) ∈
R2+ define

φε(γ,β) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ε
√

ln (1/ε)
)2γ /(2γ+1+(d−1)/β)

,

if β > 1, β ≥ d(γ − 1) + 1,(
ε
√

(ln 1/ε)
)2/(2+d/β)

,

if γ > 1, β < d(γ − 1) + 1,(
ε
√

ln (1/ε)
)2/(2+d/(γβ))

,

if (γ,β) ∈ (0,1]2.

(5)
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FIG. 1. Zones of improved rate, of slow rate and of inactive structure. Dashed lines delimit the
zones of three different expressions for the rate φε .

The boundaries between the zones of these three different rates in R2+ are presented
by the dashed lines in Figure 1.

An asymptotic lower bound for the minimax risk on H(A,L) is given by the
following theorem.

THEOREM 1. For any A = (γ,β) ∈ R2+ and any p > 0 we have

lim inf
ε→0

inf
g̃ε

sup
g∈H(A,L)

Eg

[(
φ−1

ε (γ,β)‖g̃ε − g‖∞)p]> 0,

where infg̃ε
denotes the infimum over all estimators of g.

The theorem states that the rate of convergence φε(γ,β) cannot be improved by
any estimator. We will show below that for 0 < γ,β ≤ 2 there exist estimators
attaining this rate. Before proceeding to the corresponding result, we make several
remarks on the properties of the rate φε(γ,β).

REMARKS. 1. The set {A = (γ,β) :β > γ,β ≥ 1} will be referred to as the
zone of improved rate (cf. Figure 1). In this zone there is an improvement of the
rate of convergence due to the structure. Indeed, if A belongs to this zone, the
smoothness of function g is equal to αγ,β = γ (cf. Section 3.2), and hence our
rate φε(γ,β) is asymptotically (as ε → 0) much smaller than the rate ψε,d(αγ,β)

obtained for the estimators that take into account only the smoothness, and not the
structure.

2. The parameter β is the tuning parameter of the model: when the ratio d/β

tends to 0, the rate φε(γ,β), depending on the value of γ , approaches either
the one-dimensional Hölder class rate ψε,1(γ ) or the “almost parametric” rate
ε
√

ln (1/ε). In particular, when β ≥ γ > 1 and β < d(γ −1)+1 the rate of conver-
gence φε(γ,β) does not depend on γ and coincides with the minimax rate ψε,d(β)
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associated to the d-dimensional Hölder class Hd(β, ·), and in this zone the com-
posite function g = f ◦G can be estimated with the same rate as G, independently
of how smooth is f .

3. Theorem 1 states the lower bound (ε
√

ln (1/ε))2γ /(2γ+1+(d−1)/β), which
is valid for all positive γ,β . Inspection of its proof shows that for d = 2
the lower bound is attained on the functions of the form f0(ϕ1(t1) + ϕ2(t2)).
Here f0 is a function of Hölder smoothness γ and both functions ϕj , j = 1,2,

are of Hölder smoothness β . So, for d = 2 the lower bound with the rate
(ε
√

ln (1/ε))2γ /(2γ+1+1/β) holds for that functional family for any γ and β .
Note that when γ = β , this lower rate becomes (ε

√
ln (1/ε))2β2/(2β2+β+1). Since

2β2

2β2+β+1
<

2β
2β+1 this is always slower than the classical one-dimensional rate

ε2β/(2β+1). On the other hand, a recent result of [10] shows that for γ = β func-
tions of the form f0(ϕ1(t1) + ϕ2(t2)) can be estimated at the rate ε2β/(2β+1) in
the L2-norm. Thus, we observe that there is a significant gap between the optimal
rates of convergence in L2 and in L∞, in contrast to the classical nonparametric
estimation problems where these rates only differ in a logarithmic factor.

4.2. Outline of the estimation method. The exact definition of our estimator
is given in Section 5. Here we only outline its construction. We suppose that
A = (γ,β) ∈ (0,2]2. The initial building block is a family of linear estimators.
In contrast to the classical kernel construction, which involves a unique band-
width parameter, the weight KJ that we consider is determined by the triplet
J = (A, ϑ,λ) where the form parameter A is the couple (γ,β) ∈ (0,2]2, the ori-
entation parameter ϑ is a unit vector in Rd and λ is a positive real, which we refer
to as size parameter. We denote J the set of all such triplets J and consider a family
of linear estimators (ĝJ,J ∈ J) where for any x ∈ [−1,1]d the estimator ĝJ(x) of
g(x) is given by

ĝJ(x) �
∫
D

KJ(t − x)Xε(dt).

Note that here the size parameter λ does not represent the bandwidth of the classi-
cal kernel estimator, but rather characterizes the bias of the estimator ĝJ when the
orientation of the window ϑ is correctly chosen. Namely, the weight KJ is chosen
in such a way that for each x ∈ [−1,1]d the bias of ĝJ is of the order O(λ) if
ϑ = ϑx

0 is collinear to the gradient ∇G(x).
The estimation method proceeds in three steps, and the basic device underlying

the construction of the optimal estimation method is the notion of the local model.
It is an important feature of the composition structure that different local models
arise in different subsets of the zone of improved rate.

Step 1: specifying a collection of local models. The underlying function g of
complicated global structure can have a simple local structure. However, the lo-
cal structure depends on the function itself. Therefore, g can be only described
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FIG. 2. Types of local structures.

by a collection of local models. In our case, this collection is indexed by a finite-
dimensional parameter that can be considered as a nuisance parameter. Specifi-
cally, we pass from the global composition model defined in Section 3 to a family
of local models {MJ(x),J ∈ J, x ∈ [−1,1]d} where the type of each local model
MJ(x), J = (A, ϑ,λ), is determined by A, while ϑ and λ are the local orienta-
tion and size parameters. Depending on the value of A = (γ,β) (cf. Figure 2), our
global model induces only two types of local models: a local single-index model
and the model with roughness isolated to a single dimension (local RISD model).

1◦. Local single-index model: γ ≤ 1,1 < β ≤ 2. In this domain of γ,β , using
the smoothness properties of functions f and G, it is not hard to show that in the
ball Bλ,x(A) = {t ∈ Rd :‖t − x‖ ≤ λ1/(γβ)} the composite function g(·) can be
approximated with the accuracy O(λ) by the function f (G(x)+ϑT [· − x]). Here
ϑ = ϑx

0 is a unit vector collinear to the gradient ∇G(x). Indeed, since the inner
function G belongs to Hd(β,L2), for any x, t ∈ D we have

G(t) = G(x)+∇G(x)T (t − x)+Bx(t) with |Bx(t)| ≤ L2‖t − x‖β.(6)

Next, using the fact that f ∈ H1(γ,L1), we conclude that g(t) = f (G(t)) admits
the representation

g(t) = Qx(t)+ Cx(t),

where

Qx(t) = f
(
G(x)+∇G(x)T (t − x)

)
and

|Cx(t)| ≤ L1|Bx(t)|γ ≤ L1L
γ
2 ‖t − x‖γβ.

In other words, for any weight K with the support on the ball Bλ(A) = {t ∈
Rd :‖t‖ ≤ λ1/γβ} and such that

∫
K(y)dy = 1,∫

K(t − x)[g(t) −Qx(t)]dt = O(λ).(7)
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We understand the relation (7) as the definition of the local single-index model Qx

of g. The choice of the approximation weight for the function g is naturally
suggested by the form of the local model Qx together with the bound (7): the
weight KJ can be taken as the indicator function of a hyperrectangle normalized
by its volume and oriented in such a way that ∇G(x) is collinear to the first ba-
sis vector in Rd . The sides of the hyperrectangle are chosen to have the lengths
l1 = λ1/γ and lj = λ1/(γβ), j = 2, . . . , d − 1.

2◦. Local model with roughness isolated to a single dimension (RISD): 1 < γ ≤
β ≤ 2. Let Mϑ be an orthogonal matrix with the first column equal to ϑ = ϑx

0 ,
and let y = MT

ϑ (t −x), t ∈ Rd . We denote yj the j th component of y and consider
the set

Xλ,x(A) = {t ∈ Rd : |y1| ≤ λ1/β, ‖y‖ ≤ λ1/(γβ), |y1|γ−1‖y‖β ≤ λ
}
.(8)

We show that the estimation of the composite function g at x can be reduced to the
problem of estimation under the local model

Qx(y) = qx(y1) + Px(y2, . . . , yd),

where qx ∈ H1(γ,L1L
γ
2 ) and Px ∈ Hd−1(β,2L1L2) on the set Xλ,x(A). This

local model is established in an unknown coordinate system determined by the
parameter ϑ = ϑx

0 . Since the smoothness γ of qx is smaller than the smoothness β

of Px , the accuracy of estimation that corresponds to the coordinate y1 is coarser
than that for other coordinates. This motivates the name roughness isolated to a
single dimension.

The explanation of the local model represented by Qx on the set Xλ,x(A) is
provided by the following argument. Using the smoothness properties of func-
tions f and G, we obtain due to the inclusions f ∈ H1(γ,L1), G ∈ Hd(β,L2):

g(t) = f
(
G(x)+∇G(x)T (t − x)

)+ f ′(G(x) +∇G(x)T (t − x)
)
Bx(t) +Cx(t)

= f
(
G(x)+∇G(x)T (t − x)

)+ f ′(G(x))Bx(t) +Dx(t) +Cx(t),

where

|Cx(t)| ≤ C(L1,L2, γ )‖t − x‖γβ,

|Dx(t)| ≤ C(L1,L2)
|∇G(x)T (t − x)|γ−1

‖∇G(x)‖ ‖t − x‖β, if ∇G(x) 
= 0

[we have Dx(t) = 0 when ∇G(x) = 0], and the function Bx(t), which is defined
in (6), belongs to the class Hd(β,2L2). In the transformed coordinates (determined
by the orthogonal matrix Mϑ ) we may write

g(t) = g(x +Mϑy) = q(y1) + B̃x(y) + D̃x(y) + C̃x(y),(9)

where

|D̃x(y) + C̃x(y)| ≤ C(L1,L2, γ )(|y1|γ−1‖y‖β + ‖y‖γβ)(10)
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and B̃x ∈ Hd(β,2L2). The latter inclusion leads to∣∣∣∣B̃x(y) − Px(y2, . . . , yd)− y1
∂

∂y1
B̃x(0, y2, . . . , yd)

∣∣∣∣≤ 2L2|y1|β,(11)

where Px(y2, . . . , yd) = B̃x(0, y2, . . . , yd). Let again K be a weight such that∫
K(t) dt = 1, supported on Xλ,x(A). Then∫

K(y − x)[g(x +Mϑy) −Qx(y)]dy = O(λ),(12)

if K is symmetric in y1. We understand this property as the definition of the RISD
local model Qx for the composite function g.

We conclude that if A belongs to the zone marked as “RISD” in Figure 2, the
global structural assumption that the underlying function is a composite one leads
automatically to a local RISD structure.

A good weight KJ for the zone of RISD local model should be supported on
the right window Xλ,x(A), possess small bias on both single-index component qx

and “regular” component Px and have a small L2-norm to ensure small variance
of the stochastic term of the estimation error. The construction of such a weight is
rather involved (cf. Section 6.2). Note that using a rectangular weight, as for the
local single-index model leads to suboptimal estimation rates.

As we see, the definition of local model has two ingredients: the neighborhood
(window) and the local structure within the window. For the local single-index
model the window is just an Euclidean ball, whereas for the RISD local model the
window is the set Xλ,x(A).

Step 2: optimizing the size parameter and specifying candidate estimators.
Once the local model is determined and the corresponding weight is constructed
we can choose the size parameter λ = λε(A) in an optimal way. To do it we opti-
mize our sup-norm risk with respect to λ, that is, we get the value λ, which realizes
the balance of bias and variance terms of the risk in the ideal case where the ori-
entation ϑ = ϑx

0 is “correct” for all x.
Recall that the weight KJ supported on the window is chosen in such a way

that the bias of the linear estimator ĝJ , for the “correct” orientation ϑ , is of the
order O(λ) on every local model. Thus, the bias-variance balance relation for the
sup-norm loss can be written in the form

λ � ε
√

ln 1/ε‖KJ‖2.(13)

We will see that ‖KJ‖2 depends on A and λ but does not depend on ϑ . This will
allow us to choose the optimal value λε(A) independent of ϑ . For instance, for
the local single-index model (when γ ≤ 1) the weight KJ is just a properly scaled
and rotated indicator of a hyperrectangle. In this particular case the bias-variance
balance (13) can be written in the form

λ � ε
√

ln 1/ε√
volume of hyperrectangle

= ε

(
ln 1/ε

λ1/γ+(d−1)/(γβ)

)1/2

.
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Note that in this case λε(A) � φε(γ,β), where φε(γ,β) is defined in (5).
With λε(A) being chosen, we obtain a family of linear estimators

{ĝJ(x),J = (A, ϑ,λε(A)) ∈ J, x ∈ [−1,1]d}.(14)

For a fixed x ∈ [−1,1]d this family only depends on two parameters, A and ϑ .

Step 3: selection. We now choose an estimator from the family (14) that cor-
responds to some Ĵ ∈ J selected in a data-dependent way, and define our final
estimator as a piecewise-constant approximation of the function x �→ ĝĴ(x). To

choose Ĵ we apply the pointwise selection procedure presented in Section 2.
We introduce a discrete grid on the unit sphere {ϑ ∈ Rd :‖ϑ‖ = 1}, and we

divide the domain of definition of x into small blocks. For each block, we consider
a finite set of estimators ĝJ(x) extracted from the family (14), with x, which is
fixed as the center x0 of the block and all the ϑ on the grid. We then select a data-
dependent ϑ̂ from the grid applying our aggregation procedure to this finite set.
The value of our final estimator g∗

A,ε on this block is constant and is defined as
g∗

A,ε(x) ≡ ĝ
(A,ϑ̂,λε(A))

(x0). We thus get a piecewise-constant estimator g∗
A,ε on

[−1,1]d that depends only on A and on the observations (the exact definition of
g∗

A,ε is given in Section 5).

REMARKS. In this paper we assume that the smoothness A = (γ,β) is
known, and we deal only with adaptation to the local structure determined by ϑ .
If A is unknown we need simultaneous adjustment of the estimators to A and
to ϑ , that is, to the smoothness and to the local structure of the underlying func-
tion. Note, however, that parameters A and ϑ are not independent. In particular,
A determines the form of the neighborhood where we have an unknown local
structure depending on ϑ . This is important because our construction of the family
of estimators {ĝJ,J ∈ J} strongly relies on the local representation of the model.
For example, if the family {ĝJ,J ∈ J} does not contain an estimator correspond-
ing to the correct local structure, the choice from this family cannot even guarantee
consistency. Another difficulty is that different values of A can correspond to dif-
ferent types of local models (cf. Figure 2). In other words, the problem of adaptive
estimation of composite functions turns out to be more involved than the classical
adaptation to the unknown smoothness as considered, for example, in [16–18]. As
yet we do not know whether fully adaptive estimation in this context is possible or
not.

4.3. Upper bounds on the risk of the estimators. We define the following three
domains of values of A = (γ,β) contained in (0,2]2 (cf. Figure 3).

P1 = {A :γ ≤ 1,1 < β ≤ 2},
P2 = {A : 1 < γ ≤ β ≤ 2, β ≥ d(γ − 1) + 1},(15)

P3 = {A : 1 < γ ≤ β ≤ 2, β < d(γ − 1) + 1}.



1374 A. B. JUDITSKY, O. V. LEPSKI AND A. B. TSYBAKOV

FIG. 3. Classification of zones within (0,2]2.

In view of the above discussion, these are exactly the zones where improved rates
occur and where the local structure is active. For the sake of completeness, we
consider also the remainder zone (zone of no local structure):

P4 = (0,1]2 ∪ {(γ,β) : 1 ≤ β < γ ≤ 2}.
As we will see in Section 6.2, the optimal weights KJ are defined separately for
each of these zones.

THEOREM 2. Let φε(γ,β) be as in (5). For any A = (γ,β) ∈ (0,2]2 \P2 and
any p > 0 the estimator g∗

A,ε satisfies

lim sup
ε→0

sup
g∈H(A,L)

Eg

[(
φ−1

ε (γ,β)‖g∗
A,ε − g‖∞)p]< ∞.

For any A = (γ,β) ∈ P2 and any p > 0 the estimator g∗
A,ε satisfies

lim sup
ε→0

sup
g∈H(A,L)

Eg

[([ln ln (1/ε)]−1φ−1
ε (γ,β)‖g∗

A,ε − g‖∞)p]< ∞.

Combining Theorems 1 and 2 we conclude that φε(γ,β) is the minimax rate of
convergence for the class H(A,L) if A = (γ,β) ∈ (0,2]2 \ P2, and that it is near
minimax [up to the ln ln(1/ε) factor] if A = (γ,β) ∈ P2. Therefore, our estima-
tor g∗

A,ε is, respectively, rate optimal or near rate optimal on H(A,L).
Theorem 2 is in fact a result on adaptation to the unknown local structure of

the function to be estimated: the estimator g∗
A,ε locally adapts to the “correct”

orientation ϑ0, which is collinear to the gradient ∇G(x) at x.

REMARKS. We consider here the Gaussian white noise model because its
analysis requires a minimum of technicalities. Composition structures can be stud-
ied for more realistic models, such as nonparametric regression with random de-
sign, nonparametric density estimation and classification. Note that our theorems
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can be directly transposed to the Gaussian nonparametric regression model with
fixed equidistant design using the equivalence of experiments argument (cf. [24]).
Note also that results similar to ours have been recently obtained for the prob-
lem of testing hypotheses about composite functions in the Gaussian white noise
model [20].

We prove the upper bound of Theorem 2 only for the case A ∈ (0,2]2. An
extension to A /∈ (0,2]2 remains an open problem. On the other hand, the lower
bound of Theorem 1 is valid for all A ∈ R2+. We believe that it cannot be improved.
This conjecture is supported by the recent results on a hypothesis testing problem
with composite functions [20], which is closely related to our estimation problem.
The upper bound proved in [20] for all A ∈ R2+ in the problem of hypothesis
testing coincides with the lower bound of Theorem 1.

The rate of convergence of the minimax procedure (cf. Theorem 2) in the
zone P2 contains an additional ln ln(1/ε) factor, as compared to the lower bound
of Theorem 1. We believe that this minor deterioration of the rate can be avoided
by using a more refined estimation procedure.

5. Definition of the estimator and basic approximation results. We first
introduce some notation. For a bounded function K ∈ L1(R

d) and p ≥ 1 we denote
by ‖K‖p its Lp-norm and by K ∗ g its convolution with a bounded function g:

‖K‖p =
(∫

|K(t)|p dt

)1/p

, [K ∗ g](x) =
∫

K(t − x)g(t) dt, x ∈ Rd

(here and in the sequel
∫ = ∫Rd ). We denote J � (A, ϑ,λ) where A = (γ,β) ∈

(0,2]2, ϑ is a unit vector in Rd and λ > 0. The class of all such triplets J is
denoted by J.

Given a unit vector ϑ , let Mϑ ∈ Rd×d stand for an orthogonal matrix with the
first column equal to ϑ . The weight system we consider in the sequel is defined as

KJ(x) = K(A,λ)(M
T
ϑ x),

where K(A,λ) : Rd → R is a weight that will be defined in Section 6. Next, for any
J′,J,∈ J and all t ∈ Rd we define the convoluted weight

KJ′∗J(t) =
∫

KJ′(t − y)KJ(y) dy

and the difference

�J′KJ′∗J = KJ′∗J −KJ′.

We require the weight KJ to be symmetric, that is, KJ(t) = KJ(−t), and

KJ′∗J = KJ∗J′.(16)
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For all J ∈ J and all x ∈ [−1,1]d set

ĝJ(x) =
∫
D

KJ(t − x)Xε(dt)

and for all J′,J ∈ J define the convoluted estimator

ĝJ′∗J(x) =
∫
D

KJ′∗J(t − x)Xε(dt).

In what follows we assume ε is small enough so that in all expressions that involve
weight convolutions we can replace

∫
D by

∫
Rd (recall that weights we consider are

compactly supported). We also suppose that ln ln(1/ε) > 0. Define

�J′ ĝJ′∗J(x) = ĝJ′∗J(x) − ĝJ′(x)

and set

THε(J
′,J) = C(p,d)(‖KJ′‖1 + ‖KJ‖1)‖KJ′‖2ε

√
ln (1/ε),

where C(p,d) = 2 +√
4p + 8d .

5.1. Estimation procedure. Now we need to introduce a discrete grid on the
set of indices J. We discretize only the ϑ-coordinate of J. Recall that ϑ takes
values on the Euclidean unit sphere S in Rd .

Discretization. Let Sε ⊂ S be an ε-net on S, that is, a finite set such that

∀ϑ ∈ S ∃ϑ ′ ∈ Sε :‖ϑ − ϑ ′‖ ≤ ε

and card(Sε) ≤ (
√

d/ε)d−1 for small ε. Without loss of generality, we will assume
that (1,0, . . . ,0) ∈ Sε .

Fix A ∈ (0,2]2 and define λε(A) as a solution in λ of the bias-variance balance
equation

C1λ = ε
√

ln (1/ε)
∥∥K(A,λ)

∥∥
2,(17)

where C1 is a constant in Proposition 2 below, depending only on A, L and d .
Finally we define the grid on J:

Jgrid � {J = (A, ϑ,λε(A)) :ϑ ∈ Sε} ⊂ J.

Acceptability. For a given x ∈ [−1,1]d we define a subset T̂x of Jgrid as fol-
lows:

J ∈ T̂x ⇐⇒ |�J′ ĝJ′∗J(x)| ≤ THε(J
′,J) ∀J′ ∈ Jgrid.

Any value J ∈ Jgrid that belongs to T̂x is called acceptable.
Note that the threshold THε(J

′,J) can be bounded from above and replaced in
all the definitions by a value that does not depend on J,J′ ∈ Jgrid. In fact, either
THε(J

′,J) � λε(A) if A ∈ P1 ∪P3 or THε(J
′,J) � ln ln (1/ε)λε(A) if A ∈ P2.
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Estimation at a fixed point. For any x ∈ [−1,1]d such that T̂x 
= ∅ we select
an arbitrary Ĵx from the set T̂x . Note that the set T̂x is finite, so a measurable
choice of Ĵx is always possible; we assume that such a choice is effectively done.
We then define the estimator g∗∗(x) as follows:

g∗∗(x) �
{

ĝĴx
(x), if T̂x 
= ∅,

0, if T̂x = ∅.
(18)

Global estimator. The estimator g∗∗ is defined for all x ∈ [−1,1]d and we
could consider x �→ g∗∗(x), x ∈ [−1,1]d, as an estimator of the function g. How-
ever, the measurability of this mapping is not a straightforward issue. To skip the
analysis of measurability, we use again a discretization. Introduce the following
cubes in Rd :

�ε(z) =
d⊗

k=1

[ε2(zk − 1), ε2zk], z = (z1, . . . , zd) ∈ Zd .

For any x ∈ [−1,1]d we consider z(x) ∈ Zd such that x belongs to the cube
�ε(z(x)), and a piecewise constant estimator g∗∗(z(x)). Our final estimator is a
truncated version of g∗∗(z(x)):

g∗
A,ε(x) �

{
g∗∗(z(x)), if |g∗∗(z(x))| ≤ ln ln(1/ε),
ln ln(1/ε) sign(g∗∗(z(x))), if |g∗∗(z(x))| > ln ln(1/ε).

(19)

Thus, the resulting procedure g∗
A,ε is piecewise constant on the cubes �ε(z) ⊂

[−1,1]d, z ∈ Zd .

REMARK. Some comments on the numerical complexity of the proposed
method are in order here. The algorithm of this section can be easily reformu-
lated for the problem of estimation of the signal g(i) at n points of a regular
grid in [0,1]d , from independent observations y(i) = g(i)+ ξ(i), ξ(i) ∼ N (0,1),
i = 1, . . . , n. A standard argument results in the equivalence between the two mod-
els when ε � n−1/2, [24].

According to the definition of our method, at each point we need to compare
N = O(n(d−1)/2) estimators which correspond to the grid over ϑ on the unit sphere
of dimension d − 1. There are two main components of the numerical effort: we
need to compute N2 convoluted weights and the convolutions of these weights
with the observation y. It will cost O(n) elementary operations to implement the
construction of Section 6.2 for each of N weights, and then O(n lnn) operations to
compute each of N2 convolutions. The numerical complexity of this step is there-
fore O(N2n lnn) = O(nd lnn). Further, the convolution of y with each weight
requires O(n lnn) operations. Thus the total cost of convoluting all N2 weights
with y will be, again, O(nd lnn). Finally, choosing the estimator from the family
at each point of the grid demands N2 comparisons. We conclude that the total ef-
fort will be O(nd lnn) elementary operations, which is far from being prohibitive
for dimensions d = 2 and d = 3 that are of interest in the context of image analysis.
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5.2. Basic approximation results. We can now describe the approximation
properties of the weight KJ , which serve as a main tool in the proof of the proper-
ties of the estimator g∗

A,ε(x).
Let x ∈ [−1,1]d and A = (γ,β) ∈ (0,2]2 be fixed and let g = f ◦ G ∈

H(A,L). We define

ϑx
0 �
{

(1,0, . . . ,0), if β > 1 and ∇G(x) = 0 or β ≤ 1,
∇G(x)/‖∇G(x)‖, if β > 1,∇G(x) 
= 0.

(20)

The following statement is an immediate consequence of Lemmas 1–4 formulated
in the next section:

PROPOSITION 1. For all A = (γ,β) ∈ (0,2]2, and all λ > 0 we have

sup
x∈[−1,1]d

sup
g∈H(A,L)

|[KJx
0
∗ g](x) − g(x)| ≤ C2λ,

where Jx
0 = (A, ϑx

0 , λ) and C2 only depends on A, L and d .

In other words, the weight system {KJ,J ∈ J} contains an element KJx
0

such that
the quality of approximation of g(x) by the “ideal” smoother [KJx

0
∗ g](x) is of

the order O(λ). Here we use the term “ideal” because Jx
0 = (A, ϑx

0 , λ) depends
on the gradient ∇G(x), and thus on the unknown function g.

The following property of weights KJ is used in the proof of Theorem 2.

PROPOSITION 2. For all A = (γ,β) ∈ (0,2]2, x ∈ [−1,1]d , 0 < λ ≤ 1 and
all J = (A, ϑ,λ) ∈ J we have

sup
A∈(0,2]2

sup
g∈H(A,L)

|[�JKJ∗Jx
0
∗ g](x)|

(21)
≤ C1{(‖KJ‖1 + ‖KJx

0
‖1)λ+ ‖KJ‖1‖KJx

0
‖1ε},

where Jx
0 = (A, ϑx, λ), ϑx is any element of the unit sphere S such that ‖ϑx −

ϑx
0 ‖ ≤ ε and C1 is a constant depending only on A, L and d . Furthermore, for

any J,J′ ∈ J we have

‖�J′KJ′∗J‖2 ≤ (‖KJ′‖1 + ‖KJ‖1)‖KJ′‖2.(22)

6. Weight systems and properties of the weights. Depending on the value
of A [different zones Pi (cf. Figure 3)] we use different constructions of K(A,λ).
Our objective is to obtain KJ with suitable approximation properties for each
J ∈ J. Let us summarize here the main requirements on the weight:

1. Convolution of the weight K(A,λ) with the “local model” of g corresponding
to A should approximate g with the accuracy O(λ). Furthermore, the weight
should be localized, that is, it should vanish outside of the window where the
local structure is valid.
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2. A basic characteristic of the weight is its L2-norm, which determines the vari-
ance of the estimator. Our objective is to achieve its minimal value.

3. The L1-norm of the weights is also an important parameter of the proposed
estimation procedure since it is inherent to the definition of the threshold. Our
objective will be to keep the L1-norm as small as possible.

We start with formulation of the properties of the weights, which allows us to
prove the basic approximation result and to find the parameters of our estimation
procedure. The explicit description of weight systems will be given in the end of
the section.

6.1. Properties of the weights.

Zone P4 (no local structure).

LEMMA 1. For any A = (γ,β) ∈ P4, λ > 0 and x ∈ [−1,1]d , we have

sup
g∈H(A,L)

∣∣[K(A,λ) ∗ g
]
(x) − g(x)

∣∣≤ c0λ,

where the constant c0 depends only on L and d . Furthermore,

∥∥K(A,λ)

∥∥
1 = 1 and

∥∥K(A,λ)

∥∥
2 =
{(

2λ1/(γβ)
)−d/2

, (γ,β) ∈ (0,1]2,
(2λ1/β)−d/2, 1 < β < γ ≤ 2.

Zone P1 (local single-index model). Let q : R → R and B : Rd → R be func-
tions such that, for given γ ∈ (0,1],

|q(x) − q(y)| ≤ L|x − y|γ ∀x, y ∈ Rd,

sup
x∈Rd

|B(x)| ≤ c1,

where c1 > 0, L > 0 are constants. We denote by A(γ ) the set of all pairs of
functions (q,B) satisfying these restrictions. Define

Q(y) = q(y1) +B(y)‖y‖γβ ∀y ∈ Rd .

We have the following evident result:

LEMMA 2. For any A = (γ,β) ∈ P1 and λ > 0 we have

(i) sup
(q,B)∈A(γ )

∣∣[K(A,λ) ∗ Q
]
(0) − q(0)

∣∣≤ c2λ,

where c2 is a constant depending only on L, c1 and d . Moreover,

(ii)
∥∥K(A,λ)

∥∥
1 = 1 and

∥∥K(A,λ)

∥∥
2 = (2dλ1/γ+(d−1)/(γβ))−1/2

.
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Zone P2 ∪ P3 (RISD local model). Let q : R → R and p : Rd → R,B : Rd →
R be functions such that p is continuously differentiable and, for given A =
(γ,β) ∈ P2 ∪P3 and λ > 0,∣∣∣∣q(0) − 1

2λ1/γ

∫ λ1/γ

−λ1/γ
q(z) dz

∣∣∣∣≤ c3λ,(23)

|p(z′)− p(z) − [∇p(z)]T (z′ − z)| ≤ L‖z′ − z‖β ∀z, z′ ∈ Rd,(24)

sup
x∈Rd

|B(x)| ≤ c4,(25)

where c3, c4 and L are positive constants. Let B(A, λ) denote the set of triplets
(q,p,B) satisfying (23)–(25). Define

Q(y) = q(y1)+ p(y)+ B(y)|y1|γ−1‖y‖β ∀y ∈ Rd .

LEMMA 3. Let A = (γ,β) ∈ P3. Then, for any λ > 0 small enough,

sup
(q,p,B)∈B(A,λ)

∣∣[K(A,λ) ∗Q
]
(0) − Q(0)

∣∣≤ cλ,(26)

∫ ∣∣K(A,λ)(y)
∣∣‖y‖m du ≤ c′λm/(γβ) ∀m ∈ R,(27)

where the constant c depends only on c3, c4,L, d and A, and c′ depends only on
m,d and A. Furthermore,∥∥K(A,λ)

∥∥
1 ≤ c′′ and

∥∥K(A,λ)

∥∥
2 ≤ c(3)λ−d/(2β),(28)

where the constants c′′ and c(3) only depend on A and d .

The weight K(A,λ) depends on A = (γ,β) in such a way that the constants in
the bounds (26)–(28) diverge when A approaches the boundary d(γ − 1)+ 1 = β

of the zone P3. So, Lemma 3 cannot be extended to A ∈ P2.
We consider now another construction that provides the weight K(A,λ) with the

properties similar to those of Lemma 3 but satisfied for all A ∈ P2 ∪P3 and, what
is more, uniformly over this set. The price to pay for the uniformity is an extra
log log(1/λ) factor in the bound for the L1-norm of K(A,λ).

LEMMA 4. Let A = (γ,β) ∈ P2 ∪P3. Then, for any λ > 0 small enough,

sup
(q,p,B)∈B(A,λ)

∣∣[K(A,λ) ∗ Q
]
(0) −Q(0)

∣∣≤ c5λ,(29)

∫ ∣∣K(A,λ)(y)
∣∣‖y‖m du ≤ c6λ

m/(γβ) ∀m ∈ R,(30)

where the constant c5 depends only on c3, c4,L and d , and c6 > 0 depends only
on m and d (both constants are explicit in the proof of the lemma). Furthermore,∥∥K(A,λ)

∥∥
1 ≤ c7 ln lnλ−1 and

∥∥K(A,λ)

∥∥
2 ≤ c8λ

−(β+d−1)/(2γβ),(31)

where the constants c7 and c8 only depend on d .
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6.2. Weight systems.

Weight system for zone P4 (no local structure). The construction of K(A,λ) is
trivial when A is in the zone P4 of no local structure. In this case a basic boxcar
kernel tuned to the smoothness of the composite function can be used. Observe
that when A ∈ (0,1]2 the smoothness of the composite function equals to γβ , and
when A = (γ,β) satisfies 1 < β ≤ γ ≤ 2 the smoothness is β . So, we define the
weight K(A,λ) for the zone P4 as follows:

K(A,λ)(y) =
{(

2λ1/(γβ)
)−d

I[−λ1/(γβ),λ1/(γβ)]d (y), if A = (γ,β) ∈ (0,1]2,
(2λ1/β)−dI[−λ1/β ,λ1/β ]d (y), if 1 < β < γ ≤ 2.

Here IA(·) stands for the indicator function of a set A. The proof of Lemma 1 is
straightforward.

Weight system for zone P1 (local single-index model). The zone of local
single-index model is P1 = {A = (γ,β) :γ ≤ 1,1 < β ≤ 2}. For any A ∈ P1 and
λ > 0 consider the hyperrectangle

�λ(A) = [−λ1/γ , λ1/γ ] × [−λ1/(γβ), λ1/(γβ)]d−1

and define the weight K(A,λ) as follows:

K(A,λ) = (2dλ1/γ+(d−1)/(γβ))−1
I�λ(A)(y), y ∈ Rd .(32)

The proof of Lemma 2 is evident.

Weight system for zone P2 ∪ P3 (RISD local model). The zone of RISD local
model is P2 ∪ P3 = {A = (γ,β) : 1 < γ ≤ β ≤ 2}. The definition of the weight
in this case is more involved. Indeed, taking K(A,λ) as a simple product of boxcar
kernels (32) results for A ∈ P2 ∪P3 in too large approximation error.

Our aim is to construct a weight K(A,λ) : Rd → R with the following properties:

– for some c > 0, it should vanish outside the set [cf. (8)]{
y ∈ Rd : |y1| ≤ cλ1/β,‖y‖ ≤ cλ1/(γβ), |y1|γ−1‖y‖β ≤ cλ

}
.

– for a function q(y1) of the first component y1 of y ∈ Rd , the “characteristic size”
of K(A,λ) should be λ1/γ ; for a function Q(y2, . . . , yd) of the remaining compo-
nents y2, . . . , yd it should be λ1/β . Namely, we want to ensure the relations∫

K(A,λ)(y)q(y1) dy = (2λ1/γ )−1
∫ λ1/γ

−λ1/γ
q(y1) dy1

and ∫
K(A,λ)(y)Q(y2, . . . , yd) dy

= (2λ1/β)−(d−1)
∫ λ1/β

−λ1/b
· · ·
∫ λ1/β

−λ1/β
Q(y2, . . . , yd) dy2 · · ·dyd.
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These properties are crucial to guarantee that the bias of linear approximation is of
the order O(λ) (cf. Lemma 3). Note that the simple rectangular kernel (32) used for
the local single-index model can attain such a bias, but only at the price of too large
L2-norm (which characterizes the variance). We now give an example showing
how a weight with the required properties can be constructed in a particular case.

The two-step weight. Set

u1 = λ1/γ , u2 = λ1/β, v1 = λ(β−γ+1)/β2
, v2 = 1

2λ1/β,(33)

�1,1 = [0, u1] × [v2, v1]d−1, μ1,1 = u1(v1 − v2)
d−1;

�2,2 = [u1, u2] × [0, v2]d−1, μ2,2 = (u2 − u1)v
d−1
2 ;

�2,1 = [u1, u2] × [v2, v1]d−1, μ2,1 = (u2 − u1)(v1 − v2)
d−1.

Next, we define, for y ∈ Rd+,

�(y) = μ−1
1,1I�1,1(y) −μ−1

2,1I�2,1(y) +μ−1
2,2I�2,2(y).(34)

For y = (y1, . . . , yd) ∈ Rd we write |y| = (|y1|, . . . , |yd |) and define the weight
K(A,λ) for y ∈ Rd by the relation

K(A,λ)(y) = 2−d�(|y|).(35)

We will call this weight the two-step weight (cf. Figure 4). Its key property is as
follows. First, for any integrable function q(y1) of the first coordinate y1 we have∫

K(A,λ)(y)q(y1) dy = 1

2u1

∫ u1

−u1

q(y1) dy1,

since the integral of q over �2,1 is exactly the same as that over �2,2. Further, for
any integrable function Q(y2, . . . , yd) of y2, . . . , yd ,∫

K(A,λ)(y)Q(y2, . . . , yd) dy

= (2v2)
−(d−1)

∫ v2

−v2

· · ·
∫ v2

−v2

Q(y2, . . . , yd) dy2 · · ·dyd,

FIG. 4. Pavement �i,j for the two-step weight, d = 2. The weight vanishes in the white zones.
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since the integral of Q over �2,1 is exactly the same as that over �1,1. In other
words, the negative term −μ−1

2,1I�2,1(y) in (34) allows us to compensate the excess
of the bias introduced by the two other terms, so that the resulting bias remains of
the order O(λ) (cf. Lemma 3).

For the two-step weight (35) we have∫
K(A,λ)(y) dy = 1,

∥∥K(A,λ)

∥∥
1 = 3,

∥∥K(A,λ)

∥∥2
2 = μ−1

1,1 +μ−1
2,2 +μ−1

2,1.

We now define

ρ = (d − 1)(γ − 1)

β

and consider the subset {A = (γ,β) :ρ ≥ (β − γ )/γ } of P3. It is easy to see that
for ρ ≥ (β − γ )/γ we have ∥∥K(A,λ)

∥∥2
2 = O(λ−d/β).

Since γ ≤ β for A ∈ P3, this result is better than part (ii) of Lemma 2 where K(A,λ)

is a rectangular kernel. But we need the condition ρ ≥ (β−γ )/γ . It is clearly satis-
fied when ρ ≥ 1 (recall that γ > 1, β ≤ 2). For smaller values of ρ we need to add
extra “steps” in the construction, that is, to introduce piecewise constant weights
with more and more pieces of the pavement, in order to get the bias compensation
property as discussed above. For instance, if ρ + ρ2 ≥ β−γ

γ
[since (β − γ )/γ < 1,

this is certainly the case when ρ ≥
√

5−1
2 ] we need a pavement of five sets �i,j in

order to obtain a piecewise constant weight with the required statistical properties,
and so on. We come to the following construction of the weight.

Generic construction. Define a piecewise constant weight K(A,λ) as follows.
Fix an integer r that we will further call number of steps (of weight construction).
Let (uj )j=1,...,r and (vj )j=1,...,r+1 be, respectively, a monotone increasing and a
monotone decreasing sequence of positive numbers with u1 = λ1/γ , vr = λ1/β/2
and vr+1 = 0. We set

�1,1 = [0, u1] × [v2, v1]d−1, μ1,1 = u1(v1 − v2)
d−1.

For i = 2, . . . , r and j = i − 1, i we define

�i,j = [ui−1, ui] × [vj+1, vj ]d−1, μi,j = (ui − ui−1)(vj − vj+1)
d−1.

For y ∈ Rd+ consider

�1(y) = 1

μ1,1
I�1,1(y);

�i(y) = 1

μi,i

I�i,i
(y) − 1

μi,i−1
I�i,i−1(y), i = 2, . . . , r.
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The weight K(A,λ) is defined for y = (y1, . . . , yd) ∈ Rd as follows:

K(A,λ)(y) = 2−d
r∑

i=1

�i(|y|),(36)

where |y| = (|y1|, . . . , |yd |). Clearly,∫
K(A,λ)(y) dy = 1,

∥∥K(A,λ)

∥∥
1 = 2r − 1.

Construction of the weight for A ∈ P3 = {A : 1 < γ ≤ β ≤ 2, β < d(γ − 1) +
1}. If ρ ≥ β−γ

γ
we define K(A,λ) as a two-step weight, that is, we set r = 2 and

take (uj ) and (vj ) as in (33).
If ρ <

β−γ
γ

we use another definition. We introduce the sequence (αk)k≥0 as
follows:

α0 = β−1, αk+1 = αkρ + β−1 = β−1
k+1∑
i=0

ρi, k = 1,2, . . . .(37)

The sequence (αk) is monotone increasing and, since β < d(γ − 1) + 1, we have

lim
k→∞αk =∞, if ρ ≥ 1,

(38)

lim
k→∞αk = (β − (γ − 1)(d − 1)

)−1
>

1

γ
, if ρ < 1.

Thus we can define an integer r ≥ 2 such that

αr−1 ≥ 1

γ
> αr−2.(39)

Note that r depends only on A = (γ,β) and d . Now we set

u1 = λ1/γ , ui = λαr−i , i = 2, . . . , r;
(40)

vi = λ1/βu
−(γ−1)/β
i+1 , i = 1, . . . , r − 1.

Recall that vr = 1
2λ1/β and vr+1 = 0. If ρ <

β−γ
γ

define the weight K(A,λ) by (36),
with the sequences (uj ) and (vj ) as in (40).

Note that for ρ ≥ β−γ
γ

the weight K(A,λ) is just the two-step weight. The corre-
sponding pavement {�i,j } only contains three sets (cf. Figure 4).

Construction of the weight for A ∈ P2. We consider now another choice of
the sequences (ui) and (vi), which provides the weight K(A,λ) with the properties
similar to those of Lemma 3 but satisfied for all A ∈ P2 ∪ P3 and, what is more,
uniformly over this set. The price to pay for the uniformity is an extra log log(1/λ)

factor in the bound for the L1-norm of K(A,λ).
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If (β − γ )/γ ≤ (1 + ρ)ρ we define the weight as in Lemma 3. If (β − γ )/γ >

(1 + ρ)ρ we use another definition of sequences (ui) and (vi). For any 0 < λ < 1
we define

V (λ) = ln
{
(γ − 1)(β − γ )

γβ2 ln (1/λ)

}
.(41)

If V (λ) ≤ 0 we define K(A,λ) as a two-step weight, that is, we set r = 2 and take
(uj ) and (vj ) as in (33). If V (λ) > 0 we define r = r(λ) > 1 by

r = min
{
s ∈ N : s > 1,

V (λ)

s − 1
<

1

2
ln
(√

5 + 1

2

)}
.

Next, set α = V (λ)
r−1 , ν = (

√
5+1
2 )1/2 and define the sequences (ui) and (vi) as fol-

lows

ui = λ1/γ exp
{

β

γ − 1
exp
(
α(i − 1)

)}
, i = 1, . . . , r,

(42)
vi = λ1/(γβ) exp{−ν exp(αi)}, i = 1, . . . , r − 1, vr = 1

2λ1/β .

Note that ur = λ1/β .
Some remarks are in order here.

1. The number of steps r in the construction of the weight is typically small. In
particular, r = 2 if ρ ≥ β−γ

γ
, and r = 3 if (1 + ρ)ρ ≥ β−γ

γ
> ρ [cf. (39)].

Moreover, for 1 < γ ≤ β ≤ 2 we have

(γ − 1)(β − 1)

γβ2 ≤ (β − 1)2

β3 ≤ 1

8
.

Hence, V (λ) ≤ ln(
√

5+1
2 ) for all λ > 3 · 10−6, which means that for (1+ ρ)ρ <

β−γ
γ

no more than 3 steps of the construction are needed if λ > 3 · 10−6. In
other words, unless we are not “extremely far” in the asymptotics, the number
of steps r does not exceed 3 and thus the L1-norm of the resulting weight K(A,λ)

is bounded by 5.
2. In the asymptotics when λ → 0 the number of steps r = r(λ) in the construction

and thus the L1-norm of the weight K(A,λ) is at most O(ln lnλ−1). As discussed
in the previous remark, this behavior starts “extremely far” in the asymptotics,
so it has essentially a theoretical interest. In the theory, it results in an extra
ln ln ε−1 factor in the upper bound for the estimation procedure, as compared
to the lower bound in (5). It can be shown that for A ∈ P2 a weight with the re-
quired approximation properties cannot have the L1-norm growing slower than
ln lnλ−1, as λ → 0. On the other hand, as we have seen in Lemma 3, for A ∈ P3
solely, there is a choice of sequences (uj ) and (vj ) such that the L1-norm of
the weight is bounded by a constant independent of λ. This constant, however,
depends on A = (γ,β) and explodes as A approaches the boundary of P3.
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7. Proofs.

7.1. Proof of Theorem 1. For any β > 0, γ > 0 and any 0 < ε < 1 define the
integers

q1 = ⌈(ε√ln(1/ε)
)−2/(2γβ+β+(d−1))⌉

.

Consider the regular grid �q1 on [0,1]d−1 defined by

�q1 �
{(

2k1 + 1

2q1
, . . . ,

2kd−1 + 1

2q1

)
:ki ∈ {0, . . . , q1 − 1}, i = 1, . . . , d − 1

}
.

Denote by x1, . . . , xm, where m = card(�q1) = qd−1
1 , the elements of �q1 num-

bered in an arbitrary order.
Let f0 : R → R+ be an infinitely differentiable function such that f0(0) =

1, f0(u) = f0(−u) for all u ∈ R, f0(u) = 0 for u /∈ [−1/2,1/2], and f0 is strictly
monotone decreasing on [0,1/2]. Examples of such functions can be readily con-
structed; compare [27], page 78. Set

ϕ0(t2, . . . , td) = 1

2

d∏
j=2

f0(tj ) ∀(t2, . . . , td) ∈ Rd−1

and

f (u) = L0h
γ f0

(
u

h

)
∀u ∈ R,

where h = h
β
1 , h1 = 1/q1 and 0 < L0 < 1 is a constant to be chosen small

enough. Consider the following collection of infinitely differentiable functions of
t = (t1, . . . , td) ∈ Rd :

gk(t) = f (Gk(t)) = L0h
γ f0

(
Gk(t)

h

)
, k = 0,1, . . . ,m,

where

G0(t) = L0 sin t1,

Gk(t) = L0 sin t1 +L0h
β
1 ϕ0

(
t2 − xk,2

h1
, . . . ,

td − xk,d

h1

)
, k = 1, . . . ,m

and xk,j stands for the j th component of xk . We note that, in view of the above
definitions, the sets where the functions gl and gk differ from g0 are disjoint for
l 
= k, k 
= 0, l 
= 0.

It is easy to see that if L0 is small enough, gk ∈ H(A,L), k = 0, . . . ,m. In
what follows, we assume that L0 is chosen in this way. To prove Theorem 1, we
follow the scheme of lower bounds based on reduction to the problem of testing
m + 1 hypotheses (cf., e.g., [27]). We choose the hypotheses to be determined by
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g0, . . . , gm and we apply Theorem 2.5 of [27], where we consider the sup-norm
distance d(gl, gk) = ‖gl − gk‖∞ = supt∈[−1,1]d |gl(t) − gk(t)|, l, k = 0,1, . . . ,m.
Since the functions gl and gk differ from g0 on disjoint sets, for any l 
= k, l, k =
1, . . . ,m, we have

d(gl, gk) = d(g0, gk) ≥ L0h
γ |f0(0) − f0(L0h

β
1 ϕ0(0)/h)|

= L0h
γ
∣∣f0(0) − f0

(
L0
(
1 + oε(1)

)
/2
)∣∣,

where oε(1) → 0, as ε → 0. Since L0 > 0 and f0 is strictly decreasing on [0,∞)

there exists a constant L∗ > 0 such that, for ε small enough,

d(gl, gk) ≥ L∗hγ � (ε√ln(1/ε)
)(2γ )/(2γ+1+(d−1)/β)

,(43)

l 
= k, l, k = 0, . . . ,m.

Thus, assumption (i) of Theorem 2.5 in [27] is satisfied with s = L∗hγ /2. It re-
mains to check assumption (ii) of that theorem. The probability measures Pgk

are
Gaussian, and the Kullback–Leibler divergence between Pgk

and Pg0 has the form

K(Pgk
,Pg0) = ε−2

∫
D

(
g0(t) − gk(t)

)2
dt

= ε−2L2
0h

2γ
∫
D

∣∣∣∣f0

(
L0 sin t1

h

)
− f0

(
L0 sin t1

h
+w(t2, . . . , td)

)∣∣∣∣2 dt,

where we write for brevity

w(t2, . . . , td) � L0ϕ0

(
t2 − xk,2

h1
, . . . ,

td − xk,d

h1

)
.

Since, for any a,w ∈ R,∣∣∣∣f0

(
a

h

)
− f0

(
a

h
+w

)∣∣∣∣2 = w2
∣∣∣∣∫ 1

0
f ′

0

(
a

h
+ uw

)
du

∣∣∣∣2
≤ w2

∫ 1

0

∣∣∣∣f ′
0

(
a

h
+ uw

)∣∣∣∣2 du,

we find

K(Pgk
,Pg0)

≤ ε−2L2
0h

2γ
∫

w2(t2, . . . , td) dt2 · · ·dtd

×
∫ 1

0

[∫
|t1|≤|D |

∣∣∣∣f ′
0

(
L0 sin t1

h
+ uw(t2, . . . , td)

)∣∣∣∣2 dt1

]
du,

where |D| is the Euclidean diameter of D . Since f0 is supported on [−1/2,1/2]
and |w(t2, . . . , td)| < 1/2, the values f ′

0((L0 sin t1)/h + uw(t2, . . . , td)) under the
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last integral can be nonzero only if L0| sin t1| ≤ h. The Lebesgue measure of the
set {t1 : |t1| ≤ |D|,L0| sin t1| ≤ h} is O(h), as h → 0. Hence, the double integral
in the last display is bounded by c∗h for all h small enough, where c∗ > 0 is an
absolute constant. This yields

K(Pgk
,Pg0) ≤ c∗L4

0ε
−2h2γ+1hd−1

1

∫
Rd−1

ϕ2
0(v) dv

≤ c∗∗L4
0 ln(1/ε),

where c∗∗ > 0 is an absolute constant. Next, m = qd−1
1 , so that lnm � ln(1/ε).

This and the previous inequality imply that if L0 is chosen small enough, we have

K(Pgk
,Pg0) ≤ (1/16) lnm.(44)

Using (43), (44) and applying Theorem 2.5 in [27] we get the lower bound

lim inf
ε→0

inf
g̃ε

sup
g∈H(A,L)

Eg

[((
ε
√

ln (1/ε)
)−(2γ )/(2γ+1+(d−1)/β)

(45)
× ‖g̃ε − g‖∞)p]> 0,

which is valid for all β > 0, γ > 0 and all p > 0.
We now show that for the trivial cases discussed in Section 2 we can obtain

better lower bounds. Consider first the case where 0 < β,γ ≤ 1. Then we use the
same technique as above, but we set now q1 =  (ε√ln(1/ε))−2/(2γβ+d)". We then
introduce a regular grid �∗

q1
on [0,1]d defined by

�∗
q1

�
{(

2k1 + 1

2q1
, . . . ,

2kd + 1

2q1

)
:ki ∈ {0, . . . , q1 − 1}, i = 1, . . . , d

}
and denote by x1, . . . , xm, where m = card(�∗

q1
) = qd

1 , the elements of �∗
q1

num-
bered in an arbitrary order. We set now

ϕ0(t) �
d∏

j=1

u(tj ) ∀t ∈ Rd

and we choose the functions gk in the following way:

g0(t) ≡ 0,

gk(t) =
∣∣∣∣L0h

βϕ0

(
t − xk

h

)∣∣∣∣γ , t ∈ Rd, k = 1, . . . ,m,

where h = 1/q1. Note that for sufficiently small h we can write these functions
as compositions gk = f ◦ Gk , where f (u) = L′

0|u|γ f0(u), G0(t) ≡ 0, Gk(t) =
L′

0h
βϕ0((t − xk)/h) and L′

0 = L
γ/(γ+1)
0 with a slightly different definition of f0

than above. Namely, we choose f0 to be infinitely differentiable, supported on
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[−1/2,1/2] and such that f0(u) = 1 for u ∈ [−1/4,1/4]. It is easy to see that if
L0 is small enough, gk ∈ H(A,L), k = 0, . . . ,m. With this choice of gk we get

d(gl, gk) ≥ L
γ
0 hγβϕ

γ
0 (0) � (ε√ln(1/ε)

)(2γβ)/(2γβ+d)
,(46)

l 
= k, l, k = 0, . . . ,m.

Next,

K(Pgk
,Pg0) = ε−2

∫
D

(
g0(t)− gk(t)

)2
dt

≤ L
2γ
0 ε−2h2γβ+d

∫
Rd

ϕ
2γ
0 (v) dv(47)

= O(ln(1/ε)) as ε → 0.

Using (46), (47) and Theorem 2.5 in [27], the proof is completed as in the previous
case, so that we get the lower bound

lim inf
ε→0

inf
g̃ε

sup
g∈H(A,L)

Eg

[((
ε
√

ln (1/ε)
)−(2γβ)/(2γβ+d)‖g̃ε − g‖∞)p]> 0,(48)

which is valid for all 0 < β,γ ≤ 1 and all p > 0.
Finally, the second trivial case where (45) can be improved corresponds to γ ≥

β ∨ 1. As observed in Section 2, in this case we have the inclusion Hd(β,L4) ⊂
H(A,L) with some constant L4 > 0, and we can use the standard lower bound for
Hd(β,L4) (cf. [2, 3, 6, 23]):

lim inf
ε→0

inf
g̃ε

sup
g∈H(A,L)

Eg

[((
ε
√

ln (1/ε)
)−(2β)/(2β+d)‖g̃ε − g‖∞)p]> 0.(49)

Combining the bounds (45), (48) and (49) we obtain the result of Theorem 1.

7.2. Proof of Theorem 2. We need the following technical result.

LEMMA 5. Let ζ = (ζ1, . . . , ζM) be a Gaussian random vector defined on a
probability space (�,F ,P) and such that Eζm = 0,Eζ 2

m = σ 2
m,m = 1, . . . ,M.

Let m be a random variable with the values in (1, . . . ,M) defined on the same
probability space. Then for all A > 1 and all s > 0 we have

E(|ζm|s) ≤ (√2A ln (M)
)s{

E(σ s
m) + c12(A, s)M1−A max

m=1,...,M
σ s

m

}
,

where c12(A, s) > 0 is a constant depending only on A and s.

Proof is standard (see, e.g., [14]).
To prove Theorem 2 we proceed in steps.
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1◦. Reduction to the discrete norm. Fix A = (γ,β) ∈ (0,2]2, and suppose that
g ∈ H(A,L). Let, for brevity, ḡ∗

ε = g∗
A,ε . In view of the construction of the global

estimator [cf. (19)] we get, for all g ∈ H(A,L),

‖ḡ∗
ε − g‖∞ ≤ sup

z∈Zd

max
x∈�ε(z)∩[−1,1]d

|ḡ∗
ε (x) − g(x)|

(50)
≤ |ḡ∗

ε − g|∞ +Cε2γ (β∧1),

where

|ḡ∗
ε − g|∞ � max

z∈Zε

|ḡ∗
ε (z) − g(z)| with Zε = (ε2Z)d ∩ [−1,1]d .

Here and in what follows we will use the same notation C for possibly dif-
ferent positive constants depending only on A,L and d . Since ε2γ (β∧1) =
o(φε(γ,β)), ε → 0, for all (γ,β) ∈ R2+, it is sufficient to prove Theorem 2 with
the loss given by the maximum norm | · |∞ on the finite set Zε . Thus, without loss
of generality, in what follows we will replace ‖ · ‖∞ by | · |∞.

2◦. Control of large deviations. To any z ∈ Zε we assign a vector θz ∈ Sε such
that ‖θz − θz

0‖ ≤ ε2 where θz
0 is defined in (20). Next, we set Jz

0 � (A, θz, λε(A)).
Introduce the random event

F = {∃z ∈ Zε :Jz
0 /∈ T̂z},

where T̂z is the set of acceptable triplets J defined in Section 5. We now show that
for all ε > 0 small enough

sup
g∈H(A,L)

Pg(F ) ≤ c12ε
2p,(51)

where the constant c12 depends only on d . Indeed, in view of the definition of the
random set T̂z,

F ⊆ ⋃
z∈Zε

⋃
J′∈Jgrid

{|�J′ ĝJ′∗Jz
0
(z)| > THε(J

′,Jz
0)}

and therefore

Pg(F ) ≤ ∑
z∈Zε

∑
J′∈Jgrid

Pg{|�J′ ĝJ′∗Jz
0
(z)| > THε(J

′,Jz
0)}.(52)

Note that

Eg�J′ ĝJ′∗Jz
0
(z) = [�J′KJ′∗Jz

0
∗ g](z).

Applying Proposition 2 with Jz
0 = (A, θz, λε(A)) and λ = λ0 = λε(A) we obtain,

sup
g∈H(A,L)

|Eg�J′ ĝJ′∗Jz
0
(z)|

(53)
≤ c11{λε(A)(‖KJ′‖1 + ‖KJz

0
‖1)+ ‖KJ′‖1‖KJz

0
‖1ε

2}.
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Now, due to the construction of the weight K(A,λ) and the fact that ‖KJ‖1 =
‖K(A,λε(A))‖1 for all J ∈ Jgrid, there exists a constant c13 depending only on A

and d such that K∗
A � maxJ∈Jgrid ‖KJ‖1 satisfies

K∗
A ≤ c13, if A ∈ (0,2]2 \ P2,

K∗
A ≤ c13 ln ln(1/ε), if A ∈ P2.

Since also ‖KJ‖1 ≥ 1 and λε(A)/(ε ln ln(1/ε)) → ∞, as ε → 0, we have, for
ε > 0 small enough,

sup
g∈H(A,L)

|Eg�J′ ĝJ′∗Jz
0
(z)|

≤ 2c11λε(A)(‖KJ′‖1 + ‖KJz
0
‖1)(54)

= 2ε
√

ln(1/ε)
∥∥K(A,λε(A))

∥∥
2(‖KJ′‖1 + ‖KJz

0
‖1),

where we used that λε(A) is a solution of (17). Note also that in Pg-probability

�J′ ĝJ′∗Jz
0
(z) − Eg�J′ ĝJ′∗Jz

0
(z) ∼ N (0, ε2‖�J′KJ′∗Jz

0
‖2

2).(55)

Using (22), (52)–(55) and the definition of the threshold THε(·, ·) we obtain that,
for ε > 0 small enough,

Pg(F ) ≤ card(Zε) card(Sε)P
{|ξ | >√(4p + 8d) ln(1/ε)

}
≤ card(Zε) card(Sε)ε

2p+4d,

where ξ ∼ N (0,1). This proves (51) since card(Zε) ≤ (2ε−2+1)d and card(Sε) ≤
(
√

d/ε)d−1.

3◦. Two intermediate bounds on the risks. Using that |ḡ∗
ε | ≤ ln ln(1/ε) and

g ∈ H(A,L) is uniformly bounded we deduce from (51) that, for all A = (γ,β) ∈
(0,2]2,

lim sup
ε→0

sup
g∈H(A,L)

Eg

(
φ−p

ε (γ,β)|ḡ∗
ε − g|p∞I{F })= 0.(56)

We now control the bias of ĝJz
0

via Proposition 1, its stochastic error via the bounds
on ‖K(A,λε(A))‖2 in Lemmas 2–4 and apply (17) to get that, for all A = (γ,β) ∈
(0,2]2,

lim sup
ε→0

sup
g∈H(A,L)

Eg

(
φ−p

ε (γ,β)|ĝJz
0
− g|p∞

)
< ∞.(57)
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4◦. Final argument. Note that on the event F c the set T̂z of acceptable
triplets J is nonempty for every z ∈ Zε , so that Ĵz exists. Thus, on F c we can
write, for all z ∈ Zε ,

|ĝĴz
(z) − g(z)| ≤ |�Ĵz

ĝĴz∗Jz
0
(z)| + |�Jz

0
ĝJz

0∗Ĵz
(z)| + |ĝJz

0
(z) − g(z)|.(58)

Further, on F c the triplet Jz
0 is acceptable for all z ∈ Zε . This and the acceptability

(by definition) of Ĵz imply that on F c, for all z ∈ Zε ,

|�Jz
0
ĝJz

0∗Ĵz
(z)| ≤ THε(J

z
0, Ĵz),

(59)
|�Ĵz

ĝĴz∗Jz
0
(z)| ≤ THε(Ĵz,J

z
0).

This, the definition of the threshold THε and the fact that ‖KJ‖2 = ‖K(A,λε(A))‖2
for all J ∈ Jgrid yield that on F c, for all z ∈ Zε ,

|ĝĴz
(z) − g(z)| ≤ 4C(p,d)K∗

A

∥∥K(A,λε(A))

∥∥
2ε
√

ln(1/ε) + |ĝJz
0
(z) − g(z)|

(60)
= 4C(p,d)c−1

11 K∗
Aλε(A)+ |ĝJz

0
(z) − g(z)|.

We combine (57) and (60) to get, with some constants c14 − c16 independent of ε,

sup
g∈H(A,L)

Eg(|ḡ∗
ε − g|p∞I{F c}) ≤ c14(K

∗
Aλε(A))p + c15φ

p
ε (γ,β)

(61)
≤ c16(K

∗
Aφε(γ,β))p.

Theorem 2 follows now from (56) and (61).

APPENDIX: PROOFS OF AUXILIARY RESULTS

A.1. Proof of Proposition 2.

1◦ . PRELIMINARY REMARKS. For any J ∈ J and any x ∈ [−1,1]d we may
write

[�JKJ∗Jx
0
∗ g](x)

= [KJ∗Jx
0
∗ g](x) − [KJ ∗ g](x)

=
∫ (∫

KJ(y − x)KJx
0
(t − y)dy

)
g(t) dt − [KJ ∗ g](x)

=
∫

KJ(y − x)

(∫
KJx

0
(t − y)g(t) dt

)
dy − [KJ ∗ g](x)

=
∫

KJ(y − x)g(y) dy − [KJ ∗ g](x)

+
∫

KJ(y − x)

(∫
KJx

0
(t − y)[g(t)− g(y)]dt

)
dy(62)
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=
∫

KJ(y − x)

(∫
KJx

0
(t − y)[g(t) − g(y)]dt

)
dy

=
∫

KJ(v)

[∫
KJx

0
(z)
(
g(z + v + x)− g(v + x)

)
dz

]
dv

=
∫

K(A,λ)(M
T
ϑ v)

∫
K(A,λ)(M

T
ϑx z)
(
g(z + v + x)− g(v + x)

)
dzdv.

Define Gx(·) = G(·+x) and fx(·) = f (·+G(x)). Then g(z+v+x) = f (Gx(z+
v)) and g(v + x) = f (Gx(v)). Note that, for all x ∈ [−1,1]d ,

Gx ∈ Hd(β,L2), fx ∈ H1(γ,L1).(63)

If 1 < γ ≤ 2, the second property in (63) implies

f ′
x ∈ H1(γ − 1,2L1).(64)

In the case where 1 < β ≤ 2, for all u ∈ Rd, x ∈ [−1,1]d we define G̃x(u) =
Gx(u)−Gx(0) − [∇Gx(0)]T u. In view of (63), for all x ∈ [−1,1]d we have

‖∇G̃x(u)‖ ≤ 2L2 ∀u ∈ Rd,(65)

|G̃x(t) − G̃x(u)− [∇G̃x(u)]T (t − u)| ≤ L2‖t − u‖β ∀t, u ∈ Rd,
(66)

⇒ |G̃x(u)| ≤ L2‖u‖β, u ∈ Rd .

It follows from the definition of K(A,λ) and Lemmas 1–4 that∫
‖v‖γβ

∣∣K(A,λ)(v)
∣∣dv ≤ c′6λ ∀A ∈ (0,2]2, λ > 0,(67)

where c′6 > 0 is a constant depending only on L and d . Furthermore, for any
A = (γ,β) ∈ (0,2]2 and any λ ≤ 1 the support of K(A,λ) is contained in a ball {u ∈
Rd :‖u‖ ≤ cKλ1/(γβ)} where the constant cK > 0 depends only on d . Therefore,

K(A,λ)(M
T
ϑ u) = 0 ∀u,ϑ ∈ Rd :‖u‖ > cKλ1/(γβ), ‖ϑ‖ = 1.(68) �

2◦ . PROOF FOR THE ZONE OF RISD LOCAL MODEL: 1 < γ ≤ β ≤ 2. Using
(63) and the Taylor expansion for Gx we obtain, for all x ∈ [−1,1]d , z, v ∈ Rd ,

g(z + v + x) = f
(
Gx(0) + [∇Gx(0)]T (z + v) + G̃x(z + v)

)
(69)

= fx

([∇Gx(0)]T (z + v) + G̃x(z + v)
)
.

Note that, by definition, ∇Gx(0) = ∇G(x) = ϑx
0 ‖∇G(x)‖. Set ∇G∗ =

ϑx‖∇G(x)‖ and define

g∗(z + v + x) = fx

([∇G∗]T (z + v) + G̃x(z + v)
)
.

We now approximate g(z+v+x) by g∗(z+v+x) in the last line of (62). In view
of (68), it suffices to consider there only the values z, v satisfying ‖z‖,‖v‖ ≤ cK .
For such z, v and all x ∈ [−1,1]d , the condition ‖ϑx

0 − ϑx‖ ≤ ε and (63) imply

|g(z + v + x)− g∗(z + v + x)| ≤ 2cKL1‖∇G(x)‖ε ≤ 2cKL1L2ε.(70)
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Using (63)–(66), the Taylor expansion for fx and (64), we get that for all x ∈
[−1,1]d , z, v ∈ Rd the following representation holds:

g∗(z + v + x) = fx

([∇G∗]T (z + v)
)

+ f ′
x

([∇G∗]T (z + v)
)
G̃x(z + v) +Bx,1(z, v)‖z + v‖γβ

= fx

([∇G∗]T (z + v)
)

+ [f ′
x

([∇G∗]T (z + v)
)− f ′

x([∇G∗]T v)
]

(71)
× (G̃x(v) + [∇G̃x(v)]T z

)
+ f ′

x([∇G∗]T v)
(
G̃x(z + v) − G̃x(v)

)
+ f ′

x([∇G∗]T v)G̃x(v)

+Bx,2(z, v)|[∇G∗]T z|γ−1‖z‖β + Bx,1(z, v)‖z + v‖γβ,

where, for all x ∈ [−1,1]d , z, v ∈ Rd , Bx,1(·, ·) and Bx,2(·, ·) are functions satis-
fying

|Bx,1(z, v)| ≤ L1L
γ
2 , |Bx,2(z, v)| ≤ 2L1L2.(72)

Putting z = 0 in (71) we obtain

g∗(v + x) = fx([∇G∗]T v) + f ′
x([∇G∗]T v)G̃x(v) + Bx,1(0, v)‖v‖γβ.(73)

From (71) and (73) we get, for all x ∈ [−1,1]d , z, v ∈ Rd ,

g∗(z + v + x)− g∗(v + x)

= fx

([∇G∗]T (z + v)
)− fx([∇G∗]T v)

+ [f ′
x

([∇G∗]T (z + v)
)− f ′

x([∇G∗]T v)
](

G̃x(v) + [∇G̃x(v)]T z
)

(74)
+f ′

x([∇G∗]T v)
(
G̃x(z + v) − G̃x(v)

)
+Bx,2(z, v)|[∇G∗]T z|γ−1‖z‖β +Bx,1(z, v)‖z + v‖γβ

−Bx,1(0, v)‖v‖γβ.

Put u = MT
ϑxv, s = MT

ϑxz. We get from (74) that

g∗(Mϑx s +Mϑxu+ x)− g∗(Mϑxu+ x)

= (f̃x(s1 + u1)− f̃x(u1)
)

+Au,x(s1)
(
Gx(u)+ [∇Gx(u)]T s

)
(75)

+ f ′
x(‖∇G(x)‖u1)

(
Gx(s + u)− Gx(u)

)+ B̃x,2(s, u)|s1|γ−1‖s‖β

+ B̃x,1(s, u)‖s + u‖γβ − B̃x,1(0, u)‖u‖γβ,
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where s1 and u1 are the first components of s ∈ Rd and u ∈ Rd , respectively,

f̃x(u1) = fx(‖∇G(x)‖u1), Gx(u) = G̃x(Mϑxu),

B̃x,1(s, u) = Bx,1(Mϑx s,Mϑxu)

B̃x,2(s, u) = ‖∇G(x)‖γ−1Bx,2(Mϑx s,Mϑxu)

and

Au,x(s1) = f ′
x

(‖∇G(x)‖(s1 + u1)
)− f ′

x(‖∇G(x)‖u1).

It is easy to see that inequalities (65) and (66) remain valid with Gx in place of G̃x .
Now for all x ∈ [−1,1]d, s, u ∈ Rd we introduce

qu,x(s1) = (f̃x(s1 + u1) − f̃x(u1)
)+ Au,x(s1)

(
Gx(u) + [∇Gx(u)]T ϑxs1

)
+ f ′

x(‖∇G(x)‖u1)[∇Gx(u)]T ϑxs1,

pu,x(s) = f ′
x(‖∇G(x)‖u1)

(
Gx(s + u)− Gx(u)− [∇Gx(u)]T s

)
,

Bu,x(s) = B̃x,2(s, u),

Qu,x(s) = qu,x(s1) + pu,x(s) + B̃x,2(s, u)|s1|γ−1‖s‖β,

Pu,x(s) = f ′
x

(‖∇G(x)‖(s1 + u1)
)[∇Gx(u)]T s⊥,

where s⊥ = s − s1ϑ
x . With this notation (75) can be written as

g∗(Mϑx s +Mϑxu+ x) − g∗(Mϑxu+ x)
(76)

= Qu,x(s) + Pu,x(s)+ B̃x,1(s, u)‖s + u‖γβ − B̃x,1(0, u)‖u‖γβ.

We now prove that, for all x ∈ [−1,1]d and all u ∈ Rd such that ‖u‖ ≤ cKλ1/(γβ)

[cf. (68)], the triplet (qu,x,pu,x,B
u,x) belongs to the set B(A, λ) (cf. definition

before Lemma 3), and thus Lemmas 3 or 4 can be applied. We need to check
(23)–(25).

Checking (23). In view of (63) we have

|f̃x(s1 + u1)− f̃x(u1)− f̃ ′
x(u1)s1| ≤ L1L2|s1|γ .

Therefore,∣∣∣∣ 1

2λ
1/γ
0

∫ λ
1/γ
0

−λ
1/γ
0

(
f̃x(s1 + u1) − f̃x(u1)

)
ds1

∣∣∣∣≤ L1L2

2λ
1/γ
0

∫ λ
1/γ
0

−λ
1/γ
0

|s1|γ ds1

(77)

≤ L1L2

2
λ.

Next, remark that (64) implies |Au,x(s1)| ≤ 2L1L
γ−1
2 |s1|γ−1. Furthermore, (66)

with Gx in place of G̃x yields |Gx(u)| ≤ L2‖u‖β . Now, qu,x(0) = 0 and using
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these remarks, (77) and (65) we get, for ‖u‖ ≤ cKλ1/(γβ),∣∣∣∣ 1

2λ
1/γ
0

∫ λ
1/γ
0

−λ
1/γ
0

qu,x(s1) ds1

∣∣∣∣
≤ L1L2

2
λ+ 1

2λ
1/γ
0

∫ λ
1/γ
0

−λ
1/γ
0

|Au,x(s1)|(|Gx(u)| + ‖∇Gx(u)‖|s1|)ds1

(78)

≤ L1L2

2
λ+ 2L1L

γ
2

(
1

γ
λ(γ−1)/γ ‖u‖β + 2

γ + 1
λ

)

≤
[
L1L2

2
+ 2L1L

γ
2

(
(2cK)β

γ
+ 2

γ + 1

)]
λ ≤ c3λ,

where the constant c3 depends only on L and d . It can be taken as a maximum of
the last expression in square brackets over (γ,β) ∈ [1,2]2.

Checking (24) and (25). It suffices to note that, for all x ∈ [−1,1]d , the first
property in (66) with Gx in place of G̃x and the second property in (63) yield

|pu,x(s
′)− pu,x(s) − [∇pu,x(s)]T (s′ − s)| ≤ |f ′

x(‖∇G(x)‖u1)|L2‖s′ − s‖β

≤ L1L2‖s′ − s‖β ∀s, s′ ∈ Rd .

This proves (24) with b = β and L = L1L2. Finally, (25) with B = Bu,x , c4 =
2L1L

γ
2 follows from (72).

We are now in a position to apply Lemmas 3 and 4. We demonstrate this, for
example, for Lemma 4. Take there q = qu,x,p = pu,x,B = Bu,x for any ‖u‖ ≤
cKλ1/(γβ) and x ∈ [−1,1]d . Since Qu,x(0) = 0, the result (29) of Lemma 4 yields∣∣∣∣∫ K(A,λ)(s)Qu,x(s) ds

∣∣∣∣≤ c5λ,(79)

where c5 depends only on L and d . Furthermore, by construction the weight K(A,λ)

is symmetric, that is, K(A,λ)(s) = K(A,λ)(−s) and hence∫
K(A,λ)(s)Pu,x(s) ds = 0.(80)

Next, using (72) we find

|B̃x,1(s, u)‖s + u‖γβ − B̃x,1(0, u)‖u‖γβ | ≤ 2γβL1L
γ
2 (‖s‖γβ + ‖u‖γβ).

Combining this inequality and (79)–(80) with (76) we get, for all x ∈ [−1,1]d ,
u ∈ Rd ,∣∣∣∣∫ K(A,λ)(s)

(
g∗(Mϑx s +Mϑxu+ x) − g∗(Mϑxu+ x)

)
ds

∣∣∣∣
≤ c5λ+ 2γβL1L

γ
2

[∫ ∣∣K(A,λ)(s)
∣∣‖s‖γβ ds + ∥∥K(A,λ)

∥∥
1‖u‖γβ

]
.
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We finally get (21) from this inequality invoking (67), (62), (70) and recalling that
‖K(A,λ)‖1 = ‖KJ‖1 for all A ∈ (0,2]2, λ > 0, and ‖K(A,λ)‖1 = ‖KJx

0
‖1. �

3◦ . PROOF OF (21) FOR THE LOCAL SINGLE-INDEX ZONE: γ ≤ 1,1 < β ≤ 2.
Using (66) and the second property in (63), for all z, v ∈ Rd , x ∈ [−1,1]d we may
write

g∗(z + v + x) = fx

([∇G∗]T (z + v)
)+Bx,1(z, v)‖z + v‖γβ,

where Bx,1 satisfies (72). This can be viewed as a simplified version of (71). Fol-
lowing almost the same argument as in 2◦ (the main difference is that now we drop
all the terms containing f ′

x and Bx,2) and applying Lemma 2 we obtain (21). �

4◦ . PROOF OF (21) FOR THE ZONE OF SLOW RATE: (γ,β) ∈ (0,1]2. Using
the Hölder condition on f and Gx we obtain, for all z, v ∈ Rd, x ∈ [−1,1]d ,

g(z + v + x) ≡ f
(
Gx(z + v)

)= f (Gx(0)) +Bx,1(z, v)‖z + v‖γβ,

where Bx,1 satisfies (72). Now, (21) easily follows from this relation, (62), (67)
and the definition of K(A,λ) for the zone of slow rate. �

5◦ . PROOF OF (21) FOR THE ZONE OF INACTIVE STRUCTURE: 1 < β ≤ γ ≤ 2.
Since f ∈ H1(γ,L1) and ‖∇Gx(·)‖ ≤ L2, for all z, v ∈ Rd, x ∈ [−1,1]d we may
write

f
(
Gx(z + v)

)= f (Gx(v)) + f ′(Gx(v))
(
Gx(z + v) −Gx(v)

)+Bx,1(z, v)‖z‖γ

= f (Gx(v)) + f ′(Gx(v))
(
Gx(z + v) −Gx(v) − [∇Gx(v)]T z

)
+ f ′(Gx(v))[∇Gx(v)]T z +Bx,1(z, v)‖z‖γ

= f (Gx(v)) + f ′(Gx(v))[∇Gx(v)]T z + Bx,2(z, v)‖z‖β

+Bx,1(z, v)‖z‖γ ,

where Bx,1 satisfies (72) and |Bx,2(·, ·)| ≤ L1L2. Since the weight K(A,λ) is sym-
metric, ∫

K(A,λ)(M
T
ϑx z)f

′(Gx(v))[∇Gx(v)]T z dz = 0.

Now, (21) easily follows from these relations, (62), the definition of K(A,λ) for the
zone of inactive structure and the condition λ ≤ 1. �

6◦ . PROOF OF (22). For a function K ∈ L2(R
d), let us denote by K̂ its Fourier

transform. Using Parceval’s identity we obtain, for any J,J′ ∈ J,

‖�J′KJ′∗J‖2 = 1√
2π

‖�̂J′KJ′∗J‖2 = 1√
2π

‖(K̂J − 1)K̂J′‖2

≤ 1√
2π

(‖K̂J‖∞ + 1)‖K̂J′‖2 ≤ (‖KJ‖1 + 1)‖KJ′‖2.
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Since
∫

KJ′ = 1, this proves (22). �

A.2. Proof of Lemma 3. First, note that some cases are trivial because the
number r of steps of the weight construction is bounded by 3. In fact, if (ρ +
1)ρ < (β −γ )/γ and V (λ) ≤ ln(

√
5+1
2 ) we have r ≤ 3 by definition. If (ρ+1)ρ ≥

(β − γ )/γ we use the weight as in Lemma 3. But for this weight the condition
(ρ + 1)ρ ≥ (β − γ )/γ implies that, again, r ≤ 3.

So, we will treat only the remaining case where (ρ + 1)ρ < (β − γ )/γ and

V (λ) > ln(
√

5+1
2 ). The last inequality implies that r > 3.

Note that, by definition, α < 1
2 ln(

√
5+1
2 ). Further, for r ≥ 3 we have also the

lower bound: α ≥ 1
4 ln(

√
5+1
2 ). Thus for r ≥ 3,

0.786 ≤
(√

5 + 1

2

)−1/2

< e−α ≤
(√

5 + 1

2

)−1/4

≤ 0.887.(81)

1◦ . PROOF OF (29). From the definition of K(A,λ) we find

[
K(A,λ) ∗ q

]
(0) = 2−d

r∑
i=1

∫
�i(|y|)q(y1) dy = 2−d

∫
�1(|y|)q(y1) dy

= 1

u1

∫
q(y1) + q(−y1)

2
I[0,u1](y1) dy1,

where u1 = λ1/γ . This and (23) imply

∣∣[K(A,λ) ∗ q
]
(0) − q(0)

∣∣= ∣∣∣∣(2λ1/γ )−1
∫ λ1/γ

−λ1/γ
q(y1) dy1 − q(0)

∣∣∣∣≤ c3λ.(82)

We now obtain a similar bound for |[K(A,λ) ∗ p](0) − p(0)|. Note that, in view
of (24), for all z = (z1, . . . , zd) ∈ Rd we have

p(z) = p̃(z) + z1
∂p

∂z1
(0, z2, . . . , zd) +B1(z)z

β
1 ,(83)

where p̃(z) = p(0, z2, . . . , zd) and supz∈Rd |B1(z)| ≤ L. For the same reason, for
all z(d−1) � (0, z2, . . . , zd) we have

p̃(z) = p̃(0) + [∇p̃(0)]T z(d−1) +B2(z(d−1))‖z(d−1)‖β,(84)

where as previously |B2(·)| ≤ L. Combining (83) and (84) and taking into account
that the function K(A,λ) is symmetric,

∫
K(A,λ) = 1 and p̃(0) = p(0) we get∣∣[K(A,λ) ∗ p

]
(0) − p(0)

∣∣
(85)

=
∣∣∣∣∫ K(A,λ)(z)

(
B1(z)z

β
1 +B2

(
z(d−1)

)∥∥z(d−1)

∥∥β)dz

∣∣∣∣.
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Now ∣∣∣∣∫ K(A,λ)(z)B2
(
z(d−1)

)∥∥z(d−1)

∥∥β dz

∣∣∣∣
=
∣∣∣∣(2(v1 − v2)

)1−d
∫

B2
(
z(d−1)

)∥∥z(d−1)

∥∥βI[v2,v1]d−1
(∣∣z(d−1)

∣∣)dz(d−1)

+
r−1∑
i=1

[(
2(vi − vi+1)

)1−d

×
∫

B2
(
z(d−1)

)∥∥z(d−1)

∥∥βI[vi+1,vi ]d−1
(∣∣z(d−1)

∣∣)dz(d−1)

− (2(vi−1 − vi)
)1−d
∫

B2
(
z(d−1)

)∥∥z(d−1)

∥∥β(86)

× I[vi ,vi−1]d−1
(∣∣z(d−1)

∣∣)dz(d−1)

]∣∣∣∣
≤ (2vr)

1−d
∫ ∣∣B2

(
z(d−1)

)∣∣∥∥z(d−1)

∥∥βI[0,vr ]d−1
(∣∣z(d−1)

∣∣)dz(d−1)

= (λ1/β)1−d
∫ ∣∣B2

(
z(d−1)

)∣∣∥∥z(d−1)

∥∥βI[0,λ1/β ]d−1
(∣∣z(d−1)

∣∣)dz(d−1)

≤ 2d−1dβ/2Lλ ≤ 2d−1 dLλ,

where |z(d−1)| = (|z2|, . . . , |zd |). Further, note that v ≥ u ≥ 1 implies ev/u ≤ ev/u

[in fact, v(1 − 1/u) ≥ u − 1 ≥ lnu]. Using this remark and the fact that β
γ−1 > 1

we find

ui = λ1/γ exp
(

β

γ − 1
exp
(
α(i − 1)

))= λ1/γ exp
(

β

γ − 1
exp(αi)e−α

)
(87)

≤ ui+1e
−α, i = 1, . . . , r − 1

and therefore ui/ur ≤ eα(i−r). This and the equality ur = λ1/β allow us to get∣∣∣∣∫ K(A,λ)(z)B1(z)z
β
1 dz

∣∣∣∣
≤ L

∫ ∣∣K(A,λ)(z)
∣∣|z1|β dz

(88)

= L

u1

∫
z
β
1 I[0,u1](z1) dz1 +

r∑
i=2

2L

ui − ui−1

∫
z
β
1 I[ui−1,ui ](z1) dz1

≤ 2L

r∑
i=1

u
β
i ≤ 2Lλ

r∑
i=1

(
ui

ur

)β

≤ 2λL

∞∑
l=0

e−αl = 2λL(1 − e−α)−1.
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From (85), (86) and (88) we get∣∣[K(A,λ) ∗ p
]
(0) − p(0)

∣∣≤ λL[2d−1d + 2(1 − e−α)−1].(89)

We now estimate the value | ∫ K(A,λ)(y)B(y)y
γ−1
1 ‖y‖β dy|. In view of (42),

u
γ−1
1 v

β
1 ≤ λ exp{β − νβeα} ≤ λ exp{(1 − ν)β},

(90)
u

γ−1
i v

β
i ≤ u

γ−1
i v

β
i−1 = λ exp

{
(1 − ν)β exp

(
α(i − 1)

)}
, i = 2, . . . , r.

Using (90), we get similarly to (88):∣∣∣∣∫ K(A,λ)(y)B(y)y
γ−1
1 ‖y‖β dy

∣∣∣∣
≤ c4

∫ ∣∣K(A,λ)(y)
∣∣|y1|γ−1

d∑
j=1

|yj |β dy

= c4

[∫ ∣∣K(A,λ)(y)
∣∣|y1|γ+β−1 dy +

d∑
j=2

∫ ∣∣K(A,λ)(y)
∣∣|y1|γ−1|yj |β dy

]
(91)

≤ 2c4

[
r∑

i=1

u
β+γ−1
i + d

r∑
i=1

u
γ−1
i v

β
i

]

≤ 2c4

[
λ(β+γ−1)/β

∞∑
l=0

e−αl(β+γ−1) + λd

∞∑
l=0

exp{(1 − ν)β exp(αl)}
]

≤ 2c4λ
[
(1 − e−α)−1 + d

(
1 − e(1−ν)α)−1]

,

where the last inequality holds for 0 < λ ≤ 1 and we used that β exp(αl) ≥ αl,
ν > 1. Summing up the results of (82), (89), (91) and taking into account (81) we
obtain (29). �

2◦ . PROOF OF (30). In the same way as above we get, for 0 < λ ≤ 1,∫ ∣∣K(A,λ)(y)
∣∣‖y‖m du ≤ dm/2

∫ ∣∣K(A,λ)(y)
∣∣ d∑
j=1

|yj |m dy

≤ 2dm/2

[
r∑

i=1

um
i + d

r∑
i=1

vm
i

]

≤ C(d)λm/(γβ)[(1 − e−mα)−1 + (1 − emνα)−1].
Here and in what follows use the same notation C(d) for possibly different positive
constants depending only on d . �
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3◦ . PROOF OF (31). Since ν < 2 <
β

β−γ
we have, for 0 < λ ≤ 1,

vr−1 � λ1/(γβ) exp
{−ν exp

(
α(r − 1)

)}= λ1/(γβ)+ν(γ−1)(β−γ )/(γβ)2 ≥ λ1/β .

By the definition of vr this implies that vr−1 − vr ≥ λ1/β/2. Further, as ur = λ1/β ,
in view of (87), we have

ur − ur−1 ≥ (1 − e−α)λ1/β .

We deduce that

μr,r−1 ≥ μr,r ≥ 21−dλd/β(1 − e−α).(92)

Note that by (87),

ui+1 − ui ≥ (1 − e−α)ui+1 for i = 1, . . . , r − 1.

Also, as ν > 1, it is straightforward to check that

vi − vi+1 ≥ (1 − e−α)vi for i = 1, . . . , r − 2.

Thus, we get

μ1,1 = u1(v1 − v2)
d−1 ≥ (1 − e−α)d−1 exp

(−(d − 1)νeα)λ1/γ+(d−1)/β .(93)

Recall that we are considering the case where ρ(1+ρ) < (β −γ )/γ,1 < γ ≤ β ≤
2, so that ρ(1 + ρ) < 1, and thus ρ <

√
5−1
2 . This and the choice of parameters α,

ν combined with (81) implies

e−α − ρν ≥
(√

5 + 1

2

)−1/2

− ρν ≥
(√

5 + 1

2

)−1/2

−
√

5 − 1

2
ν � δ ≥ 0.0891.

Now,

β

γ − 1
e−α − (d − 1)ν ≥ δβ

γ − 1
≥ 2δ.

Hence, for i = 2, . . . , r − 1 we have

μi,i−1 ≥ μi,i

≥ C(d)λ1/γ+(d−1)/(γβ)

(94)

× exp
{

β

γ − 1
exp
(
α(i − 1)

)− (d − 1)ν exp(αi)

}
≥ C(d)λ1/γ+(d−1)/(γβ) exp{2δ exp(αi)}.

Note that ∥∥K(A,λ)

∥∥2
2 = μ−1

1,1 +
r∑

i=2

(μ−1
i,i−1 +μ−1

i,i ) ≤ μ−1
1,1 + 2

r∑
i=2

μ−1
i,i .(95)
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We deduce from (92)–(95) that∥∥K(A,λ)

∥∥2
2 ≤ C(d)

(
λ1/γ+(d−1)/(γβ) + λ−d/β).

This proves the second inequality in (31). The first inequality becomes obvious if
we note that V (λ) ≤ ln ln(1/λ) and so ‖K(A,λ)‖1 = 2r − 1 ≤ c7 ln ln(1/λ), for λ

small enough, where c7 is an absolute constant. �

A.3. Proof of Lemma 3. Following the same lines as in the proof of (29) in
Lemma 4 we obtain the bound (26) of Lemma 3 with

c5 = C(d)(c3 +Lr + c4r).

1◦ . PROOF OF (27). By definition, ur = λ1/β and for 0 < λ ≤ 1 we have
u2 ≥ λ1/γ , so that v1 = λ1/βu

−(γ−1)/β
2 ≤ λ1/(γβ). Using these remarks and acting

as in the proof of (30) in Lemma 4 we obtain, for 0 < λ ≤ 1,∫ ∣∣K(A,λ)(y)
∣∣‖y‖m du ≤ 2dm/2

[
r∑

i=1

um
i + d

r∑
i=1

vm
i

]

≤ 2dm/2r(um
r + dvm

1 ) ≤ C(d)rλm/(γβ). �

2◦ . PROOF OF (28). Observe that αj+1 − αj > 0 for j = 1, . . . , r − 1, so that
for λ → 0 we have uj/uj−1 →∞ and vj−1/vj →∞. In particular,

μj,j−1 = (uj − uj−1)(vj−1 − vj )
d−1 ≥ μj,j = (uj − uj−1)(vj − vj+1)

d−1

≥ 1
2ujv

d−1
j

for all λ small enough. Next note that, by definition,

αr−2 ≥ (αr−1 − β−1)ρ−1 ≥ β − γ

γβρ
.

Then u2 ≤ λ(β−γ )/(γβρ) and for λ small enough we get by the definition of ρ:

μ1,1 ≥ 1
2u1v

d−1
1 = 1

2λ(d−1)/βu1u
−ρ
2 = 1

2λ(d−1)/βλ1/γ−(β−γ )/(γβ) = 1
2λd/β.

Further, as ur = λ1/β and vr = 1
2λ1/β , vr+1 = 0,

μr,r ≥ 2−dλd/β

for λ small enough. Next, for 1 < j < r ,

μj,j ≥ 1
2ujv

d−1
j = 1

r2λ(d−1)/βuju
−ρ
j+1.

By the definition of the sequence (αk),

(d − 1)/β + αk − ρ/αk−1 = d/β, k = 1, . . . , r − 1.
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Thus

μj,j ≥ 1
2λ(d−1)/β+αr−j−ραr−(j+1) = 1

2λd/β, j = 2, . . . , r − 1.

Substitution of the above bounds into (95) yields∥∥K(A,λ)

∥∥2
2 ≤ C(d)λ−d/βr. �
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