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LOG-SOBOLEV INEQUALITIES: DIFFERENT ROLES
OF RIC AND HESS
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Let P; be the diffusion semigroup generated by L := A+ VV on a com-
plete connected Riemannian manifold with Ric > —(02 pg + ¢) for some con-
stants o, ¢ > 0 and p, the Riemannian distance to a fixed point. It is shown
that Py is hypercontractive, or the log-Sobolev inequality holds for the asso-
ciated Dirichlet form, provided — Hessy > 6 holds outside of a compact set
for some constant § > (1 + ﬁ)o +/d — 1. This indicates, at least in finite di-
mensions, that Ric and — Hessy play quite different roles for the log-Sobolev
inequality to hold. The supercontractivity and the ultracontractivity are also
studied.

1. Introduction. Let M be a d-dimensional completed connected noncom-
pact Riemannian manifold and V € C2(M) such that

(1.1 Z ::/ e dx < oo,
M

where dx is the volume measure on M. Let u(dx) = Z~'eV® dx. Under (1.1)
it is easy to see that Hg’l(u) = W21 (w), where Hoz’l(u) is the completion of
CJ (M) under the Sobolev norm | f |21 := (£ + |V £*)!/2, and W21 () is the
completion of the class {f € cl(M): f+IVfle L?(w)} under || - l2.1. Then the
L-diffusion process is nonexplosive and its semigroup P; is uniquely determined.
Moreover, P is symmetric in L?(p) so that p is Ps-invariant. It is well known by
the Bakry—Emery criterion (see [4]) that

(1.2) Ric —Hessy > K

for some constant K > 0 implies the Gross log-Sobolev inequality [14],

n(f2log f3) = / Fog f2du < Cu(v 1P,
(1.3) M
n(fH=1,fect
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for C =2/K. This result was extended by Chen and the author [9] to the situa-
tion that Ric — Hessy is uniformly positive outside a compact set. In the case that
Ric — Hessy is bounded below, sufficient concentration conditions of w for (1.3)
to hold are presented in [1, 19, 20]. Obviously, in a condition on Ric — Hessy the
Ricci curvature and — Hessy play the same role.

What can we do when Ric — Hessy is unbounded below? It seems very hard
to confirm the log-Sobolev inequality with the unbounded below condition of
Ric — Hessy . Therefore, in this paper we try to clarify the roles of Ric and — Hessy
in the study of the log-Sobolev inequality. Let us first recall the gradient estimate
of P;, which is a key point in the above references to prove the log-Sobolev in-
equality.

Let x; be the L-diffusion process starting at x, and let v € TyM. Due to
Bismut [6] and Elworthy—Li [11], under a reasonable lower bound condition of
Ric — Hessy, one has

(VP f,0) =E(Vf(x),v),  t>0,feCHM),

where v; € Ty, M solves the equation

. d .
D,v, = //,LOZ//HOU, = —(Ric — Hessy)*(v;)

for //t—0:Ty,M — Ty M the associated stochastic parallel displacement, and
(Ric — Hessy)*(v;) € Ty, M with

((Ric — Hessv)#(vt), X) := (Ric — Hessy ) (v¢, X), Xel,M.

Thus, for the gradient of Py, which is a short distance behavior of the diffusion
process, a condition on Ric — Hessy appears naturally.

On the other hand, however, Ric and — Hessy play very different roles for long
distance behaviors. For instance, Let p, be the Riemannian distance function to
a fixed point 0 € M. If Ric > —k and — Hessy > § for some k > 0, § € R, the
Laplacian comparison theorem implies

Lp, < v/k(d — 1) coth[,/k/(d — 1)po] — 8po.

Therefore, for large p,, the Ric lower bound leads to a bounded term while that of
— Hessy provides a linear term. The same phenomena appears in the formula on
distance of coupling by parallel displacement (cf. [3], (2.3), (2.4)), which implies
the above Bismut-Elworthy-Li formula by letting the initial distance tend to zero
(cf. [15]). Here, k > 0 is essential for our framework, since the manifold has to be
compact, if Ric is bounded below by a positive constant.

Since the log-Sobolev inequality is always available on bounded regular do-
mains, it is more likely a long-distance property of the diffusion process. So,
Ric and — Hessy should take different roles in the study of the log-Sobolev in-
equality. Indeed, it has been observed by the author [20] that (1.3) holds for some



LOG-SOBOLEV INEQUALITIES 1589

C > 0, provided Ric is bounded below and — Hessy is uniformly positive outside
a compact set. This indicates that for the log-Sobolev inequality, the positivity of
— Hessy is a dominative condition, which allows the Ricci curvature to be bounded
below by an arbitrary negative constant, and hence, allows Ric — Hessy to be glob-
ally negative on M.

The first aim of this paper is to search for the weakest possibility of curvature
lower bound for the log-Sobolev inequality to hold under the condition

(1.4) —Hessy > 6§ outside a compact set

for some constant § > 0. This condition is reasonable as the log-Sobolev inequality
implies ,u(ekpg) < oo for some A > 0O (see, e.g., [2, 17]).

According to the following Theorem 1.1 and Example 1.1, we conclude that
under (1.4) the optimal curvature lower bound condition for (1.3) to hold is

(1.5) inf{Ric 40202} > —o00

for some constant o > 0, such that § > (1 + +/2)o+/d — 1. More precisely,
let 8p > 0 be the smallest positive constant, such that for any connected com-
plete noncompact Riemannian manifold M and V € C?(M), such that Z :=
Y, V™ dx < oo, the conditions (1.4) and (1.5) with § > 06p/d — 1, im-
plies (1.3) for some C > 0. Due to Theorem 1.1 and Example 1.1 below, we
conclude that

0o €[1,1+2].

The exact value of 6y is however unknown.

THEOREM 1.1. Assume that (1.4) and (1.5) hold for some constants c,$,
o>0withéd > (1+ «/i)ox/d — 1. Then (1.3) holds for some C > 0.

EXAMPLE 1.1. Let M = R? be equipped with the rotationally symmetric met-
ric
ds> = dr® + {rét”’y? a6?,

under the polar coordinates (r, 8) € [0, 00) X S! at 0, where k > 0 is a constant,
then (see, e.g., [13])

d2/dr? kr?

Ric =~ /DT g g2,
rekr

Thus, (1.5) holds for o = 2k. Next, take V = —k,og — )»(,03 +1)1/2 for some A > 0.
By the Hessian comparison theorem and the negativity of the sectional curvature,
we obtain (1.4) for § = 2k. Since d =2 and

(1.6) eV ® dx = re 1+ 4y ae,
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one has Z < oo and § = 2k = o0+/d — 1. But the log-Sobolev inequality is not

valid since by Herbst’s inequality it implies p(e” Py ) < oo for some r > 0, which
is, however, not the case due to (1.6). Since in this example one has § > c6+/d — 1
for any 6 < 1, according to the definition of 6y, we conclude that 6y > 1.

Following the line of [19, 20], the key point in the proof of Theorem 1.1 will be
a proper Harnack inequality of type

(Ptf(-x))afca(ta-x’y)Pl‘fa(y)’ t>0,xa)’€M’

for any nonnegative f € Cp(M), where o > 1 is a constant and C, € C((0, 00),
M?) is a positive function. Such an inequality was established in [19] for
Ric — Hessy bounded below and extended in [3] to a more general situation with
Ric satisfying (1.5).

The Harnack inequality presented in [3] contains a leading term exp[p (x, y)*],
which is, however, too large to be integrability w.r.t. u x p under our conditions.
So, to prove Theorem 1.1, we shall present a sharper Harnack inequality in Sec-
tion 3 by refining the coupling method introduced in [3] (see Proposition 3.1
below). This inequality, together with the concentration of u ensured by (1.4)
and (1.5), will imply the hypercontractivity of P;. To establish this new Harnack
inequality, some necessary preparations are presented in Section 2.

Finally, in the same spirit of Theorem 1.1, the supercontractivity and ultra-
contractivity of P, are studied in Section 4 under explicit conditions on Ric and
— Hessy.

2. Preparations. We first study the concentration of u by using (1.4)
and (1.5), for which we need to estimate Lp, from above according to [5] and
references within.

LEMMA 2.1. [If(1.4) and (1.5) hold, then there exists a constant C1 > O such
that
2.1 Lp? < Ci(1+ po) —2(8 —ov/d —1)p?
holds outside cut(o), the cut-locus of o. If moreover § > o+/d — 1 then Z < o0
and ,u(e’\poz) < oo forall A < %(8 —od—1).

PROOF. By (1.5) we have Ric > —(c+ 02,03) for some constant ¢ > 0. By the
Laplacian comparison theorem this implies that

Apo < (c+02p2)(d — D coth[/(c +0202)/(d — 1) p,]

holds outside cut(o). Thus, outside cut(o) one has

AP2 < 2pp(c +02p2)(d — 1) coth[ |/ (c + 02p2) /(d — 1) po] +2

2.2)
<24 +2pp\/(c+02p2)(d — 1),
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where the second inequality follows from the fact that
rcoshr < (14 r)sinhr, r>0.

On the other hand, for x ¢ cut(o) and U the unit tangent vector along the unique
minimal geodesic £ form o to x, by (1.4) there exists a constant ¢; > 0 independent
of x such that

0 (X)
(VV,Vp)(x) =(VV,U)(0) + /00 Hessy (U, U)(£s) ds < c1 — 8po(x).

Combining this with (2.2) we prove (2.1).
Finally, let§ > o+/d — 1 and 0 < A < %(8 —o+/d —1). By (2.1) we have
LetPo < 36" (C1(1+ po) — 2(8 — on/d — 1) p2 + 42p2)
<c— Capgekpg

for some constants c¢;, c3 > 0. By [5], Proposition 3.2, this implies Z < oo and

2 )»,02 (6]
piePodu < = < oo.
/M ¢ Cc3 U

LEMMA 2.2. Let x; be the L-diffusion process with xo = x € M. If (1.4)
and (1.5) hold with § > o+/d — 1, then for any 89 € (c+/d — 1, 8) there exists
a constant Cy > 0 such that

(8o —oA/d —1)% /T
) | P

Eexp[ (xt)2 dti|

1
Sexp|:C2T+Z(8o—o\/d—l)pa(x)z], T>0,xeM.

PROOF. By Lemma 2.1, we have

Lot <C —2(80 —od—1)p2

outside cut(o) for some constant C > 0. Then the Itd formula for p,(x;) due to
Kendall [16] implies that

(23)  dp2(x) < 2v2po(x;) db; + [C = 2(80 — ov/d — 1) p2(x,)] dt

holds for some Brownian motion b; on R. This implies that the L-diffusion process
is nonexplosive so that

T, :=inf{t > 0: p,(x;) > n} — oo
as n — oo. Indeed, (2.3) implies that

nP(T, <t) <Epo(xia1,)* < po(x)*+Ct,  n>1,t>0.



1592 F-Y. WANG

Hence, P(7,, <t) — 0 as n — oo for any ¢ > 0. This implies lim,_, o 7, = 00 a.s.
For any A > 0 and n > 1, it follows from (2.3) that

TAT,
Eexp[ZA(éo —od— 1)/0 ,og(x,)dti|

T ATy
< P FTCAT exp[2~/§)» / po(x,)db;i|
0

202 (x)+CAT 2 [T 5 2
< Mo+ (Eexp[l@» / po(xz)dfi|> ’
0

where in the last step we have used the inequality
EeM < (B2 M1/

for M, = 24/2 féAT" Po(X;) dbs. This follows immediately from the Schwartz
inequality and the fact that exp[2M; — 2(M),] is a martingale. Thus, taking

A=3(80—ovd—1),

we obtain

TAT,

Eexp[i(&o —od— 1)2/0 ,og(x,)dt]

1
< exp[Z(SO —od— l)pg(x) —+ C2Ti|
for some C; > 0. Then the proof is completed by letting n — oco. [

Finally, we recall the coupling argument introduced in [3] for establishing the
Harnack inequality of P;.

Let T > 0and x # y € M be fixed. Then the L-diffusion process starting from x
can be constructed by solving the following It stochastic differential equation:

d[X[=\/§q)tdBt+VV(X[)dt, X0 =X,

where dj is the It6 differential on manifolds introduced in [12] (see also [3]), B;
is the d-dimensional Brownian motion, and ®; is the horizontal lift of x; onto the
orthonormal frame bundle O (M).

To construct another diffusion process y; starting from y such that x7 = y7,
as in [3], we add an additional drift term to the equation (as explained in [3],
Section 3, we may and do assume that the cut-locus of M is empty)

dry: = \/Eth,yf(Dt dB; +VV(y)dt +&U (xs, y) <1y dt, Yo=Y,
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where Py, y, is the parallel transformation along the unique minimal geodesic £
from x; to y;, U(x;, y;) is the unit tangent vector of £ at y;, & > 0 is a smooth
function of x; to be determined, and

T :=1inf{t > 0:x; = y;}

is the coupling time. Since all terms involved in the equation are regular enough,
there exists a unique solution y,. Furthermore, since the additional term containing
1{;<7) vanishes from the coupling time on, one has x; =y, for # > 7 due to the
uniqueness of solutions.

LEMMA 2.3. Assume that (1.4) and (1.5) hold with § > 20+/d — 1. Then
there exists a constant C3z > 0 independent of x, y and T such that x7 = yr holds

for & = Cz+20+/d — 1p,(xt) + p(?y)'

PROOF. According to Section 2 in [3], we have

dp(xe, y1) = {1 (xe, y0) +(VV, V(- y))(x)

+(VV.Vp(Qx:, ) (y) — & }dr, 1<rt,

2.4)

where
o(xr, y:) 2
I7(x, yp) = Zf (IVu Jil> = (R(U, J)U, J;)) (&) ds

for R the Riemann curvature tensor, U the unit tangent vector of the minimal
geodesic £ : [0, p(x¢, yr)] = M from x; to y;, and {Jl} the Jacobi fields along £,
which, together with U, consist of an orthonormal bas1s of the tangent space at x;
and y; and satisfy

Ji(yr) = Py, y, Ji (x1), i=1,...,d—1.
By (1.5) we take a constant ¢ > 0 such that Ric > —(c + o ,02) Letting

K(x,y)= sup {c+o%p2},
£([0,pCxr,y0])

we obtain from Wang [21], Theorem 2.14 (see also [7, 8]), that

@) 10130 =2y/K G = Dan] 282 i@ - ],

Moreover, by (1.4) there exist two constants rg, r; > 0 such that —Hessy > §
outside B(o, rg) but <ry on B(o, rg), where B(o, rg) is the closed geodesic ball
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at o with radius rg. Since the length of £ contained in B(o, r¢) is less than 2rgy, we
conclude that

(VV, V(s ) () + (VV, Vi, D))
p(xXt,y1) +
= [ Hessy (U, U)(€) ds = 2rom = (pli, 1) = 2r0) S
0
<c1—6p(xz, yr)

for some constant ¢; > 0. Combining this with (2.4), (2.5) and
/0( y)

& =C3+20vd —1po(x;) +

we arrive at

dp(x;,y1) < {2\/K(x,, y)d — 1) +c1 —8p(xz, yr)

Gy — 20d = Tpyxy) — P& y)}dr

for t < 7. Noting that

VK Gy < (e + 0o (x0) + p G, y)12) 2

<Vec+olpo(x) + pxe, yo)l,
and § > 20+/d — 1, one has

2K (a0, y)(d — 1) = 8p(xr, y1) — 20v/d — 1po(xs) < 2//e(d — 1).
Thus, when C3 > ¢ 4+ 2+/c(d — 1) we have

dp(xlvyl‘)f_p();:y)dta r<r,
so that
T px,y) T—<
0=p(xf,yf)§p(x,y)—/ dt = p(x,y),
0 T T

which implies that t < T and hence, x7 = yr. U

3. Harnack inequality and proof of Theorem 1.1. We first prove the fol-
lowing Harnack inequality using results in Section 2.

PROPOSITION 3.1. Assume that (1.4) and (1.5) hold with § > (1 + /2)o x
d — 1. Then there exist C > 0 and a > 1 such that

(3.1 (Prf(y)* = (PTf“(X))eXP[ p(x, 3>+ C(T + po(x) )}

holds for all x,y € M, T > 0 and nonnegative f € Cp(M).
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PROOF. According to Lemma 2.3, we take

£ = C3 + 20— Tp(r) + 252

such that t < T and x7 = yr. Obviously, y; solves the equation

dry; =~2®,dB; + V'V (y;)dt
for &, := Py, .y, ®; being the horizontal lift of y,, and B, solving the equation

1 -
qDl‘_lélU(xla yt)l{[<r} dt

V2

By the Girsanov theorem and the fact that © < T, the process {f?t 1 €[0,T]} is
a d-dimensional Brownian motion under the probability measure R for

1
R _exp[ \/, Py, y, @1 dB:, & U (xt, y1)) — Sz dt:|

Thus, under this probability measure {y; : ¢ € [0, T']} is generated by L. In particu-
lar, Pr f(y) = E[f(yr)R]. Combining this with the Holder inequality and noting
that x7 = yr, we obtain

Prf(y) =ELf Or)RI=ELf (x7)R]
< (Prf%(x))"/* (ERY/ (@~ D)le=D/e

dB; = dB; +

That is,
(32) (P f()* = (Pr f* () (ER*/ D)™,
Since for any continuous exponential integrable martingale M; and any B, p > 1,

the process exp[BpM; — £~ ’3 (M);] is a martingale, by the Holder inequality one
has
EePMi—B/2)(M): _ E[eﬁM[—(ﬁzp/Z)(Mh .e(ﬂ(ﬂp—l)/2)<M)z]
3.3)
< E(e(ﬂp(ﬁp—1)/(2(p—1)))<M>t)(Pfl)/l?.
By taking 8 = /(o — 1) we obtain

(ER(I/(OC—l))O‘—l
G4 (@=D(p=1)/
_ 1 T a—1)(p=1/p
< {Eexp[ pa(pa — o+ )2 Stzdt“
8(p — D —1*Jo
Since 8 > (1 + +/2)o/d — 1, we may take §p € ((1 + V2)o+/d —1,8), small
¢’ > 0 and large C4 > 0, independent of 7', x and y, such that

2
&= (Ca+20Va= Tyt + 252

, p> 1.

2
<1 —e)cot LI 2o — o VT 1Y ot
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holds. Moreover, since

(3.5) lim lim P2 o+ 1
' pllatoe 8(p — (@ — 1) 8’

there exist p, @ > 1 such that

pa(pa —a+1) (T ,
8(p—1>(a—1>2/o i di

C )2 (Sg—od—1)2 (T
4p(; ) +(0 o )fopo(xt)zdt.

<G4T + 1

Combining this with (3.4) and Lemma 2.2, we obtain

— C b
(ER*/ @D lfexp[C5T+ SP(TX y)

+C5,00(x)2}, T>0,xeM,
for some constant Cs5 > 0. This completes the proof by (3.2). [

PROOF OF THEOREM 1.1. By Proposition 3.1, let « > 1 and C > 0 such
that (3.1) holds. Since § > o+/d — 1, we may take T > 0 such that

C 1

Then for any nonnegative f € Cp(M) with u(f%) =1, since u is Pr-invariant, it
follows from (3.1) that

L= [ Prro@ondn = (Prfo)® [ oo = Cndy )

> (Pr f ()" e 0P =2C ) (x
{Pnfl}

> ¢ (Prf(y)* exp[—2ep,(»)*],  yeM,

for some constant &’ > 0. Thus,
1 2
[ Prrouy << [ 0 udy) < oo,
according to Lemma 2.1. This implies that

I Pr Il ot (puy— 1200 () < OO-

Therefore, the log-Sobolev inequality (1.3) holds for some constant C > 0, due to
the uniformly positively improving property of P; (see [20], proof of Theorem 1.1,
and [1]). O
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4. Supercontractivity and ultracontractivity. Recall that P; is called super-
contractive if || P;||2—4 < oo for all r > 0 while ultracontractive if || P;||2— 00 < 00
for all # > O (see [10]). In the present framework these two properties are stronger
than the hypercontractivity: || P¢|l—s4 < 1 for some ¢ > 0, which is equivalent
to (1.3) due to Gross [14].

PROPOSITION 4.1. Under (1.4) and (1.5), Py is supercontractive if and only
if M(exp[kpg]) < oo for all & > 0, while it is ultracontractive if and only if
|| P, exp[Ap2]lloo < 00 forall t, A > 0.

PROOF. The proof is similar to that of [18], Theorem 2.3. Let f € L*(i) with
,u(fz) = 1. By (3.1) for « = 2 and noting that u is P;-invariant, we obtain

C
= Prion? [ exp[—;p(x, W2 —C(T + po(x)z)]wx)

2 2C 2
> (Prf(y))”exp —7(po(y) +1) = C(T + 1) (u(B(o, 1)).
Hence, for any T > 0 there exists a constant A7 > 0 such that

(4.1) |Prfl<explir(14+0D)],  T>0,u(fH=1.

(1) If ju(e*) < oo for any A > 0, (4.1) yields that
T = pule 2) < 00, T > 0.
Priid_, < (e 0+e

Conversely, if P; is supercontractive then the super log-Sobolev inequality
(ct. [10])

w(fAlog f2) <rn(VP) +B(r),  r>0,u(fH=1,

holds for some S: (0, 00) — (0, 00). By [2] (see also [17, 18]), this inequality
implies (") < oo for all A > 0.
(2) By (4.1) and the semigroup property,

I Pril2—o0 < || PT/2€AT/2(1+’°§) | o < o0, T >0,

. 2 . ..
provided || P,e*”% || o < oo for any ¢, A > 0. Conversely, since the ultracontractivity

. e 2
is stronger than the supercontractivity, it implies that ¢*?% € L*(u) for any A > 0
as explained above. Therefore,

A2 A2
| Pre™” |loo < | Ptll2—oolle™ |l2 < o0, A>0.
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Then the proof is completed. [

To derive explicit conditions for the supercontractivity and ultracontractivity,
we consider the following stronger version of (1.4):

“4.2) —Hessy > ® o p, holds outside a compact subset of M

for a positive increasing function & with ®(r) 1 oo as r 1 co. We then aim to
search for reasonable conditions on positive increasing function W such that

(4.3) Ric > —W o p,

implies the supercontractivity and/or ultracontractivity.

THEOREM 4.2. If (4.3) and (4.2) hold for some increasing positive functions
® and ¥ such that

r 2
(4.4) lim ®(r) = lim Uo @) ds)” _
r—00 r—00 Q)(r)

VU@F+0)d—-1)
4.5)

r 1 rt/2
59/ Cb(s)ds+§/ O(s)ds + C, r,t >0,
0 0

for some constants 0 € (0, 1/(1 + «/5)) and C > 0. Then Py is supercontractive.
Furthermore, if

0 ds
U s Y @) du
then Py is ultracontractive. More precisely, for
1 v o0 ds
()= —/ D(s)ds, [ (r) :=/ — r>0,
Vo ro S5 [T o) du

(4.6) implies
c
A7) 1Pill2—oo < exp[c + ;(1 + I‘l_l(c/l) + Fz_l(z/c))} < 00, t >0,

for some constant ¢ > 0 and

Ul (s) :=inf{r > 0: T () > 5}, s> 0.
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PROOF. (a) Replacing c + ,03 by W o p, and noting that Hessy < —® o p,, for
large p,, the proof of Lemma 2.1 implies

@8)  Lpi<ci(l+p,) — 2po(/0p" ®(s)ds — /W o po(d — 1))

for some constant ¢; > 0. Combining this with (4.5) and noting that % X
o

fo °®(s)ds — oo as p, = 00, we conclude that for any A > 0,

21poN2
14++2

Po
< C+CO) —rp,es f ®(s)ds,
0

Po
L <C- ekpgf D(s)ds +4k2pge)‘p3
0

4.9)

where C > 0 is a universal constant and

CA) = supre“2 {4A2r o fr D(s) ds}
T =0 (1++2)2 Jo
= sup re)‘rz{4)»2r o /r D (s) ds}
P2<I7 @(+v220) (1+~/2)2 Jo

(4.10)

IA

2T (A(1 +v2)*0) exp[ATTH(4(1 + V2)*1)]
exp[4% + 20T (4(1 +v2)*1)] < 0.

IA

Therefore, (1.1) holds and
(4.11) W@y <o,  A>0.

(b) By (4.5), (4.8) and Kendall’s It6 formula [16] as in the proof of Lemma 2.2,
we have

27200(x) (1 + &) [rolan)
14++2

for some constants &, C; > 0, where x; and b, are in the proof of Lemma 2.2. Let

493 ) =220, by + (€ ®(s)ds ) d

(4.12) r) /r ds /ﬁCID( )d >0

. r) = — u)du, r>0.
v 0 /s Jo

We arrive at

dp o p2(x;) < 28/2pp(x)¢" 0 p2(xs) dby + 402 (x)¢" 0 p2(x,) dt

2v/2p0(x) (1 4 €) /pa(m
1+2 0

+oo pZ(x,)(cl _ d>(s)ds) ar.
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From (4.4) we see that

:0090//0,03 - ® o p,
@' o pZ [ ®(s)ds ~ 2(J5° P(s)ds)?

which goes to zero as p, — 00. Then there exists a constant C > C; such that

Po(Xr)
dg o p2(x;) < 2f2< / ®(s) ds) db,
0
2ﬁ Po(Xt) 2
+ Crdt — </ CDsds) dt.
2 1++2\Vo ()

This implies that for any A > 0,

2\/5)\, T Po(Xt) 2
I[I;exp|:1+\/E A (/0 @(s)ds) dti|

T
< eCZ’\THV’"pg(““)Eexp[Zﬁkf (/ D(s) ds> db;]
0 \Jo

2 T Po(Xt) 2 1/2
< €A T+hpop; (x) <Eexp[16k2/ (f d>(s)ds) dt]) .
0 0

Po(xt)

Taking
e V2
8(1++2)

we arrive at

E [ 1 T Po(xt)CD( )d 2d

exp| ——— s)ds t

v h U ) a]

(4.13) ( [)

< 2C2T+90p; ()V2/8(14+/2)

(c) Let y : [0, p(x¢, ¥:)] = M be the minimal geodesic from x; to y;, and U its
tangent unit vector. By (4.2), there exists a constant C3 > 0 such that

(VV,Vp(,y))(xe) +(VV, Vp(x, ) ()
(4.14)

p(xr,y1) p(xr,y1)/2
=/ Hessy (U, Uy) ds < Cs —f ®(s) ds.
0 0

To understand the last inequality, we assume, for instance, that p,(x;) > 0,(y;) S0
that by the triangle inequality,

Po(Vs) = po(xs) — s = p(x, y1)/2 — s, s €10, p(xs, yr)/2].



LOG-SOBOLEV INEQUALITIES 1601

For the coupling constructed in Section 3, one concludes from (4.14) and the
proof of Lemma 2.3 that

dp (i) = {2/K s =D+ €

p(x1,y1)/2
—/ <I>(s)ds—§t}dt, t<r,
0

holds for some constant C4 > 0, where

K (x;,y1) := sup Wo py < W(po(x) + p(xs, y1)),
£([0, p(x1,y:)D)

and ¢ is the minimal geodesic from x; to y;. Combining (4.5) and (4.15), we obtain

(4.15)

Po(x1)
dp(x,,y,)f{&;—i—%/ @(s)ds—é,}dt, t<T.
0

So, taking

Po(x1)
g,:c4+29/ ’ CD(s)ds—l—p();y),
0

we arrive at

dt, t<T.

dp(x;, y1) < —p(); y)

This implies T < T', and hence x7 = yr a.s.
Combining (4.5) with (3.4) and (3.5) we conclude that for the present choice
of & there exist «, p, C5 > 1 such that

- 1 T/ pp(x) 2
21++2)2Jo \Jo

C
+CsT + fp(x, y)Q].
Combining this with (4.13) and (3.2) we obtain
C
4.16)  (Prf(y)* < (PTf"(x))exp[CT + o, y)?+Cpo p%x)]

holds for some ¢, C > 1, any positive f € Cp(M) and all x,ye M, T > 0.
(d) For any positive f € Cp(M) with u(f*) =1, (4.16) implies that

C
Prrone [ o exp[—CT Pl - c(pZ(x)]u(dx) <1

Therefore, there exists a constant C’ > 0 such that

@17 (PrfOy)* =< eXP[C'(l +7)+ %p(y)z], yeM.T>0.
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Combining this with (4.11) we obtain
||PT||a—>pa<OO, T>0p>1.

This is equivalent to the supercontactivity by the Riesz—Thorin interpolation theo-
rem and || P;||;— 1 = 1. Thus, the first assertion holds.

(e) To prove (4.7), it suffices to consider ¢ € (0, 1] since || Py ||2— 1S decreasing
in ¢ > 0. So, below we assume that 7 < 1. By (4.17) and the fact that (P> f)* <
Pr(Pr )%, we have

/72 ’
(4.18) I P2t lla—s oo < | Pre?C o/ T e D 7 5 0,

Therefore, by the Riesz—Thorin interpolation theorem and || P;||1—1 = 1, for the
ultracontractivity it suffices to show that

(4.19) IPre™ | <00, AT >0.

Since @ is increasing, it is easy to check that

ﬁ
n(r) = ﬁfo O(s)ds, =0,

is convex, and so is s — sn(k’kﬁ) for A > 0. Thus, it follows from (4.9) and the
Jensen inequality that

Ry x (1) ::Eekpg(x’) < 00, xo=xeM,rt>0,

and
d+
dr

This implies (4.19), provided (4.6) holds. This can be done by considering the
following two situations:

By x(t) < C+CQ) — My (On(A " oghy 1 (1)), >0,

(1) Since hy x(t) is decreasing provided Ahx,x(t)n()n_lloghk,x(t)) > C +
Cc(n), if

M, (000" og s, £ (0)) < 2C +2C (),

then
1
hy x(t) <sup{r>1 :)»rn()ﬁ] logr) <2C +2C(M)} < X(2C +2C(A)) +C”

for some constant C” > 0.
(2) If Ah; (0)7]()\._1 loghy x(0)) > 2C + 2C(A), then h) ,(¢) is decreasing
intupto

ty ;= inf{t > O:Ahx,x(t)n()\_l loghy (1)) <2C +2C(AM)}.
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Indeed,

Ehk,x (1) < —Ehx,x(t)n(k loghy (1)), t<t.
Thus,
o0 dr A
f ————— > (T AR).
hyx(Tan) TR(A" logr) = 2

This is equivalent to
Ta(A " oghy (T A1) = 5(T Aty).
Hence,
o x (T A1) < exp[AlS (3T A1)].
Since it is reduced to case (1) if T > t, by regarding ¢, as the initial time, in

conclusion we have

1
sup Ay x(T) < max{exp[szl (T/2)], C" + X(ZC + 2C(A))}.
xeM

Therefore, (4.7) follows from (4.18), (4.10) with A = 2C’/ T, and the Riesz inter-
polation theorem. [

Finally, we note that a simple example for conditions in Theorem 4.2 to hold is
D(s) =51, W(s) =es™
for @ > 1 and small enough ¢ > 0. In this case P; is ultracontractive with
| Pt 1|2 00 < exp[c(1 4 ¢~ @ D/@=Dy] t>0,

for some ¢ > 0.
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