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In this paper we consider the estimation of population size from one-
source capture–recapture data, that is, a list in which individuals can poten-
tially be found repeatedly and where the question is how many individuals
are missed by the list. As a typical example, we provide data from a drug user
study in Bangkok from 2001 where the list consists of drug users who repeat-
edly contact treatment institutions. Drug users with 1, 2, 3, . . . contacts occur,
but drug users with zero contacts are not present, requiring the size of this
group to be estimated. Statistically, these data can be considered as stemming
from a zero-truncated count distribution. We revisit an estimator for the popu-
lation size suggested by Zelterman that is known to be robust under potential
unobserved heterogeneity. We demonstrate that the Zelterman estimator can
be viewed as a maximum likelihood estimator for a locally truncated Poisson
likelihood which is equivalent to a binomial likelihood. This result allows
the extension of the Zelterman estimator by means of logistic regression to
include observed heterogeneity in the form of covariates. We also review an
estimator proposed by Chao and explain why we are not able to obtain sim-
ilar results for this estimator. The Zelterman estimator is applied in two case
studies, the first a drug user study from Bangkok, the second an illegal immi-
grant study in the Netherlands. Our results suggest the new estimator should
be used, in particular, if substantial unobserved heterogeneity is present.

1. Introduction. Registration files can be used to generate a list of individuals
from some population of interest. If each time that an observation of a population
member occurs is registered but, for one reason or another, some population mem-
bers are not observed at all, the list will be incomplete and will show only part
of the population. In this paper we will further develop a method proposed by
Zelterman (1988) for estimating the size of a population using an incomplete list.

Consider a population of size N and a count variable Y taking values in the
set of integers {0,1,2,3, . . .}. For example, in drug user studies Y might represent
the number of contacts a drug user has with the treatment institutions. Also denote
with f0, f1, f2, . . . the frequency with which a 0,1,2, . . . occurs in this population.
Consider now a registration where every contact with a treatment institution is reg-
istered and assume that a list of drug users is derived from this registration. Since
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a drug user will only be observed if there has been a positive number of contacts
with the treatment institution, y = 0 will not be observed in the list. Hence, the
list reflects a count variable truncated at zero that we denote by Y+. Accordingly,
the list has observed frequencies f1, f2, . . . , but the frequency f0 of zeros in the
population is unknown. The size of the list is not N but n, where N = n + f0.

The distribution of the untruncated and truncated counts are connected via
P(Y+ = j) = P(Y = j)/{1 − P(Y = 0)} for j = 1,2, . . . . For example, if Y fol-
lows a Poisson distribution with parameter λ so that

P(Y = j) = Po(j | λ) = e−λλj/j !,(1.1)

for j = 0,1,2, . . . , then the associated distribution of Y+ is given as

P(Y+ = j) = Po+(j | λ) = e−λ

1 − e−λ
λj/j !,(1.2)

with j = 1,2,3, . . . .

Given that all units of the population have the same probability Pi(Y > 0) =
P(Y > 0) = 1 − P(Y = 0) of being included in the list, the population size can be
estimated by means of the Horvitz–Thompson estimator

N̂ =
n∑

i=1

1

Pi(Y > 0)
= n

1 − P(Y = 0)
= n

1 − g(λ)
,(1.3)

where g(λ) = e−λ, or more generally, g(λ) is the probability of a zero count
for a given count distribution. For more details on this type of capture–recapture
methodology, see van der Heijden et al. (2003a), van der Heijden, Cruyff and van
Houwelingen (2003b), Böhning and Schön (2005), Roberts and Brewer (2006)
or McKendrick (1926) (for a historic account). General introductions to capture–
recapture are found in Bishop, Fienberg and Holland (1975), Hook and Regal
(1995) and the contributions of the International Working Group for Disease Mon-
itoring and Forecasting (1995a, 1995b).

In what follows we further develop an estimator for λ proposed by Zelterman
(1988), which can be used in (1.3) to obtain a population size estimate. This esti-
mator for λ uses limited information from the observed count distribution to arrive
at an estimate of the population size, making it robust. Our key extension to this
estimator for λ is to put it into a maximum likelihood framework, which allows
further development using a regression framework. In Section 2 we review the
Zelterman estimator, including its robustness properties. In Section 3 we demon-
strate that the Zelterman estimator is a maximum likelihood estimator and use this
result to estimate its variance and generalize the estimator to accommodate covari-
ates. Section 4 points out the connections to Chao’s estimator. The paper concludes
with a case study section where we utilize examples from a Bangkok illicit drug
user study and a reanalysis of illegal immigrant data analyzed earlier by van der
Heijden et al. (2003a).
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2. The Zelterman estimator. In equation (1.3) we used the Horvitz–Thomp-
son approach to arrive at an estimate of the population size. This approach requires
that λ is known and if it is not, it needs to be estimated. Clearly, λ can be estimated
with maximum likelihood under the assumption of a homogeneous truncated Pois-
son distribution. Instead of estimating λ under the assumption of a homogeneous
Poisson distribution, Zelterman (1988) argued that the Poisson assumption might
not be valid over the entire range of possible values for Y but it might be valid
for small ranges of Y such as from j to j + 1, so that it would be meaningful to
use only the frequencies fj and fj+1 in estimating λ. Since for any j both the
truncated as well as the untruncated Poisson distribution have the property that
Po(j + 1 | λ)/Po(j | λ) = λ/(j + 1) and Po+(j + 1 | λ)/Po+(j | λ) = λ/(j + 1),
respectively [see equations (1.1) and (1.2)], λ can be written as

λ = (j + 1)Po(j + 1 | λ)

Po(j | λ)
= (j + 1)Po+(j + 1 | λ)

Po+(j | λ)
.(2.1)

An estimator for λ is obtained by replacing Po+(j | λ) by the empirical frequency
fj :

λ̂j = (j + 1)fj+1

fj

.(2.2)

If j = 1, we find λ̂1 = 2f2/f1, and this estimator is often considered for two rea-
sons: for one, λ̂1 is using frequencies in the vicinity of f0 which is the target of
prediction, and two, in many application studies for estimating f0 the majority of
counts fall into f1 and f2. Clearly, the estimator is unaffected by changes in the
data for counts larger than 2, which contributes largely to its robustness. We will
call λ̂1 = 2f2/f1 the Zelterman estimator for λ and, when this estimate is used
in (1.3), this leads to the Zelterman estimator of the population size, N̂ . If the
context is clear, we will simply use the term Zelterman estimator.

The Zelterman estimator is an estimator which is very simple to understand and
to use and this might be one of the reasons why it is quite popular in applications
such as drug user studies [Hay and Smit (2003), Van Hest et al. (2007)]. It is also
thought of as being less sensitive to model violations than the estimator that is
derived under the assumption of the homogeneous Poisson distribution, that uses
the entire range of frequencies fj . Indeed, the Zelterman estimator also works
rather well with contaminated distributions as given by mixtures or approximated
by mixtures [compare Zelterman (1988)]. We now look at a study to illustrate the
application of the estimator.

EXAMPLE: (Estimating the number of Metamphetamine-users in Bangkok,
2001). Let us illustrate the estimator for a data set of users of Metamphetamine in
Bangkok [Böhning et al. (2004)]. The distribution of contact counts with treatment
institutions is provided in Table 1.
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TABLE 1
Frequency distribution fy of Metamphetamine users with exactly y repeated contacts with

treatment institutions

y 1 2 3 4 5 6 7 8 9 10 11 12
fy 3114 163 23 20 9 3 3 3 4 3 0 1

In total 3346 users were observed. We find λ̂1 = (2 × 163)/3114 = 0.1047
(with 95% CI 0.0894–0.1225) and, using (1.3), this gives N̂ = 3346/(1 −
exp(0.1047)) = 33,664 (CI 28,520–38,808). The observed/hidden ratio equals
3346/(33,664 − 3346) = 0.1104 and the completeness is 3346/33,664 = 0.0994.
Note that the maximum likelihood estimator derived under the homogeneous Pois-
son assumption is λ̂ = 0.2463 (CI 0.2245–0.2703), leading to a population size
estimate of N̂ = 3346/(1 − exp(−0.2463)) = 15,325 (CI 13,989–16,661), which
differs considerably from the Zelterman estimator of the population size. The con-
fidence intervals are based upon normal approximations using a variance expres-
sion given in Section 3.1 below. Since it is reasonable to assume that the counts
stem from a contaminated distribution rather than from a homogeneous distribu-
tion, the Zelterman estimate appears to be more reasonable. In addition, the ho-
mogeneous Poisson estimate is biased downward if heterogeneity is present [van
der Heijden et al. (2003a), van der Heijden, Cruyff and van Houwelingen (2003b),
Böhning and Schön (2005)], so that a strong disagreement of the homogeneous
Poisson estimate to the Zelterman estimate might be taken as an indication for a
lack of fit for the homogeneous Poisson as occurs here. In such cases, the Zelter-
man estimate will be the better choice.

3. The Zelterman estimator as a maximum likelihood estimator. In this
section we will show that the Zelterman estimator is also a maximum likelihood
estimator. It is based upon the observation that a Poisson distribution with para-
meter λ constrained to values Y = 1 and Y = 2 yields a binomial distribution with
parameter p = (λ/2)/(1 + λ/2) = λ/(2 + λ). This result will allow for a simple
derivation of the variance (see Section 3.1), as well as an extension of the Zelter-
man estimator that allows for covariates (see Section 3.2).

3.1. A likelihood for the Zelterman estimator. If we consider the probabil-
ity for a count of 1 and a count of 2 given as e−λλ/(e−λλ + e−λλ2/2) and
(e−λλ2/2)/(e−λλ + e−λλ2/2), respectively, we see that after some simplification
we have the likelihood(

2

2 + λ

)f1

×
(

λ

2 + λ

)f2

= (1 − p)f1pf2,(3.1)

which is proportional to a binomial likelihood with event parameter p = λ/(2+λ),
the probability for Y = 2. This binomial likelihood is maximized for p̂ = f2/(f1 +
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f2). In addition, as λ is connected uniquely to p via λ = 2p/(1−p), the invariance
property of maximum likelihood estimators yields λ̂1 = 2f2/f1 as a maximum
likelihood estimate with respect to the likelihood (3.1). We summarize this in the
following theorem.

THEOREM 1. Consider a Poisson count Y where all counts are truncated un-
less Y = 1 or Y = 2. Then:

(a) the associated likelihood is given by (3.1),
(b) the maximum likelihood estimator with respect to (3.1) is

p̂ = f2/(f1 + f2) or λ̂1 = 2f2/f1.

One of the first benefits of identifying the Zelterman estimator λ̂1 as a truncated
maximum likelihood estimator is the fact that its variance is readily available as
Var(p̂) = p(1 − p)/(f1 + f2), which can be estimated as f2f1/(f1 + f2)

3. Now,
λ̂1 = 2 p̂

1−p̂
, and using a first order δ-method,

Var log(λ̂1) = Var
(
log p̂ − log(1 − p̂)

) ≈
(

1

p
+ 1

1 − p

)2 p(1 − p)

f1 + f2

and, finally, plugging in an estimate for p, we arrive at

V̂ar log(λ̂1) ≈
(

f2

f1 + f2

f1

f1 + f2
(f1 + f2)

)−1

= 1

f1
+ 1

f2
,(3.2)

leading to a simple closed form expression for the variance of the logarithm of
the Zelterman estimator. In addition, using a first order δ-method, we have that
Var log λ̂1 ≈ 1

λ2 Var λ̂1, which can be rephrased as

Var λ̂1 ≈ λ2 Var log λ̂1.

Plugging in the Zelterman estimate for λ leads to the result (b) in the following
theorem.

THEOREM 2. Consider a situation as in Theorem 1. Then:

(a) V̂ar log(λ̂1) ≈ 1
f1

+ 1
f2

,

(b) V̂ar(λ̂1) ≈ 4f2(f1+f2)

f 3
1

.

3.2. Extension of the likelihood for covariates. A second benefit of identify-
ing the Zelterman estimator as a truncated maximum likelihood estimator is that
it is now easy to incorporate covariates into the modeling process. Let Z be a bi-
nary indicator variable indicating Z = 1 if Y = 2 and Z = 0 if Y = 1. Then, the
likelihood (3.1) can be written as

f1+f2∏
i=1

p
zi

i (1 − pi)
1−zi =

f1+f2∏
i=1

(
λi/2

1 + λi/2

)zi
(

1 − λi/2

1 + λi/2

)1−zi

.(3.3)
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Suppose that covariates are available in the form of a vector xi for the ith unit in
the list. In a generalized linear model (logistic regression model) connecting the
binary outcome probability pi with the linear predictor ηi = βT xi with a logit
link, we have that

pi = eηi

1 + eηi
.

On the other hand, pi and the local Poisson parameter λi are connected via

pi = λi/2

1 + λi/2
,

so that λi and the linear predictor ηi are simply connected via λi/2 = eηi or λi =
2eηi . Note that the binary response probability P(Zi = 1) = pi is connected to
the linear predictor ηi via the logistic link function, whereas the Poisson mean
λi = 2eηi uses the log link function, that is, both are generalized linear models
using the canonical link functions.

Maximum likelihood estimation can use existing tools for logistic regression.
All that is needed is to regress the binary outcomes z1, . . . , zn on xi to find the
MLE β̂ of β . This provides the predicted probabilities p̂i = eη̂i /(1 + eη̂i ) and the
Zelterman estimates of parameters λi are obtained as 2p̂i/(1 − p̂i).

In order to derive a generalized Zelterman estimator of the population size N

under this framework, we can employ the Horvitz–Thompson approach in the fol-
lowing way:

N̂Z =
n∑

i=1

1

1 − exp(−λ̂i)
(3.4)

=
n∑

i=1

1

1 − exp(−2p̂i/(1 − p̂i))
=

n∑
i=1

1

1 − exp(−2eη̂i )
.

In addition, it is possible to find an estimate of the variance of the generalized
Zelterman estimator (3.4) which we write as

N̂Z =
n∑

i=1

1

wi

=
N∑

i=1

�i

wi

,

where wi = 1 − exp(−2eη̂i ) and �i is an indicator which is 1 (unit is sampled)
with probability wi and 0 (unit is not sampled) with probability 1 − wi . Note that
wi = 1−exp(−2eη̂i ) is not fixed, but a random quantity itself. This excludes the di-
rect application of known variance formulas for the Horvitz–Thompson estimator
and their variations such as Sen–Yates–Grundy [for details, see Thompson (2002),
pages 54–55]. Variance estimation of the Horvitz–Thompson estimator with es-
timated wi (which might no longer be called the Horvitz–Thompson estimator)
needs to take into account the variability in estimating the linear predictor η̂i . This
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problem was first pointed out by Huggins (1989). To accomplish the task, we use
the techniques of conditional moments [see Ross (1985), page 125] and results
from van der Heijden et al. (2003a). Details are in the Appendix. We state here
only the final variance approximation:

V̂ar(N̂Z) ≈
n∑

i=1

(1 − wi)/w
2
i +

n∑
i=1

(
(1 − wi)vi

w2
i

)2

xT
i Cov(β̂)xi ,(3.5)

where wi = 1 − exp(vi) and vi = −2eη̂i , so that wi = wi(β̂) = 1 − exp(vi) =
1 − exp(−2eη̂i ) = 1 − exp(−2eβ̂T xi ).

4. The connection to Chao’s estimator. In this section we point out some
connections to another population size estimator proposed by Chao (1987, 1989)
that also uses only the counts f1 and f2. We provide these results because gen-
eralizing this estimator into a maximum likelihood framework was less success-

ful. Chao suggested the estimator N̂C = n + f 2
1

2f2
. The estimator is based upon the

Cauchy–Schwarz inequality [see also Wilson and Collins (1992)] for the nonpara-
metric mixture of a Poisson, namely,(∫ ∞

0
λe−λ dλ

)2

≤
∫ ∞

0
e−λ dλ

∫ ∞
0

λ2e−λ dλ,

where the inequality of the Cauchy–Schwarz (
∫

uv)2 ≤ (
∫

u2)(
∫

v2) is used with

u(λ) = √
e−λ and v(λ) = λ

√
e−λ and leading to p2

1 ≤ p0 × 2p2, so that
f 2

1
2f2

es-
timates a lower bound for f0. Chao (1987, 1989) suggests to use this bound as
an estimator if higher frequency counts are small. It is mentioned frequently in
the applied statistical literature [see, e.g., Smit, Reinking and Reijerse (2002)]
that the Zelterman estimator and Chao’s estimator are often quite close. In-
deed, if we compute the Chao estimator in our drug user example, we find that
N̂C = 3346 + 31142/(2 × 163) = 33,091 (95 percent CI is 28,058–38,124), which
is not far from N̂Z = 33,664. Furthermore, it is often claimed that the Zelterman es-
timator is usually larger than Chao’s estimator as it is in our example here. Hence,
it is interesting to investigate the relationship between the two estimators more
theoretically.

The Zelterman estimator and the Chao estimator are connected as follows. Let
us write the Zelterman estimate for f0 as

n
exp(−λ̂)

1 − exp(−λ̂)
= n

exp(λ̂) − 1
≈ n

λ̂ + 1/2λ̂2
,

using the first three terms of the MacLaurin series for the exponential function:
exp(x) = 1 + x + 1

2x2 + · · · . This can be further written as

n

λ̂ + 1/2λ̂2
= f 2

1

2f2

n

f1 + f2
≥ f 2

1

2f2
,
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the latter being Chao’s lower bound estimate of f0. Two statements follow now
easily from this representation and are summarized in Theorem 3 below.

THEOREM 3. Consider a situation as in Theorem 1:

(a) Assume that n
f1+f2

> 1. Then, for any ε > 0 exists δ > 0 such that

if
f2

f1
< δ, then N̂C ≤ N̂Z + ε.

(b) If n
f1+f2

= 1, then N̂C ≥ N̂Z and N̂Z − N̂C = O(λ̂3
1).

Zelterman’s estimator is not always larger than Chao’s. Note that statement (b)
gives a condition which leads to Chao’s estimator being larger than the one of Zel-
terman. Statement (b) follows from the fact that n/[exp(λ̂)− 1] ≤ n/(λ̂+ 1

2 λ̂2) for

any nonnegative λ̂. The term n/(λ̂ + 1
2 λ̂2) simplifies to f 2

1 /(2f2)[n/(f1 + f2)] =
f 2

1 /(2f2) and the result follows. The second part of statement (b) follows from the
fact that

exp(λ̂) − 1 =
∞∑
i=1

λ̂i/i! = λ̂ + λ̂2/2 + λ3(1/3! + λ̂/4! + · · ·),

where the left-hand side corresponds to the Zelterman estimator and the first two
terms of the right-hand side correspond to the Chao estimator. This ends the proof.

Note the difference between statements (a) and (b) in Theorem 3. State-
ment (b) says that the estimators of Chao and Zelterman are close, with Chao’s
estimator larger than the one of Zelterman if the ratio of the count of twos to the
count of ones is small and the proportion of both of them among all observations
is close to one. Statement (a) says that the estimator of Chao is bounded above by
the estimator of Zelterman (but they need not to be close) if the ratio of the count
of twos to the count of ones is small.

Some elementary calculations show that N̂C = n + f 2
1

2f2
also satisfies

N̂C = n

1 − p̂2
1/(2p̂2)

= n

1 − f 2
1 /(2f2N̂C)

,(4.1)

where p̂j = fj/N̂C for j = 1,2. Unfortunately, (4.1) contains N̂C on both sides of
the equation, which causes difficulties when we aim to generalize this for data with
covariate information. More details on this aspect of Chao’s estimator are available
from the authors upon request.

5. Examples.

5.1. The Bangkok drug users study example. We will illustrate the generalized
Zelterman approach using the Bangkok drug users study [Böhning et al. (2004)]
introduced in Section 2. Let us consider the female drug users only. Tables 2 and 3
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TABLE 2
Distribution of repeated contact counts y to treatment institutions of

female Metamphetamine users by age

# users with y contacts:

Age 1 2 3 4 All

13 3 0 0 0 3
14 5 0 0 0 5
15 23 0 0 0 23
16 18 1 0 0 19
17 19 1 0 0 20
18 21 1 1 0 23
19 23 1 0 0 24
20 23 0 0 0 23
21 17 0 1 0 18
22 22 1 0 0 23
23 10 2 0 0 12
24 15 0 0 0 15
25 13 2 0 0 15
26 12 0 0 0 12
27 6 0 0 0 6
28 4 0 0 0 4
29 4 0 0 0 4
30 5 0 0 0 5
31 4 0 0 0 4
32 1 0 0 0 1
33 1 1 0 0 2
34 2 0 0 0 2
35 2 0 0 0 2
36 3 0 0 1 4
37 3 0 0 0 3
38 1 0 0 0 1
39 1 0 0 0 1

All 261 10 2 1 274

show the distribution of contact counts to treatment institutions by age for Metam-
phetamine and Heroin users respectively. These are very different subpopulations
of the drug user population in the Bangkok metropolis, as indicated by the quite
different age distributions. Clearly, the age distribution of the Metamphetamine
users is younger than the age distribution of the Heroin users (see Tables 2 and 3).
To analyze these data, STATA and GAUSS macros are available in the supple-
mental articles Böhning and van der Heijden (2008a, 2008b). The results of the
analysis are provided in Table 4. None of the subpopulations seems to be affected
by age as follows from a likelihood ratio test. Accordingly, the population size
estimates, unadjusted and adjusted for age, do not differ much. Whereas for the
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TABLE 3
Distribution of repeated contact counts y to treatment institutions of

female Heroin users by age

# users with y contacts:

Age 1 2 3 4 All

16 0 1 0 0 1
17 1 0 0 0 1
18 3 0 0 1 4
19 1 1 1 2 5
20 0 3 2 2 7
21 6 0 0 7 13
22 3 5 1 5 14
23 10 3 2 9 24
24 11 4 4 9 28
25 8 0 1 2 11
26 13 4 3 4 24
27 6 0 1 7 14
28 4 1 2 3 10
29 4 3 1 2 10
30 0 2 1 2 5
31 3 1 2 3 9
32 4 1 0 1 6
33 6 1 3 1 11
34 2 2 0 3 7
35 2 0 1 0 3
36 2 1 0 3 6
37 3 3 1 1 8
38 3 1 1 2 7
39 0 2 0 0 2
40 4 2 1 0 7
41 1 2 1 1 5
42 4 0 0 1 5
43 2 0 0 1 3
44 2 0 2 1 5
45 1 0 0 1 2
46 0 0 0 1 1
47 2 1 0 0 3
48 1 0 1 0 2
49 1 0 0 1 2
52 1 0 0 0 1
58 1 0 0 0 1
62 1 0 0 0 1

All 116 44 32 76 268
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TABLE 4
Estimated population size of female drug users in Bangkok with 95% confidence interval without

and with adjustment for age of drug user, and logistic log-likelihood LL

Drug Covariates N̂Z (95% CI) LL

Heroin None 504 (389–628) −94.11
AGE 505 (379–630) −93.86

Metamphetamine None 3714 (1417–6011) −42.81
AGE 3772 (1376–6169) −42.72

female Heroin user population a completeness of identification of about 50% is
reached (268/504), the completeness of identification is less than 10% for the
Metamphetamine users (274/3714).

5.2. The illegal immigrant’s study. As a second example, we discuss the esti-
mation of the number of illegal immigrants in four large cities in the Netherlands
from police records, analyzed with the truncated Poisson regression model by van
der Heijden et al. (2003a). In their analysis van der Heijden et al. focus on those
illegal immigrants that, once apprehended, cannot be effectively expelled by the
police because, for example, their home country does not cooperate with the or-
ganization of deportation. In such cases the police request the individuals to leave
the country, but it is unlikely that they will abide by such a request. Hence, they
can be apprehended multiple times. The data contain four covariates: gender, age,
home country and reason for being arrested (or rearrested). For details about the
data we refer to van der Heijden et al. (2003a). The observed frequencies for the
covariate categories can be found in Table 5 and are reproduced from van der Hei-
jden et al. (2003a). The data are provided in a supplemental file [Böhning and van
der Heijden (2008c)].

In Table 6 we provide the estimates of both the truncated Poisson regression
model as well as the Zelterman regression model. Both models provide simi-
lar point estimates, but the estimated standard errors of the Zelterman regression
model are somewhat larger than those of the truncated Poisson regression model,
yielding less parameter estimates in the Zelterman regression model deviating sig-
nificantly from zero.

In Table 7 we present the population size estimates for a series of models. The
top panel has been reproduced from van der Heijden et al. (2003a). It shows that
the truncated Poisson regression model with covariates Gender, Age and Nation
provides the best fitting main effects model both in terms of deviance as well as
AIC, and when these three variables are included Reason does not increase the fit
significantly. The population size estimate is 12,690 with a CI of (7186–18,194).

Interestingly, the top panel provides for each model a Lagrange multiplier test
[Gurmu (1991)] that can be used to test for overdispersion in the zero-truncated
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TABLE 5
Illegal immigrants not effectively expelled. Observed frequencies for covariate categories

Covariate category f1 f2 f3 f4 f5 f6 Total

>40 years 105 6 111
<40 years 1540 177 37 13 1 1 1769

Female 366 24 6 1 1 398
Male 1279 159 31 12 1 1482

Turkey 90 3 93
North Africa 838 146 28 9 1 1 1023
Rest Africa 229 11 3 243
Surinam 63 1 64
Asia 272 9 1 2 284
America, Australia 153 13 5 2 173

Being illegal 224 29 5 1 259
Other reason 1421 154 32 12 1 1 1621

Poisson regression model as a result of unobserved heterogeneity. This test com-
pares the model fit of the Poisson model with alternative models with an extra
dispersion parameter included, such as the negative binomial regression model.
Van der Heijden et al. (2003a) and Böhning and Schön (2005) show that, if there
is evidence for unobserved heterogeneity in a model, the population size estimate
will underestimate the true population size [see also Böhning and Kuhnert (2006)].
For the illegal immigrant data this appears to be the case for every model in the
top panel of Table 7.

TABLE 6
Truncated Poisson regression model (columns 1 and 2) and Zelterman regression model (columns

3 and 4) fit to the illegal immigrants data

Regression parameters MLE SE MLE-Z SE-Z

Intercept −2.317 0.449 −3.359 0.528
Gender (male = 1, female = 0) 0.397 0.163 0.535 0.232
Age (<40 yrs = 1, >40 yrs = 0) 0.975 0.408 0.567 0.434
Nationality

(Turkey) −1.675 0.603 −1.030 0.657
(North Africa) 0.190 0.194 0.579 0.307
(Rest of Africa) −0.911 0.301 0.664 0.425
(Surinam) −2.337 1.014 −1.720 1.050
(Asia) −1.092 0.302 −1.056 0.448
(America and Australia) 0.000 0.000

Reason (being illegal = 1, else = 0) 0.011 0.162 0.189 0.220
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TABLE 7
Estimates N̂ and 95% confidence intervals for N obtained from fitting different truncated Poisson

regression models (first five models) and Zelterman regression models (last five models). Model
comparisons using the likelihood-ratio test and AIC-criterion are also given. χ2

(1)
is the

Lagrange multiplier test testing for overdispersion in the Poisson regression model

AIC G2 df P∗ χ2
(1) N̂ CI

Poisson regression
Null 1805.9 106.0 7080 6363–7797
G 1798.3 9.6 1 0.002 99.7 7319 6504–8134
G + A 1789.0 11.2 1 <0.001 93.7 7807 6637–8976
G + A + N 1712.9 86.1 5 <0.001 55.0 12,690 7186–18,194
G + A + N + R 1714.9 0.004 1 0.949 55.0 12,691 7185–18,198

Zelterman regression
Null 1191.4 9424 8084–10,765
G 1184.3 9.1 1 <0.003 9970 8327–11,614
G + A 1182.9 3.5 1 0.061 10,213 8416–12,009
G + A + N 1131.7 61.1 5 <0.001 16,129 9973–22,286
G + A + N + R 1133.0 0.7 1 0.403 16,188 9983–22,394

∗P -value for likelihood-ratio test.

We now turn to the results for the Zelterman regression model, presented in the
bottom panel of Table 7. Here the model with Gender, Age and Nation is also the
best model in terms of model fit as well as AIC. If we compare the population
size estimates under the truncated Poisson regression model with those under the
Zelterman regression model, we find that, for models with identical covariates,
the population size estimates under the Zelterman model are much larger. This
suggests that the Zelterman model corrects for the downward bias in the population
size estimates from the truncated Poisson regression model when overdispersion
is present.

APPENDIX: VARIANCE ESTIMATION UNDER COVARIATES

We now provide details for computing a variance estimate of the generalized
Zelterman estimator (3.4), which we write as

N̂Z =
n∑

i=1

1

wi

=
N∑

i=1

�i

wi

,

where wi = 1 − exp(−2eη̂i ) and �i is an indicator which is 1 (unit is sampled)
with probability wi and 0 (unit is not sampled) with probability 1 − wi .

We use the techniques of conditioning to develop a variance estimator of (3.4)
and follow the methodological development in van der Heijden et al. (2003a). We
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have that [see Ross (1985), page 125]

Var(N̂Z) = Varn[E(N̂Z|n)] + En[Var(N̂Z|n)],(A.1)

where moments inside the brackets are computed conditional upon n and moments
outside the bracket refer to the marginal distribution of n. Consider E(N̂Z|n) and
its estimate

̂

E(N̂Z|n) =
n∑

i=1

1

wi

=
N∑

i=1

�i

wi

.

Consequently,

Varn

(
N∑

i=1

�i

wi

)
=

N∑
i=1

Varn

(
�i

wi

)
=

N∑
i=1

wi(1 − wi)/w
2
i =

N∑
i=1

(1 − wi)/wi,

for which an unbiased estimator can be provided as

V̂arn

(
N∑

i=1

�i

wi

)
=

N∑
i=1

�i(1 − wi)/w
2
i =

n∑
i=1

(1 − wi)/w
2
i .(A.2)

We move on to consider the second term, En[Var(N̂Z|n)], involved in (A.1). We
write

Var(N̂Z|n) = Var

(
N∑

i=1

�i

wi

∣∣∣�1, . . . ,�N

)
,(A.3)

so that

Var(N̂Z|n) = Var

(
n∑

i=1

1

wi

)
.

Recall that wi = 1 − exp(vi) and vi = −2eη̂i , so that

wi = wi(β̂) = 1 − exp(vi) = 1 − exp(−2eη̂i ) = 1 − exp(−2eβ̂T xi ).

Consequently, wi(β̂) and wj(β̂) will not be independent for i �= j , since both
depend on a common β̂ . An application of the multivariate δ-method as done by
van der Heijden et al. (2003a) provides(∑

i

∇wi(β̂)T

)
Cov(β̂)

(∑
i

∇wi(β̂)

)
,(A.4)

where

∇wi(β̂) = (1 − wi)vi

w2
i

xi .(A.5)

Summing (3.5) and (A.4) give the full variance approximation of Var(N̂Z).
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SUPPLEMENTARY MATERIAL

Computer programmes and illegal immigrant data (DOI: 10.1214/08-
AOAS214SUPP; .zip).
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