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STANDARD DEVIATION OF THE LONGEST
COMMON SUBSEQUENCE

BY JÜRI LEMBER1 AND HEINRICH MATZINGER

University of Tartu and Georgia Tech

Let Ln be the length of the longest common subsequence of two inde-
pendent i.i.d. sequences of Bernoulli variables of length n. We prove that the
order of the standard deviation of Ln is

√
n, provided the parameter of the

Bernoulli variables is small enough. This validates Waterman’s conjecture
in this situation [Philos. Trans. R. Soc. Lond. Ser. B 344 (1994) 383–390].
The order conjectured by Chvatal and Sankoff [J. Appl. Probab. 12 (1975)
306–315], however, is different.

1. Introduction. Throughout this paper X1,X2, . . . and Y1, Y2, . . . are two
independent sequence of i.i.d. Bernoulli variables with parameter 0.5 ≥ ε > 0:

ε = P(Xi = 1) = P(Yi = 1) = 1 − P(Xi = 0) = 1 − P(Yi = 0).

Let X := X1X2 · · ·Xn and let Y := Y1Y2 · · ·Yn. The longest common subse-
quence (LCS) of X and Y is any common subsequence that has the longest possible
length. The length of LCS is denoted Ln. Formally, Ln is the biggest k such that
there exists two subsets of indices {i1, . . . , ik}, {j1, . . . , jk} ⊂ {1, . . . , n} satisfy-
ing i1 < i2 < · · · < ik , j1 < j2 < · · · < jk and Xi1 = Yi1,Xi2 = Yi2, . . . ,Xik = Yik .

The main result of this paper is, that for ε > 0 small enough, the order of the
standard deviation of Ln is

√
n.

LCS’s are a very important tool in computational biology, where they are used
for comparing DNA- and protein-alignments (see, e.g., [3, 16, 17]). They are also
used in computational linguistics, speech recognition and so on. In all these appli-
cations, two strings with a relatively long LCS, are deemed related.

EXAMPLE. Let us give an example of the practical use of LCS’s. Take the
two words: X = fanthastic and Y = fntastique. These two words are very similar.
They were obtained from the English word “fantastic” and the French word “fan-
tastique” by adding spelling mistakes. We would like the computer to recognize
the similarity. If the computer compares letter by letter,

f a n t h a s t h a s t i c
f n t a s t i q u e

,
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it finds that only one letter coincides. Comparing the ith letter of the first word with
the ith letter of the second word for all the letters is not a good way to recognize any
similarity. The reason are the missing letters. The original position of the letters in
the words gets changed. To take into account the missing letters or added letters, we
align the two words allowing for gaps. We allow only same letters to be matched
with each other. In such a way, we obtain a sequence of letters that is contained in
X as well as in Y . Such a sequence is a common subsequence of X and Y . Hence,
the longest common subsequence is the maximum number of same letters we can
align allowing gaps. In our example the maximum is given by the alignment

f a n t h a s t i c
f n t a s t i q u e

.(1)

Hence f,n, t, a, s, t, i is the longest common subsequence of the two words and
the length of the longest common subsequence, Ln, is 7. This indicates that the
two words are very similar.

To distinguish related pairs of strings from unrelated via the LCS method, we
need to assess the order of the fluctuation of the LCS. For this reason the random
variable Ln has received a lot of attention. Nonetheless, many questions remain
open. In their pioneering paper [7], Chvatal and Sankoff prove that the limit

γ := lim
n→∞

ELn

n
(2)

exists. In [1], Alexander investigated the rate of the convergence in (2) and showed
that for a constant C, ELn − nγ ≥ C

√
n lnn. Moreover, by a subadditivity argu-

ment
Ln

n
→ γ a.s and in L1(3)

(see, e.g., [1, 17]). The constant γ is called the Chvatal–Sankoff constant and
its value is unknown for even as simple cases as i.i.d. Bernoulli sequences. In
this case, the value of γ obviously depends on the Bernoulli parameter ε. When
ε = 0.5, the various bounds indicate that γ ≈ 0.81 [4, 11, 14]. For a smaller ε,
γ is even bigger. Further bounds on γ have been obtained by Martinez, Hauser
and Matzinger [9]. Hence, a common subsequence of two independent Bernoulli
sequences typically makes up a large part of the total length. This implies that to
make some inference, the size of the variance Var[Ln] is essential. Unfortunately,
not much is known about Var[Ln] and its asymptotic order is one of the central
open problems in string matching theory. Monte Carlo simulations lead Chvatal
and Sankoff in [7] to conjecture for ε = 0.5 that Var[Ln] = o(n2/3). Using an
Efron–Stein type of inequality, Steele [14] proved Var[Ln] ≤ 2ε(1 − ε)n. In [15],
Waterman asks whether this linear bound can be improved. His simulations sug-
gest that for ε < 1

2 this is not the case and Var(Ln) grows linearly. In [6], Boutet
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de Monvel simulates Var(Ln) for the case ε = 1
2 and notices the linear growth as

well. However, he adds that the linear regime of the growth is not reached before
n is about 10,000. He also simulates the values of the random variable

Ln − ELn√
Var(Ln)

and founds its distribution close to normal.
In a series of papers, we investigate the asymptotic behavior of Var[Ln] in var-

ious setups. Our goal is to find out, whether there exists a constant c > 0 (not
depending on n) such that Var[Ln] ≥ cn. Together with Steele’s bound, this means
that cn ≤ Var[Ln] ≤ n, that is, Var[Ln] = �(n) [a sequence an is of order �(n),
if, for some constants 0 < c < C < ∞, cn ≤ an ≤ Cn for all n large enough]. In
[5], Bonetto and Matzinger consider the asymmetric situation where the random
variables in X are Bernoulli with 1/2, but Y is a random i.i.d. string with three
symbols. They obtain that in this setting Var[Ln] = �(n). In [10], Houdre, Lem-
ber and Matzinger investigate the asymptotic behavior of the longest common in-
creasing subsequence of two independent Bernoulli sequences (a binary increasing
sequence begins with a block of zero’s followed by a block of one’s). They find that
under this additional restriction n−1/2(Ln −ELn) converges in law to a functional
of two Brownian motions implying that Var[Ln] = �(n) holds again (here Ln

designates the length of the longest common increasing subsequence). Durringer,
Lember and Matzinger [13] show that Var[Ln] = �(n) when Y is a nonrandom
periodic binary sequence and X is an i.i.d. Bernoulli 1/2 sequence. The nature of
the optimal path has been investigated by Amsalu, Popov and Matzinger in [2] as
well as by Lember, Matzinger and Vollmer in [12].

The relatively long history shows that determining the exact order of the fluc-
tuation of Ln is a difficult problem. In fact, as noted in [1, 3], the LCS problem
can be reformulated as a Last Passage Percolation (LPP) problem with correlated
weights. But for standard LPP and First Passage Percolation, the question of the
exact order of the fluctuation remain open except for the case of geometric or ex-
ponential weights which has been solved by Johanson.

2. Main result. The main result of this paper, Theorem 2.1, asserts that when
ε > 0 is small, the fluctuation of Ln is of order

√
n. In fact, the theorem gives only

a lower linear bound for the variance of Ln. The upper linear bound comes from
the result of Steele [14]. Hence, Theorem 2.1 implies that Var[Ln] = �(n).

THEOREM 2.1. There exists ε0 > 0 such that for every ε < ε0, there exists a
constant c > 0 depending on ε but not depending on n, that satisfies

Var[Ln] ≥ c · n ∀n.

One of the main tools in this paper is a map that picks a one in the text X or Y

at random and changes it into a zero. Let X̃ and Ỹ designate the texts obtained in
this way.
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EXAMPLE. Let n = 6, X = 001000 and Y = 101000. The total number of
ones in the two texts is 3. Hence, we pick one of these three ones at random with
equal probability and switch it into a zero. Assume we pick the second one in
text Y . Then X̃ = 001000 and Ỹ = 100000.

Let us define X̃ and Ỹ rigorously. For a binary string x = x1x2 · · ·xn, we denote
by Nx

1 the total number of ones in x. So Nx
1 := ∑n

i=1 xi . Similarly, N
y
1 is the total

number of ones in y = y1y2 · · ·yn. The binary random strings X̃ and Ỹ are defined
by the following equations:

n∑
i=1

(|X̃i − Xi | + |Ỹi − Yi |) =
⎧⎪⎨
⎪⎩

1, if
n∑

i=1

(Xi + Yi) > 0;

0, else,

n∑
i=1

(X̃i − Xi + Ỹi − Yi) =
⎧⎪⎨
⎪⎩

−1, if
n∑

i=1

(Xi + Yi) > 0;

0, else,

P(X̃i 
= Xi |X = x,Y = y) =
⎧⎨
⎩

0 if xi = 0;
1

Nx
1 + N

y
1

, else,

P(Ỹi 
= Yi |X = x,Y = y) =
⎧⎨
⎩

0 if yi = 0;
1

Nx
1 + N

y
1

, else.

Let L̃n denote length of the longest common subsequence of X̃ and Ỹ . When we
change one bit in X or Y and flip it to the opposite value, then the length of the
LCS changes by at most one. The next theorem shows that in this case the length
of the LCS Ln is more likely to increase by one unit than to decrease by one unit.

THEOREM 2.2. There exist constants α1 and α2, α1 > α2 and a set Bn ⊂
{0,1}n × {0,1}n such that for all (x, y) ∈ Bn

P (L̃ − L = 1|X = x,Y = y) ≥ α1,(4)

P(L̃ − L = −1|X = x,Y = y) ≤ α2.(5)

Moreover, there exists an ε0 > 0 such that for every 0 < ε ≤ εo

P
(
(X,Y ) ∈ Bn

) ≥ 1 − e−c1n,(6)

where c1 > 0 does not depend on n, but may depend on ε.

In Section 3, we prove that Theorem 2.2 implies Theorem 2.1. Let us briefly
explain the main ideas behind the proof. We define two sequences of random bi-
nary strings X1,X2, . . . ,X2n and Y 1, Y 2, . . . , Y 2n, all of them having length n.
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The strings Xk and Y k are define by induction on k: X2n and Y 2n consist only
of ones; Xk−1 and Y k−1 are obtained by choosing a one at random in XkY k and
replacing it by a zero. Hence we use the random map .̃ We designate by L(k)

the length of the LCS of Xk and Y k . Note that the total number of ones in the
string Xk and Y k is k. Let (X,Y ) be independent of {(Xk,Y k)}k∈{0,...,2n} and let
N1 designate the total number of ones in the two strings X and Y . It is not hard to
see that (Xk,Y k) has the same distribution as (X,Y ) conditional on N1 = k. This
implies that L(N1) has same distribution, as Ln. The standard deviation of N1 is
of order

√
n. Moreover, from Theorem 2.2 directly follows that the (random) map

k �→ L(k) tends to increase linearly on a certain scale. These two facts together
imply immediately that the standard deviation of L(N1) and hence also of Ln is of
order

√
n.

Let us now give a heuristic argument why Theorem 2.2 holds. Recall that in
this paper, we consider the situation where one has a small, but fixed probability.
Hence, in the texts X and Y , there is a small proportions of ones. This implies that
only a small percentage of ones can figure in a LCS. It will turn out that the number
of ones in a LCS is typically of order ε2n. This is much less than the total number
of ones in the texts X and Y , which is of order 2εn. It follows that the majority
of ones in the texts X and Y constitute a “net loss” for the score Ln. Hence the
number of ones tends to influence the score Ln negatively. Changing a randomly
picked one into zero is not very likely to decrease the score. It can decrease the
score only if the chosen one is used in a LCS. But the additional zero obtained in
this way will in many cases increase the score.

EXAMPLE. Let

X = 00010000100000000000001,

Y = 00010000000010000100000.

The longest common subsequence Z is Z = 000100000000000000000. An align-
ment corresponding to Z is

X 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Y 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
Z 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The optimal solution is obtained by matching all the zeros, and the first one in both
texts, but discarding all other ones. We see the general phenomena: since there are
few ones, sometimes by chance some ones appear in respective positions in the
two texts where they can be matched. The other ones in text X and Y appear in
places in the text where we cannot match them with a one. If we would match
them we would loose too many zeros. That is why, most ones can not be used in
the LCS.
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The argument in the previous numerical example gives a first idea of what is
happening. However, proving anything rigorously is difficult. The reason is as fol-
lows. We take ε small but fixed and let then n tend to infinity. The optimal align-
ment (optimal alignment is the alignment which defines the LCS) is then going to
be a global alignment. This means that typically some parts of the text X will be
connected with parts of the text Y that are far away. This introduces complicated
correlations between the different parts of the optimal alignment. Microscopically
it is easy to understand the approximate behavior of the optimal alignment. Macro-
scopically however, little is understood about the optimal alignment. It seems that
there are complicated long range interactions between all the different parts.

3. Theorem 2.2 implies Theorem 2.1. The proof. In this section, we prove
that Theorem 2.2 implies Theorem 2.1. We use some of the techniques developed
in [5].

Recall that N1 is the total number of ones in the two strings X and Y . We
already mentioned briefly the definition of the random pair of strings (Xk,Y k) for
k ∈ [0,2n]. Let us give more details. Both strings Xk and Y k are binary strings of
length n. We proceed recursively on k. The strings X2n and Y 2n consist only of
1’s. We pick a 1 in the strings X2nY 2n at random and change it into a 0. This way
we obtain (X2n−1, Y 2n−1). For general k, we obtain (Xk−1, Y k−1) from (Xk,Y k)

by choosing a 1 at random in XkY k and changing it to the opposite value. Each one
has the same probability to get chosen. We request that conditional on (Xk,Y k),
which one in (Xk,Y k) gets chosen, is independent of {(Xi, Y i)}i∈[k,2n]. In other
words, we apply the transformation ,̃ so that

Xk−1 := X̃k and Y k−1 := Ỹ k.

The distribution of (Xk,Y k) is equal to the distribution of (X,Y ) conditional on
N1 = k:

L(Xk,Y k) = L(X,Y |N1 = k),(7)

where L(W) designates the distribution of the random variable W .
Let L(k) designate the length of the LCS of Xk and Y k .
We assume that {Xk,Y k}k∈[0,2n] are independent of the random variable N1.

Picking N1 according to its distribution gives us random strings (XN1, YN1) that
have the same distribution as (X,Y ). Therefore, the length L(N1) of the LCS of
(XN1, YN1), has the same distribution as Ln. Hence

Var[Ln] = Var[L(N1)].
Recall that our aim is to prove that Var[L(N1)] it at least of order n. This follows
from two facts: (1) the order of Var[N1] is n; (2) the (random) map k �→ L(k)

typically decreases linearly on a certain scale.
The second point follows rather directly from Theorem 2.2 and is proven in

Lemma 3.2. This section is dedicated to showing that (1) and (2) above imply the
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linear lower bound for Var[L(N1)]. There are two technical difficulties: (a) the
map k �→ L(k) does not increase at every point, but only on a certain scale; (b) the
increasing slope on a certain scale only holds in a domain where typically N1 takes
values, but not everywhere.

Recall that for any variables V and W ,

Var[V ] = Var[E[V |W ]] + E[Var[V |W ]] ≥ E[Var[V |W ]],(8)

where Var[V |W ] is the variance of the conditional distribution L(V |W). Applying
(8) to our case, we find

Var[L(N1)] ≥ E[Var[L(N1)|L(·)]],(9)

where L(·) is the (random) map k �→ L(k). Note that N1 is independent of L(·).
Let I be the interval

I := [
2εn − √

ε(1 − ε)2n,2εn + √
ε(1 − ε)2n

]
.(10)

Let Ñ1 be a random variable, independent of L(·) and having the distribution of
N1 conditioned on N1 ∈ I . From (8), it follows for every fixed L that

Var[L(N1)] ≥ Var[L(N1)|N1 ∈ I ]P(N1 ∈ I ) = Var[L(Ñ1)]P(N1 ∈ I ).

Hence, since L and Ñ1 are independent,

E[Var[L(N1)|L(·)]] ≥ E[Var[L(Ñ1)|L(·)]]P(N1 ∈ I ).(11)

Assume that f : R → R is map such that, for a constant c > 0, f ′(x) > c for all
x ∈ R. Then, for any random variable Y , we have

Var[f (Y )] ≥ c2 Var[Y ].(12)

(See Lemma 3.2 in [5] for the proof.) Hence, if the map L(·) had positive slope
everywhere larger than c > 0, it would follow that Var[L(N1)] ≥ c · Var[N1]. Typ-
ically, the (random) map k �→ L(k) does not strictly increase for every k ∈ [0,2n].
But it is likely that in I it increases by a linear quantity. We are next going to
formulate a lemma, proven in [5] (Lemma 3.3 in [5]), which is a modification of
inequality (12), for when the map k �→ f (k) does not increase every k, but has a
tendency to increase on some scale.

LEMMA 3.1. Let c,m > 0 be two constants. Let f : I → Z be a non decreas-
ing map that satisfies the following conditions

f (j) − f (i) ≤ (j − i) ∀i < j,(13)

f (j) − f (i) ≥ c · (j − i) ∀i, j such that i + m ≤ j.(14)

Let B be an I -valued random variable such that E|f (B)| < ∞. Then

Var[f (B)] ≥ c2
(

1 − 2m

c
√

Var[B]
)

Var[B].(15)
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Recall the definition of I in (10). Let α1 and α2 be the constants from Theo-
rem 2.2 and let En

slope denote the event that for all i, j ∈ I , such that i + n0.1 ≤ j ,
we have

L(j) − L(i) ≥ α3|i − j |,(16)

where

α3 := α1 − α2

2
.

In other words, the event En
slope says that L(·) has a slope of at least α3 on I , when

we look only at points which are at least n0.1 away from each other. The next
lemma shows that the event En

slope has high probability, provided Theorem 2.2
holds.

LEMMA 3.2. For a constant c4 > 0,

P(En
slope) ≥ 1 − ec4·n0.1

,(17)

provided n is sufficiently big.

PROOF. Let Ak
n denote the event that the random vector (Xk,Y k) takes the

values in the set Bn defined in Theorem 2.2. So

Ak
n := {(Xk,Y k) ⊂ Bn}.

Let Aall
n be the event

Aall
n := ⋂

k∈I

Ak
n.

Let

�k :=
{

L(k − 1) − L(k), when Ak
n holds;

1, else.

Let i < j and consider the random variable

j∑
k=i+1

�k.

When (Xk,Y k) = (x, y) ∈ Bk
n, that is, Ak

n holds, then Theorem 2.2 says that

P(�k = 1|Xk = x,Y k = y) ≥ α1,

P (�k = −1|Xk = x,Y k = y) ≤ α2,

implying that E[�k|Ak
n,X

k,Y k] ≥ α1 − α2. Since E[�k|(Ak
n)

c] = 1 > α1 − α2,
we get

E(�k|Xk,Y k) ≥ α1 − α2.(18)
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Let, for every k = 2n + 1, . . . ,2,

Fk := σ(X2n, Y 2n, . . . ,Xk−1, Y k−1).

These σ -algebras perform a (reversed) filtration, because

F2n+1 ⊂ F2n ⊂ · · · ⊂ F2.

The random variable �k is Fk-measurable. Hence, Vk := �k −E[�k|Fk+1] are re-
versed martingale differences. Since −1 ≤ �k ≤ 1, we can use Höffding–Azuma’s
inequality to obtain

P

( j∑
k=i+1

�k −
j∑

k=i+1

E[�k|Fk+1] < −c

)
≤ exp

[
− 2c2

4(j − i)

]
.(19)

The inequality (18) means

E[�k|Fk+1] ≥ α1 − α2

implying that

j∑
k=i+1

E[�k|Fk+1] ≥ (α1 − α2)(j − i).(20)

With c = (α1−α2
2 )(j − i), (19) and (20) yield

P

( j∑
k=i+1

�k <

(
α1 − α2

2

)
(j − i)

)

≤ P

( j∑
k=i+1

�k −
j∑

k=i+1

E[�k|Fk+1] < −
(

α1 − α2

2

)
(j − i)

)

≤ exp[−α(j − i)],
where α = 1

2(α1−α2
2 )2. So

P

( j∑
k=i+1

�k < α3(j − i)

)
≤ exp[−α(j − i)].(21)

Let En
� slope be the event that ∀i, j ∈ I , such that 2εn < i < j ≤ 2εn + √

n and

i + n0.1 ≤ j , we have

j∑
k=i

�k ≥ α3|i − j |.(22)

By (21), for n large enough, there exists a constant c2 > 0 such that

P((En
� slope)

c) ≤ n exp[−(α)n0.1] ≤ exp[−c2 · n0.1],
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and hence

P(En
� slope) ≥ 1 − e−c2·n0.1

.(23)

When the event Aall
n holds, En

slope and En
� slope are equivalent. Hence

Aall
n ∩ En

� slope ⊂ En
slope,

which implies

P(Enc
slope) ≤ P((Aall

n )c) + P(Enc
� slope).(24)

Note that

P((Aall
n )c) ≤ ∑

k∈I

P (Akc
n ) = ∑

k∈I

P (Ac
n|N1 = k) ≤ ∑

k∈I

P (Ac
n)

P (N1 = k)
,(25)

where

An := {(X,Y ) ∈ Bn}.(26)

By the local central limit theorem, there exists c3 > 0 such that for all k ∈ I

P (N1 = k) ≥ 1/c3√
n

.

Applying the last inequality to (25), yields

P((Aall
n )c) ≤ √

2nc3P(Ac
n).(27)

Now the inequalities (23), (27) and (24) yield

P(Enc
slope) ≤ √

2nc3P(Ac
n) + e−c2·n0.1

.(28)

By Theorem 2.2, we have that P(Ac
n) ≤ Ce−c1n. Applying this to (28) gives

P(Enc
slope) ≤ c3

√
2ne−c1n + e−c2·n0.1

,

which finishes the proof. �

When En
slope holds, then the map

L : I → N

satisfies the conditions of Lemma 3.1 with m = n0.1. Hence, when En
slope holds,

then

Var[L(Ñ1)] ≥ α2
3

(
1 − 2n0.1

α3

√
Var[Ñ1]

)
Var[Ñ1].
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Conditioning on En
slope, using the fact that the variance is nonnegative and Ñ1 and

L are independent,

E[Var[L(Ñ1)]|L(·)] ≥ E[Var[L(Ñ1)|En
slope]]P(En

slope)

≥ α2
3

(
1 − 2n0.1

α3

√
Var[Ñ1]

)
Var[Ñ1]P(En

slope).

Plugging the last inequality into (11) yields

E[Var[L(N1)|L(·)]]
(29)

≥ α2
3

(
1 − 2n0.1

α3

√
Var[Ñ1]

)
Var[Ñ1]P(En

slope)P (N1 ∈ I ).

By the central limit theorem, P(N1 ∈ I ) converges to

P
(
N (0,1) ∈ [−1,1]) > 0

as n → ∞. [Here N (0,1) designate the standard normal variable.]
Note that N1 is a binomial variable with parameters 2n and ε. Hence, by the

central limit theorem,

Var[Ñ1]
n

= Var[N1|N1 ∈ I ]
n

→ 2ε(1 − ε)P
(
N (0,1) ∈ [−1,1])−1

∫ 1

−1
φ(x)x2 dx,

where φ is the standard normal density. Together with Lemma 3.2, this implies
that the right-hand side of inequality (29) divided by n converges to

α2
32ε(1 − ε)

∫ 1

−1
φ(x)x2 dx > 0.

The inequality (9) now finishes the proof.

4. Aligning the ones. The rest of the paper is devoted to the proof of Theo-
rem 2.2. The key ingredient for the following is the notation to describe the align-
ments. Throughout this paper we only consider alignments which align a symbol
with a gap or with the same symbol in the other text. We exclude alignments which
align different symbols with each other. We start with a simple example.

EXAMPLE. Take the two texts X = 1000001 and Y = 1001. The LCS of X

and Y is Z = 1001. It is obtained by aligning the first one in both text and the last
one and for the rest aligning as many zeros as possible. Text X contains 5 zeros and
text Y contains 2. The maximum number of aligned zeros is thus min{2,5} = 2.
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There are many alignments corresponding to the LCS Z = 1001. Let us present
two alignments corresponding to this LCS:

X 1 0 0 0 0 0 1
Y 1 0 0 1

or another possibility:

X 1 0 0 0 0 0 1
Y 1 0 0 1

.

How the zeros are aligned between the ones is not important as long as we align
the maximum number of zeros between the ones. Hence in general we will only
describe which ones are aligned and assume that between pairs of aligned ones we
align the maximum number of zeros. Let us give a further example to illustrate
this. Take the sequences:

X = 101010101,

Y = 11010001.

A LCS of X and Y is 1101001. This LCS can be obtained with the following
alignment:

X 1 0 1 0 1 0 1 0 1
Y 1 1 0 1 0 0 0 1

.(30)

We call the portions between pairs of aligned ones cell.
The first cell of alignment (30) is

1
1

.

The first cell is an exception. It is the only cell which is not comprised between two
pairs of aligned ones. Instead it consists of the first pair of aligned ones and every-
thing to its left. We only introduce this special cell in order to simplify notations
later on.

The second cell of alignment (30) is

0 1
1

.

The third cell of alignment (30) is

0 1
0 1

.
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The fourth cell of alignment (30) is

0 1 0 1
0 0 0 1

.

Note that the second cell has one more zero in the X-part than in the Y -part.
The third cell has the same amount of zeros in both parts. The fourth cell has two
zeros in the X-part and three zeros in the Y -part. Hence the X-part has one zero
less. The difference of zeros between the X-part and the Y -part for cell 2, 3 and 4
in this order is 1, 0 and −1. Cell number 1 has no zeros. Hence the difference of ze-
ros for cell number 1 is equal to zero. Let vi denote the difference of zeros of cell i.
We will represent alignments as the sequence of differences of zeros of their cells.
For the alignment (30), this gives the representation (v1, v2, v3, v4) = (0,1,0,−1).
This sequence uniquely defines the alignment of the ones.

Let X = X1 · · ·Xn and Y = Y1 · · ·Yn be given. As explained above, to every
optimal alignment corresponds a vector v := (v1, . . . , vk) that shows the number
of cells in the alignment (k) and the difference of zeros in the cells. In every cell,
the maximum amount of zeros is aligned. On the other hand, to every vector v =
(v1, . . . , vk) ∈ Z

k corresponds a (possible empty) family of alignments. All of them
have the same pairs of aligned ones and between consecutive pairs of aligned ones,
the maximum number of zeros is aligned. The alignments corresponding to v can
differ only in the way the zeros between aligned ones (inside cells) are aligned.
Since all the alignments associated with v have the same score (the same number
of aligned zeros and ones), we do not care how the zeros inside a cell are aligned (as
long as the maximal number of them is aligned). Therefore, in a slight imprecision
we will speak of one alignment for the whole family associated with v. In other
words, we identify each vector v with an alignment. In this alignment, the number
of aligned ones (cells) is k, the difference in the number of zero’s in cell number i

is vi and inside a cell, the maximal number of zeros is aligned. So, in a sense, it is
the “smallest” alignment which aligns exactly k pairs of ones with each other and
has the difference of zeros in cell i equal to vi , for all i ∈ {1,2, . . . , k}.

We write |v| for the length of v. If v ∈ R
k , then |v| = k. Let us next define

rigorously the alignment associated with v = (v1, . . . , vk) ∈ Z
k .

DEFINITION 4.1. Let k ∈ N and let v = (v1, . . . , vk) ∈ Z
k . Define π(i), ν(i)

by induction on i:

• start with π(0) = ν(0) = 0;
• for i < k, once π(i), ν(i) is defined, let (π(i +1), ν(i +1)) be the smallest (s, t)

such that all of the following three conditions are satisfied.

1. π(i) < s and ν(i) < t ;
2. Xs = Yt = 1;
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3. the difference between the number of zeros of X in the interval [π(i), s] and
the number of zeros of Y in the interval [ν(i), t] is equal to vi+1. Hence,

vi+1 :=
((

s − π(i)
) −

s∑
j=π(i)

Xj

)
−

((
t − ν(i)

) −
s∑

j=ν(i)

Yj

)
.

If no such (s, t) exists, then π(i + 1) = · · · = π(k) := ∞ and ν(i + 1) = · · · =
ν(k) := ∞.

The cell number i is equal to the pair of strings:

C(i) := ((
Xπ(i−1)+1, . . . ,Xπ(i)

)
,
(
Yν(i−1)+1, . . . , Yν(i)

))
.

We define the alignment v as any alignment such that the following conditions
hold (provided that there exists at least one):

• Xπ(i) is aligned with Yν(i) for every i = 1, . . . , k;
• the number of aligned zeros in the cell C(i), denoted by Sv(i), is the minimum

between the number of zeros in the string Xπ(i−1)+1Xπ(i−1)+2 · · ·Xπ(i) and the
number of zeros in the string Yν(i−1)+1Yν(i−1)+2 · · ·Yν(i);

• after aligning Xπ(k) with Yν(k), we align as many zeros as possible. Let that
number be r .

Hence, the number of aligned zeros up to the last pair of aligned ones equal to

S(i) := min

{(
π(i) − π(i − 1)

) −
π(i)∑

j=π(i−1)+1

Xj,

(
ν(i) − ν(i − 1)

) −
ν(i)∑

j=ν(i−1)+1

Ys

}
.

To show that all π(i), ν(i),C(i), S(i) depend on v, we write also

πv(i) := π(i), νv(i) := ν(i), Cv(i) := C(i), Sv(i) := S(i),

rv := r.

We call a cell Cv(i) a u-cell, if vi = u. Thus, in a 0-cell the number of zeros
in X-part equals the number of zeros in Y -part, and all the zeros in the cell are
aligned. Similarly, in a 2-cell, there are 2 more zeros in the X-part, and these 2
zeros remain unaligned.

To summarize: every v ∈ Z
k defines an alignment. This alignment corresponds

to aligning Xπv(i) with Yνv(i), for each i = 1,2, . . . , k. These are the aligned pairs
of ones: Xπv(i) = Yνv(i) = 1. Between the aligned pairs of ones we assume that
we align as many zeros as possible. Hence in cell number i, we align Sv(i) zeros
(maximum possible amount). After last pair of aligned ones, we align as many
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zeros as possible. The length of the common subsequence defined by alignment v

can now be computed as follows:
Each cell gives one aligned pair of ones. Hence, this part contributes |v|. Then

we add for each cell the number of zeros aligned. This sums up to
∑|v|

i=1 Sv(i).
Finally we need to add the remaining amount of zeros rv which can be aligned but
which come after the last cell. When v ∈ Z

k is such that πv(k), νv(k) ≤ n, then rv
is the minimum between the number of zeros in the string Xπv(k) · · ·Xn and the
number of zeros in the string Yνv(k) · · ·Yn. The length of the common subsequence
defined by the alignment v is now equal to

Sv := |v| +
|v|∑
i=1

Sv(i) + rv.

The number Sv is also called the score of the alignment v. This is the length of the
common subsequence corresponding to v.

Of course, it can be that given X = X1 · · ·Xn and Y = Y1 · · ·Yn there might
not be any alignment corresponding to v. In this case π(k) = ν(k) = ∞. On the
other hand, if an alignment corresponding to v exists, then πv(k) ≤ n and νv(k) ≤
n. A vector v ∈ Z

k satisfying the previous condition is called admissible. Let V

designate the set of all admissible alignments, that is,

V :=
{
v ∈ ⋃

k>0

Z
k :π(|v|), ν(|v|) ≤ n

}
.(31)

The set V , obviously, depends on X and Y . The next statement trivially holds.

PROPOSITION 4.1.

Ln = max
v∈V

(
|v| +

|v|∑
i=1

Sv(i) + rv

)
.(32)

We say an admissible alignment v is optimal if Sv = Ln.

Let v ∈ ⋃
k>0 Z

k be nonrandom and define |v| random cells Cv(1), . . . ,Cv(|v|)
as in Definition 4.1. One of the main advantages of defining alignments the way
described above is that the cells Cv(1),Cv(2), . . . ,Cv(|v|) are independent so that
we can use large deviation techniques. If vi = vj = u, then, in addition to being
independent, the cells Cv(i) and Cv(j) are both identically distributed u-cells. In
Section 6.1, we show how to efficiently construct a u-cell.

5. The effect of changing a one into a zero.

5.1. The events Bn and An. Recall the main idea behind Theorem 2.2: typi-
cally, when changing a randomly picked one into a zero, the score Ln is likelier to
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increase than to decrease. More precisely, we want the conditional probability of
an increase in score to be above α1, while the conditional probability of a decrease
should be below α2. The constants α1 and α2, do not depend on n and satisfy
α1 > α2. By “conditional,” we mean conditional on X and Y .

EXAMPLE. Take the two texts X = 0001000001 and Y = 1000010101. An
optimal alignment is given by

X 0 0 0 1 0 0 0 0 0 1
Y 1 0 0 0 0 1 0 1 0 1

.

The first cell in this alignment is

0 0 0 1
1 0 0 0 0 1

while the second cell is

0 0 0 0 0 1
0 1 0 1

.

Assume that the one which we switch into a zero is Y8. This is a “nonaligned”
one contained in the Y -part of cell number two. By switching Y8 into a zero the
LCS increases by one unit. The reason is that in cell number two, we can now
align three zeros instead of only two. The new cell number two (after switching
Y8) looks as follows:

0 0 0 0 0 1
0 0 0 1

.

The score gets increased because Y8 is on the side of the cell with strictly less
zeros. We say that Y8 is on the side of a cell with less zeros. Let us imagine next
that instead of Y8 the one chosen would be X10. This one is “used” in the align-
ment and hence switching it could result (and does in this case) in decreasing the
optimal score Ln by one unit. (This is not always necessary though, as can be seen
with X4. When we flip X4 into a zero, the score remains the same.) We call the
ones which are “used” in the alignment, ones that are matched by the alignment.
In our example, X4 is matched with Y6 and X10 is matched with Y10, Y8 is not
matched, nor is Y1.

In the present situation, we have six ones. Each one has a probability to get
picked of 1/6. Only Y1 and Y8 increase the score when picked. (Here Y1 is a non-
matched one on a side with more zeros. In general, such a one must not increase
the score when changed into a zero. It does in this example by completely mod-
ifying the alignment and changing the number of cells.) Hence the probability of
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an increase in score is equal to 2/6. Four ones, X4, X10, Y6 and Y10 could poten-
tially decrease the score. In our example only X10 actually does, so the conditional
probability of a decrease is 1/6. Since, in general, with longer sequences we can-
not look in detail at every one, we will use as upper-bound for the probability of
a decrease: the proportions of matched ones to total number of ones. In our case,
this gives 4/6 as upper bound for the probability of a decrease in score. As lower
bound for the probability of an increase, we take the proportion of unmatched ones
on sides with less zeros to the total number of ones. In our example, this proportion
is equal to 2/6.

From our example, it becomes clear what we need to do. We need to prove that
typically there exists an optimal alignment v for which:

(1) The proportion of ones that are on a side of a cell with less zeros among
all ones in X and Y is above α1.

(2) The proportion of ones that are matched among all ones in X and Y , is
below α2.

In other words, we need to show that there exists an optimal alignment, with
much less aligned ones than ones that are on a side of a cell with less zeros.

Let N−
v (i) denote the number of ones on the side with less zeros in cell

number i. Formally, let k ∈ N and let v = (v1, . . . , vk) ∈ Z
k be admissible. For

i ∈ [0, k], we define

N−
v (i) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if vi = 0 (there is no side with less zeros);
ν(i+1)−1∑
j=ν(i)+1

Yj , if vi > 0 (Y part has less zeros);

π(i+1)−1∑
j=π(i)+1

Xj, if vi < 0 (X part has less zeros).

The total number of ones on sides with less zeros is

N−
v :=

|v|∑
i=1

N−
v (i).

It is important to note that N−
v (i) counts the ones inside the cell, that is, the aligned

1 that ends every cell is not counted. This means that N−
v (i) can also be zero.

[In the example above, N−
v (1) = 0, N−

v (2) = 1 and N− = 1.] Such a definition
ensures that N−

v ≥ α1N1 guarantees P(L̃ − L = 1|X,Y ) ≥ α1.

Fix some constants α1, α2. Let An be the event that there exists an optimal
alignment v such that

1. The proportions of ones on sides with less zeros is above α1. Hence, N−
v ≥

α1N1.
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2. The proportion of aligned ones is below α2: 2|v| ≤ α2N1, where N1 is the total
number of ones in X and Y .

Obviously, An depends on the values of α1 and α2. From what we explained it
follows directly that on An, the desired inequalities hold:

P(L̃ − L = 1|X,Y ) ≥ α1 and P(L̃ − L = −1|X,Y ) ≤ α2.

What is left to prove is that there exists α1 > α2 > 0 such that the event An has
probability close to one:

P(An) ≥ 1 − exp[−c1n], where c1 > 0.(33)

To be consistent with the notation in Theorem 2.2, let Bn designate the set of pairs
of strings (x, y) for which An holds. Hence, (x, y) ∈ Bn if and only if

{X = x,Y = y} ∈ An.

We have An := {(X,Y ) ∈ Bn} and for (x, y) ∈ Bn inequalities (4) and (5) hold.

5.2. Breaking cells. In the previous section we argued that we need an optimal
alignment with enough ones in cell-sides with less zeros (0-cells). The problem is
that many optimal alignments can have most cells with the same number of zeros
on both sides. For such alignments there will also be few ones on cell-sides with
less zeros. This problem is circumvented by taking an optimal alignment with most
cells having same number of zeros on both sides and applying some surgery, so as
to create enough cells with different numbers of zeros on the sides. This is done in
such a manner that the “patient” after operation is still an optimal alignment. Let
us first look at an example.

EXAMPLE. Take the texts X = 01001001001001 and Y = 01010000010101.

Take the following optimal alignment

X 0 1 0 0 1 0 0 1 0 0 1 0 0 1
Y 0 1 0 1 0 0 0 0 0 1 0 1 0 1

.

The first cell is

0 1
0 1

.

The second cell is

0 0 1 0 0 1 0 0 1
0 1 0 0 0 0 0 1

.

The third cell is

0 0 1
0 1 0 1

.
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All cells in the above alignment have the same number of zeros. Thus, there are
no sides with less zeros and N−

v = 0. Now there is a way to remedy this problem.
Take cell number two. There are two ones which are “quasi” aligned: X5 and Y4.
These two ones are only one position away from being aligned. So, if we align
them, instead of the pair of zeros X4 and Y5, the score remains the same. When we
align the pair of ones X5 and Y4, we split cell number two into two cells. This is
how cell number two looks after this transformation:

0 0 1 0 0 1 0 0 1
0 1 0 0 0 0 0 1

.

Instead of the old cell number two, we observe the new cell number two followed
by the new cell number three. The old cell number three does not change but is
renamed and becomes cell number 4. The new cell number two is equal to

0 0 1
0 1

.

The new cell number three is

0 0 1 0 0 1
0 0 0 0 0 1

.

The advantage of breaking up a cell is that the new cells have different number of
zeros on each side. Hence, N− tends to increases in the process while the score
remains the same. In our example, after breaking the cells, the number of ones on
sides with less zeros is 1, since the new cell number three has a one on a side of
less zeros. Changing this one into a zero will increase the score. The breaking up
process helps up get rid of the problem of having too many cells with the same
number of zeros on both sides. Note that the breaking up the cell does not neces-
sary increase the number N−: although after breaking a cell, both new cells have
different number of zeros, it might happen that both of them have no ones on the
side of less zeros. In this case, the number N− does not increase. However, once
we have an optimal alignment with enough nonzero cells, the probability is high
to also find enough ones on sides with less zeros.

Let us define what we saw in the previous numerical example in a precise fash-
ion.

DEFINITION 5.1. Let k ∈ N, v ∈ Z
k ∩ V , i ≤ k and vi = 0. We say that cell i

of v can be broken up if there exists j and j ′ satisfying all of the following:

1. Xj = Yj ′ = 1.
2. π(i) < j < π(i + 1) and ν(i) < j ′ < ν(i + 1).
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3. The difference between the number of zeros in the strings

Xπ(i)+1Xπ(i)+2 · · ·Xj−1 and Yν(i)+1Yν(i)+2 · · ·Yj ′−1

is one or minus one. Hence

1 =
∣∣∣∣∣
(
j − π(i) −

j∑
l=π(i)+1

Xl

)
−

(
j ′ − ν(i) −

j ′∑
l=ν(i)+1

Yl

)∣∣∣∣∣.
5.3. Optimal alignment contained in Vn. Recall that Yi and Xi are i.i.d.

Bernoulli random variables with parameter ε. In Section 6, we will show that with
high probability Ln is larger by 0.1ε2n than half of the total amount of zeros in X

or in Y . Let us briefly explain the use of this fact. When

Ln ≥ N0

2
+ a,

where N0 is the total number of zeros in X and Y and a > 0, there are two imme-
diate consequences:

(1) In any optimal alignment v there need to be at least a pairs of aligned ones.
Hence, any optimal alignment v needs to be contained in the set

⋃
k≥a Z

k .
(2) Any optimal alignment v in Z

k , satisfies

k∑
i=1

|vi | ≤ 2k.(34)

Otherwise the unmatched zeros (at least
∑k

i=1 |vi |) would out-number the aligned
ones (the number of aligned ones is 2k) bringing the score below an alignment
with only zeros aligned. Indeed, the number of nonaligned zeros in the alignment
v is at least

∑k
i=1 |vi |, so the number of aligned zeros is at most

N0 − ∑k
i=1 |vi |

2
and (34) follows from the inequalities

N0

2
< Ln ≤ N0 − ∑k

i=1 |vi |
2

+ k.

When we take 0.1ε2n for a, conditions (1) and (2) can be expressed by saying that
any optimal alignment v is necessarily contained in the set Vn, where

Vn := ⋃
k≥0.1ε2n

V (k),(35)

and V (k) ⊂ Z
k is defined as follows

V (k) := {(v1, v2, . . . , vk) ∈ Z||v1| + · · · + |vk| ≤ 2k}.(36)
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The fact that any optimal alignment is typically contained in Vn is very useful.
The set Vn is relatively small [see the bound (50)]. So, whenever we want to prove
the likeliness of a property for the optimal alignment, we prove the property to hold
typically for every alignment in Vn. The tremendous advantage of this approach is
that for every (nonrandom) v ∈ Vn, the alignment associated with v has a simple
distribution: the cells are independent. This allows us to use large deviation tech-
niques. In contrast, in the optimal alignment the cells are correlated in a complex
and poorly understood manner.

A cell which has different number of zeros in its X-part and in its Y -part is
called a nonzero cell. We say that an alignment v ∈ Z

k has more than 1% nonzero
cells if

|{i ∈ [1, k]|vi 
= 0}| ≥ 0.01k.

Let V1% be the subset of Vn consisting of the alignments which have at least 1%
of nonzero cells, that is,

V1% := {v ∈ Vn|v has more than 1% nonzero cells}.
Let

V c
1% := Vn − V1%.

5.4. The events. Recall that for a vector v we associate |v| random cells
Cv(1), . . . ,Cv(|v|) defined as a function of random i.i.d., Bernoulli random se-
quences X1,X2, . . . and Y1, Y2, . . . . In the following we define some events that
capture the typical behavior of these random cells.

Recall that N1 denotes the total number of ones in X and Y , N1 = ∑n
i=1(Xi +

Yi). Let v be an admissible alignment, that is, v ∈ V or, equivalently, πv(|v|),
νv(|v|) ≤ n.

Let N1v designate the number of ones up to the last cell of v:

N1v :=
(

πv(|v|)∑
j=1

Xj +
νv(|v|)∑
j=1

Yj

)
.

Finally, we define the number of ones after the last cell

Rv =
n∑

j=π(|v|)+1

Xj +
n∑

j=ν(|v|)+1

Yj .

DEFINITION 5.2.
• Let E4 designate the event that every optimal alignment belongs to the set Vn.
• Let D be the event that for all v ∈ V c

1%, at least 1% of the cells can be broken
up. So,

D := ⋂
v∈V c

1%

Dv,
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where Dv is the event that at least 1% of the cells Cv(1), . . . ,Cv(|v|) can be
broken up.

• Let F be the event that every v ∈ V1% has at least 2α1% of ones in Cv(1), . . . ,

Cv(|v|) on a side of less zeros. Hence,

F := ⋂
v∈V1%

Fv,

where Fv is the event that

N−
v ≥ 2α1N1v.

• Let G be the event that every v ∈ V1% has no more than α2% of matched ones.
Hence

G := ⋂
v∈V1%

Gv,

where Gv is the event that

2|v| ≤ α2N1v.

• Let K be the event that there exists an optimal alignment v such that

Rv ≤ N1v.

In the next section, we shall prove that all the defined events hold with high
probability. Note the importance of the breaking up notion. The events F and G

together with the event K basically prove (4) and (5) for the case when the opti-
mal alignment has at least 1% nonzero cells, that is, it belongs to V1%. But every
optimal alignment needs not belong to V1%. However, the event D ensures that
for every alignment from V c

1%, there exists another alignment v′ ∈ V1% with the
same score. So, when the events E4 and D both hold, then there exists an optimal
alignment in V1%. To this optimal alignment we can apply F , G and K and get the
inequalities (4) and (5). These considerations lead to the next lemma, which is our
main combinatorial lemma. Recall the definition of An in Section 5.1.

LEMMA 5.1.

E4 ∩ D ∩ F ∩ G ∩ K ⊂ An.(37)

PROOF. Recall that An holds if there exists an optimal alignment, say w, such
that the following conditions are fulfilled:

(1) the proportion of ones with less zeros is above α1: N−
w ≥ α1N1;

(2) the proportion of aligned ones is below α2: 2|w| ≤ α2N1.
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By the event K we know that there exists an optimal alignment v such that
Rv ≤ N1v . When E4 holds, then v is contained in the set Vn. Assume that v con-
tains less than 1% of cells with different number of zeros on their sides, that is,
v ∈ V c

1%. Then, the event D ensures that we can break up v so that it gets more
than 1% of nonzero cells and still remains optimal. Let that alignment be w. By
doing the break up, the number of ones after the last cell remains unchanged,
that is, Rw = Rv . Moreover, breaking up only increases the number of aligned
ones, so N1v ≤ N1w . Hence, there exists an optimal w ∈ V1% such that Rw ≤ N1w .
The events F applies to w. Hence

N−
w

N1w

= N−
w

N1
· N1

N1w

≥ 2α1.(38)

Since w is admissible, N1 = N1w + Rw . Hence

N1

N1w

= N1w + Rw

N1w

≤ 2.

Using the last equality with (38) yields

N−
w

N1
≥ α1.

This is the first statement on the event An.
Since w ∈ V1%, the event G guarantees that there is a proportion of less than

α2% matched ones: 2|w| ≤ α2N1w ≤ α2N1. This proves the second statement of
the event An. �

5.5. Proof of Theorem 2.2. From (37) it follows that

P(Ac
n) ≤ P(Ec

4) + P(Dc) + P(F c) + P(Gc) + P(Kc).(39)

So, the proof of Theorem 2.2 is accomplished, if we show that there exists
α1 > α2 > 0 and ε0 > 0 such that the events P(Ec

4), P(Dc), P(F c), P(Gc) and
P(Kc) are exponentially small in n, provided ε ≤ ε0. In Lemma 7.9, we prove the
existence of constants α1 > 0 and CF , not depending on ε, as well as a constants
cF (ε) and ε1 > 0 such that P(F c) ≤ CF exp[−cF n], if ε < ε1. In Lemma 7.10, we
prove that for every 0 < α2 < α1, there exists ε2 < ε1, depending on α2, such that
for every ε ≤ ε2, P(Gc) ≤ CG exp[−cGn], where CG and cG are some constants
(possibly depending on ε). In Lemmas 6.2, 7.4 and 7.11, we prove the existence
of ε3 > 0, finite constants cE, cD, cK as well as CE,CD,CK , possibly depending
on ε, such that

P(Dc) ≤ CD exp[−cDn], P (Ec
4) ≤ CE exp[−cEn],

P (Kc) ≤ CK exp[−cKn],
provided ε < ε3. Thus, if ε < ε0 := min{ε1, ε2, ε3}, all the events P(Ec

4), P(Dc),
P(F c), P(Gc), P(Kc) have exponentially small probabilities.
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The proofs that Dc, Fc, Gc and Kc all have exponentially small probability in n

uses the representation of alignments as elements of Vn. All these events state that
a certain property holds for every alignment in Vn. The proof that they have high
probability goes as follows: for a given nonrandom alignment v ∈ Vn, the cells are
independent. Hence, one can use large deviation techniques. It then only remains
to prove that the large deviation rate beats the number of elements in the set Vn.

6. Preliminary bounds.

6.1. A useful approach. In the sequel, we are often going to use the following
way of constructing random sequences X1,X2, . . . and Y1, Y2, . . . . Let ξ1, ξ2, . . .

be a sequence of i.i.d. random variables with the distribution of ξ being following:

P(ξ = 0) = 1 − ε, P (ξ = 1) = ε(1 − ε), . . . ,

P (ξ = n) = εn(1 − ε), . . . .

The distribution of ξi + 1 is geometric. The random variables ξi stand for the
number of 1’s between the 0’s: ξ1 is the number of ones before the first 0, ξ2 is
the number of ones between the first and second 0 and so on. For example, if
(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) = (0,2,0,0,1,0), then before the first 0, there are no ones;
between first and second zero, there are 2 ones; between second an third zero,
there are again no ones, and so on. Hence, the corresponding sequence X1,X2, . . .

begins with 0,1,1,0,0,0,1,0,0, . . . . Similarly, with the help of the random vari-
ables η1, η2, . . . , we construct the sequence Y1, Y2, . . . .

Recall our task: we are given a fixed vector v = (v1, . . . , vk) and we aim to
construct the random cells (using i.i.d. random sequences X and Y ) Cv(i) as in
Definition 4.1: at first we wait for the first time such that a pair of ones can be
aligned so that the difference of zeros between X- and Y -part is u = v1 [so we get
Cv(1)]; then we start afresh with u = v2 and so on. In terms of ξ and η variables, it
is relatively easy. Indeed, to get a 0-cell, we look for the smallest time i such that
ξi 
= 0, ηi 
= 0. So, a 0-cell can be constructed using the stopping time T , where

T := min{i = 1,2, . . . : ξi 
= 0, ηi 
= 0}.(40)

To get a −u cell (u > 0), we look for the smallest time T such that ξi 
= 0 and
ηu+i 
= 0. Hence, a −u-cell is constructed using the stopping time T , where

T := min{i = 1,2, . . . : ξi 
= 0, ηu+i 
= 0}.(41)

In other words a cell with vi = u can be viewed in the following way: we first set u

zeros aside on side X if u ≥ 0 and on side Y otherwise. Then we align consecutive
pairs of zeros, until we meet for the first time a pair of aligned zeros both directly
followed by a one. Let us look at a numerical example:
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EXAMPLE. Take v1 = u = 2. Let X = 000101 . . . and Y = 001 . . . . We put
aside the first two zeros in X. From there, we align all the zeros until we meet two
zeros both followed directly by a one. Here, this gives the cell

X 0 0 0 1 0 1
Y 0 0 1

.

6.2. A bound on Ln. A rough lower bound for the typical length of the LCS,
is obtained as follows.

1. First only align all the zeros you can. You get approximately a common subse-
quence of length (1 − ε)n consisting only of zeros.

2. Having aligned as many zeros as you could in 1, take the ones which can be
aligned without disturbing the already aligned zeros. In terms of previous sub-
section, it gives (approximatively) additional

(1−ε)n∑
i=1

min{ξi, ηi}

ones, since between i − 1st and ith pair of aligned zeros, there are ξi ones in
X and ηi ones in Y . The random variables ξi + 1 and ηi + 1 are Geometrically
distributed with parameter (1−ε). This means that min{ξi, ηi}+1 ∼ G(1−ε2),
so

E min{ξi, ηi} = 1

1 − ε2 − 1.

So, in average the ones contribute ( 1
1−ε2 − 1)(1 − ε)n.

In the way described above we get a common subsequence of length about

[(
1

1 − ε2 − 1
)
(1 − ε) + (1 − ε)

]
n =

[
(1 − ε) + ε2

1 + ε

]
n = n

1 + ε
.(42)

To stay on the safe side, we bound Ln by a quantity that is little smaller than (42);
we take [(1 − ε) + 0.9ε2]n.

Let E denote the event that the LCS is longer than ((1 − ε) + 0.9ε2)n, that is,

E := {
Ln ≥ (

(1 − ε) + 0.9ε2)
n
}
.

LEMMA 6.1. There exists ε3 > 0 such that for every ε < ε3

P(E) ≥ 1 − 5e−an,

where a(ε) > 0.
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PROOF. Let δ ∈ (0,0.5). Define the events (they depend on δ)

Ex
2 :=

{∣∣∣∣∣
n∑

i=1

Xi − nε

∣∣∣∣∣ ≤ δεn

}
, E

y
2 :=

{∣∣∣∣∣
n∑

i=1

Yi − nε

∣∣∣∣∣ ≤ δεn

}
.

When Ex
2 holds, then X1, . . . ,Xn has at least (1 − (1 + δ)ε)n zeros. On E

y
2 , the

same holds for Y1, . . . , Yn. Let

E2(δ) := Ex
2 ∩ E

y
2 .

When E2 holds, then at least (1 − (1 + δ)ε)n zeros can be aligned.
Let ζi := min{ξi, ηi}, where ξi , ηi are i.i.d. random variables, ξi +1 ∼ G(1−ε).

So, ζi + 1 ∼ G(1 − ε2). From Proposition A.1 (see the Appendix), it follows that
for every α < 1,

P

(
m∑

i=1

ζi <

(
α

1 − ε2

)
m − m

)
≤ e−C(α)m,(43)

where C(α) = α − 1 − lnα. Let E1 be the event that
∑m

i=1 ζi is at least mα
1−ε2 − m,

where m(δ) := (1 − (1 + δ)ε)n and α < 1. So

E1(α, δ) :=
{

m∑
i=1

ζi ≥
(

α

1 − ε2

)
m

}
.

When E1 and E2 both hold, then one can align m zeros and mα
1−ε2 −m ones between

them. This means that on E1 ∩ E2, the length of the longest common subsequence
has the following lower bound

Ln ≥ mα

1 − ε2 = α

(
1 − ε(1 + δ)

1 − ε2

)
n = α

(
1

1 + ε
− δε

1 − ε2

)
n

= α

(
1 − ε + ε2

1 + ε
− δε

1 − ε2

)
n.

Let us compare the right-hand side of the previous inequality with ((1 − ε) +
0.9ε2)n. Since

α

(
1 − ε + ε2

1 + ε
− δε

1 − ε2

)
− (1 − ε) − 0.9ε2

(44)

= (1 − ε)(α − 1) + ε2
(

α

1 + ε
− 0.9

)
− αδε

1 − ε2 ,

we see that for α = 1 − ε3 and δ = ε2, (44) is positive, provided ε is small enough.
So, if α = 1 − ε3 and δ = ε2, there exists ε3 > 0 such that for every ε < ε3, E1 ∩
E2 ⊂ E, implying that

P(Ec) ≤ P(Ec
2(ε

2)) + P
(
Ec

1(1 − ε3, ε2)
)
.
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Finally, let us bound the probabilities. For any δ > 0, from Höffding’s inequality,
it follows that

P((Ex
2 )c) ≤ 2 exp[−2(δε)2n], P ((E

y
2 )c) ≤ 2 exp[−2(δε)2n].

From (43), we get that

P(Ec
1(α, δ)) ≤ exp[−C(α)m(δ)] = exp

[−C(α)
(
1 − (1 + δ)ε

)
n
]
.

Take α = 1 − ε3 and δ = ε2 to obtain that, for every ε < ε3

P(Ec) ≤ 4 exp[−2ε6n] + exp
[−C(1 − ε3)

(
1 − (1 + ε2)ε

)
n
] ≤ 5e−an,

where a(ε) = min{2ε6,C(1 − ε3)(1 − (1 + ε2)ε)}. �

Note that Lemma 6.1 gives a lower bound for the Chvatal–Sankoff constant:
1

1+ε
.

If 0 < δ ≤ 0.8ε, then on E2

Nx
0 ≤ n[(1 − ε) + 0.8ε2], N

y
0 ≤ n[(1 − ε) + 0.8ε2],(45)

where Nx
0 and N

y
0 are the number of zeros in X and Y , respectively. In this case,

hence,

N0

2
≤ n[(1 − ε) + 0.8ε2],(46)

where N0 is the number of zeros in X and Y . On the other hand, if E holds, then

Ln ≥ n[(1 − ε) + 0.9ε2].(47)

So, if 0 < δ ≤ 0.8 and E2 ∩ E holds, then

N0

2
+ (0.1)ε2n ≤ Ln.(48)

As explained in subsection 5.3, (48) implies (34), that is,
∑k

i=1 |vi | ≤ 2k. We also
showed that (48) implies that in any optimal alignment there are at least (0.1)ε2n

pairs of aligned ones. Thus, if 0 < δ ≤ 0.8 and E2 ∩ E hold, then any optimal
alignment must belong to Vn, where the set of alignments Vn has been defined
in (35). Recall that E4 designates the event that every optimal alignment belongs
to Vn.

LEMMA 6.2. There exists ε3 > 0 such that for ε < ε3, it holds,

P(E4) ≥ 1 − 5 exp[−an] − 4 exp[−2(0.8ε)2εn].

PROOF. We saw that E2(0.8ε) ∩ E ⊂ E4. Proposition 4.1 now finishes the
proof. �
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7. Bounding the probabilities.

7.1. Combinatorics. In the following, we use Ck
n as the number of combina-

tions, that is,

Ck
n = n!

k!(n − k)! .
We also make use of the following fact: the number of m-dimensional vectors
with nonnegative entries summing up to exactly n is Cm−1

n+m−1. To see this, use the
induction by m: for m = 2, it trivially holds. Suppose that the formula folds for
m. Consider the m + 1-dimensional vectors with nonnegative entries summing up
exactly n. The first m components determine the vectors; since the first m compo-
nents can sum up to 0, . . . , n, by the assumption the number of m+ 1-dimensional
vectors with nonnegative entries summing up exactly n is

Cm−1
m−1 + Cm−1

1+m−1 + Cm−1
2+m−1 + · · · + Cm−1

n+m−1.(49)

Using the fact that Cm−1
k+m−1 + Cm

k+m−1 = Cm
k+m, it is easy to show that (49) equals

to Cm
n+m.

LEMMA 7.1. For k ≥ 1, we have

|V (k)| ≤ 2kCk
3k ≤ 16k.(50)

PROOF. Let

V +(k) = {(v1, . . . , vk) ∈ (Z+)k :v1 + · · · + vk ≤ 2k},
where Z

+ = {0,1, . . .}. Thus, |V +(k)| is the number of k-dimensional vectors with
nonnegative integer entries and summing up to at most 2k. By adding one more
component, we get that |V +(k)| is equal to the number of k + 1-dimensional vec-
tors with nonnegative integer entries and summing up to exactly 2k. The number
of such vectors is Ck+1−1

2k+k+1−1 = Ck
3k . It follows that

|V +(k)| = Ck
3k ≤ 23k.

(Here 23k represents the number of subsets of a set of size 3k. Of course this upper
bound is far from being optimal, but it is still sufficient for our purpose.) For every
k-dimensional vector, there are at most 2k ways to assign the signs of the entries.
This then yields

|V (k)| ≤ 2kCk
3k ≤ 24k = 16k. �

Let

I (v1, . . . , vk) = ∣∣{i ∈ {1, . . . , k} :vi 
= 0
}∣∣.
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LEMMA 7.2.

|V c
1%(k)| ≤ exp[0.1262k],(51)

where

V c
1%(k) := V (k) ∩ {(v1, . . . , vk) ∈ Z

k : I (v1, . . . , vk) ≤ 0.01k}.
PROOF. Without loss of generality assume that 0.01k is an integer. Consider

the set of 0.01k-dimensional vectors with nonnegative integer entries and summing
up to at most 2k. Let this set be

W+(k) :=
{
(w1, . . . ,w0.01k) ∈ Z

+0.01k
:

0.01k∑
i=1

wi ≤ 2k

}
.

We know that

|W+(k)| = C0.01k+1−1
2k+0.01k+1−1 = C0.01k

2.01k = C
0.01/2.01(2.01)k
2.01k .(52)

In order to bound the number of combinations C
qm
m , where q ∈ (0,1) (and qm is

an integer), we note that

Cqm
m ≤ q−qm(1 − q)−m(1−q),(53)

that follows from the fact that C
mq
m · qqm(1 − q)m(1−q) ≤ 1. Using (53) with

m = 2.01k and q = 0.01
2.01 , (52) yields

|W+(k)| ≤
(

2.01

0.01

)0.01k(2.01

2

)2k

= (201)0.01k(1.005)2k.

Here are 20.01k ways to assign the signs, so

|W(k)| ≤ 20.01k(201)0.01k(1.005)2k = (402)0.01k(1.005)2k,

where

W(k) :=
{
(w1, . . . ,w0.01k) ∈ Z

0.01k :
0.01k∑
i=1

|wi | ≤ 2k

}
.

Obviously,

|V c
1%(k)| ≤ C0.01k

k |W(k)|.
With (53), we have

C0.01k
k ≤ (100)0.01k

(
100

99

)0.99k

,

implying that

|V c
1%(k)| ≤ (40,200)0.01k(1.005)2k

(
100

99

)0.99k

< 1.1345k < exp[0.1262k]. �
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7.2. The event D. Recall that Dv denotes the event that 1% of the cells of v

can be broken up. Note that the following bound holds for every ε ∈ (0, 1
2 ].

LEMMA 7.3. Let v ∈ V c
1%(k). Then

P(Dc
v) ≤ exp[−0.16k].(54)

PROOF. Let us calculate the probability that a 0-cell is breakable. We use the
approach introduced in Section 6.1. Recall the definition of T in (40). With this
construction, being breakable means the existence of 1 ≤ i ≤ T such that

ξi 
= 0, ηi = 0, ξi+1 = 0, ηi 
= 0

or

ξi = 0, ηi 
= 0, ξi+1 
= 0, ηi = 0.

Let

U1 : = min{i = 2, . . . : ξi−1 
= 0, ηi−1 = 0, ξi = 0, ηi 
= 0},
U2 : = min{i = 2, . . . : ξi−1 = 0, ηi−1 
= 0, ξi 
= 0, ηi = 0},
U : = U1 ∧ U2.

Let

X := {0,1,2, . . .}, X+ := {1,2, . . .}.
With those stopping times, the probability that a 0 cell is breakable is P(U < T ).
Let us estimate it (from below). An easy way is to consider the disjoint pairs of
indexes (1,2), (3,4), . . . , (2j − 1,2j), . . . and restrict the stopping time U to the
even integers only. So, we define the independent random vectors

Zj = (ξ2j−1, η2j−1, ξ2j , η2j ), j = 1,2, . . . ,

U ′
1 := min{j = 1,2, . . . : ξ2j−1 
= 0, η2j−1 = 0, ξ2j = 0, η2j 
= 0}

= min{j = 1,2, . . . :Zj ∈ A1},
U ′

2 := min{i = 1,2, . . . : ξ2j−1 = 0, η2j−1 
= 0, ξ2j 
= 0, η2j = 0}
= min{j = 1,2, . . . :Zj ∈ A2},

U ′ := U ′
1 ∧ U ′

2 = min{j = 1,2, . . . :Zj ∈ A2 ∪ A1},
T ′ := {j = 1,2, . . . :Zj ∈ B1 ∪ B2},

where

A1 := X+ × {0} × {0} × X+, A2 := {0} × X+ × X+ × {0},
B1 = X+ × X+ × X × X, B2 = X × X × X+ × X+.



1222 J. LEMBER AND H. MATZINGER

Clearly,

2U ′ − 1 ≥ U, 2T ′ − 1 ≤ T ,

P (U < T ) ≥ P(2U ′ − 1 < T ) ≥ P(2U ′ − 1 < 2T ′ − 1) = P(U ′ < T ′).

Since the random variables Zj are independent, the probability of the right-hand
side is easy to calculate:

P(U ′ < T ′) = P(Z1 ∈ A2 ∪ A1)

P (Z1 ∈ A2 ∪ A1) + P(Z1 ∈ B2 ∪ B1)
= 2ε2(1 − ε)2

2ε2(1 − ε)2 + 2ε2 − ε4

= 2(1 − ε)2

2(1 − ε)2 + 2 − ε2 .

It is easy to check that the function

ε �→ q(ε) := 2(1 − ε)2

2(1 − ε)2 + 2 − ε2

is decreasing in [0, 1
2 ], which implies

q(ε) ≥ 2(1/2)2

2(1/2)2 + 2 − (1/2)2 = 2

9
.

Let v = (v1, . . . , vk) ∈ V c
1%. This means that the number of zero cells m is at

least 0.99k. Let J be the index set of zero cells and let for every j ∈ J , Ij be
the Bernoulli variable that is one if and only if the cell vj is breakable. Clearly, the
random variables Ij are and for every ε > 0, p(ε) := P(Ij = 1) ≥ q(ε) ≥ 2

9 .
In the following, we use the following result: let Z be a binomial random vari-

able with parameters p and m. Let 0 < a < p. Then

P(Z < am) ≤
(

p

a

)am(
1 − p

1 − a

)(1−a)m

≤
(

p

a

)am

exp[(a − p)m](55)

(see, e.g., [8], page 130). Using (55) and the facts that p := p(ε) ≥ 2
9 as well as

m ≥ 0.99k, we get

P(Dc
v) = P

(∑
j∈J

Ij < 0.01m

)
≤ (100p)0.01m exp[(0.01 − p)m]

≤ exp
[(

0.01 ln 100 + (0.01 − p)
)
m

]
≤ exp

[(
0.047 + (0.01 − p)

)
0.99k

] ≤ exp[−0.16k]. �

LEMMA 7.4. There exists CD < ∞ such that

P(Dc) ≤ CD exp[−0.0438(0.1ε2)n].(56)
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PROOF.

D(k) := ⋂
v∈V c

1%(k)

Dv.

With (51) and (54), we get

P(Dc(k)) ≤ ∑
v∈V c

1%(k)

P (Dc
v) ≤ exp[(−1.16 + 0.1262)k] = exp[−0.0438n].

Since k ≥ (0.1ε2)n, we find:

P(Dc) ≤ ∑
k≥(0.1ε2)n

P (Dc(k)) ≤ ∑
k≥(0.1ε2)n

exp[−0.0438k]

= CD exp[−0.0438(0.1ε2)n],
where

CD := (1 − exp[−0.0438])−1. �

7.3. The event F . The following large deviation result is proven in the Appen-
dix.

LEMMA 7.5 (Large deviation for geometric random variables). Let G1, . . . ,

Gm be i.i.d. random variables with geometric distribution G(p). There exists
0 < α0 < 1, not depending on p, such that for every α ≤ α0, the inequality

P

(
m∑

i=1

Gi ≤ α

p
m

)
≤ exp[−300m] ∀m ≥ 1(57)

holds. Moreover, for every C > 0 there exists 1 < A0(C) < ∞, such that for every
A > A0

P

(
m∑

i=1

Gi >
A

p
m

)
≤ exp[−Cm] ∀m ≥ 1.(58)

Recall the definition of the event F : ∀v ∈ V1%, N−
v ≤ 2α1N1v .

Let u be a nonnegative integer. Let us consider an (−u)-cell. Recall the random
variables ξi and ηi as in Section 6.1 and recall the random variable T as in (41),
which is the smallest time T such that ξi 
= 0 and ηu+i 
= 0. Let Tx(j) be the index
of j th ξi such that ξi 
= 0. So

Tx(1) = min{i ≥ 1 : ξi 
= 0}, . . . ,

Tx(j + 1) = min{i > Tx(j) : ξi 
= 0}.
Let

ρ− := min
{
j = 1,2, . . . :ηu+Tx(j) 
= 0

}
.(59)
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Hence ρ− is the number of ξi ’s in the cell that are not 0 (including the one that is
aligned). With this notation,

T = Tx(ρ
−).

For a (−u)-cell, the number of 0-s in X is smaller then the number of 0’s in Y . Let
us estimate (from below) the number of 1’s inside the X-side, N−

1 . This number
does not count the aligned one, so the number is clearly at least ρ− − 1, that is,
N−

1 ≥ ρ− − 1, where the equality holds if and only if

ξTx(j) = 1, j = 1, . . . , ρ− − 1.

The random variable ρ− has geometric distribution with parameter ε. Indeed, since
X and Y are independent, from the right-hand side of (59) follows

P(ρ− = n) = P
(
ηu+Tx(1) = 0, . . . , ηu+Tx(n−1) = 0, ηu+Tx(n) 
= 0

)
= (1 − ε)n−1ε.

Let v = (v1, . . . , vk). Recall that N−
v is the number of ones on the sides with fewer

0’s of nonzero cells. At first, we give a lower bound on N−
v .

LEMMA 7.6. There exists a γ > 0, not depending on ε and ε1 > 0 such that
for every v = (v1, . . . , vk) ∈ V1% we have

P(F c
1v) ≤ exp[−3k] where F1v =

{
N−

v ≥ γ

ε
k

}
,(60)

provided ε < ε1.

PROOF. Let v = (v1, . . . , vk) ∈ V1%. Let I be the index set of nonzero cells,
|I | ≥ 0.01k. Let us estimate (below) the number of 1’s in the side of fewer 0’s:

N−
v =

|v|∑
i=1

N−
v (i).

For a cell vi 
= 0, we have that N−
v (i) ≥ ρ−

i −1, where ρ−
i , i ∈ I are geometrically

distributed random variables with parameter ε as in (59). So,

N−
v ≥ ∑

i∈I

ρ−
i − |I |.(61)

Let αo be as in Lemma 7.5. It does not depend on ε. Let

m := 0.01k, γ := αo

200
, ε1 := αo

2
.
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Without loss of generality, we may assume that the v1, . . . , v|I | are nonzero. Thus,
if ε ≤ ε1, then 100γ + ε ≤ αo, and from (57) we obtain:

P(F c
1v) ≤ P

(∑
i∈I

(ρ−
i − 1) ≤ γ

ε
k

)

≤ P

(
m∑

i=1

(ρ−
i − 1) ≤ γ

ε
k

)

= P

(
m∑

i=1

ρ−
i ≤

(
100γ

ε
+ 1

)
m

)

= P

(
m∑

i=1

ρ−
i ≤ 100γ + ε

ε
m

)

≤ P

(
m∑

i=1

ρ−
i ≤ αo

ε
m

)

≤ exp[−300(0.01)k]
= exp[−3k]. �

Let

F1(k) := ⋂
v∈V1%∩V (k)

F1v and F1 := ⋂
k≥(0.1ε2)n

F1(k).

By (50), (60) and Lemma 7.6, it holds: if ε ≤ ε1, then

P(F1(k)c) ≤ ∑
v∈V (k)

P (F c
1v) ≤ 16k exp[−3k] = exp[(ln 16 − 3)k] ≤ exp[−0.2k].

Hence

P(F c
1 ) ≤ ∑

k≥(0.1ε2)n

P (F1(k)c) ≤ ∑
k≥(0.1ε2)n

exp[−0.2k]
(62)

= C1,F exp[−0.2(0.1ε2)n],
where

C1,F := (1 − exp[−0.2])−1.

Let v = (v1, . . . , vk) ∈ V (k) be given. Let Cv(1), . . . ,Cv(k) be the corresponding
cells. Let ρj , 1 ≤ j ≤ k be the number of nonzero ξi ’s in the cell Cv(j). Clearly
ρ1, . . . , ρk are independent. The distribution of ρj is geometric with parameter ε, if
vj ≤ 0. Otherwise, there exists a geometric random variable with parameter ε, say
ρ−

j such that ρ−
j ≤ ρj ≤ ρ−

j + vj . Since v ∈ V (k),
∑

j |vj | ≤ 2k. Let us estimate

from above the quantity ρv := ∑k
j=1 ρj .
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LEMMA 7.7. There exist a constant B not depending on ε such that for every
v = (v1, . . . , vk) ∈ Vn we have

P(F c
2v) ≤ exp[−(ln 16 + 1)k], where F2v :=

{
ρv <

B

ε
k

}
.

PROOF. Let B be such that B−1 > A0(ln 16+1), let v = (v1, . . . , vk) ∈ V (k).
By (58),

P(F c
2v) = P

(
k∑

j=1

ρj ≥ B

ε
k

)

≤ P

( ∑
j :vj≤0

ρj + ∑
j :vj>0

(ρ−
j + vj ) ≥ B

ε
k

)

≤ P

( ∑
j :vj≤0

ρj + ∑
j :vj>0

ρ−
j + 2k ≥ B

ε
k

)

≤ P

( ∑
j :vj≤0

ρj + ∑
j :vj>0

ρ−
j ≥ B − 2ε

ε
k

)

≤ P

( ∑
j :vj≤0

ρj + ∑
j :vj>0

ρ−
j ≥ B − 1

ε
k

)

≤ exp[−(ln 16 + 1)k]. �

Let

F2(k) := ⋂
v∈V (k)

{
ρv <

B

ε
k

}
, F2 := ⋂

k≥(0.1ε2)n

F2(k).

Then, similarly to (62),

P((F2(k))c) ≤ ∑
v∈V (k)

P (F c
2v) ≤ exp

[−k
(
(ln 16 + 1) − ln 16

)] = exp[−k],

P (F c
2 ) ≤ C2F exp[−0.1ε2n],

where

C2F := (1 − exp[−1])−1.

Next, using Lemma 7.7, we estimate from above the random number of ones in
the X-side of the cells Cv(1), . . . ,Cv(|v|).



STANDARD DEVIATION OF LCS 1227

LEMMA 7.8. There exists a constant A < ∞, independent of ε, such that for
every v = (v1, . . . , vk) ∈ Vn, we have

P

(
π(k)∑
j=1

Xj >
Ak

ε(1 − ε)

)
≤ 2 exp[−(ln 16 + 1)k].

PROOF. Let v = (v1, . . . , vk) ∈ V (k). Note that

P(ξi = k|ξi 
= 0) = εk−1(1 − ε), k = 1,2, . . . .

The number of 1’ s on the X-side of the cell Cv(j) is

ρ(j)−1∑
i=1

Gi + 1,(63)

where Gi are geometrically distributed r.v-s with parameter 1 − ε independent of
ρ(j). Here ρ(j) − 1 is the number of ξ ’s inside the cell Cv(j) and the additional
one is the one that is matched. Hence,

π(k)∑
j=1

Xj =
ρv−k∑
i=1

Gi + k ≤
ρv∑
i=1

Gi.(64)

Let B be as in the previous lemma and let A be large enough so that

A

B
> Ao

(
(ln 16 + 1)

B

)

and define

F3v :=
{B/εk∑

i=1

Gi <
A

ε(1 − ε)
k

}
.

From Lemma 7.5 with m = B
ε
k

P (F c
3v) = P

(B/εk∑
i=1

Gi ≥ Ak

ε(1 − ε)

)
= P

(B/εk∑
i=1

Gi ≥ k

(1 − ε)

B

ε

A

B

)

= P

(
m∑

i=1

Gi ≥ mA

B(1 − ε)

)
≤ exp

[
−(ln 16 + 1)

B
m

]

< exp
[
−(ln 16 + 1)ε

B
m

]
= exp[−(ln 16 + 1)k].

Due to (64),

F2,v ∩ F3,v ⊂
{

π(k)∑
j=1

Xj ≤ Ak

ε(1 − ε)

}
=: F4,v.
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Lemma 7.7 finishes the proof. �

Let

F4(k) := ⋂
v∈V (k)∩V1%

F4v, F4 := ⋂
k≥(0.1ε2)n

F4(k).

Then, just like in (62),

P(F c
4 (k)) ≤ 2 exp

[−k
(
(ln 16 + 1) − ln 16

)] = 2 exp[−k],(65)

P(F c
4 ) ≤ 2C2F exp[−0.1(ε2)n].(66)

LEMMA 7.9. There exists α1 > 0, independent of ε, as well as a constant
CF < ∞ such that

P(F c) ≤ CF exp[−0.02ε2n],
provided ε < ε1, where ε1 is as in Lemma 7.6.

PROOF. Let ε < ε1 and v ∈ V1%. We have

F1,v ∩ F4,v ⊂
{
N−

v ≥ (1 − ε)γ

A

π(|v|)∑
j=1

Xj

}
.

So,

F1 ∩ F4 =
( ⋂

v∈V1%

F1,v

)
∩

( ⋂
v∈V1%

F4,v

)
= ⋂

v∈V1%

(F1,v ∩ F4,v)

⊂ ⋂
v∈V1%

{
N−

v ≥ (1 − ε)γ

A

π(|v|)∑
j=1

Xj

}
=: Fx

and by (62) and (66)

P(F c
x ) ≤ P(F c

1 ) + P(F c
4 ) ≤ CF1 exp[−0.02ε2n] + 2CF2 exp[−0.1ε2n].

By symmetry, P(F c
y ) ≤ CF1 exp[−0.02ε2n] + 2CF2 exp[−0.1ε2n], where

Fy :=
{
N−

v ≥ (1 − ε)γ

A

ν(|v|)∑
j=1

Yj

}
.

Thus

Fx ∩ Fy ⊂
{

2N−
v ≥ (1 − ε)γ

A

(π(|v|)∑
j=1

Xj +
ν(|v|)∑
j=1

Yj

)}
⊂ {N−

v ≥ 2α1N1v} = F,
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where

α1 := γ

8A
≤ (1 − ε)γ

4A
,(67)

provided ε ≤ 0.5 and

P(F c) ≤ 2CF1 exp[−0.02ε2n] + 4CF2 exp[−0.1ε2n]
< (2CF1 + 4CF2) exp[−0.02ε2n]. �

7.4. The event G. We use the notation introduced in the previous subsection.
Let α1 be as in (67). Fix 0 < α2 < α1.

LEMMA 7.10. There exists a constant CG < ∞ and ε2(α2) > 0 such that for
every ε ≤ ε2

P(Gc) ≤ CG exp[−(300 − ln 16)(0.1)ε2n].

PROOF. Let v ∈ V (k). From (64)

π(k)∑
j=1

Xj =
ρv−k∑
j=1

Gi + k ≥ ρv =
k∑

i=1

ρj ≥
k∑

i=1

ρ−
j .

Let

Gv :=
{
k ≤ α2

π(k)∑
j=1

Xj

}
.

Then

P(Gc
v) ≤ P

(
k∑

i=1

ρ−
j <

k

α2

)
= P

(
k∑

i=1

ρ−
j <

ε

α2

1

ε
k

)
.

Let αo be as in Lemma 7.5. Let ε2 := α2αo. Note that α2 < 0.5, so ε2 is smaller
than ε1 defined in Lemma 7.6. Recall that ρ−

i are i.i.d. random variables with G(ε)

distribution. Then, by (57), for every ε ≤ ε2,

P(Gc
v) ≤ exp[−300k].

Let

G(k) := ⋂
v∈V (k)

Gv,

⋂
k≥0.1ε2

G(k) = ⋂
v∈Vn

Gv ⊂ ⋂
v∈V1%

{
|v| ≤ α2

π(|v|)∑
j=1

Xj

}
=: Gx.
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There exists a constant 0.5CG such that, for ε ≤ ε2,

P(Gc
v(k)) ≤ exp[−(300 − ln 16)k],

P (Gc
x) ≤ 0.5CG exp[−(300 − ln 16)(0.1ε2)n].

Similarly P(Gc
y) ≤ 0.5CG exp[−(300 − ln 16)(0.1ε2)n], where

Gy := ⋂
v∈V1%

{
|v| ≤ α2

ν(|v|)∑
j=1

Yj

}
.

Since G := Gx ∩ Gy, we have that

P(F c) ≤ CG exp[−(300 − ln 16)(0.1ε2)n],
provided ε ≤ ε2. �

7.5. The event K .

LEMMA 7.11. Assume ε < ε3, where ε3 is as in Lemma 6.2. There exists a
constant CK such that

P(Kc) ≤ CK exp[−cKn],
where cK > 0 is a constant, depending on ε.

PROOF. Let v be an optimal alignment of X and Y and denote by Rv the
number of ones after the last cell:

Rv :=
n∑

i=π(|v|)+1

Xi +
n∑

i=ν(|v|)+1

Yi.

Let

β := (0.1)ε2.

We shall show that with high probability, there exists an optimal alignment such
that all the ones after the last cell are contained in the interval [n − βn + 1, n]
(without loss of generality assume that βn is an integer). In other words, we shall
prove that the following event has big probability:

K1 := {∃v ∈ V ∗ :π(|v|) ≥ n − βn, ν(|v|) ≥ n − βn},(68)

where V ∗ is the set of optimal alignments.
Suppose K1 holds and let v ∈ V ∗ be such that π(|v|) ≥ n − βn and ν(|v|) ≥

n − βn. Then the number of ones after the last cell of v is clearly at most 2βn,
since there are at most 2βn symbols after the last cell. Thus, Rv ≤ 2βn. Recall that

N1v =
π(|v|)∑
i=1

Xi +
ν(|v|)∑
i=1

Yi.
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Obviously N1v ≥ 2|v| and if E4 holds, then every optimal v satisfies |v| ≥
(0.1)ε2n. Hence, if K1 ∩ E4 holds, then there exists an v ∈ V ∗ such that

Rv ≤ 2βn = 2(0.1)ε2 ≤ 2|v| ≤ N1v,

implying that

P(Kc) ≤ P(Kc
1) + P(Ec

4).

It remains to show that Kc
1 has exponentially small probability in n. Define

K2 :=
{
∃s, t > n − β

3
n : s +

n∑
i=s+1

Xi = t +
n∑

i=t+1

Yi, Yt = Xs = 1

}
.

Recall that after the last cell, only the zeros can be aligned. If, in an interval one
aligns only the zeros, it can be done in the following manner. Start from the last pair
of zeros and align them. Then, disregarding all the ones, take the second last pair of
zeros (i.e., the second last zero in X and the second last zero in Y ) and align them.
Then, align the third last pair of zeros and so on. Doing so, the maximum number
of zero-pairs (in the given interval) can be obtained. If the event K2 holds, then in
the interval [n − β

3 n + 1, n], the described way of aligning zeros allows to align a
pair of ones without disturbing the alignment of zeros. This violates the optimality,
hence we immediately have the following implication: if K2 holds, then for any
optimal alignment v either π(|v|) ≥ n − β

3 n or ν(|v|) ≥ n − β
3 n. Unfortunately,

this is not enough, so we define two more events:

Kx
3 : =

{ n−2/3βn∑
s=n−βn+1

Xs ≥ 1

}
∩

{
2

3
βn −

n∑
s=n−2/3βn+1

Xs ≥ 1

3
βn

}
,

K
y
3 : =

{ n−2/3βn∑
s=n−βn+1

Ys ≥ 1

}
∩

{
2

3
βn −

n∑
s=n−2/3βn+1

Ys ≥ 1

3
βn

}
.

The event Kx
3 states that among

Xn−βn+1, . . . ,Xn−2/3βn

there is at least one and, at the same time, among

Xn−2/3βn+1, . . . ,Xn

there are at least 1
3βn zeros. The event K

y
3 is symmetric.

Suppose Kx
3 holds. Let v be an optimal alignment such that ν(|v|) ≥ n − β

3 n

and π(|v|) < n − βn. Then there exists another optimal alignment v′ such that
ν(|v′|) = ν(|v|) and π(|v′|) ≥ n − βn. Indeed, since ν(|v|) ≥ n − β

3 n, the number

of aligned 0’s after last cell is at most β
3 n [the maximal number of 0’s on Y -side

after ν(|v|)]. By Kx
3 , we can align all those 0’s from the Y -side with the zeros on
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X-side that lie on Xn−2/3βn+1, . . . ,Xn. After such a realignment, the situation is
the following: as previously, Yν(|v|) is aligned with Xπ(|v|). However, all the zeros
after Yν(|v|) (on Y -side) are aligned with the zeros after Xn−2/3βn+1 (on X-side).
The score remains optimal. By Kx

3 , again, among Xn−βn+1, . . . ,Xn−2/3βn, there
is at least one 1. Thus, without changing the score, we can align Yν(|v|) with this
1. Since the location of this 1 is at least Xn−βn+1, we now have a new optimal
alignment v′ such that ν(|v′|) = ν(|v|) and π(|v′|) ≥ n − βn.

We have proven that

K2 ∩ Kx
3 ∩ K

y
3 ⊂ K1.

It remains to prove that K2, Kx
3 and K

y
3 hold with big probability.

Clearly,

P(Kxc
3 ) ≤ P

( n−2/3βn∑
s=n−βn+1

Xs = 0

)
+ P

(
n∑

s=n−2/3βn+1

Xs >
1

3
βn

)
.

The first probability of the right-hand side equals to exp[ln(1 − ε)1
3βn]; by Höffd-

ing’s inequality, the second probability is bounded by exp[−4
3(1

2 − ε)2βn]. Thus,

P
(
(Kx

3 ∩ K
y
3 )c

) ≤ 2 exp
[
ln(1 − ε)1

3βn
] + 2 exp

[−4
3

(1
2 − ε

)2
βn

]
.

Finally, let us bound P(Kc
2). The event K2 essentially states that among i.i.d.

Bernoulli B(1, ε) random variables

X1, . . . ,Xβ/3n, Y1, . . . , Yβ/3n

after aligning all 0’s, one can align an additional pair of ones. In terms of ξi ’s and
η’s, K2 = Kx

2 ∩ K
y
2 , where

Kx
2 :=

{
T −1∑
j=1

ξj + T ≤ β

3
n

}
, K

y
2 :=

{
T −1∑
j=1

ηj + T ≤ β

3
n

}
.

Recall that T is the stopping time that shows the first time a pair of ones between
the 0’s occurs. Then T − 1 is the number of 0’s before the first alignment of ones
and

∑T −1
j=1 ξj is the number of Xi ’s before the first alignment of ones. If their sum

is smaller than β
3 n, then the X-part of the aligned pair occurs before β

3 n. The event
K

y
2 is analogous.
To bound the events Kx

2 and K
y
2 , we use Lemma 7.5. Let A0(1) be as in

Lemma 7.5 and define

δ := β

3

(1 − ε)

A0(1)
<

β

3
.

Clearly

P(Kxc
2 ) ≤ P(T > δn) + P

(
δn∑
i=1

ξi + δn >
β

3
n

)
.
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Since T is a geometric random variable with parameter ε2, P(T > δn) ≤
exp[ln(1 − ε2)δn]. Since Gi := ξi + 1 are geometric random variables with pa-
rameter (1 − ε), by (58), we have

P

(
δn∑
i=1

ξi + δn >
β

3
n

)
= P

(
δn∑
i=1

Gi >
β

3
n

)
= P

(
δn∑
i=1

Gi >
A0(1)

1 − ε
δn

)

≤ exp[−δn].
To sum up:

P(Kc) ≤ P(Kxc
2 ) + P(K

yc
2 ) + P(Kxc

3 ) + P(K
yc
3 ) + P(Ec

4)

≤ 2 exp
[
ln(1 − ε)1

3βn
] + 2 exp

[−4
3

(1
2 − ε

)2
βn

]
+ 2 exp[ln(1 − ε2)δn] + 2 exp[−δn]
+ 5 exp[−an] + 4 exp[−2(0.8ε)2εn],

since ε < ε3, so P(Ec
4) ≤ 5 exp[−an] + 4 exp[−2(0.8ε)2εn] by Lemma 6.2. �

APPENDIX

PROPOSITION A.1. Let G1, . . . ,Gm be i.i.d. geometrically distributed ran-
dom variables with parameter p. Then for every A > 1 and α < 1, there exists
C(A) := A − 1 − logA and C(α) := α − 1 − logα such that such that

P

(
m∑

i=1

Gi >
A

p
m

)
≤ exp[−C(A)m],(69)

P

(
m∑

i=1

Gi ≤ α

p
m

)
≤ exp[−C(α)m].(70)

PROOF. Let us recall (55). Let A > 1, n = A
p
m and a = p

A
< p. From (55), we

get

P

(
m∑

i=1

Gi >
A

p
m

)
= P

(A/pm∑
j=1

Yj < m

)
= P

(
n∑

j=1

Yj < an

)

≤
(

p

a

)an

exp[(a − p)n] = Am exp[(1 − A)m]
= exp

[(
lnA − (1 − A)

)
m

]
,

where Yi are i.i.d. Bernoulli random variables with parameter p. This finishes the
proof of (69).
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If p > α, then (70) trivially holds. If p = α, then the probability in (70) equals
pm = exp[(lnα)m] = exp[− ln 1

α
m]. Hence, we consider only the case p < α < 1.

From (55), it easily follows: let Xi ∼ B(1,p). Then, with 1 > a ≥ p,

P

(
n∑

i=1

Xi ≥ na

)
≤ exp

[(
a ln

(
p

a

)
+ (a − p)

)
n

]
.(71)

We have that

P

(
m∑

i=1

Gi ≤ α

p
m

)
= P

(α/pm∑
j=1

Yj ≥ m

)
= P

(α/pm∑
j=1

Yj ≥ α

p
m

p

α

)
.(72)

With n := α
p
m and a := p

α
, the inequality (71) states

P

(
m∑

i=1

Gi ≤ α

p
m

)
≤ exp

[(
p

α
lnα +

(
p(1 − α)

α

))
n

]

= exp[(lnα + 1 − α)m]. �

PROOF OF LEMMA 7.5. The right-hand side of (70) is smaller than exp[−300],
provided

α ≤ exp[−301] =: αo.

That proves (57). To get (58), note that for every C > 0, it is possible to choose A

so big that lnA − (1 − A) < −C. �
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