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APPROXIMATE NULL DISTRIBUTION OF THE LARGEST ROOT
IN MULTIVARIATE ANALYSIS1

BY IAIN M. JOHNSTONE

Stanford University

The greatest root distribution occurs everywhere in classical multivariate
analysis, but even under the null hypothesis the exact distribution has required
extensive tables or special purpose software. We describe a simple approxi-
mation, based on the Tracy–Widom distribution, that in many cases can be
used instead of tables or software, at least for initial screening. The quality of
approximation is studied, and its use illustrated in a variety of setttings.

1. Introduction. The greatest root distribution is found everywhere in classi-
cal multivariate analysis. It describes the null hypothesis distribution for the union
intersection test for any number of classical problems, including multiple response
linear regression, MANOVA, canonical correlations, equality of covariance matri-
ces and so on. However, the exact null distribution is difficult to calculate and work
with, and so the use of extensive tables or special purpose software has always been
necessary.

This paper describes a simple asymptotic approximation, based on the Tracy
Widom distribution. The approximation is not solely asymptotic; we argue that it is
reasonably accurate over the entire range of the parameters. “Reasonably accurate”
means, for example, less than ten percent relative error in the 95th percentile, even
when working with two variables and any combination of error and hypothesis
degrees of freedom.

This paper focuses on the approximation, its accuracy and its applicability to a
range of problems in multivariate analysis. A companion paper [Johnstone (2008)]
contains all proofs and additional discussion.

Our main claim is that for many applied purposes, the Tracy–Widom approxi-
mation can often, if not quite always, substitute for the elaborate tables and com-
putational procedures that have until now been needed. Our hope is that this paper
might facilitate the use of the approximation in applications in conjunction with
appropriate software.

1.1. A textbook example. To briefly illustrate the Tracy–Widom approxima-
tion in action, we revisit the rootstock data, as discussed in Rencher (2002),
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pages 170–173. In a classical experiment carried out from 1918–1934, apple
trees of different rootstocks were compared (Andrews and Herzberg [(1985),
pages 357–360] has more detail). Rencher (2002) gives data for eight trees from
each of six rootstocks. Four variables are measured for each tree: Girth4= trunk
girth at 4 years in mm, Growth4= extension growth at 4 years in m, Girth15=
trunk girth at 15 years in mm, and Wt15= weight of tree above ground at 15 years
in lb.

Stock Girth4 Growth4 Girth15 Wt15
1 I 111 2.569 358 760
2 I 119 2.928 375 821

· · ·
47 VI 113 3.064 363 707
48 VI 111 2.469 395 952

A one-way multivariate analysis of variance can be used to examine the hypoth-
esis of equality of the four-dimensional vectors of mean values corresponding to
each of the six groups (rootstocks). The standard tests are based on the eigenvalues
of (W + B)−1B, where W and B are the sums of squares and products matrices
within and between groups respectively. We focus here on the largest eigenvalue,
with observed value θobs = 0.652. Critical values of the null distribution depend on
parameters, here s = 4,m = 0,n = 18.5 [using (8) below, along with the conven-
tions of Section 5.1 and Definition θ ]. Traditionally these are found by reference to
tables or charts. Here, the 0.05 critical value is found—after manual interpolation
in those tables—to be θ0.05 = 0.377. The approximation (6) of this paper yields
the approximate 0.05 critical value θTW

0.05 = 0.384, which clearly serves just as well
for rejection of the null hypothesis.

It is more difficult in standard packages to obtain p-values corresponding to
θobs. The default is to use a lower bound based on the F distribution [see (12)], here
pF (θobs) = 1.7×10−8, which is anti-conservative and several orders of magnitude
below the Tracy–Widom approximation given in this paper at (11), pTW(θobs) =
5.6 × 10−5. The latter is much closer to the formally correct value,2 p(θobs) =
3.7 × 10−6. When p-values are very small, typically only the order of magnitude
is of interest. We suggest in Section 2.2 that the Tracy–Widom approximation
generally comes close to the correct order of magnitude, whereas the default F

bound is often off by several orders.

1.2. Organization of paper. The rest of this introduction provides enough
background to state the main Tracy–Widom approximation result. Section 2 fo-
cuses on the quality of the approximation by looking both at conventional per-
centiles and at very small p-values. The remaining Sections 3–6 describe some

2This (actually approximate) value is obtained by interpolation from Koev’s function
pmaxeigjacobi which only handles integer values of n.
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of the classical uses of the largest root test in multivariate analysis, in each case
in enough detail to identify the parameters used. Some extra attention is paid in
Section 6 to the multivariate linear model, in view of the wide variety of null hy-
potheses that can be considered.

1.3. Background. Our setting is the distribution theory associated with sample
draws from the multivariate normal distribution. For definiteness, we use the nota-
tion of Mardia, Kent and Bibby (1979), to which we also refer for much standard
background material. Thus, if x1, . . . ,xn denotes a random sample from Np(μ,�),
a p-variate Gaussian distribution with mean μ and covariance matrix �, then we
call the n × p matrix X = (x1, . . . ,xn)

′, whose ith row contains the ith sample
p-vector, a normal data matrix.

A p × p matrix A that can be written A = X′X in terms of such a normal data
matrix is said to have a Wishart distribution with scale matrix � and degrees of
freedom parameter n, A ∼ Wp(�, n). When p = 1, this reduces to a scaled chi-
squared law σ 2χ2

(n).
We consider analogs of the F and Beta distributions of multivariate analysis,

which are based on two independent chi-squared variates. Thus, let A ∼ Wp(�,m)

be independent of B ∼ Wp(�, n). If m ≥ p, then A−1 exists and the nonzero eigen-
values of A−1B are quantities of interest that generalize the univariate F ratio. We
remark that the scale matrix � has no effect on the distribution of these eigenval-
ues, and so, without loss of generality, we can suppose that � = I.

The matrix analog of a Beta variate is based on the eigenvalues of (A + B)−1B,
and leads to the following:

DEFINITION θ [Mardia, Kent and Bibby (1979), page 84]. Let A ∼ Wp(I,m)

be independent of B ∼ Wp(I, n), where m ≥ p. Then the largest eigenvalue θ

of (A + B)−1B is called the greatest root statistic and its distribution is denoted
θ(p,m,n).

Since A is positive definite, we have 0 < θ < 1. Clearly θ(p,m,n) can also be
defined as the largest root of the determinantal equation

det[B − θ(A + B)] = 0.

Specific examples will be given below, but in general the parameter p refers to
dimension, m to the “error” degrees of freedom and n to the “hypothesis” degrees
of freedom. Thus, m + n represents the “total” degrees of freedom.

There are min(n,p) nonzero eigenvalues of A−1B or, equivalently, min(n,p)

nonzero roots θ = (θi) of the determinantal equation above. The joint density func-
tion of these roots is given by

p(θ) = C

min(n,p)∏
i=1

θ
(|n−p|−1)/2
i (1 − θi)

(m−p−1)/2�(θ),(1)
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where �(θ) = ∏
i �=j |θi − θj | (see, e.g., Muirhead [(1982), page 112], or Anderson

[(2003), pages 536–537]). We shall not need the explicit form of the density in
this paper; it is, however, useful sometimes in matching up the various parameter
choices used in different references and packages.

The greatest root distribution has the property

θ(p,m,n)
D= θ(n,m + n − p,p),

useful, in particular, in the case when n < p [e.g. Mardia, Kent and Bibby (1979),
page 84].

1.4. Main result. Empirical and theoretical investigation has shown that it is
useful to develop the approximation in terms of the logit transform of θ ; thus, we
define

W(p,m,n) = logit θ(p,m,n) = log
(

θ(p,m,n)

1 − θ(p,m,n)

)
.(2)

Our main result, stated more formally below, is that with appropriate centering
and scaling, W is approximately Tracy–Widom distributed:

W(p,m,n) − μ(p,m,n)

σ (p,m,n)

D⇒ F1.(3)

The centering and scaling parameters are defined by

μ(p,m,n) = 2 log tan
(

φ + γ

2

)
,(4)

σ 3(p,m,n) = 16

(m + n − 1)2

1

sin2(φ + γ ) sinφ sinγ
,(5)

where the angle parameters γ,φ are defined by

sin2
(

γ

2

)
= min(p,n) − 1/2

m + n − 1
,

sin2
(

φ

2

)
= max(p,n) − 1/2

m + n − 1
.

1.5. More on the Tracy–Widom law. The F1 distribution, due to Tracy and
Widom (1996) and plotted in Figure 1, has its origins in mathematical physics—
see Tracy and Widom (1996); Johnstone (2001) for further details. The density
is asymmetric, with mean .= −1.21 and SD .= 1.27. Both tails have exponential
decay, the left tail like e−|s|3/24 and the right tail like e−(2/3)s3/2

.
For the present paper, what is important is that the F1 distribution does not

depend on any parameters, and the distribution itself, along with its inverse and
percentiles, can be tabulated as univariate special functions. These functions play
the same role in this paper as the standard normal distribution �, its inverse �−1

and percentiles zα play in traditional statistical application.
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FIG. 1. Density of the Tracy–Widom distribution F1.

Software. An R package RMTstat is available at CRAN (cran.r-project.org).
It facilitates computation of the distributional approximations and largest root tests
described in this paper, and the use of percentiles and random draws from the F1
distribution. Its scope and use is described in more detail in an accompanying
report Johnstone et al. (2010). A parallel MATLAB package is in development; it
will also contain code to reproduce the figures and table in this paper.

Percentiles. Let fα denote the αth percentile of F1. For example,

f0.90 = 0.4501, f0.95 = 0.9793, f0.99 = 2.0234.

Then the αth percentile of θ(p,m,n) is given approximately by

θα = eμ+fασ /(1 + eμ+fασ ),(6)

where μ = μ(p,m,n), σ = σ(p,m,n) are given by (4) and (5).
The more formal statement of (3) goes as follows. Assume p,m and n → ∞

together in such a way that

lim
p ∧ n

m + n
> 0, lim

m

p
> 1.(7)

For each s0 ∈ R, there exist c,C > 0 such that for s ≥ s0,

|P {W(p,m,n) ≤ μ(p,m,n) + σ(p,m,n)s} − F1(s)| ≤ Cp−2/3e−cs .

For the full proof and much more discussion and detail, see the companion paper
[Johnstone (2008)].

REMARKS. Smallest eigenvalue. If A and B are as in the definition of
θ(p,m,n), then let θ̃ (p,m,n) denote the smallest eigenvalue of (A + B)−1B. Its
distribution is given by

θ̃ (p,m,n)
D= 1 − θ(p,n,m),

http://cran.r-project.org


LARGEST CHARACTERISTIC ROOT 1621

(note the reversal of m and n!). In particular, the Tracy–Widom distribution will
give a generally useful approximation to the lower tail of θ̃ (p,m,n).

Complex-valued data. There is an entirely analagous result when A and B fol-
low complex Wishart distributions, with a modified limit distribution F2. Details
are given in Johnstone (2008).

2. Quality of approximation.

2.1. Comparison with percentiles. There is a substantial literature computing
percentage points of the greatest root distribution for selected parameter values,
partially reviewed below. The standard paramaterization used in these tables arises
from writing the joint density of the roots θi as

p(θ) = C

s∏
i=1

θm
i (1 − θi)

n�(θ).

From this and (1) it is apparent that our “MKB” parameters (p,m,n) are related
to the “Table” parameters (s,m,n) via

s = min(n,p), p = s,

m = (|n − p| − 1)/2, m = s + 2n + 1,(8)

n = (m − p − 1)/2, n = s + 2m + 1.

In terms of the table parameters and N = 2(s + m + n) + 1, the centering and
scaling constants of the Tracy–Widom approximation are given by

sin2
(

γ

2

)
=

(
s − 1

2

)/
N, sin2

(
φ

2

)
=

(
s + 2m + 1

2

)/
N

and

μ = 2 log tan
(

φ + γ

2

)
, σ 3 = 16

N2

1

sin2(φ + γ ) sinφ sinγ
.(9)

We turn to the comparison of percentage points θTW
α from the Tracy–Widom

approximation (6) with the exact values θα for small values of the table parameters
(s,m,n). The most extensive tabulations of θα(s,m,n) have been made by William
Chen; he has graciously provided the author with the complete version of the tables
excerpted in Chen (2002, 2003, 2004a, 2004b).

Figures 2 and 3 plot θTW
α against θα at 95th and 90th percentiles for s = 2. This

is the smallest relevant value of s—otherwise we are in the univariate case covered
by F distributions. The bottom panels, in particular, focus on the relative error

r = (θTW
α /θα) − 1.
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FIG. 2. Comparison of exact and approximate 95th percentiles for s = 2. Top panel: solid line
is the Tracy–Widom approximation θTW

α (2,m,n) plotted as a function of m for values of n shown.
Dashed lines are the exact percentiles θα(2,m,n) from Chen’s tables. Bottom panel: Contour plots
of relative error r = (θTW

α /θα) − 1. Horizontal axis is m, vertical axis is log10 n, thus covering the
range from n = 1 to 1000.

Figure 2 shows that even for s = 2, the 95th percentile of the TW approximation
has a relative error of less than 1 in 20 except in the zone where both m ≤ 2 and
n ≥ 10, where the relative error is still less than 1 in 10. Note that the relative error
is always positive in sign, implying that the approximate critical points yield a
conservative test. More extensive contour plots covering s = 2(1)6 and 90th, 95th
and 99th percentiles may be found in Johnstone and Chen (2007).

Work on tables. There has been a large amount of work to prepare tables or
charts for the null distribution of the largest root, much of which is reviewed in
Chen (2003). We mention contributions by the following: Nanda (1948, 1951);
Foster and Rees (1957); Foster (1957, 1958); Pillai (1955, 1956a, 1956b, 1957,
1965, 1967); Pillai and Bantegui (1959); Heck (1960); Krishnaiah (1980); Pillai
and Flury (1984); Chen (2002, 2003, 2004a, 2004b).

Because of the dependence on the three parameters, these tables can run up to
25 pages in typical textbooks, such as those of Johnson and Wichern (2002) and
Morrison (2005).

Code. Constantine (1963) expresses the c.d.f. of the largest root distribution in
terms of a matrix hypergeometric function. Koev and Edelman (2006) have devel-
oped efficient algorithms (and a MATLAB package available at http://www-math.
mit.edu/~plamen) for the evaluation of such matrix hypergeometric functions us-
ing recursion formulas from group representation theory.

http://www-math.mit.edu/~plamen
http://www-math.mit.edu/~plamen
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FIG. 3. Comparison of exact and approximate 90th percentiles for s = 4. Top panel: solid line
is the Tracy–Widom approximation θTW

α (4,m,n) plotted as a function of m for values of n shown.
Dashed lines are the exact percentiles θα(4,m,n) from Chen’s tables. Bottom panel: Contour plots
of relative error r = (θTW

α /θα) − 1. Horizontal axis is m, vertical axis is log10 n, thus covering the
range from n = 1 to 1000.

Koev (2010) collects useful formulas and explains how to use them and mhg
to compute the exact c.d.f. and percentiles for the largest root distribution over
a range of values of the “MKB” parameters corresponding to m,n,p ≤ 17, and
m,n,p ≤ 40 when n − p is odd.

SAS/STAT 9.0 made available an option for computing exact p-values using
Davis (1972); Pillai and Flury (1984). There is also some stand-alone software
described by Lutz (1992, 2000).

2.2. Accuracy of p-values. The univariate F bound. We recall the hypothesis
that A ∼ Wp(I,m) be distributed independently of B ∼ Wp(I, n), and the charac-
terization of the largest eigenvalue given by

λmax(A−1B) = max|u|=1

u′Bu
u′Au

.(10)

For fixed u of unit length, the numerator and denominator are distributed as inde-
pendent χ2

(n) and χ2
(m) respectively, and so, again for fixed u, the ratio has an Fn,m

distribution. Consequently, we have the simple bound
m

n
λmax(A−1B) > F ∼ Fn,m.

Using the Fn,m distribution in place of the actual greatest root law yields a lower
bound for the significance level, or p-value. We shall see that this bound can be
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anti-conservative by several orders of magnitude, leading to overstatements of the
empirical evidence against the null hypothesis. And furthermore, one can expect
that the higher the dimension p of the search space in (10), the worse the bound
provided by the F distribution.

The default p-value provided in both SAS and R (through package car) uses
this unsatisfactory distribution bound.

Table 1 attempts to capture a variety of scenarios within the computational range
of Koev’s software.

Column Exact shows a range of significance levels α covering several orders
of magnitude. Column Largest Root shows the corresponding quantiles θα of
the largest root distribution, for the given values of (s,m,n)—these are computed
using Koev’s MATLAB routine qmaxeigjacobi. Thus, an observed value of
θ(s,m,n) = θα would correspond to an exact p-value α.

The remaining columns compare the Tracy–Widom approximation and the F

bound. The p-value obtained from the Tracy–Widom approximation is given by

PTW(θα) = 1 − F1
((

logit(θα) − μ
)
/σ

)
,(11)

where μ and σ are computed from (9).
The F bound on the p-value is given by

P
(
θ(s,m,n) > θα

)
> PF (θα) = 1 − Fν1,ν2

(
ν2θα/

(
ν1(1 − θα)

))
,(12)

where ν1 = s+2m+1 and ν2 = s+2n+1 denote the hypothesis and error degrees
of freedom respectively.

The two tables consider s = 2 and 6 variables respectively. The values of m =
−0.5 and 5 correspond to s and s + 11 hypothesis degrees of freedom, while the
values of n = 2 and 10 translate to s + 5 and s + 21 error degrees of freedom
respectively.

At the 10% and 5% levels, the Tracy–Widom approximation is within 20%
of the true p-value at s = 6, and within 35% of truth at s = 2. The F -value is
wrong by a factor of four or more at s = 2, and by three orders of magnitude at
s = 6. At smaller significance levels, the Tracy–Widom approximation generally
stays within one order of magnitude of the correct p-value—except at (s,m,n) =
(2,−0.5,10). The F approximation is off by many orders of magnitude when
s = 6.

In addition, we note that the Tracy–Widom approximation is conservative
in nearly all cases, the exception being for θ ≥ 0.985 in the case (s,m,n) =
(6,−0.5,2). In contrast, the F approximation is always [cf. (12)] anti-conservative,
often badly so.

In applications one is often concerned only with the general order of mag-
nitude of the p-values associated with tests of the various hypotheses that are
entertained—not least because the assumptions of the underlying model are at best
approximately true. For this purpose, then, it may be argued that the TW approxi-
mate p-value is often quite adequate over the range of (s,m,n) values. Of course,
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TABLE 1
Comparison of the Tracy–Widom approximation and F bound for cases with s = 2 and

s = 6 variables

Largest root Exact Tracy−Widom F Largest root Exact Tracy−Widom F

s = 2,m = −0.5,n = 2 s = 6,m = −0.5,n = 2
0.663 0.1 0.119 0.0223 0.918 0.1 0.115 2.23e-005

0.737 0.05 0.066 0.00933 0.938 0.05 0.0598 4.99e-006

0.850 0.01 0.0169 0.00131 0.966 0.01 0.0116 1.92e-007

0.881 0.005 0.00927 0.000573 0.973 0.005 0.00545 4.96e-008

0.931 0.001 0.00222 8.49e-005 0.985 0.001 0.000839 2.3e-009

0.968 0.0001 0.000251 5.65e-006 0.993 0.0001 4.35e-005 3.1e-011

0.985 1e-005 2.38e-005 3.81e-007 0.997 1e-005 1.64e-006 4.38e-013

0.993 1e-006 1.89e-006 2.58e-008 0.999 1e-006 NaN 6.33e-015

s = 2,m = −0.5,n = 10 s = 6,m = −0.5,n = 10
0.268 0.1 0.117 0.0278 0.597 0.1 0.11 0.000206

0.318 0.05 0.0669 0.0123 0.633 0.05 0.0577 6.49e-005

0.418 0.01 0.0214 0.00199 0.698 0.01 0.0134 5.46e-006

0.456 0.005 0.0137 0.000919 0.721 0.005 0.00722 1.99e-006

0.533 0.001 0.00522 0.000157 0.766 0.001 0.00172 2.05e-007

0.624 0.0001 0.00146 1.31e-005 0.816 0.0001 0.000223 8.97e-009

0.696 1e-005 0.000443 1.11e-006 0.854 1e-005 2.86e-005 4.29e-010

0.755 1e-006 0.000141 9.59e-008 0.884 1e-006 3.57e-006 2.17e-011

s = 2,m = 5,n = 10 s = 6,m = 5,n = 10
0.592 0.1 0.112 0.0234 0.757 0.1 0.108 0.000117

0.629 0.05 0.0602 0.0103 0.781 0.05 0.0557 3.63e-005

0.697 0.01 0.0149 0.00164 0.823 0.01 0.0119 2.99e-006

0.721 0.005 0.00827 0.000758 0.837 0.005 0.00606 1.08e-006

0.767 0.001 0.00215 0.000129 0.864 0.001 0.00125 1.1e-007

0.817 0.0001 0.000318 1.07e-005 0.894 0.0001 0.000125 4.75e-009

0.855 1e-005 4.71e-005 9.04e-007 0.917 1e-005 1.17e-005 2.25e-010

0.885 1e-006 6.88e-006 7.79e-008 0.934 1e-006 1.03e-006 1.13e-011

if (s,m,n) is not too large and greater precision is required, then exact p-values
can be sought, using, for example, SAS or Koev’s software.

3. Testing for independence of two sets of variables. Let x1, . . . ,xn be a
random sample from Np(μ,�). Partition the variables into two sets with dimen-
sions p1 and p2 respectively, p1 + p2 = p. Suppose that � and the sample co-
variance matrix S are partitioned correspondingly. We consider testing the null
hypothesis of independence of the two sets of variables: �12 = 0. The union-
intersection test is based on the largest eigenvalue λ1 of S−1

22 S21S−1
11 S12 (Mardia,

Kent and Bibby (1979), page 136) and under H0, λ1 has the greatest root distrib-
ution θ(p2, n − 1 − p1,p1). Mardia, Kent and Bibby (1979) consider an example
test of independence of n = 25 head length and breadth measurements between
first sons and second sons, so that p1 = p2 = 2. The observed value λobs

1 = 0.622
exceeds the critical value θ0.05 = 0.330 found by interpolation from the tables. The
Tracy–Widom approximation θTW

0.05 = 0.356 is found from (6) and serves equally
well for rejection of H0 in this case.

4. Canonical correlation analysis. Again we have two sets of variables, an
x-set with q variables and a y-set with p variables. The goal is to find maxi-
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mally correlated linear combinations η = a′x and φ = b′y. We suppose that (X,Y)

is a data matrix of n samples (rows) on q + p variables (columns) such that
each row is an independent draw from Np+q(μ,�). Again let S be the sam-
ple covariance matrix, assumed partitioned S = (S11

S21

S12
S22

)
. The sample squared

canonical correlations (r2
i ) for i = 1, . . . , k = min(p, q) are found as the eigen-

values of M2 = S−1
22 S21S−1

11 S12 [Mardia, Kent and Bibby (1979), Sections 10.2.1
and 10.2.2]. The population squared canonical correlations ρ2

i are, in turn, the
eigenvalues of �−1

22 �21�
−1
11 �12. In both cases, we assume that the correlations

are arranged in decreasing order. The test of the null hypothesis of zero correla-
tion, H0 :ρ1 = · · · = ρk = 0, is based on the largest eigenvalue r2

1 of M2. Under
H0, it is known that r2

1 has the θ(p,n − q − 1, q) distribution, so that the Tracy–
Widom approximation can be applied.

Nonnull cases—a conservative test. Often it may be apparent that the first k

canonical correlations are nonzero and the main interest focuses on the significance
of r2

k+1, r
2
k+2, etc. We let Hs denote the null hypothesis that ρs+1 = · · · = ρp = 0,

and write L(rk|p,q,n;�) for the distribution of the r th c.c. under population co-
variance matrix �. When the covariance matrix � ∈ Hs , the (s + 1)st canonical
correlation is stochastically smaller than the largest canonical correlation in a re-
lated null model:

LEMMA 1. If � ∈ Hs , then

L(rs+1|p,q,n;�)
st
< L(r1|p,q − s, n; I).

This nonasymptotic result follows from interlacing properties of the singular
value decomposition (Appendix). Since L(r2

1 |p,q − s, n; I) is given by the null
distribution θ(p,n + s − q − 1, q − s), we may use the latter to provide a conser-
vative p-value for testing Hs . In turn, the p-value for θ(p,n + s − q − 1, q − s)

can be numerically approximated as in (6) using the Tracy–Widom distribution.

Example. Waugh (1942) gave perhaps the first significant illustration of CCA
using data on n = 138 samples of Canadian Hard Red Spring wheat and the flour
made from each of these samples. The aim was to seek highly correlated in-
dices a′x of wheat quality and b′y of flour quality, since a well correlated grad-
ing of raw (wheat) and finished (flour) products was believed to promote fair
pricing of each. In all, q = 5 wheat characteristics—kernel texture, test weight,
damaged kernels, foreign material, crude protein in wheat—and p = 4 flour
characteristics—wheat per bushel of flour, ash in flour, crude protein in flour,
gluten quality index—were measured. The resulting squared canonical correla-
tions were (r2

1 , r2
2 , r2

3 , r2
4 ) = (0.923,0.554,0.056,0.008). The leading correlation
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would seem clearly significant and, indeed, from our approximate formula (6),
θTW

0.99 = 0.184.
To assess the second correlation r2, we appeal to the conservative test discussed

above based on the null distribution with q−1 = 4,p = 4 and n = 138. The Tracy–
Widom approximation θTW

0.99 ≈ μ + 2.023σ
.= 0.166 
 0.554, which strongly sug-

gests that this second correlation is significant as well.
Marginal histograms naturally reveal some departures from symmetric Gaussian

tails, but they do not seem extreme enough to invalidate the conclusions, which are
also confirmed by permutation tests.

5. Tests of common means or variances.

5.1. Equality of means for common covariance. Suppose that we have k pop-
ulations with independent data matrices Xi consisting of ni observations drawn
from an Np(μi ,�i ) and put n = ∑

ni . This is the one-way multivariate analysis
of variance illustrated in Example 1.1. For testing the null hypothesis of equality of
means H0 :μ1 = · · · = μk , we form, for each population, the sample mean x̄i and
covariance matrix Si , normalized so that niSi ∼ Wp(�, ni − 1). The basic quan-
tities are the within groups sum of squares W = ∑

niSi ∼ Wp(�, n − k) and the
between group sum of squares B = ∑

ni(x̄i − x̄)(x̄i − x̄)′ ∼ Wp(�, k − 1) under
H0, independently of W. The union-intersection test of H0 uses the largest root
of W−1B or, equivalently, that of (W + B)−1B, and the latter has, under H0, the
θ(p,n − k, k − 1) distribution.

5.2. Equality of covariance matrices. Suppose that independent samples from
two normal distributions Np(μ1,�1) and Np(μ2,�2) lead to covariance estimates
Si which are independent and Wishart distributed on ni degrees of freedom: niSi ∼
Wp(ni,�i ) for i = 1,2. Then the largest root test of the null hypothesis H0 :�1 =
�2 is based on the largest eigenvalue θ of (n1S1 + n2S2)

−1n2S2, which under H0
has the θ(p,n1, n2) distribution Muirhead (1982), page 332.

6. Multivariate linear model. The multivariate linear model blends ideas
well known from the univariate setting with new elements introduced by corre-
lated multiple responses. In view of the breadth of models covered, and the variety
of notation in the literature and in the software, we review the setting in a little
more detail, beginning with the familiar model for a single response

y = Xβ + u.

Here y is an n × 1 column vector of observations on a response variable, X is
an n × q model matrix, and u is an n × 1 column vector of errors, assumed here
to be independent and identically distributed as N(0, σ 2). The q × 1 vector β of
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unknown parameters has the least squares estimate—when X has full rank—given
by

β̂ = (X′X)−1X′y.

The error sum of squares SSE = (y − Xβ̂)′(y − Xβ̂) = y′Py, where P denotes
orthogonal projection onto the subspace orthogonal to the columns of X, it has
rank n − q , and so SSE ∼ χ2

(n−q).
Consider the linear hypothesis H0 : C1β = 0, where C1 is a g × q matrix of

rank g. In the simplest example, C1 = [Ig 0] extracts the first g elements of β;
more generally, the rows of C1 are often contrasts among the components of β .
To describe the standard F -test of H0, let C2 be any (q − g) × q matrix such that
C = (C1

C2

)
becomes an invertible q × q matrix. We may then write

Xβ = [
XC(1) XC(2)

](
C1β
C2β

)
,

where we have partitioned C−1 = [C(1) C(2)] into blocks with g and q − g col-
umns respectively.

Let P1 denote the orthogonal projection onto the subspace orthogonal to the
columns of XC(2). We have the sum of squares decomposition

y′P1y = y′Py + y′(P1 − P)y

and the hypothesis sum of squares for testing H0 : C1β = 0 is given by SSH =
y′P2y, with P2 = P1 − P. The projection P2 has rank g and so under H0, SSH ∼
χ2

(g). The projections P and P2 are orthogonal and so the sums of squares have
independent chi-squared distributions, and under H0 the traditional F -statistic

F = SSH/g

SSE/(n − q)
∼ Fg,n−q.

Explicit expressions for the sums of squares are given by

SSE = y′(I − X(X′X)−1X′)y,

SSH = (C1β̂)′[C1(X′X)−1C′
1]−1C1β̂.

In the multivariate linear model,

Y = XB + U,

the single response y is replaced by p response vectors, organized as columns of
the n×p matrix Y. The model (or design) matrix X remains the same for each re-
sponse; however, there are separate vectors of unknown coefficients and errors for
each response; these are organized into a q ×p matrix B of regression coefficients
and an n × p matrix E of errors. The multivariate aspect of the model is the as-
sumption that the rows of U are indepedent, with multivariate normal distribution
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having mean 0 and common covariance matrix �. Thus, U is a normal data matrix
of n samples from Np(0,�). Assuming for now that the model matrix X has full
rank, the least squares estimator

B̂ = (X′X)−1X′Y.

The linear hypothesis becomes

H0 : C1B = 0.

The sums of squares of the univariate case are replaced by hypothesis and error
sums of squares and products matrices:

E = Y′PY = Y′(I − X(X′X)−1X′)Y,
(13)

H = Y′P2Y = (C1B̂)′[C1(X′X)−1C′
1]−1C1B̂,

in which the univariate vectors y and β̂ are simply replaced by their multivari-
ate analogs Y and B̂. It follows that E ∼ Wp(�, n − q) and that under H0,
H ∼ Wp(�, g); furthermore, E and H are independent. Generalizations of the F -
test are obtained from the eigenvalues (λi) of the matrix E−1H or, equivalently,
the eigenvalues θi of (H + E)−1H.

Thus, under the null hypothesis C1B = 0, Roy’s maximum root statistic θ1 has
null distribution

θ1 ∼ θ(p,n − q,g), where

p = dimension, g = rank(C1),(14)

q = rank(X), n = sample size.

Two extensions. (a) X not of full rank. This situation routinely occurs when
redundant parameterizations are used, for example, when dealing with factors in
analysis of variance models. One approach (e.g., MKB, Section 6.4) is to rearrange
the columns of X and partition X = [X1 X2] so that X1 has full rank. We must also
assume that the matrix C1 is testable in the sense that, as a function of B, XB = 0
implies C1B = 0. In such cases, if we partition C1 = [C11 C12] conformally with
X, then C12 = C11(X′

1X1)
−1X′

1X2 is determined from C11.
With these assumptions, we use X1 and C11 in (13) and (14) in place of X and

C1.
(b) Intra-subject hypotheses. A straightforward extension is possible in order to

test null hypotheses of the form

C1BM1 = 0,

where M1 is p × r of rank r . The columns of M1 capture particular linear com-
binations of the dependent variables—for an example, see, e.g., Morrison (2005),
Chapter 3.6.
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We simply consider a modified linear model

YM1 = XBM1 + UM1.

An important point is that the rows of UM1 are still independent, now distributed
as Np(0,M′

1�M). So we may simply apply the above analysis, replacing Y,U and
B by YM1, UM1 and BM1 respectively. In particular, the greatest root statistic now
has null distribution given by

θ1 ∼ θ(r, n − q,g).

Linear hypotheses in SAS. Analyses involving the four multivariate tests are
provided in a number of SAS routines, such as GLM and CANCORR. The para-
meterization used here can be translated into that used in SAS by means of the
documentation given in the SAS/STAT Users Guide—we refer to the section on
Multivariate Tests in version 9.1, page 48 ff. The linear hypotheses correspond to
MKB notation via

MKB SAS

C1 L
B β

M1 M

while the parameters of the greatest root distribution are given by

MKB SAS

dimension r rank(M1) rank(M) p
hypothesis g rank(C1) rank(L) q
error n − q v

.

(Note: we use sans serif font for the SAS parameters!) Finally, the SAS printouts
use the following parameters:

s = p ∧ q,

m = (|p − q| − 1)/2,

n = (v − p − 1)/2.

7. Concluding discussion. We have described the Tracy–Widom approxi-
mation to the null distribution for the largest root test for a variety of classical
multivariate procedures. These procedures exhibit varying degrees of sensitiv-
ity to the assumption of normality, independence etc. Documenting the sensitiv-
ity/robustness of the T–W approximation is clearly an important issue for further
work. Two brief remarks can be made. In the corresponding single Wishart setting
[e.g., Johnstone (2001)], the largest eigenvalue can be shown, under the null dis-
tribution, to still have the T–W limit if the original data have “light tails” (i.e., sub-
Gaussian) [see Soshnikov (2002); Péché (2009)]. In the double Wishart settings,
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simulations for canonical correlation analysis with n = 100 samples on q = 20
and p = 10 variables, each following i.i.d. t(5) or i.i.d. random sign distributions,
showed that the T–W distribution for the leading correlation r2

1 still holds in the
central 99% of the distribution.

APPENDIX: PROOF OF LEMMA

If � ∈ Hs , there are at most s nonzero canonical correlations, and we may sup-
pose without loss of generality that the q x-variables have been transformed so
that only the last s of them have any correlation with Y. We employ the singular
value decomposition (SVD) description of CCA, cf. Golub and Van Loan (1996),
Section 12.4.3. Using QR decompositions, write

X = QXRX, Y = QY RY .

Let C = QT
XQY and form the SVD C = URV T . Then the diagonal elements r1 ≥

r2 ≥ · · · ≥ rmin(p,q) of R contain the sample canonical correlations.
Now consider the reduced n × (q − s) matrix X− obtained by dropping the last

s columns from X. Form the QR decomposition X− = QX−RX− . From the nature
of the decomposition, we have QX = [QX− Q+], that is, QX− represents the first
q − s columns of QX . Consequently, C− = QT

X−QY forms the first q − s rows of
C. Our lemma now follows from the interlacing property of singular values [e.g.,
Golub and Van Loan (1996), Corollary 8.6.3].

σs+1(C) ≤ σ1(C−).

Indeed, our earlier discussion implies that X− and Y are independent, and so
σ1(C−) has the null distribution L(r1|p,q − s, n; I).
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