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The surprising discovery of an accelerating universe led cosmologists to
posit the existence of “dark energy”—a mysterious energy field that perme-
ates the universe. Understanding dark energy has become the central problem
of modern cosmology. After describing the scientific background in depth,
we formulate the task as a nonlinear inverse problem that expresses the co-
moving distance function in terms of the dark-energy equation of state. We
present two classes of methods for making sharp statistical inferences about
the equation of state from observations of Type la Supernovae (SNe). First,
we derive a technique for testing hypotheses about the equation of state that
requires no assumptions about its form and can distinguish among competing
theories. Second, we present a framework for computing parametric and non-
parametric estimators of the equation of state, with an associated assessment
of uncertainty. Using our approach, we evaluate the strength of statistical ev-
idence for various competing models of dark energy. Consistent with current
studies, we find that with the available Type Ia SNe data, it is not possible to
distinguish statistically among popular dark-energy models, and that, in par-
ticular, there is no support in the data for rejecting a cosmological constant.
With much more supernova data likely to be available in coming years (e.g.,
from the DOE/NASA Joint Dark Energy Mission), we address the more in-
teresting question of whether future data sets will have sufficient resolution
to distinguish among competing theories.

1. An accelerating universe. Current models of the universe posit the exis-
tence of a ubiquitous energy field of unknown composition that comprises about
73% of all mass-energy and yet that can only be detected through subtle effects.
Cosmologists have dubbed this mysterious field dark energy, and over the past
decade, it has become an accepted part of the standard cosmology and a focus
of observational efforts. More than that: it is fair to say that understanding dark
energy has become the central problem in modern cosmology.

In the remainder of this section we explain the scientific background to the
problem and describe the quantities that are used in what follows. In Section 2 we
discuss several techniques for making inferences about dark energy and examine
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current results. In Section 3 we describe the data we use, which are measurements
of a particular type of exploding star. In Section 4 we formulate the statistical
problem as a nonlinear inverse problem

(1) Y, =Tw)(z) +e, i=1,...,n,

where the Y;s are scalar observables, w is an unknown function, called the dark en-
ergy equation of state, the forward operator T is nonlinear and depends on two un-
known parameters, and the ¢;’s are heteroskedastic, uncorrelated noise with known
variances. In Section 5 we use features of the forward operator T to construct
hypothesis tests that can distinguish among competing cosmological models with
minimal assumptions about w. In Section 6 we present a framework for computing
parametric or nonparametric estimators of w based on equation (1) and compute
resampling-based error bars on the estimates. In Section 7 we apply these methods
to current data in an attempt to distinguish among competing cosmological mod-
els. Finally, in Section 8 we look to the future, where planned observations, both
space- and ground-based, will produce much larger data sets that can benefit more
fully from these techniques.

The story of how an unobserved and unexplained source of energy came to be
quickly and widely accepted as a dominant component of the universe is an essen-
tial prelude to discussing the inference problem that is the subject of this paper. To
tell this story properly, we need to start earlier, with one of the observational foun-
dations on which all current cosmological models rest: the universe is expanding.

1.1. Hubble’s law and the distance-redshift relation. In 1929 Edwin Hubble
observed a sample of nearby galaxies and studied two quantities for each. The first
was the galaxy’s redshift.” Light from an object that is emitted at one wavelength
and observed at a higher (lower) wavelength is said to be redshifted (blueshifted).
Astronomers quantify this using a dimensionless parameter z, called the redshift
and given by
_ Aobs — Aemit

2

’

Aemit
where Aemit 1S the wavelength of the light measured in the reference frame of the
object when the light is emitted and Agpg is the wavelength measured in the refer-
ence frame of an observer at some later time. When z > 0, the observed light is red-
shifted relative to the emitted light; when z < 0, the observed light is blueshifted
relative to the emitted light. The light from an object such as a galaxy contains
a mixture of different wavelengths at different intensities, called the spectrum of
the object, and redshifting (or blueshifting) causes the entire spectrum to be dis-
placed by a common factor. Because certain features in a galaxy’s spectrum, such

2Vesto Slipher had first measured these redshifts a decade earlier [Slipher (1917)].
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as emission or absorption lines, have known wavelengths and identifiable patterns,
the redshift z can be determined very accurately from observations. Several phys-
ical phenomena can cause the redshift to be nonzero, but Hubble interpreted the
redshifts as Doppler shifts caused by the relative motion of the galaxies with re-
spect to Earth,® where z > 0 corresponds to an object moving away from us and
z < 0 corresponds to an object moving toward us. (Think of an ambulance’s siren
as it passes you at high speed; the pitch is higher as it approaches and lower as it
recedes.)

The second quantity Hubble studied for each galaxy was its distance from us.
This he measured himself. Determining accurate distances to faint and far away
objects is a challenging, fundamental problem of observational astronomy. The
ladder of measurement methods that astronomers have devised can produce rea-
sonably accurate distance estimates in overlapping ranges from nearby stars out to
very distant galaxies. Many of these methods rely on having a standard candle,
a class of celestial objects whose intrinsic brightness is known. If we know how
bright an object really is (called its absolute magnitude) and how bright it appears
to us (called its apparent magnitude), we can determine its distance from us be-
cause the intensity of a light source decays as the inverse square of distance. To
determine the distances to the galaxies he observed, Hubble used as a standard
candle a class of stars, called Cepheid variables, that fluctuate in brightness with
a period that is a function of their average luminosities.

Hubble combined the two measurements—redshift and distance—to produce
a plot much like that in Figure 1 [Hubble (1929)]. This shows a strong linear rela-
tionship

Hy

3) z=—d,
c

where c is the speed of light and Hj is a fundamental parameter called the Hubble
constant. (Note that the linear form of this relationship is in fact an approximation
that only holds for small redshifts and distances.) Hubble thus found that galaxies
in all directions have redshifts that tend to increase in proportion to their distances,
and by interpreting redshifts as Doppler shifts, that galaxies are moving away from
us at a velocity v proportional to distance:

“4) v = Hod.

This relationship is now known as Hubble’s law. A natural interpretation of (4)
would be that Earth lies at the center of an extra-galactic explosion, but this would
violate the principle that humans are not “privileged observers” of the universe
[Peacock (1999)]. Hubble was left to conclude that every galaxy was moving away
from every other and, thus, that the universe itself is expanding.

3Slipher made a similar interpretation: that the “spiral nebulae” he observed were moving away
from the Earth. But the claim that such nebulae lay outside the Milky Way was still a matter of
intense debate at the time. It was Hubble who settled that argument.
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F1G. 1. A plot analogous to that published by Edwin Hubble but produced with the current data
described in Section 3. The vertical axis shows redshift and the horizontal axis gives a measure of
distance. The regression line through the origin highlights the linear relationship in (3).

If the universe is expanding, then extrapolating backward in time, the universe
was smaller in the past, and thus more dense (with the same total mass-energy
packed into a smaller volume), and thus hotter. Taken back far enough, this would
predict a point of infinite density and temperature—a singularity known as the
“Big Bang.”* However, basic physical assumptions break down within about 103
seconds of that singularity, so there is currently little known about the singularity
itself. What we do know is that the universe began small, dense, and very hot and
that it cooled as it expanded.

Extrapolating forward in time, cosmologists could then predict three possible
fates for the universe, depending on whether the gravitational pull of all the uni-
verse’s mass-energy is sufficient to overcome the energy of the Big Bang that is
driving the universe’s expansion. In an open universe, the total mass-energy is

4Stlrictly speaking, the term Big Bang to refers to the general notion that the universe expanded
from an early state that was enormously hotter and denser than the present universe. But in common
parlance, it is also used to refer to the initial event, as in “years after the Big Bang.”
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insufficient, and the universe will expand forever. In a closed universe, the total
mass-energy is sufficient to halt the expansion, and the universe will collapse in
on itself in a “Big Crunch.” On the boundary between these two cases is a flat
universe, where gravity and the expansion exactly balance.’ The search to distin-
guish among the three cases led to more questions than answers (mostly due to the
lack of good standard candles). A leading model for the universe’s early expansion
[Guth (1981)] engendered a theoretical bias favoring a flat universe; however, the
mass and energy needed to slow the expansion could not be found. In fact, studies
of galaxies and galaxy clusters suggested that matter accounts for only a frac-
tion of the energy density required for flatness. And observations of the Cosmic
Microwave Background (CMB)—relic radiation from several hundred thousand
years after the Big Bang when the universe became transparent to light—ruled
out a flat universe comprised entirely of matter [Smoot et al. (1992)]. Yet several
possibilities remained. Many astronomers thought an open, matter-dominated uni-
verse the most likely explanation for the observations. Others found the theoretical
arguments compelling and favored a flat universe with either a new form of energy
or a new theory of gravity to explain the missing energy density.

Theoretical cosmologists had anticipated an expanding universe several years
before Hubble analyzed his data. Alexander Friedmann and George Lemaitre in-
dependently used Einstein’s General Relativity to derive theoretical models that
describe the dynamics and geometry of an expanding universe. These evolved
into the standard model of relativistic cosmology, called the Friedmann—Robert—
Walker model [Peacock (1999)]. Friedmann introduced a dimensionless function
called the scale factor, a(t), that gives the ratio of the size of any region at time ¢ to
the size of that region at the current time ¢y [from which it follows that a(zy) = 1].
(Cosmologists often use 0 subscripts for quantities at the current age of the uni-
verse.) The function a(¢) describes the universe’s entire expansion history. Fried-
mann derived the following equation that describes how the scale factor evolves:

a\* 8nG kc?
(20 310y b
a(t) 3 a=(1)
where a(t) is the time derivative of a(r), G is Newton’s gravitational constant, p (¢)
is the total energy density at time ¢, and & is a parameter describing the curvature
of spacetime, which takes values —1, 0, or 1 depending on whether the universe is
open, flat, or closed.

The Friedmann equation (5) connects the universe’s geometry (e.g., size, cur-

vature) to its content (e.g., energy density). An observer at time ¢ who replicated

&)

5An analogy to an open universe is a rocket that has enough energy to escape Earth’s gravity and
fly out into space. An analogy to a closed universe is a rocket that cannot escape Earth’s gravity and
falls back to the ground (or into orbit). An analogy to a flat universe is a rocket with just enough
energy to escape to infinity but which would not escape if it had any less.
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Hubble’s study would find a linear relationship between recession velocity and
distance to nearby galaxies with slope

_a(@)

T a@)’

This Hubble parameter H (¢) describes the (local) relative expansion rate and is
constant for all observers at a particular time; at the current time, we get the Hubble

constant Hy = H (fp). In a flat universe—when k£ = 0 in equation (5)—the total
energy density is determined by H and is called the critical density pcrit:

(6) H(t)

3H?
8rG’
If p > pcrit, the universe is closed; if p < pcrit, the universe is open; if p = Pcrit,

the universe is flat. Cosmologists refer to these cases in terms of the scaled density
parameter

@) Pcrit =

®) Q="

Perit
giving Q2 > 1, 2 < 1, and Q =1 for closed, open, and flat respectively. At times,
it is also useful to decompose the total energy density as a sum of contributions
from various sources (€.2., 0 = Pmatter + Pradiation + - * *), and in such cases 2 has
an analogous decomposition. For instance, 2, = Pmatter/ Ocrit gives the fractional
contribution of matter to the critical density.

Relating these theoretical expressions to Hubble’s observation, the redshift z
can also be expressed in terms of a. As the universe expands, light waves traveling
through it are stretched out by the expansion increasing the wavelength by the
factor by which the universe has expanded between the emission and observation
times. That is, light emitted at time fepj; With wavelength Aemic and observed at
time s has wavelength Aghs = Aemit(1 + z), where the redshift z is given by

_ a(tobs) .
a(temit)
For example, an object observed at z = 1 emitted its light when the universe was
half its present size. The most distant objects yet observed have z & 6, when the
universe was one seventh its current size. This reveals the redshift to be cosmolog-
ical in origin, the result of the universe’s expansion. Because expansion implies
a(t) > 0, redshift can be viewed as an index of time, so it is common for cos-
mologists to parameterize time-dependent functions interchangeably by time or

redshift, for example H (¢) or H(z).

Redshift is a measure of distance as well. Hubble’s relation (4) defines a frame
of reference in which an observer at rest in that frame sees galaxy recession ve-
locities proportional to distance in all directions. Such an observer is said to be
comoving with respect to the Hubble expansion. In contrast, an observer moving

) 1.
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relative to this reference frame would see systematically higher recession veloci-
ties behind than in front. The distance measured with a tape-measure between two
comoving observers at time ¢ has the form d(t) = a(t)cr, where r is called the
comoving distance between the two observers, which we express in units of time.°
Each thus sees the other receding at velocity v(¢) where, because r does not change
with time,

; ) a()
(10) v(t)=d@t)=a(t)cr = —=d(@t)=H(t)d(t).

a(t)

This gives the distance-velocity relation, or Hubble’s law. But recession velocities
are not observable, redshifts are. The comoving distance between an observer and
an object at redshift z is derived by computing tape-measure distances between
nearby events along the line of sight to the object and adjusting each such distance
for the corresponding expansion of the universe. This gives

z dz/
H()
Through equation (11), Friedmann’s model ties the distance-redshift relation to
the universe’s geometry. By carefully measuring objects’ redshifts and distances,
it is possible to estimate the distance-redshift relation and, in turn, the universe’s
expansion history, its eventual fate, and a variety of fundamental cosmological
parameters. This was the basic task of observational cosmology for many years.
But in 1998, cosmologists discovered something surprising.

(11) r(z) =

1.2. Acceleration and dark energy. In 1998 two groups of astronomers [Perl-
mutter et al. (1998); Riess et al. (1998)] estimated the distance-redshift rela-
tion (11) using Type Ila supernovae (SNe), a class of exploding stars whose dis-
tance can be measured with ~15% accuracy, much better than for other distant
sources. What they found was that () is increasing; in other words, the universe
is not merely expanding, the expansion is accelerating.

The immediate challenge for astrophysicists was verifying that the apparent ac-
celeration is not an artifact of incorrect assumptions or misinterpretation of the
data. Since the initial discovery, many more supernovae have been measured and
with greater precision [see, e.g., Davis et al. (2007)], and concerns about system-
atic errors have been allayed, though not eliminated. Also, indirect supporting evi-
dence comes from measurements of the CMB combined with observations of large
scale structure in the distribution of galaxies [Boughn and Crittender (2004); Fos-
alba et al. (2003); Nolta et al. (2004); Scranton et al. (2003)] and other types of data

SVarious equally valid conventions for the units of comoving distance are used in the literature,
and the choice does not change the results. We express r in units of Ho_l, or time. Note that in
certain units commonly used by cosmologists, time and distance have the same dimensions because
the speed of light provides an absolute conversion between them.
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[see, e.g., Frieman et al. (2008) and the references therein]. These observations all
support the hypothesis that the universe is both flat and not comprised entirely of
matter; in fact, matter constitutes only about one quarter of the critical density.
These results also put stronger constraints on cosmological parameters that in turn
sharpen the results of supernova studies. Taken together, current data strongly rule
out a nonaccelerating model in comparison to a simple accelerating model.

A more fundamental challenge thus becomes explaining the acceleration.” If
General Relativity accurately describes physics at large scales and if the universe
is homogenous and isotropic at large scales as commonly assumed, then an accel-
erating universe can be explained by a heretofore unknown type of energy acting
against the pull of gravity to speed up the expansion. This energy is characterized
by its negative pressure. In contrast, in a universe filled with hot gas, which has
positive pressure, the energy of the gas adds to its gravitational account, slowing
the expansion. With a negative pressure “fluid,” the opposite occurs, causing the
universe’s expansion to accelerate. Because its source and nature are unknown and
because we cannot see it directly, this energy field with negative pressure has been
called dark energy.

An alternative to the existence of dark energy is that General Relativity or the
standard cosmological models built on it do not adequately describe the universe
at large scales. General relativity has been strongly tested within the solar system
and nearby universe, but not on scales roughly the size of the current universe.
Active efforts have been made to modify General Relativity to produce an apparent
acceleration. The simplest such modifications have been ruled out by other data
and theoretical consistency requirements. More viable modifications have been
developed but remain controversial.

Both lines of inquiry remain open, but for now, the evidence appears to strongly
support both an accelerating universe and the existence of dark energy. This raises
the question of what dark energy is. One possible answer had been introduced by
Einstein long-ago for a different reason. At the time that Einstein had proposed
his theory of General Relativity—fourteen years before Hubble’s observations—
it was widely believed that the universe is static. But to achieve a solution of his
equations that produced a static (though unstable) universe, Einstein needed to in-
troduce a “cosmological constant” to his equations. He had never been enthusiastic
about the cosmological constant because it sullied the pure beauty of his equa-
tions, and with Hubble’s observations and subsequent evidence for an expanding
universe, Einstein ruefully withdrew the cosmological constant, allegedly calling
it his “greatest blunder” [Gamow (1970)], possibly because he missed the chance
to predict an expanding universe. Years later, particle physicists resurrected the
idea of a cosmological constant to represent the energy-density contribution from

7For more on explanations of an accelerating universe, the reader is referred to Carroll (2003,
2001), on which much of the following discussion in this subsection is based.
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empty space, a so-called vacuum energy. At cosmological scales, their formulation
is mathematically equivalent to Einstein’s.

A nonzero cosmological constant can explain an accelerating universe because
it acts against gravity and because, as the universe expands, there is more space
and thus an increased effect. The cosmological constant model specifies a constant
vacuum energy throughout time. This is a simple model that is consistent with the
available data. There are two problems, however, that suggest a more complicated
picture. First, measured values of dark energy are smaller than theoretical predic-
tions of vacuum energy (from quantum field theory) by 120 orders of magnitude
[Frieman, Turner and Huterer (2008); Weinberg (1989, 2000)]. Second, according
to the cosmological constant model, we live in a time when the total energy density
of dark energy is of comparable order to the energy density of matter, which, as we
will see below, is a surprising coincidence. Moreover, although the cosmological
constant model has an appealing simplicity, there is no known physical reason to
require the properties of vacuum energy to be constant in time. Two critical ques-
tions then are whether the available data can rule out a cosmological constant in
favor of dynamic, time-varying, dark energy and, if so, what the data can tell us
about how it varies.

Once we move beyond a cosmological constant, there are relatively few a priori
constraints on the dark energy. We can get some information, however, from the
fact that the universe is accelerating. Let p(¢) be the universe’s total energy density
at time ¢. As stated above, we can decompose p(¢) into a sum of contributions
from different sources, including a dark energy contribution p,;. The Friedmann
equation (5) can be written as

8t G
3

and acceleration implies that @>(r) is an increasing function. It follows that
a(t)p(t) must increase as well and that neither matter nor radiation can be re-
sponsible for the acceleration. To see the latter, notice that pmager X a3 because
the total mass of matter in any comoving volume element remains constant while
the element’s volume increases as a-. Similarly, pradiation X a—* because expan-
sion redshifts light to higher wavelength and thus lower energy by a factor of 1/a
and increases volume as a°.

The defining feature of a cosmological constant, however, is that its energy den-
sity remains constant, so under this model, pp; o a® and pp,a® increases. More
generally, we require that p, oc a” for u > —2. This brings the coincidence prob-
lem referred to above into relief. The ratio of the matter density to the dark energy
density is given by

(12) a*(t) = a*(t)p(t) —k,

(13) Pmatter - a_(3+"),

p DE
so matter dominated in the early universe and dark energy will dominate eventu-
ally. Currently, the ratio is about 1/3, which puts us at a relatively unusual time in
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the life of the universe where the two components are nearly balanced. Cosmolo-
gists do not like coincidences, and one hope for dynamical models of dark energy
is that they will explain the current balance.

1.3. The equation of state. One way to quantify the dark energy is through
its energy density p,;. This is an intuitive quantity that plays a direct role in the
equations of cosmological models.

Another convenient quantity that describes dark energy is its equation of state,
typically denoted by w. In physics, an equation of state is a formula that relates
several macroscopic observables of a system; an example is the ideal gas law,
relating pressure, density, and temperature. In cosmology, dark energy must have
a “perfect fluid” equation of state, characterized entirely by its energy density p
and isotropic pressure p. The simplest candidate is

(14) Poe = WppeC’,

where w is a property of the dark energy field that may vary across cosmic history.
With some abuse of terminology, the ratio w is itself called the “equation of state.”
In general, w is a function, usually parameterized in terms of redshift as w(z), but
for the cosmological constant model, w does not depend on z.

For the cosmological constant model, w(z) = —1. This model describes
a smoothly distributed field with constant energy density and negative pressure.
A slightly more general model sets w(z) = wg, where wyq is a constant that need
not equal —1. In this case, pp. oc a30+%0) and a(r) oc r2/GU+10)) 5o the ex-
pansion will accelerate (in a dark-energy dominated universe) if wg < —1/3. If
wo = —1, the dark energy density stays constant with time; if wg > —1, it de-
creases; and if wg < —1, it grows. Cosmologists often restrict the possible energy-
momentum tensors with various “energy conditions” implied by candidate (and
somewhat speculative) fundamental constraints on solutions to Einstein’s equa-
tions. A commonly used such condition requires w > —1, and most cosmological
models follow suit [Carroll et al. (2003)].

1.4. Measuring dark energy: Type la Supernovae. One of the challenges of
dark energy is that it has not yet been observed directly and can only be measured
through its subtle influence on other phenomena. Astronomers have developed sev-
eral methods that are sensitive to the expansion history of the universe and thus
depend, directly or indirectly, on the dark energy equation of state. Of these, Type
Ia SNe currently provide the best available constraint on the equation of state.

Type Ia SNe are thought to occur when a white dwarf star strips mass off an or-
biting companion star until it becomes massive enough to explode. A white dwarf
is the remnant of a low- to medium-mass star at the end of its life, with nuclear
fusion exhausted, but as it acquires mass from its companion it reaches a threshold
above which a supernova occurs. At its peak, the supernova is typically brighter
than its entire host galaxy, and it decays in brightness over a span of days or weeks.
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For reasons that are not yet fully understood, Type Ia SNe all have a similar peak
luminosity, raising the hope that they might serve as standard candles. In fact, Type
Ia SNe are close to but not quite standard candles because there remains substantial
scatter in peak luminosity among nearby SNe. But these SNe also exhibit a strong
empirical correlation between peak luminosity and the time it takes them to de-
crease in luminosity [Phillips (1993)]. Less luminous SNe decay more rapidly,
while more luminous SNe decay more slowly. A one-parameter fit reduces scat-
ter in peak luminosity significantly. Taken together, these features make Type Ia
SNe valuable cosmological probes: they are bright enough to be detected at great
distances and act as ““standardizable” candles for distance determination. Potential
systematic errors are thought to be smaller than current statistical uncertainties,
with the main sources being (i) possible intrinsic differences between Type Ia SNe
at low and high redshift and (ii) uncertainty in the extinction/reddening of light
caused by dust [Wood-Vasey et al. (2007)]. Observations of Type Ia SNe at differ-
ent redshifts can thus be used to estimate the distance-redshift relation, and in turn
the dark energy equation of state. These are the data we consider in this paper.

2. Inference for dark energy. Under mild assumptions,® we can express the
dark energy pressure p,. and density p,; in terms of the co-moving distance r as

follows:

1y 2r"(z)
(15) pDE<z>——pcm(m) (1+<1+z> MZ)),
and
1 2
(16) pDE<z>=pcm[(m> —9m<1+z>3],

where ,, is the fractional contribution of matter to o, and ' denotes differ-
entiation of r with respect to z [Huterer and Turner (1999)]. Taking the ratio of
these functions yields the so-called “reconstruction” equation for the equation of
state w(z):

CH§Qu(1+23+ 2/ +29r" @)/ @)
B HEQu(1+2)3 — 1/(r' (2))2

A variety of important cosmological models can be expressed in terms of w, in-
cluding the cosmological constant (w(z) = —1): topological defect models [frus-
trated cosmic strings w(z) = —1/3 or domain walls w(z) = —2/3; Bucher and

(7) w(z) 1.

81n this paper we follow current standard practice and assume a homogeneous, isotropic, and spa-
tially flat universe where matter is nonrelativistic and where gravity is described by General Relativity
with the Friedmann—Robertson—Walker metric. Specifically, we do not examine an alternative to the
dark energy hypothesis, modified gravity, for which some of these assumptions do not hold; see, for
example, Huterer and Linder (2007). For the remainder of this paper, we also use units where the
speed of light ¢ = 1.
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Spergel (1999)]; various quintessence models [freezing w’(z) > 0, Caldwell and
Linder (2005), and thawing w’(z) < 0, Zlatev, Wang and Steinhardt (1999) and
Steinhardt, Wang and Zlatev (1999)]; and even models which allow w(0) < —1,
such as Cardassian models [Freese and Lewis (2002)] and phantom dark energy
[Caldwell, Kamionkowski and Weinberg (2003)].

Several critical questions can be directly addressed with Type Ia SNe data:

1. Are the data consistent with the cosmological constant model?

2. If not, do the data require that the dark energy equation of state varies with time,
and if so, how well can we estimate w?

3. Do the data rule out any competing theoretical models?

A finding that w # —1 or, more generally, that w is not constant would rule out the
simplest explanation for dark energy, vacuum energy, and would point the way to
fundamental new physics. Eliminating some competing theoretical models or pro-
ducing a sharp estimate of w would strongly constrain the theoretical explanations
for dark energy.

The results of studies to date, combining several types of observations, have
developed a robust consensus around several findings [Frieman, Turner and
Huterer (2008)]. First, there is strong evidence that the universe is accelerating.
Second, under the current theoretical framework, there is strong evidence that dark
energy exists, with a critical density €2, ~ 0.76. And finally, the best available es-
timates suggest that w &~ —1; thus, current data are well fit by the cosmological
constant model.

Attention is therefore focused on future Type Ia SNe data sets, which promise
to be orders of magnitude larger and, consequently, to provide tighter constraints
on w. For instance, two particular observatories will begin to collect rich sam-
ples of Type Ia SNe during the next decade. The Large Synoptic Survey Telescope
(LSST)? is a ground-based instrument that will scan the entire sky every few nights
and is expected to detect hundreds of thousands of Type Ia SNe per year, while the
DOE/NASA Joint Dark Energy Mission (JDEM)!? is a space-based instrument
that will observe thousands of Type Ia SNe, many at relatively high redshift. In
addition, additional observations of other indirect probes of dark energy may pro-
vide strong constraints on w that complement those produced by supernova data.
With so much data, it is expected that the dark energy equation of state will be
well determined. (Indeed, systematic errors may come to dominate statistical un-
certainties in the inference problem.) But whether this is sufficient depends on the
structure of w and on the subtlety of the features that must be determined to dis-
tinguish a theoretical explanation for dark energy. Statistical techniques that can
efficiently capture complex structure with a minimum of extraneous assumptions
will be needed.

9http://www.lsst.org.
10http://jdem. gsfc.nasa.gov.
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Many approaches to estimating w have been used in the literature, but there
are three main threads. In the first thread, one assumes that w lies in a specific
parametric family w(z; 6), maps this family through the forward operator in equa-
tion (1) to a parametric family for the comoving distance r(z; 6), and uses max-
imum likelihood or a comparable criterion to estimate 8. Many authors utilize
this approach, most recently including, for example [Barboza and Alcaniz (2008)
and Liu et al. (2008)]. Though many parameterizations have been explored, the
most common include w constant, w = wg, and w linear in the scale parameter,
w(z) = wo+ w1z/(1 + z) [the so-called CPL parameterization; Chevallier and Po-
larski (2001); Linder (2003)]. The number of free parameters is generally limited
to two, with arguments made that the data will not constrain additional parameters
[Linder and Huterer (2005)]. A variant of this approach is to fit a piecewise con-
stant model to w and use the fitted covariance matrix to rotate into a basis in which
the coefficient estimates are independent [Huterer and Cooray (2005)]. In the sec-
ond thread, one assumes that r lies in some nonparametric class; estimates r and
its derivatives by nonparametric smoothing, and uses equation (17) to estimate w
[e.g., Daly et al. (2008)]. And in the third thread, one derives the forward opera-
tor in terms of the energy density p,; instead of w and applies one of the fore-
going procedures to estimate w (e.g., Wang and Mukherjee (2004)]. There have
also been efforts to eschew the equation of state representation for dark energy
and directly estimate kinematic parameters (such as the deceleration function g,
see Section 4) from which the expansion history can be derived [e.g., Shapiro and
Turner (2006)]. Finally, there have been several papers [e.g., Huterer and Starkman
(2003), Saini et al. (2004)] that consider using the data to select the parametric
model for w; we discuss these further in Section 6.

This paper makes two contributions to this line of work. First, we introduce
a new technique for testing hypotheses about w that does not require a specific pa-
rameterization of w. The technique is based on combining shape constraints on r,
features of the functions in the null hypothesis, and any desired cosmological as-
sumptions. As we show, this technique can be used to distinguish among currently
competing models. Second, we develop a framework for nonparametric estimation
of w with corresponding assessment of uncertainty. Given a sequence of paramet-
ric models for w of increasing dimension, we use the forward operator 7'(-) to
convert it to a sequence of models for  and use the data to select among them. We
also show how to construct a representation of w that gives good performance in
the forward mapping approach.

Both of these methods take a fully nonparametric approach because, despite
many ideas and some theoretical guidance, little is known about the function w.
Although for current data low-dimensional models for w appear sufficient, the
same may not be true with future data sets, which will have the precision to de-
tect subtle structure. Accounting for model uncertainty in a rigorous and efficient
way is one of the main values added by this work. Such uncertainty is not ac-
counted for by the “figures of merit” proposed by cosmologists, for instance, in
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Albrecht et al. (2006), Sarkar et al. (2008), and Wang (2008), but it should be.
For estimation within a single parametric model, we effectively use a maximum
likelihood approach, so our inferences will have a precision comparable to the best
methods in current use. But given that the structure of w is unknown and largely
unconstrained a priori, some of that precision must be sacrificed to capture that
structure at the proper level of complexity. The methods we propose here also
satisfy several other needs that cosmologists have. They can straightforwardly be
used in combination SNe data with other types of data that probe dark energy.
They allow great flexibility in the models and parameterizations used for w and in
the cosmological assumptions that can be imposed. They provide an assessment
of uncertainty on the inferences. And they are computationally efficient enough to
handle the forthcoming large data sets.

3. Data. Stellar magnitude is a logarithmic scale for the brightness of astro-
nomical objects, defined so that dimmer objects have larger values. The appar-
ent magnitude of an object describes how bright the object appears from Earth:
m = 2.51ogo(f/fo), where f is the flux of light produced by the object that is
received by a detector on Earth (in some specified range of wavelengths) and fj is
the corresponding flux for a reference object. The absolute magnitude of an object
describes how bright the object appears from a fixed reference distance (10 par-
secs), and thus is related to the apparent magnitude by M =m — 5log;y(d/10),
where dj, is a distance to the object measured in parsecs. [Specifically, dy, is called
the luminosity distance, which is one of several metrics used by astronomers; cf.
Hogg (2000), and which differs from comoving distance by a factor of 1 4 z.]
The difference between them, u =m — M = 5log;,(d/10), is called the distance
modulus, a logarithmic measure of the distance to the object. For Type Ia SNe,
apparent magnitudes are observed directly, and absolute magnitudes are deter-
mined from the observed luminosities over SNe lifetimes by fitting these observed
“light curves” to a template and estimating their peak luminosities [Wood-Vasey
et al. (2007)].

We analyze data for 192 SNe la from Davis et al. (2007) [see also Riess et
al. (2006) and Wood-Vasey et al. (2007)]. The data includes, for each supernova:

(i) redshift z, (ii) distance modulus w, and (iii) standard error = = /z2 + 72 for
the distance modulus, where 7, is the intrinsic uncertainty in the distance mod-
ulus and 7, is an estimate of error induced by the supernova’s peculiar velocity
relative to a local standard of rest. (We ignore the uncertainties of the redshift es-
timates, which are generally less than 1%.) In the Supplementary Material [Gen-
ovese et al. (2009)], we also identify two supernovae whose data exhibit nontrivial
influence in the analyses, but we include them because they could not be disquali-
fied on concrete grounds.

Let U; and z; denote the observed distance modulus and redshift, respectively,

for the ith supernova, i =1, ..., n, where n = 192 and where, contrary to common
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astronomical practice, we have ordered that data by the redshift rather than date of
supernova. We model U; as Gaussian with mean u(z;), that is,

(18) Ui = u(zi) + 1€,

where the ¢;s are assumed independent, mean zero, Gaussian noise terms with unit
variance and the 7;s are the given standard errors of the distance moduli measure-
ments.

We express the data in terms of comoving distance (assuming a flat universe)
by transforming as follows:

1
19 10(Ui—25)/5 =r(z)- 10(%’/5)81',
(19) S (zi)
where c is the speed of light. Thus, letting Y; denote the log, of the left-hand side
of (19), we have

(20) Y1=10g10r(Z1)+0'181, i=19---7n5

where o; = 7; /5. Figure 2 shows 10" plotted against z with associated error bars;
such a plot is called a “Hubble diagram.” We thus call » “observable” because it
can be directly estimated from the observed data.

4. Nonlinear inverse problem formulation. We distinguish two uses of the
word model in this paper. A cosmological model for dark energy is a set of as-
sumptions about the underlying physics that gives rise to a particular form of the
equation of state. A statistical model for w is a family of probability distributions
for the data indexed (at least) by a parameterization of w, possibly infinite dimen-
sional.

A particular cosmological model can be analyzed under a specific statistical
model, but the scope of the inferences is limited by the viability and flexibility
of the assumptions made. We consider statistical models whose stochastic com-
ponent is specified by equation (20); each such model is then determined by the
parameters Hp and €2, and a representation of w.

We now re-express the relationship between the comoving distance and the
equation of state as an explicit analytic expression mapping w (and the cosmo-
logical parameters Hyp and €2,,) to r. Equation (11) describes the relationship
between comoving distance and redshift. By expanding H(z) as in Huterer and
Turner (2001), one can derive the following equation: (we give an alternative
derivation in the on-line Supplementary Material)

Z
r(z) = H(;l /O dS[Qm(l —i—s)3 + (1 -2, +s)3
1) s -~
x =30 —w(u)/(1+u)du]— /2

We can thus write » as the image of an operator acting on w; specifically, we can
write r = 107 W:Ho.$m) wwhere the nonlinear operator T (w; Ho, 2;) is defined by
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log; of the right-hand side of equation (21). Equation (20) thus describes a non-
linear inverse problem

(22) Y; =T (w; Ho, 2m)(zi) +oigi, i=1,...,n

The operator T is complicated and depends on two unknown parameters, but it
does have several useful properties, as we will see below. An important use of
equation (21) is to translate a model for the unobservable w into the observable r.
For instance, given any parameterization of w, equation (22) determines a likeli-
hood function. We show how to use this for parametric or nonparametric inferences
in the following sections.

It is also sometimes helpful to consider the universe’s acceleration directly. Cos-
mologists traditionally express this in terms of the dimensionless deceleration pa-
rameter'! ¢ (z), which is defined in terms of the scale factor by

dwaw) __ H@

(23) q(f)=—T®—— _Hz(t)’

UThis was named when it was thought that the universe was decelerating.
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and in terms of redshift and comoving distance by

r’(2)

r'(z)

Using a similar method to the above, we can solve for ¢ in terms of w and for r in
terms of ¢ to obtain

(24) g)=—-1—(1+72)

25 _1 o, 1—Q
(26) r(z) = Hy ' /st o~ Jo du(1+q ) /(1+u)
0

These equations are derived in the Supplementary On-line Material.

Equations (21), (25) and (26) have several properties that are valuable for statis-
tical inference. First, note that for any w, r’(z) > 0, so r is a monotone increasing
function of z with r(0) = 0. In fact,

-3/2 —-3/2
(14+2) fr/(z)§(1+z)

27) 7
0 H3Q

’

where the upper bound can be made sharper if w is assumed bounded from be-
low. Second, r is monotone decreasing in w for each fixed value of Hy and €2,,.
Specifically, if w; and w; are two candidate equations of state with correspond-
ing comoving distance functions r; and rp, and if wz(z) > wi(z) for all z > 0,
then r2(z) < ri(z) for all z > 0. Similarly, ¢ is monotone increasing in w;
w2 (z) > wi(z) for all z > 0 implies that g2(z) > q1(z) for all z > 0. And r is
monotone decreasing in g; g2(z) > ¢1(z) for all z > 0 implies that r2(z) < r1(2)
for all z > 0. Third, as shown in the Appendix, for r to be concave it is sufficient
that w(z) > —1/(1 — 2,,) for all z > 0. Under mild smoothness assumptions on w,
the concavity of r holds more broadly. Fourth, in both equations involving w, tak-
ing w = 0 is equivalent to taking €2,, = 1.

For any specific parameterization of w and any choice of €2, and Hy, it is
straightforward to evaluate r numerically. For instance, under a constant w model
w = wo, equation (21) reduces to

28) r(z)=H,' /0 ds[Qm(145)> + (1 = Qp) (1 4 5) w0 =172,

More generally, expanding w(z) = —)_; B;¥,(z) in a (not-necessarily orthonor-
mal) basis ¥, ¥, ... yields

Z -
(29) r(z) = Ho‘lfo ds[Q2m(1+5)> + (1 = Q)1 +5)3e 32 Pivie)=1/2)

where & j(s) = f5 Y j(u)/(1 + u) du. Taking the expansion to be finite gives three
important special cases:
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1. Polynomial in z: ¥;(z) = z/, j=0,...,d, giving

Z
r@ =ty [ ds[n(1+5)°
(30) ° o
+ (1= Qu)(1 45270 g D el =172,

where oy = Z‘;zk(—l)jﬂj fork=0,...,d.
2. Polynomial in the scale factor a: ¥;(z) = (1 +z)7/, j =0,...,d, giving

r(z)=Hy' /Ozds[Qm(1+s)3

(31) ,
4 (1= Q) (1 + )3P0 3 Kjmt By (147 =D/j1=172,
3. Piecewise constant: ¥/ (z) = l(sjysjﬂ](z) for j =0,..., K —1,where 0 =59 <
§1 < --- < sg are breakpoints for K fixed bins and where l(s‘,-,sj 1@ is 1if

sj <z <sj4+1 and O otherwise. In this case, equation (21) becomes

(32  r@=H' f 51 (145 4 (1= Q) (145 BOT2,
0

where
J(s)

1+5; ) < 1+ )
33 B(s) = lo +Brearlog( ———
(33) (5)= Zﬂ, g(1+ oy R ORI urwrm

and where J(s) = max{O <J =K : s; <s}. Despite the discontinuities in w,
this expression is a smooth function of the 8 parameters.

Extension to other bases—such as B-splines, orthogonal polynomials, and
wavelets—is straightforward.

Combined with equation (20), each of these expressions produces a likelihood
for w, Hy, and €2,,. Although nonlinear, these likelihoods are well-behaved for
optimization purposes, and weighted, nonlinear least-squares is computationally
efficient in practice. Good estimates of the coefficients can be obtained for a wide
variety of models, which in turn supports both parametric and nonparametric in-
ferences about w.

5. Methods I: hypothesis testing. As discussed above, one method for dis-
tinguishing among models of dark energy is to first estimate the equation of state
and use this estimate to test hypotheses about cosmological models [e.g., Huterer
and Cooray (2005)]. This approach has several disadvantages, including that the
power of the test depends on having a good estimator and that it requires accurate
standard errors for the entire function. Moreover, in practice, such tests usually
rely for their validity on an assumed parametric model for w. It would be desirable
to be able to test cosmological models without a preliminary estimator or assumed
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parameterization, and in this section, we construct a method to do that for certain
classes of hypotheses.

The basic idea is that we use the forward operator given in equation (21) to map
a set of possible w’s to the r domain, and use the data to test the hypothesis there by
inverting a nonparametric confidence set for r. Two issues arise in such a scheme.
First, for general sets in the w-domain, it can be difficult to compute their image
in the r-domain, but we use the properties of the operator discussed in Section 4 to
easily compute the mappings for certain classes of hypotheses. Second, performing
a sharp nonparametric test (or constructing a small nonparametric confidence set)
can be difficult without structural assumptions, but we take advantage of strong
shape constraints satisfied by the comoving distance function.

Here, we consider null hypotheses of the following forms:

simple equalities for w: w = wy,

inequalities for w: wy < w < wy,

inequalities for w’: wy < w’ < wi,

inclusion: w € V for a linear space V of fixed dimension,

oowx

and various intersections of these, where wg, wi, wé, and w’1 denote various fixed
functions, not necessarily constant. [We use the inequality w < wg to mean that
w(z) < wo(z) for all z, and similarly for other inequalities between functions.]

Testing such hypotheses gives direct tests of various cosmological models. The
null hypothesis that the cosmological constant model holds, for example, translates
to a simple null hypothesis with wy = —1. Quintessence solutions lead to a variety
of constraints on w and w’ that can be tested by combining hypotheses that are
inequalities for w and for w’. For instance, as we show in the Appendix, thawing
solutions satisfy

dw
(34) I+w< <3(1+w),
dlna
and freezing solutions satisfy
dw
(35) 3w+ w) < — <02w( + w),
dlna

when —1 < w<-0.8 [Caldwell and Linder (2005)], where a is the scale factor.
These bounds can be re-expressed for w in the same range as

14+ w(0) 1+ w(0)
(36) e —1Sw(z)§—1+z -1,
and
w(0)
3 3 _
37) (1+2)°+wO(1+2)-°—1)
w(0)

=@ S 0 w0+ 002 = 1)
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where w(0) is a free parameter.

The strategy underlying our testing procedure is to use equation (21) to trans-
late hypotheses about w into hypotheses about r, making it possible to test any
hypothesis that translates into a manageable form. Our test is derived by inverting
a 1 — o confidence set for (r(z1),...,r(z,)), as follows:

0. Selectasmall0 <« < 1.

1. Construct a 1 — « confidence set C for the unknown vector (r(z1), ..., 7(z,)).

2. Construct the set Rg of vectors (ro(z1), ..., r0(zn)) where rg is a co-moving
distance function produced by an equation of state consistent with the null hy-
pothesis.

3. Reject the null hypothesis if € N Ry = <.

In practice, the sets in steps 1 and 2 need not be constructed explicitly. For exam-
ple, C typically takes the form of bands—an interval at each z;—or a ball centered
around a particular vector. And Rg can usually be represented implicitly by an
efficient search over the null hypothesis in w (mapped forward by T') targeting
those r’s that lie outside C. In practice, this procedure can be made computation-
ally efficient for a broad range of hypotheses.

One way to define the confidence set C is the set of vectors for which a stan-
dard chi-squared goodness-of-fit test does not reject the null hypothesis. In light
of equation (20), the chi-squared goodness-of-fit ball gives a confidence set for
(logo(r(z1)),...,logy(r(z,))), which is easily transformed into a confidence set
for (r(z1)),...,7(z,)). As the number of data grows, however, the chi-squared
confidence sets become unduly conservative, reducing the power of the test. So,
we also use alternative confidence set procedures that produce smaller confidence
sets, giving the test higher power [Baraud (2004), Davies et al. (2007), Ingster and
Suslina (2006)].

Suppose thatfori =1, ...,n, Y; = f; 4+ o;&;, where the o;s are known numbers
and the ¢;s are independent Gaussian variables. This corresponds to equation (20)
with f; =log;or(z;). If the vector f = (fi,..., fn) denotes the true but unknown
values of the function at the observed points, then a 1 — « confidence set C for f
18 a random set, constructed from the data, that satisfies

(38) P{C> f}>=1—a.

We want C to be as small as possible. (Although there are several reasonable de-
finitions of size, we will use the simplest: the radius of a confidence ball in the
corresponding norm, the width of confidence bands, and the volume of a more
general set. Our methods work as well if the confidence set is constructed to opti-
mize some other criterion.)

There are several ways to construct such confidence sets. One way is to in-
vert a chi-squared goodness-of-fit test for the null hypothesis f = f9, giving
C={f"T2(fy < X,%,a /n}, where X,f’a is the upper-tail o quantile of the corre-

sponding chi-squared distribution and where T%( fo)=0/n) X" (Y — fl.o)2 / aiz.
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The chi-squared confidence set is simple to use, but it has several major draw-
backs. The confidence set is relatively large; the radius of the set x,.o/+/n is O(1)
no matter how large n is. The set is constructed from a rough estimator of f,
namely, the data. The size of the set is independent of the data and thus cannot
adjust to evidence of smoothness. And some prior information, such as shape re-
strictions, is difficult to incorporate in practice.

There are practical confidence set procedures that address all these drawbacks.
We consider two: shape-restricted confidence bands from Davies, Kovac and
Meise (2007) and adaptive chi-squared confidence sets from [Baraud (2004)]. Both
provide finite-sample, honest [Li (1989)] confidence sets that adapt their size based
on the data. Both provide substantially smaller confidence sets than the chi-squared
ball. Both are computationally practical, though somewhat more work than the
naive chi-square confidence set. And both allow us to incorporate prior informa-
tion about the comoving distance to produce a smaller confidence set. Because the
Davies et al. procedure performed better in simulations with current sample sizes
and because it requires fewer tuning parameters, we focus on that procedure in this
paper. The shape constraints are also well adapted to our prior information about
r. In principle, the Baraud procedure combined with shape constraints should out-
perform the Davies et al. procedure, but we will explore this comparison in a future
work. More detail about the Baraud procedure is given in the Supplementary On-
line Material.

The procedure of Davies et al. generates confidence bands under the assumption
that f is monotone and concave. For each 1 <i < k < n, define the integer interval
I;i to be the set of indices 1 < j < n such that z; < z; < z¢. Thus, if there are no
ties among the redshifts, /;z = {i, ..., k}. Consider the following statistics, mod-
ified from Davies, Kovac and Meise (2007), to account for the different standard
errors of the measurements:

1

Z Yi—Ji
VEUjx) jer, i

where #(-) gives the cardinality of a set. These serve as test statistics for testing
whether the residual mean is zero along any index interval. When f is the true
vector, the Tijx(f)s each are mean zero Gaussian variables. Davies, Kovac and
Meise (2007) point to a procedure for computing these statistics in O (nlogn)
time and offer an approximating subset of size O (n) for large n. We use the latter
for convenience, but use of the full set did not significantly change the results.
The procedure begins with a confidence set for the 7j;’s. In Davies, Kovac and
Meise (2007), this is a confidence cube with edge length equal to twice the 1 — «
quantile of max; x |7« (f)|. The key for constructing the final confidence set is that
the initial confidence set has linear boundaries, making consistency with the ini-
tial confidence set a computationally tractable constraint. Constraints for concavity
and monotonicity are also linear. This gives a confidence set for f consisting of

39) Ti(f) =
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those vectors g such that the T’z (g)s lie in the initial confidence set and that g sat-
isfies the imposed shape constraints. We could use this confidence set directly, but
it is computationally much simpler with the above types of hypotheses to use con-
fidence bands. We compute the confidence bands are constructed by maximizing
and minimizing f; subject to the vector f lying in the initial confidence set and
satisfying the shape restrictions. These require optimization of a linear object func-
tion with linear constraints and thus can be solved with two linear programs (i.e.,
optimization problems with a linear objective and linear constraints) for each j.

We modify the Davies, Kovac and Meise (2007) procedure in several ways.
First, because monotonicity and concavity are used in the procedure in log space,
the confidence bands need not be concave in r space. We adjust for this by opti-
mizing the bands in r space, finding the smallest bands consistent with the shape
restrictions there, including the additional constraint that »(0) = 0. This involves
two additional linear programs for each z;. Second, we can use a smaller initial
confidence set for the 7j;s with some additional computation. Specifically, the dis-
tribution of T;x(f)’s is a degenerate Normal whose covariance depends only on
the collection of I;; intervals. With an eigen-decomposition of this covariance,
we replace the hyper-cube of Davies, Kovac and Meise (2007) by a substantially
smaller degenerate ellipsoid and get proper coverage. The O(n) sized symmetric
eigen-decomposition is expensive for large n but can be parallelized if necessary.
This also requires optimizing a linear function subject to linear and ellipsoidal con-
straints. Such a problem can be reduced to a convex optimization problem called
second-order cone programming [Boyd and Vandenberghe (2004)], in which we
minimize a linear function y 7 x subject to one or more “second-order cone con-
straints” of the form ||Ax + b|| < ¢! x + d, where | - || is the Euclidean norm,
A is a matrix, b and ¢ are vectors, and d is a scalar. Many common convex opti-
mization problems can be reduced to this form. We used the MOSEK and CPLEX
software'? to compute the solutions to these problems. Finally, to test whether
a linear space of vectors intersects the ellipsoidal constraint set and satisfies the
shape constraints, we can minimize the (quadratic) distance to the center of the
ellipsoid subject to the linear shape constraints and inclusion in the given space.
If the resulting optimum is sufficiently close to the center, the test is affirmative.
This is yet another form of convex optimization (called quadratic programming)
that can be implemented with the same software.

In all of the hypotheses we test, there are one to three free parameters that must
be varied, usually including Hp and €2,,. A simple grid search is practical and
straightforward in these cases. For any value of the free parameters, we can tell
whether the corresponding r lies in the confidence bands by direct comparison.
We can also incorporate information from other studies by using confidence sets
on (Hp, 2,,) to define this subsidiary search. Assuming independent data sets and

1256 http://www.mosek.com and http://www.ilog.com/products/cplex/.
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taking o’ =1 — 4/1 — «, if we use a 1 — o’ confidence set for the cosmological
parameters and in our procedure, the resulting test has level « as required.

Our procedure works also under more restrictive assumptions about the form
of w, with correspondingly sharper results as the assumptions grow stronger. For
this, the confidence set C is constructed using the assumed parameterization. The
resulting test will have higher power than the nonparametric test when the as-
sumed parameterization holds. Note, however, that the validity of any inferences
under a specific parameterization depends strongly on the parameterization be-
ing accurate. For instance, we assume here that w > —1 [Carroll, Hoffman and
Trodden (2003)], which implies that r is monotone concave. But the same basic
procedure works, with somewhat lower power, when that assumption is dropped.

Step 2 of the procedure depends specifically on the hypothesis being tested. We
now derive the sets Rg for null hypotheses of the forms listed above. Let M denote
the set of vectors (r(z1), . .., r(z,)) for functions r that meet the a priori conditions
that the comoving distance must satisfy:

A. Under a simple null hypothesis w = wyp, equation (21) generates a two-
parameter family of functions ry as Hy and €2, vary; Rg is the set of vectors
(ro(z1), ..., ro(zn)) for rg in this family.

B. Under the null hypothesis, w > wq, equation (21) shows that, for fixed Hy
and ,,, r < rg, where rq is produced in (21) by w = wq for the given value
of Hp and 2,,,. Again, varying Hp and €2, produces a two-parameter family of
functions rg. Ry is the set of vectors (rq, ..., r,) € M such that r; > ro(z1), ...,
rn > ro(zy,) for some rg in the family. The restriction to M sharpens the results.
It is not strictly necessary, but because equation (21) produces functions in M,
it is an improvement that is virtually cost free. The other direction of inequality
is handled similarly, using the monotonicity of » in w.

C. Null hypotheses of the form w’ > wy, can be handled by re-expressing the
exponent in equation (21). Integrating by parts and writing w(s) = w(0) +
Jo w’'(u) du yields that

(40) /(;s iﬂj_—ul)ddu = w(0)log(1 + ) + /(;s w'(u)(log(1 +5) —log(1 + u)) du.

The second term in the right-hand side integrand is nonnegative, so w’ > wy
implies, for fixed Hy, €2,,,, and w(0), that » < rg, where r is the right-hand side
of equation (21) corresponding to (w(0), w(/), Hy, Q,,). Varying Hy, €2,,, and
w(0) produces a three-parameter family of functions, and as before, Ry is the
set of vectors in M whose components are at least as big everywhere as some
function in this family. Other inequalities in w’ are handled similarly.

D. The null hypothesis that w lies in some linear space of functions V is useful
primarily to test the goodness of fit of statistical models for w. We select an
arbitrary basis for V and form a dim(V') 4+ 2 dimensional family of functions
corresponding to each (Hp, €2,,) and each vector of coefficients in the basis
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expansion. Ry is the set of vectors produced by these functions evaluated at
21, ..., 2n- See equation (29). This case is handled in practice by numerical
optimization and thus works best for low to moderate dimensional spaces. It
is not necessary to restrict to a linear space, but that is the best behaved case
numerically.

Note that this same approach can be used to test hypotheses about the deceler-
ation function ¢ (z). For instance, we may wish to test the null hypothesis that the
universe is nonaccelerating. This can be expressed in several ways. First, we can
test whether the universe is matter dominated without dark energy, which corre-
sponds to w = 0, or equivalently, €2, =1, or ¢ = 1/2 from equation (25). We call
this the matter dominated hypothesis. In contrast, a nonaccelerating universe cor-
responds to g > 0; we call this the strongly nonaccelerating hypothesis. Using the
monotonicity properties of equation (26), this matter-dominated hypothesis maps
to the null hypothesis r = H," 12 = 2(1 4 2)7/?) and the pure nonaccelerating

hypothesis corresponds to the null hypothesis r > H ! log(1 + z). Both gener-
ate a one-parameter family and corresponding Rg. Note two issues with the latter,
one-sided hypothesis. By taking Hy large enough, we can make the lower bound as
small as possible and the null trivially true, so we need to use a prior confidence set
for Hy as described above. Second, the condition g > 0 allows expansion histories
that are strongly at odds with current theory. So, strictly speaking, testing g > 0
will offer poor power against alternatives we care about. We fix this problem in
two ways: combining ¢ > 0 with (i) a bound on w such as w > —1/3 to preclude
acceleration in a dark-energy dominated universe, and (ii) assume that g exhibits
a change point between the matter-dominated case ¢ = 1/2 and the dark-energy
dominated case ¢ > 0. Both tighten the bounds substantially, at the expense of an
added restriction or free parameter.

6. Methods II: estimating the equation of state. Answering the main ques-
tions about dark energy that are currently being addressed with supernova data
involves testing among competing models. But ultimately we want to estimate the
equation of state. As described earlier, this problem has received substantial at-
tention in the literature. In this section we describe a framework for constructing
nonparametric estimators of w with an associated assessment of uncertainty.

A nonparametric procedure for estimating the equation of state treats w as an
infinite parameter belonging to a specified space of functions. Of course, with
only a finite amount of data, any estimator has limited resolution, so we must
use the data to determine the complexity of the estimator. This gives rise to the
bias-variance trade-off: too high a complexity provides a better apparent fit but
gives estimates with high variance; too low a complexity gives estimates with low
variance but bias from model misspecification.

There have been several related works in the dark energy literature. Saini,
Weller and Bridle (2004) formulate the problem as a Bayesian inference prob-
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lem where the parameter space includes disjoint spaces of low-dimensional poly-
nomials. Huterer and Starkman (2003) construct an empirical basis via principal
components. They correctly note that choosing the number of basis elements in a
nonparametric analysis requires that one carefully balance the bias and the vari-
ance. We provide a concrete mechanism for choosing the number of elements in
practice.

Our approach begins with a collection of models M1, M>, ..., where each My
is a linear space of functions with dimension k. We then select a model that bal-
ances bias and variance by minimizing an empirical measure of risk or comparable
criterion. We use BIC [Bayesian Information Criterion, also called the Schwarz
criterion; Schwarz (1978)], as it is both simple and effective, but other criteria give
similar results. All the spaces M;—including those for small k—contain smooth
and constant functions, and as k increases, the spaces add detail to capture more
complex fluctuations. We define My to be the k-dimensional space of cubic B-
splines [de Boor (2001)] over the range of the data, with equally spaced knots. The
choice of knots could be optimized for even better performance by adapting it to
the distribution of redshifts in the data. Note that with this choice, the bases for
the My spaces are not nested.

A common alternative choice in nonparametric function estimation is to choose
an orthonormal basis to represent w and define My to be the span of the first &
terms. In an inverse problem such as this, however, this strategy requires care.
Choosing a basis to obtain an efficient estimator requires balancing the informa-
tion passed by the forward operator and the conciseness of the representation for w.
For example, the Fisher basis [e.g., Huterer and Cooray (2005)] based on the for-
ward operator in equation (22) has most of its variation at low to moderate redshift
where w is relatively more informative in the data. But as shown in Figure 3,
the basis elements decay quickly to zero. To fit a simple smooth function, even
a constant, requires a large number of basis functions, leading to high variance es-
timators. This is an especially important issue when considering variations around
the cosmological constant model.

It was for this reason that we defined the M} as above. Each M} contains con-
stant and smooth functions over the entire redshift domain. As a consequence,
a good estimate of a smooth function can be obtained in any of the models, and
when w is in fact smooth, the procedure will select a lower-dimensional model,
with consequent gains in mean squared error. Moreover, unlike polynomials, the
B-splines are localized and numerically well conditioned.

Of course, for most purposes, an estimate of w is not sufficient, so we also need
an assessment of uncertainty in the estimates. Consider first inference for a sin-
gle My. It is possible to use a Normal approximation at the maximimum likelihood
estimate from the nonlinear regression to derive an approximate covariance matrix
for the estimated parameters. In practice, this seems to perform well, but because
it is difficult to bound the accuracy of the approximation given the nonlinearity,
we use a resampling approach. The error bars can be computed using a parametric
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FI1G. 3. The first four Fisher basis functions, all of which decay quickly to zero in redshift.

or nonparametric bootstrap. We prefer to use a nonparametric bootstrap since the
error bars will then be less affected by any bias in the specification of the model,
especially given that we are selecting among models initially. We generate boot-
strap confidence intervals for the parameters in the model by resampling residuals
from the model fit, renormalized to have appropriate variance [Efron (1979), Efron
and Tibshirani (1994)]. The basic procedure is as follows:

1. Compute the maximum likelihood estimator (,é, 6), where B is the vector of
parameters for w and 6 = (Hy, 2,).

A

2. Compute residuals ¢; = Y; — 7 (z;; B, 0).
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3. Using the standard errors of ¥; and the linear approximation at the maximum
likelihood estimator, standardize the residuals to unit variance. Call these stan-
dardized residuals ¢;.

4. Forb=1,..., B, for some large B, draw pseudo-noise from the empirical dis-
tribution of the g;. Call these E;k(b) fori=1,...,n.

5. Generate pseudo-data

(41) YO =) +o el
6. Compute the maximum likelihood estimates (B*(b), 6*®)) from each pseudo-
data set.

7. Compute standard errors and confidence intervals for these parameters from the
(B*®,6*®))’s as in Efron (1979) and Efron and Tibshirani (1994).

We use the bootstrap confidence intervals to compute confidence bands for w and ¢
by computing the largest and smallest values of the functions at each redshift that
are consistent with the confidence intervals on the parameters.

In the nonparametric case, it is common practice to use the confidence bands
corresponding to the selected model. These are straightforward and accurate when
the selected model holds but are necessarily optimistic because the bands do not
account for the variation in the model selection process or for the potential bias
induced by choosing too simple a model. A simple improvement we use is to
incorporate the model selection into the resampling process, using the largest and
smallest estimated w or g from the bootstrap samples to construct the confidence
bands. Because this effectively includes model bias in the bands, this approach
is likely to be somewhat conservative. We will explore other approaches to this
problem in a future paper.

7. Results.

7.1. Testing cosmological models. We test seven cosmological models us-
ing the procedure described earlier, independently of any parameterization for w.
Three models (cosmological constant, frustrated cosmic strings, and domain walls)
can be tested with a simple null hypothesis of the form w = wqg. The two
quintessence models (thawing and freezing solutions, resp.) were tested with in-
equality null hypotheses given by equations (36) and (37) intersected with the
condition that —1 < w < —0.8. [We also tested more expansive versions of these
hypotheses using (i) equations (36) and (37) alone and (ii) the hypothesis w’ > 0
and w’ < 0 intersected with the condition that —1 < w < —0.8. But being strict
supersets of the original null hypotheses, these are less likely to reject.] We
tested both the matter dominated and strongly nonaccelerating universe hypothe-
ses. For the latter, we used a confidence interval obtained from the current best
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TABLE 1
Results of nonparametric hypothesis tests for various cosmological models of w. The significance
levels correspond to 1, 1.5, 2, and 2.5 standard deviations respectively from a Gaussian mean

Rejected at level
Model 32% 13% 5% 1%
Cosmological constant yes no no no
Frustrated cosmic strings yes yes yes no
Domain walls yes no no no
Matter dominated yes yes yes yes
Nonaccelerating yes yes yes no
Quintessence thawing no no no no
Quintessence freezing no no no no
Constant w no no no no

estimates'? and adjusted the confidence level as described in Section 5. Finally,
we tested the inclusion hypothesis that w is a constant, possibly different from —1.
Table 1 shows the results of these tests at various significance levels. The no dark
energy model is clearly inconsistent with the data (p-value p &~ 0), but none of the
other models are rejected at the 13% level. Note, in particular, that the cosmologi-
cal constant is consistent with the data.

A false null hypotheses might fail to be rejected because the power of the test
is too low. Because our procedure has essentially as much power as possible given
the available information about w, the only ways to improve power are either to
make stronger assumptions about the form of w or to get more data. We argue
that the latter is necessary. The results do not change when performing the same
tests assuming a linear form w(z) = —(Bp + B1z), which is the simplest nontriv-
ial parameterization and a correspondingly smaller confidence set. The pattern of
rejections is basically the same, and in particular, there is insufficient evidence to
move away from a cosmological constant. Of course, there is no reason to believe
the linear form for w, and if it is false, inferences under that assumption can be
misleading. But this shows that strengthening the assumptions is not enough to
overcome the lack of information in the data.

7.2. Fitted models for the equation of state. Our fitted w is a constant, W=
—1.013 £ 0.124 with Q¢ = 0.268 + 0.028 and Hy = 65.6 4= 0.90, where the stan-

3For current estimates of cosmological parameters, see http://lambda.gsfc.nasa.gov/product/map/
current/. We adopt the value of Hg Qy derived from “all” data for the LCDM model. This gives Hy
72 £+ 8 km/s/Mpc. Note, however, that the absolute value of the Hubble constant is only determined
by the supernova data up to an arbitrary shift because of calibration of the absolute magnitudes. We
thus recentered this confidence interval around 65, which is consistent with the calibration of our
data.


http://lambda.gsfc.nasa.gov/product/map/current/
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TABLE 2
Power for distinguishing a constant model w = w1 from a cosmological constant w = —1 using a
likelihood ratio test with significance level a. Each is based on 3000 simulations of data
from equation (20)

Significance level («)

Alternative (wq) 0.68 0.87 0.95 0.99
—0.85 0.352 0.169 0.080 0.015
—0.90 0.328 0.157 0.056 0.012
—0.95 0.303 0.121 0.047 0.012
—0.99 0.322 0.116 0.044 0.007

dard errors are based on 1000 bootstrap iterations. (Note that the supernova data
determine the value of the Hubble constant plus an arbitrary shift induced by cali-
bration of the supernova absolute magnitudes, so it is the relative uncertainty rather
than the absolute value that matters here.) The bootstrap BC, 95% confidence in-
tervals do not differ much from the Normal intervals based on the bootstrap stan-
dard errors: [—1.262, —0.796] for w, [0.220, 0.324] for 2,,, and [63.9, 67.4] for
Hy. It is straightforward to compute joint confidence sets for these parameters,
but we do not report them here. As a check on these results, we note that within
the parametric models we consider (polynomials in z or a, piecewise constants,
B-splines) likelihood ratio tests between the constant model and the higher-order
models in the family fails to reject with p-value p > 0.85. In all three cases, BIC is
monotone increasing with the constant model the clear choice. A likelihood ratio
test of the cosmological constant versus the constant w model fails to reject with
p-value p =0.137.

7.3. The need for more data. A key question is whether current supernova data
are sufficient to resolve the differences among interesting models for w and g. We
argue here that the answer is no.

First, even under strong assumptions and with essentially optimal procedures,
there is not enough evidence to distinguish among interesting models. The cosmo-
logical constant model is suggestively on the boundary at the 13% level, but no
conclusive differences are supported by the data.

Second, we can use as a minimal criterion for resolvability the power of the like-
lihood ratio test for distinguishing the cosmological constant model from a con-
stant w model. With existing standard errors, it is straightforward to compute this
power by simulation through equations (21) and (20). Table 2 shows the power
of this test for various significance levels and alternatives, all of which are low.
The power for distinguishing a constant w model from a piecewise constant model
with one breakpoint are lower for a similar variety of alternatives.
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FI1G. 4. Two equations of state that produce statistically indistinguishable r’s.

Third, an even more striking demonstration of model degeneracy is given by
Figure 4. This shows two very different equations of state that give virtually in-
distinguishable fits to the data, with a chi-squared deviation of 0.04. This example
is driven primarily by uncertainty in €2,,, which can be reduced using other (non
SNe) data.

8. Discussion. Matching the many studies in the astrophysics and cosmology
literature, we find that current supernova data do not yet provide tight enough infer-
ences to make nontrivial claims about w. And in particular, the data are consistent
with a cosmological constant model. This puts the focus squarely on future data,
which will likely provide notably stronger constraints on the dark energy equa-
tion of state. This raises the question of what this newfound precision will mean.
If the cosmological constant model holds or if w is very close to but not equal
to —1, then we will be in much the same state as we are currently. But other-
wise, the insight we gain into the nature of dark energy will depend on our ability
to distinguish competing models and to infer subtle structure in w. For this pur-
pose, a nonparametric approach will be particularly effective. This paper describes
a new technique for testing among competing dark energy models with minimal
assumptions and describes a framework for nonparametric estimation of w.

Several challenges and open questions remain. Computation of sharp, honest
confidence sets in nonlinear inverse problems is a mathematically difficult problem
but important to getting as much information as possible from the data. Expand-
ing the scope of the hypothesis testing methods to new classes of hypotheses that
eliminate “unphysical” possibilities will improve the power of the technique. And
systematic errors will become a major issue as the statistical uncertainties become
smaller.
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The next generation of supernova data sets may answer many questions with
the methods presented herein, but they will also raise a host of interesting new
statistical problems.

APPENDIX: EQUATION OF STATE BOUNDS FOR THE QUINTESSENCE
MODELS

To derive equations (36) and (37), we begin by transforming equations (34) and
(35) from the scale factor a to redshift z. Replacing dw/d Ina by —(1 + z)w’(z)
and reversing the inequality because of the negative sign yields the corresponding
equations

14+ w(z) , 1+ w(z)
42 —37<w Z <—7’
(42) 1+z — (@)= 14z
for thawing solutions, and

1+ w(z) , 1+ w(z)
43 —02w(i@)— < w(z) < Bw(@)———,
(43) (2) P (2) < (2) 1Tz

for freezing solutions.

Begin with the assumption that w > —1, which we will weaken below. For the
thawing equalities, divide through by 1 + w to get w'/(1 + w) = (log(1 + w))’
and, thus,

1

1+2

1 /
44 —3—— <(log(l +w(z))) <—
(44) 7 < (log(1 + (@)
Integrating through from O to z yields
45) —3log(1 4+ z) <log(l + w(z)) —log(1 + w(0)) < —log(1 + 2),

and taking exponents,

1+ w(z)
1 + w(0)
which leads directly to equation (36).

Similarly for the freezing solutions, w’/w(1 + w) = (log(w/(1 + w)))’. Divid-
ing through and integrating as before gives

(46) (14273 < <(1+27",

47) —0.21log(l +72) < 1og<ﬂ) - 1og<LO)) < —3log(1 + 7).

1+ w(z) 1+ w(0)
Taking exponents and simplifying gives equation (37).
For freezing solutions, w’ > 0, and if w(0) = —1, then w = —1. For thawing
solutions, either w(0) = —1 and w = —1, or w(z) = —1 for some z > 0. The latter

case leads to a contradiction given the bounds on w’ and continuity of w. Hence,
the bounds hold for —1 < w < 0.8.
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