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Much of the trading activity in Equity markets is directed to brokerage
houses. In exchange they provide so-called “soft dollars,” which basically are
amounts spent in “research” for identifying profitable trading opportunities.
Soft dollars represent about USD 1 out of every USD 10 paid in commissions.
Obviously they are costly, and it is interesting for an institutional investor to
determine whether soft dollar inputs are worth being used (and indirectly
paid for) or not, from a statistical point of view. To address this question,
we develop association measures between what broker—dealers predict and
what markets realize. Our data are ordinal predictions by two broker—dealers
and realized values on several markets, on the same ordinal scale. We de-
velop a structural equation model with latent variables in an ordinal setting
which allows us to test broker—dealer predictive ability of financial market
movements. We use a multivariate logit model in a latent factor framework,
develop a tractable estimator based on a Laplace approximation, and show its
consistency and asymptotic normality. Monte Carlo experiments reveal that
both the estimation method and the testing procedure perform well in small
samples. The method is then used to analyze our dataset.

1. Introduction. The point of departure of the present paper is the analysis of
a dataset provided by the Geneva University pension fund, consisting of historical
data of financial forecasts from 2 broker—dealers about the mid-term evolution of
the stock markets in 5 countries and the bond markets in 4 zones, respectively.
These broker—dealers were asked each quarter during 6 years to provide their fore-
casts for each country in terms of market trends (stock and bond indices) for the
next 6 months. For our purpose they have been recorded on an ordinal scale from
1 to 5. In order to decide whether the forecasts are valid, they should be compared
with the actual evolutions of the corresponding markets which were also recorded
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on the same ordinal scale. The issue is to determine whether the forecasts made
by the broker—dealers are in some sense “near” the realized market evolutions six
months later. Implicitly we assume that the broker—dealers are small enough so
that they cannot influence the market. Therefore, there is no causal relationship
between forecasts and future realizations. We are in a multivariate context since
the forecasts concern different countries at the same time. Formally, the aim is to
measure (and test for) the association between two random vectors, say, X (the
forecasts) and Y (the market realizations), whose size p > 2 is the same (4 zones
or 5 countries), and whose entries consist of ordinal variables corresponding to the
forecast and realized market states (values in {1, ..., 5}) for each country, respec-
tively.

The study of the association between two random vectors is often of interest in
applied statistics and econometrics. If the multivariate data are normal, the canoni-
cal correlation coefficient can be used [see, e.g., Mardia, Kent and Bibby (1979)]. It
is defined as the maximal correlation coefficient between any linear combinations
of elements of X and any linear combinations of elements of Y. When not, for ex-
ample, when the data are collected via questionnaires on scales with a limited num-
ber of points, the canonical correlation is no longer appropriate. To our knowledge,
no association measure has been proposed so far to compare multivariate ordinal
random variables. Association measures between univariate categorical or ordinal
variables have been proposed for a long time now; see, for example, Goodman and
Kruskal (1979) and Agresti (1990). For example, the Pearson tetrachoric correla-
tion is based on the idea that there exist continuous bivariate normal distributions
underlying cross-classification tables. The tetrachoric correlation is the correlation
of the bivariate normal distribution having produced the cell probabilities of the
table. This idea has been extended to association measures between two ordinal
variables with the polychoric correlation [Olsson (1979)] and between a normal
and a binary, polytomous or ordinal variable with the polyserial correlation [see
Tate (1955a, 1955b), Cox (1974) and Lee and Poon (1986)].

In this paper we attempt to combine both ideas by constructing hidden or latent
bivariate normal variables, one for each vector of ordinal variables and by defining
an association measure which is the correlation between the latent normal vari-
ables. More precisely, we achieve that through the specification of a multivariate
multinomial logit (MNL) with latent factors [see, e.g., McFadden (1984) for an
introduction]. This is done in the spirit of structural equation models (SEM) with
latent variables [see, e.g., Aigner et al. (1984) for an introduction] and general-
ized linear latent variable models [see, e.g., Bartholomew and Knott (1999) and
Skrondal and Rabe-Hesketh (2004) for an introduction]. The resulting association
measure is similar to the canonical correlation coefficient in the normal case and
similar to the polychoric correlation in the univariate case. Our association mea-
sure corresponds to a model parameter which is easily estimated (together with
other parameters) using a Laplace approximated maximum likelihood estimator
(LAMLE) proposed by Huber, Ronchetti and Victoria-Feser (2004) for which we
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develop asymptotic properties. Consequently, statistical inference for the associa-
tion measure can be performed using the properties of the estimator.

In a broader sense, latent variable models encompass a large number of models
that are frequently used in recent applications. Examples include multilevel models
(or hierarchical models), generalized linear mixed models or Bayesian hierarchical
models. For example, Zaslavsky (2007) uses a hierarchical model for the analysis
of consumer assessments of health care data, while Fielding and Yang (2005) use
a generalized linear mixed model for the analysis of educational achievement data.
In these models, latent variables are used to model the variability imputed to the
observations that lie at different levels of clustering (i.e., the random effects) and
the emphasis is put on the estimation of the variance of the random effects. La-
tent variables are also used to model (time) sequences by means of hidden Markov
model (HMM), as is done, for example, in Zhou and Wong (2007) for the analysis
of genomic sequences for short sequence elements. Wu et al. (2007) use a hier-
archical state space model coupled with an HMM to analyze a short time course
microarray experiment. In these models, the latent variable is the hidden time se-
quence modeled using a (hidden) Markov chain. Mixture models use categorical
latent variables (or latent classes) mainly for classification purposes. For example,
Erosheva, Fienberg and Joutard (2007) propose a latent class model to classify el-
derly Americans into functional disability classes according to their scores (able
or not able) on different daily activities over different periods. Hence, an estimated
latent score (here a class) is attributed to each observation according to the value of
the response vector that permits the classification into the different latent classes.
In the model we propose, the aim is also to attribute a latent score but on a con-
tinuous scale to each ordinal vector of forecasts and actual market realizations
simultaneously and quantify their correlation.

Estimation of latent variable models has also seen a substantial activity in re-
cent research. Latent variables in these models need to be integrated out from the
likelihood function which then implies the computation of complicated integrals.
Bayesian methods like Markov Chain Monte Carlo (MCMC) possibly coupled
with the EM algorithm, are often used in practice. Alternatively, the integrals
can be approximated using (adaptive) Gauss quadratures [as implemented, e.g.,
in GLLAMM in the STATA package; see Rabe-Hesketh, Skrondal and Pickles
(2002)] or Laplace approximation. For the type of model we consider here, Huber,
Ronchetti and Victoria-Feser (2004) argue that a Laplace approximation of the
likelihood function is a better approach: the resulting estimator is asymptotically
unbiased and fast to compute (a key advantage when using resampling methods,
for example). Finally, it should be noted that standard SEM packages rely on two-
stage procedures that basically reduce the information given in the sample to an
estimate of the (multivariate) mean and covariance (using, e.g., polychoric corre-
lations). These two-stage procedures are slower and cannot guarantee consistency
of parameter estimators.
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The paper is organized as follows. In Section 2 we present the datasets and the
problem at hand, and motivate the construction of an association measure between
the ordinal random vectors. In Section 3 we develop a multivariate multinomial
logit (MNL) with latent factors in the framework of the generalized linear latent
variable model (GLLVM) and propose the correlation between the latent variables
as the measure of association. We then compare in Section 4 this measure to the
polychoric correlation and the canonical correlation. Estimation and asymptotic
properties are investigated in Section 5. We rely on the so-called Laplace ap-
proximation [De Bruijn (1981)] to get a tractable and fast estimation procedure
of the latent variable model, and show consistency and asymptotic normality of
the resulting estimators. Section 6 is devoted to Monte Carlo experiments aimed at
gauging the performance in small samples of the estimation method and the testing
procedure of the measure of association. We gather the empirical results in Sec-
tion 7, while technical details and proofs are relegated to supplemental material
[see Huber, Scaillet and Victoria-Feser (2009¢)].

2. The data. The database® contains the forecasts (in terms of trends) of two
broker—dealers A and B about the mid-term (6 months) evolution of the stock
market in five different countries (Switzerland, Germany, France, Great Britain
and USA) for A and the bond market in four zones (Switzerland, Euro Zone,
Great Britain and USA) for B. The trends have been clearly and precisely de-
fined as corresponding to a given future variation x with: x < —10% (strong
bear), —10% < x < —5% (bear), —5% < x < 5% (neutral), 5% < x < 10% (bull),
10% < x (strong bull), for the stock market and x < —0.25%, —0.25% < x <
—0.10%, —0.10% < x < 0.10%, 0.10% < x < 0.25%, 0.25% < x, for the bond
market. They have been recorded on an ordinal scale from 1 to 5. In both cases,
we compare the forecasts to the actual returns of the corresponding markets six
months later. For the stock market, the actual trends are measured on the stock in-
dices: S&P500 (US), FTSE100 (UK), CAC40 (FR), DAX (D) and SMI (CH). The
sample starts in July 1997 and finishes in April 2003 with one forecast every quar-
ter (22 observations). The observations are sequential in time but since the time
gaps are of 3 months (a quarter), we can assume that there is no serial correlation.

The data corresponding to broker—dealer A (stock markets) are represented in
Figure 1 in the form of graphs of the observed versus predicted values for each
stock market separately. The data corresponding to broker—dealer B (bond mar-
kets) are represented in the same way in Figure 2. It is not clear at all if the predic-
tions are “in general” in accordance with the corresponding actual market values.
It seems, however, that roughly the broker—dealers are in general able to follow the
trends, except that they tend to underestimate their magnitude.

4The datasets are provided as part of supplemental material; see Huber, Scaillet and Victoria-Feser
(2009a).
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FIG. 1. Observed (dashed line) and predicted (solid line) market values by broker—dealer A, for
five different stock markets.

This type of representation gives a first idea on the performance of the broker—
dealers, but a more formal approach, in the form of an indicator (and its vari-
ability), is more appropriate. We need to compare the predictive performance of
several broker—dealers for these markets from an institutional point of view. If the
data were recorded on a normal scale, a canonical correlation could be used. For an
ordinal scale, an appropriate measure of correlation is the polychoric correlation,
but it is only defined between pairs of (ordinal) variables. Hence, at least for the
problem at hand, we need an association measure between two vectors of ordinal
variables.

Measuring the predictive ability of broker—dealers is an important issue because
institutional investors make a large portion of overall trading volume in Equity
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FIG. 2. Observed (dashed line) and predicted (solid line) market values by broker—dealer B, for
four different zones.

markets, and much of this trading activity is directed to brokerage houses who ex-
ecute trades. In exchange for directed trades, most of the brokerage houses provide
so-called “soft dollars.” Soft dollar arrangements are arrangements under which
products or services other than execution of securities transactions are obtained
by an institutional investor from or through a broker—dealer in exchange for the
placement of his orders [see Blume (1993), Johnsen (1994) and the Securities and
Exchange Commission (1998) for the detailed definition, history and law related
to soft dollars]. These arrangements are best thought of as ways of subsidizing
the research inputs that investors use to identify profitable trading opportunities.
In contrast to “hard dollars” (actual cash), which have to be reported on investor
books, soft dollars are incorporated into brokerage fees and the expenses investors
pay for needs not be reported directly. Soft dollars arrangements were first devel-
oped as a means of competition among brokers. With broker—dealers being unable
to compete based on commission rates fixed by regulation, complex arrangements
to provide equity research and services became a primary tool of differentiation
among brokerage houses. They also provided a way to investors to recapture a por-
tion of the high commissions they were required to pay. The US Security Exchange
Commission (SEC) abolished fixed rate commissions on May 1, 1975. Shortly
after industry participants expressed concern that soft dollar practices would be
viewed as a violation of a manager fiduciary obligation to place the client interest
above his own. In response, US Congress passed Section 28(e) of the Securities
and Exchange Act to provide a “safe harbor” and protect managers of being ac-
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cused of breaching their duty. This legal acceptance explains why the industry
still offers such arrangements nowadays. US regular surveys about the size of the
soft dollar industry are conducted by Greenwich Associates. Their 2007 survey
of 229 financial institutions indicates that soft dollar commissions totaled almost
USD 723 million in 2007 down from USD 970 million in 2006. This represents
about USD 1 out of every USD 10 (10%!) paid in commissions by those firms
involved. As recently as 2004, more than 80% of institutions used soft dollars; by
2007 that proportion is still around 60%. On the contrary, less than a third are cur-
rently buying equity research and services with hard dollars. Obviously soft dollar
practices are costly and widespread, and it is therefore important for an institu-
tional investor to determine whether these soft dollar inputs are worth being used
(and indirectly paid for) or not, from a statistical point of view. Indeed, even if soft
dollars vary by account size, annual turnover and asset class, they still represent
a meaningful portion of the overall annual cost of actively managed equity port-
folios. They directly impact the overall performance of funds, and thus are to be
monitored.

After presenting the model in Section 3, we will assess in Section 7 the predic-
tive ability of the broker—dealers by means of our association measure.

3. A SEM for multivariate measure of association. Recall that the aim is
here to measure an association between a set X = (X1, ..., X))’ of manifest
variables and another set Y = (Y, ..., Y(P))" of manifest variables. Let U =
(X', Y') and let Fx and Fy be latent variable vectors of dimension myx x 1 and
my x 1 withmy,my < p.Letalso F = (1,F,, F},) = (I, F/(z))’, such that F(o) ~
N(0,R), R being a correlation matrix. If the manifest variables are normal, we
could use a SEM for normal vectors given by

(1) UDIE" NOUF, ¢?), 1=1,....2p

with, forl =1,..., p, A = (ag) , g?/, 0’) the intercept and factor loadings for the
manifest variables X and ¢12 their residual variance, and, for / = p +1,...,2p,
A= (ag_p ) 0, g—p ) /)’ the intercept and factor loadings for the manifest vari-

ables Y and ¢12 their residual variance. In principle, the dimension of the latent
spaces my, myx could be greater than 1, but for the purpose of building a single

.. .. 1
association measure, the choice is my = my = 1. Consequently, R = [,o /1) } has a

single unknown parameter p which can be interpreted as an association measure
between X and Y (see also Section 4).

The normalization (unit variance) of the latent variable F(y) is necessary for
identification purposes. Indeed, since the latent variables in model (1) are multi-
plied by the factor loadings, an increase (decrease) of the variance of F () cannot
be distinguished from a simultaneous decrease (increase) of the factor loadings.
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Moreover, since we are interested in computing the correlation between the latent
factors Fx and Fy, this normalization has no influence on the association measure.

Incorporating additional factors (i.e., increasing my and mx) does not raise any
difficulties; however, the interpretation in terms of measure of association becomes
more difficult. It is therefore important to check the model fit when assuming m x =
my = 1; this will be done in our empirical illustration (see Section 7). Finally, we
also note that the dimensions of X and Y need not to be equal.

Model (1) provides measures of association between vectors of normal vari-
ables. It can be generalized to the family of exponential distributions for vectors
Z = (X', Y'Y of (nonnecessarily normal) manifest variables with probability dis-
tribution function:

u(x;F)z<l>¢— b(u(A]F)) be
)

@) a(ZOF) = exp{ (29, ¢) }

l=1,...,2p,

where u(kEF) is the so-called canonical parameter, b(u (MF)) and c(z", ¢p) are
specific functions whose form depends on the particular exponential distribution,
and ¢ is a scale parameter [see McCullagh and Nelder (1989)]. Except for the
normal case, the expectation E[Z O |F] is not a linear function of F, but is linked
to the linear predictor through a link function v as

v(E[ZzP|F]) = A/F.

We further have that u(k;F) = MF when we choose the so-called canonical link
function for v. This model belongs to the class of Generalized Linear Latent
Variables Model (GLLVM) which has been proposed by Moustaki (1996) and
Moustaki and Knott (2000) under an assumption of independence between the
Gaussian latent variables (diagonal R). This type of modeling can be viewed as
an extension of the usual Generalized Linear Models approach [McCullagh and
Nelder (1989)] to the latent factor framework.

The conditional independence of the manifest variables Z() given the latent
ones is assumed, so that the conditional joint density of the manifest variables is

]_[12£ 181(Z |F) and their marginal joint distribution is

2p

3) r@=| [1‘[ gz(Z(’)IF)}W(F) dF,
I=1

with i being the N (0, R) density function.

Because of the nature of the data at hand, we need to develop hereafter the
case of ordinal variables, that is, ordered categorical variables. Let Z(®)|F follow
a multinomial distribution with possible values (or categories) going from 1 to g;.
In the following we opt for a cumulative logit formulation [see Agresti (1990) for
the advantages of this formulation over other ones, and Joreskog and Moustaki
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(2001) for a comparison of different approaches in the framework of factor analy-
sis with ordinal data] to account for the ordered nature of the categorical data.
Let Py, = P[Z 0 < s|F], s =1,...,q, be the conditional cumulative distribution
functions. The quantity log(P;s/(1 — Pjs)) is the log-odds of falling into or below
a category s versus falling above it for the manifest variable /. It is used in the
logit link between the linear predictor and the conditional cumulative probability
distribution:

Pls
1_Pls

@ (P = log( - ) = AL F.
where Ay = (ag’s), ﬂg?/, 0) or Ay = (oz;l_p’s), 0, g—p)/)/ depending on the
value of /. The index s in the «’s indicates that each intercept depends not only
on the manifest variable / but also on the category s. The constraint for each man-
ifest variable that the p slope coefficients (the beta’s) in A;; does not depend on
the category s is known as the proportional-odds assumption, and essentially al-
lows us to reduce the number of parameters to be estimated. The intercepts take
the interpretation of thresholds and are monotonic in the sense that the lowest cat-
egory receives the lowest threshold, and so on. They represent the log-odds of
falling into or below category s when all latent variables are nil, while a given
positive slope leads to an increase on the log-odds of falling into or below any
category associated with a one unit increase in the corresponding latent variable.
A positive slope indicates thus an increase in the odds themselves, and higher
probabilities for the manifest variable to take low values. For identification pur-
poses, the highest threshold is set equal to infinity by convention, which means
that we only need to estimate the g; — 1 threshold for the manifest variable /. With
all these restrictions, the model is fully identifiable. In general, the thresholds can
be assumed to be different for each manifest (ordinal) variable. However, when
the ordinal variables take values under the same measurement unit (e.g., percent-
ages), we can constrain the thresholds to be equal for all manifest variables, that
is, ag’s) = ag ~P) — ) for all /. This is a suitable constraint for the analysis of
our data (see Section 7).

The scale parameter ¢; is here equal to 1, while the canonical parameter is not
linear in the latent factors (since we do not use the canonical link function), but
equal to

/7 P[S
u(A; F) =log P P a—n)
.8 s

while

b(u(M,F)) =log(1 + exp(u(Aj, F)))

( Pl,s-i—l )
=log( ————),
Prsi1— Py
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and ¢(Z®, ¢1) = 0. The conditional distribution of the manifest variable is given
by

a
g(zVF) =[P, - Pl,s—l)t(Z(l):S)

s=1

qi—1 P 1(z0<y) Pyt — Py 1(ZD <s+1)—1(zV <s)
o =) )

s=1 Pl,S+1

Pl,s+1

q1—1

- exp( Y [UzD < s)u@rjF) — (2P <5 + l)b(u(MsF))]),
s=1

where t(Z(l) =s)=1if Z® = s and 0 otherwise, and L(Z(l) <s)=1Iif z0O <.

and ((Z® < s) = 0 otherwise.

Note that we could use a probit link instead of the logit function. In practice,
however, the difference is very small since these two link functions are very close
(|®(x) —W(1.7x)| < 0.01, Vx, where W is the logistic distribution function and &
the normal cumulative distribution function); see, for example, Lord and Novick
(1968). In the regression model (i.e., F is observed and Z is the univariate ordinal
response variable), McCullagh and Nelder (1989) use the same approach to link the
explanatory variable to the first moments of the response variable. Finally, let us
remark that a specification in terms of latent variables is a usual way to reduce the
complexity of multinomial model calculation [see McFadden (1984), page 1419],
and to achieve a relative parsimony in the modeling. This is even more relevant, if
not inevitable, in a multivariate framework.

4. Relationship with other measures of association. In this section, we
compare the measure of association p with two other measures, namely, the poly-
choric correlation which associates two ordinal random vectors and the canonical
correlation which associates two vectors of normal variables.

There are many other association measures between two ordinal variables such
as Goodman and Kruskal (1954) and Gamma and Kendall (1945) tau-b [see also
Agresti (1984)], but the polychoric correlation is the most similar to our measure.

The polychoric correlation is based on the assumption of the existence of
a vector (X*,Y™*) of bivariate normal variables with zero mean, unit variance
and correlation p. Instead of observing directly (X*, Y*), we observe the vector
(X, Y) of ordered multinomial variables, taking ordered values in, say, {1, ..., gx}
and {1, ..., gy}, respectively. The observed variables are linked to (X*, Y™*) by

means of a set of thresholds agg"),oz;sy},sx =1,...,9x,sy =1,..., gy through

P(X <sx,Y <sy)=P(X*< ozg‘;X), Y* < a;”)). Using the bivariate normal as
the (indirect) model, we can estimate the so-called polychoric correlation p by
using the likelihood function given in Huber, Scaillet and Victoria-Feser (2009a)
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[see also Olsson (1979)]. With the GLLVM with conditional density (5) when
p =1 and taking the probit link instead of the logit link, we get a likelihood func-
tion that shows that although the estimator of the correlation p is different from
the polychoric correlation [see Huber, Scaillet and Victoria-Feser (2009a)], they
are directly comparable. Indeed, for both estimators an assumption is made about
the distribution of the underlying (or factor) variables, namely, normality, and the
thresholds need to be estimated together with the correlation coefficient. With the
GLLVM, an additional centering Bx Fx (By Fy, resp.) is also needed. However, the
advantage of the GLLVM approach is that it can be easily extended to multivariate
X and Y, which is not the case with the polychoric correlation.

On the other hand, the canonical correlation can be used to assess the asso-
ciation between two multivariate normal variables [see, e.g., Mardia, Kent and
Bibby (1979)]. It is defined as the maximal correlation coefficient between any
linear combinations of X and any linear combinations of Y. For a moment sup-
pose that (X', Y')" is distributed as a multivariate normal random variable with
mean (fy, pty)" and covariance matrix

Yxx Lxy
Y= .
(2, =)
The canonical correlation coefficient is then defined by
. bY X xyb}
c — ’
/PEZxxbiby Ty yb}
where b}, and by, are the solutions to the maximization problem
b X xyb
@) max XZXVTY .
bx.by \/b/szxbxb/YZbey

(6) 0

As noticed in Section 3, in the GLLVM with normal manifest variables and with
myx = my = 1, the correlation p between the latent variables can be interpreted as
an association measure between X and Y. We may therefore ask the next question:
what is the link between the latter and the standard canonical correlation coefficient
pc given in (6)? The following proposition shows that p can be rewritten in an
analogous form to (6), namely, a correlation between linear combinations of X
and linear combinations of Y but with a modified covariance matrix X* =X + ¢

with ¢ = diag(¢?).

PROPOSITION 1. For the SEM (1), the correlation coefficient p between the
latent variables is given

e BXThBy
BT 5xBxBy 5y By

with By = (BL. ... BLY. By = (BD. ... LY and * =% + ¥

®)
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Equation (8) can be interpreted as the correlation between any linear combina-
tions of elements of X and any linear combinations of elements of Y when the
covariance structure is accounted for measurement error in the manifest variables
via ¥. The correlation coefficient p is thus different from the canonical correlation
coefficient p. by construction. The advantage of defining p instead of p. as an as-
sociation measure between two vectors of random variables is that p can be easily
generalized to the case of nonnormal variables, like, for example, ordinal variables
in our case.

Keller and Wansbeek (1983) mention that the canonical coefficients can be ob-
tained when ¥ has a particular form. They also use the SEM in (1) with categorical
variables, and show the relationships between the resulting models and Correspon-
dence Analysis. Our approach here is different since in the nonnormal case (e.g.,
ordinal) we change the SEM model to take into account the specificity of the data.

5. Estimation and asymptotic properties. In this section we propose an es-
timator for the association measure p induced by the GLLVM and derive its as-
ymptotic properties. Traditionally, the parameters of a GLLVM, when the mani-
fest variables are ordered ordinal, are estimated by means of a two-stage approach.
Polychoric correlations are estimated between all pairs of ordinal variables and
used in the construction of the correlation matrix between the manifest variables
[Muthén (1984), Poon and Lee (1987)]. Then a traditional factor analysis (with or
without correlated latent variables) is performed. Inference on the GLLVM para-
meters is performed using the asymptotic properties of the polychoric correlation
[see, e.g., Joreskog (1994)]. This two-stage approach is based on the assumption
that the underlying distribution of the manifest variables is normal. When this is
not the case, the resulting estimators can be biased, essentially because the infor-
mation in the sample is reduced to estimates of the first two moments of the multi-
variate distribution of the ordinal variables (i.e., their mean and correlation matrix).
By means of simulations, Huber, Ronchetti and Victoria-Feser (2004) show the
bias effect of this two-stage estimation procedure on estimates of GLLVM with
mixtures between binary and normal variables, while Elefant-Yanni, Huber and
Victoria-Feser (2004) examine this effect on estimates of GLLVM with ordinal
variables.

To describe the estimation procedure, let z = [z, ..., z,], with z; = [zlgl), cee,
leP )]/ , n the sample size, and 2p the number of manifest variables. As the mar-
ginal distribution of the observed variable must be integrated out from the condi-
tional distributions g (Z”|F) given by (3), we use a Laplace approximation [see De
Bruijn (1981)] to approximate the likelihood function of the sample as it has been
done in Huber, Ronchetti and Victoria-Feser (2004) for other types of variables.

The Laplace approximation to integrals goes back to the original work of
Laplace. This technique is widely used in mathematics; see, for example, De
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Bruijn (1981). In statistics, it has been used successfully to approximate poste-
rior distributions in Bayesian statistics [see, e.g., Tierney and Kadane (1986)] and
in relation to saddlepoint approximations [Field and Ronchetti (1990)].

Let 7:R™ — R be a function which satisfies the following conditions: it is
continuous and has a global maximum in X, its first and second derivatives exist
in a neighborhood of % and 9/ (X)/9x = 0 and H(X) = 8%h(X)/9x 9x', the Hessian
matrix, is such that —H(X) is positive definite. Moreover, A (x) is sharply peaked
in the neighborhood of X, that is, two positive scalars b and ¢ exist such that

hx)<—b if|R—x|>c.

Then,

) / "™ dx = (27)™? det(—H (X)) /2t 2 exp(th (X)) (1 + 0t ™Y),
t — o0.

Equation (9) is obtained by an expansion of /(x) about its maximum X:
th(x) N a N ~ 1 ~ N AN/
e dx =~ | exp|th(X)+ ta—h(x)(x —X)+ Et(x —x)HX)(x —X)" | dx
X

= exp(th(X)) f exp(%t(x —X)H®EX)(x — f()/> dx
= 27)"? det(—H(X)) ™"/ exp(th(X)).

Letting A denote the vector of all loadings and thresholds, and R the correla-
tion matrix of the latent factors, the approximated log-likelihood / for a model
with ordered multinomial distributed manifest variables is [see Huber, Scaillet and
Victoria-Feser (2009¢)]

N
s 1 ~ 1
I\, Rlz) = Z(—Elogdet(l“(k, R.F)) — 3 log det(R)
i=1
2p qi—1

+ZZ (1)<Su()'ls Fi)

I=1 s=1
(10)

( Q) <s+ l) log(l + expu()»;sﬁi))]

F 'R 'Fig,
2 9

where I'(A, R, Fl) is a correction matrix that comes from the Laplace approxima-
tion, F, Q) = [Fl x> FZY] and F =1, (2)]/ is the estimator of the latent score for
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the ith observation which is given by the implicit equation

2p qi—1

Fioy=FioMRz) =Y Y (2 <5) Py A F)
=1 1
(11) = 0 A
—u(z;” <s+1)Py(A,F))RA2),

where A;(2) is ;g without its first element.

Huber, Ronchetti and Victoria-Feser (2004) point out that ]?‘,- (2) can be seen as
the MLE of F; (). The Laplace Approximated MLE (LAMLE) of the models para-
meters are obtained from the optimization of /, whose derivatives can be computed
explicitly, but are omitted here for sake of space. Hereafter, we establish the con-
sistency and asymptotic normality of the LAMLE 8 of # = (A’, vech(R)’)’, where
vech(A) is the stack of the elements on and below the diagonal of A.

PROPOSITION 2 (Consistency). Let 6 € ©. If ® is compact,

[N 0o = arg max E[l~(0)].
0cO

Note that the empirical approximated likelihood is here too complex to be
shown to be concave in #. Under concavity of the objective function, compact-
ness can be replaced by the assumption of #( being an element of the interior of a
convex set ® [see, e.g., Theorem 2.7 of Newey and McFadden (1994)].

PROPOSITION 3 (Asymptotic normality). If © is compact, 6y € interior(©),
and Jo = E[3°1(00)/36 80'] is nonsingular,

VT —60) -5 N©, 35 oI5 h,
with I = E[31(00)/36 31(0¢)/36'].

Alternative estimators have been proposed in the framework of Generalized
Mixed Linear Models, such as the McGilchrist (1994) best linear unbiased pre-
diction (BLUP) based on the h-likelihood of Lee and Nelder (1996), or the Green
(1987) penalized quasi-likelihood (PQL) [see also Breslow and Clayton (1993)].
Huber, Ronchetti and Victoria-Feser (2004) show that these estimators are all equal
but differ from the LAMLE.

The results of Proposition 3 could, in principle, be used for inference when the
sample sizes are large. When this is not that case, it is more suitable to use other
techniques. For the correlation estimator p, we propose to use the transformation
function 7 introduced by Fisher (1915) that stabilizes the variance of the estimator:

_ 1 14+p
n(p) =tanh™! () =3 log(l—),
—p
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and 7 is approximately normal

1
n(p)wv(vp, m)

with v, = tanh~!(p) + ﬁ. A discussion about the Fisher transformation can be

found in Efron (1982). In practice, we compute the variance of 7, which is simply
(n — 3)~1, calculate its confidence interval, and transform it back to a confidence
interval for p.

For the other parameter estimators, we use a parametric bootstrap: first, we cal-
culate the estimators from the observed sample and then, we generate 1000 new
samples under the estimated distributions to get new estimators. We find the biases
and endpoints of the confidence intervals using a bias-corrected acceleration (BC,)
technique as described in Efron (1987), Efron and Tibshirani (1993) and Shao and
Tu (1995).

6. Monte Carlo experiments. In order to evaluate the performance of our
model and our estimator in finite samples, we have performed a simulation study.’
We consider the model (3) with p = 10, equal thresholds and parameter values
given in Tables 1-3. With these two sets of parameters, we also choose different
values for the correlation coefficient, namely, p = —0.5,0 and 0.5. The first set
of parameters (S1) was chosen to match one of the real examples analyzed in
Section 7 and the other (S2) to reflect what is sensible in practice, that is, a conser-
vative attitude implying large probabilities associated to small or no changes. For
each set of parameters, we simulated 500 samples of size n = 30, and computed
the LAMLE of A and the association measure p. The distribution of the sample
bias estimates for the thresholds and loadings are presented for each estimator in
the form of boxplots in Figures 3 and 4 (second latent variable) for a correlation
o = 0.5 (for the other values of p and the other loadings we find similar results).
Figure 5 shows the boxplots for the estimated correlation 6 under the parameter

TABLE 1
Thresholds for simulation S1

Cumulative
Thresholds probabilities

—4.60 0.01
—2.94 0.05
0.85 0.70
4.60 0.99

2The C code is provided as part of the supplemental material; see Huber, Scaillet and Victoria-
Feser (2009b).
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TABLE 2
Thresholds for simulation S2

Cumulative
Thresholds probabilities

-2.19 0.10

—1.39 0.20

1.39 0.80

2.19 0.90
TABLE 3

Loadings for simulation S1 and S2

Latent 1 Latent 2
1.60 0.00
1.75 0.00
1.70 0.00
1.30 0.00
1.50 0.00
0.00 5.00
0.00 9.00
0.00 9.00
0.00 5.00
0.00 6.00

0

-

F1G. 3. Distributions of threshold bias estimates for simulation S1 with p =0.5.
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FI1G. 4. Distributions of loading estimates (second latent variable) for simulation S1 with p =0.5.

set S1 (for the other set, results are similar). We can see that even for a relatively
small sample size (given the size of the model), the performance is very good in
that there is no apparent bias for all parameters, including p.
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FI1G. 5. Distributions of correlation estimates for simulation S1 with, respectively, p = —0.5,

p=0.0and p=0.5.
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We have also studied the small sample performance of the probability coverage
of 95% confidence intervals for p computed with the Fisher transformation, and
have found a probability coverage of 84.9%.

7. Data analysis. The estimated loadings for both broker—dealers are given
in Tables 4 and 5 with biases and 95% confidence intervals, all computed via a
parametric bootstrap. The estimated correlation between both latent variables for
broker—dealers A and B is given in Table 6. The scores of the latent variables for
both broker—dealers are displayed in Figures 6 and 7.

The study of the correlation estimates (see Table 6) indicates whether the
broker—dealer forecasts match the actual market evolution. The correlation for both
broker—dealers are significantly positive. We can therefore conclude that the fore-
casts are relatively accurate. Alternatively, we can look at the latent scores F x; and
F y; and see graphically how they evolve. For broker—dealer A, they are given in
Figure 6 and for broker—dealer B in Figure 7. For both broker—dealers, the evo-
lution of the two lines (predicted and actual) is pretty similar, thus reflecting the
fact that the predictions on the five stock markets and on the four bond markets are
in phase with the actual evolutions of the latter. This reflects again the relatively
accurate ability of the broker—dealers to predict the markets.

Tables 4 and 5 present the estimated loadings for broker—dealers A and B, re-
spectively. They give another type of information about the behavior of the broker—
dealers. Indeed, the correlation reflects the ability of the broker—dealers to predict
the changes in markets directions, but not necessarily the range of the changes. The
latter can be inferred from the loadings because they act as a multiplicative factor
of the latent variables. In other words, the latent variables give the directions of the
market moves, while the loadings give the (average) ranges of these moves. In Ta-
bles 4 and 5 one can see that the loadings for the actual markets are systematically
higher than the corresponding loadings related to the forecasts. This difference is
certainly due to the forecasts being ingeneral too conservative: although the di-

TABLE 4
Estimated loadings for broker—dealer A. The biases, lower (Lo 95) and upper (u( 95) confidence
bounds are computed with a parametric bootstrap

Predicted Observed

Market  Estimator Bias lp.95 ug9s  Estimator Bias lp.95 ugp.95

CH 1.596 —0.078  0.441 3.071 5.557 —0.280 3.716  10.069
D 1.762 —0.063 0456  3.197 8.925 —1.091 5399 17.079
F 1.725 —0.066 0.411  3.407 8.982 —1.102 5493 17.709
UK 1.286 —-0.035  0.207 2.724 4.980 —0.162  3.165 8.386

USA 1.506 —-0.103 0302  3.023 6.222 —0.442 4178 11.628
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TABLE 5
Estimated loadings for broker—dealer B. The biases, lower (ly.95) and upper (u( 95) confidence
bounds are computed with a parametric bootstrap

Predicted Observed
Market  Estimator Bias lp.o5 uy9s Estimator Bias lo.95 ugp.95
CH 0.632 0.038 —0.985 1.824 2.971 —0.082  1.836 5.608
EU 0.886 —0.029 —-0.912  2.200 5.869 —1.049 2554 10.014
UK 0.544 0.029 —-0.930 1.732 5.419 —0.897  2.662 9.234
USA 1.219 —0.105 —0.921  2.665 7.180 —1.647 3327 14.059
TABLE 6

Estimated correlations between both latent variables

Broker—dealer A Broker—dealer B
Estimator Bias lp.o5 ugy.95 Estimator Bias lp.95 ug.95
0.398 —0.034 0.013 0.722 0.320 0.069 0.027 0.691

N

» o

8 .

g o

»n

(\Il -
T T T T
5 10 15 20
Time

FI1G. 6. Estimated scores for broker—dealer A. The plain line is the forecast and the dotted line the
actual level of the stock market.
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Scores
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Time

FIG. 7. Estimated scores for broker—dealer B. The plain line is the forecast and the dotted line the
actual level of the bond market.

rection of the movements are correctly predicted, their range is underestimated
in all markets by the broker—dealers. We have already noticed this feature when
analyzing the raw data in Figures 1 and 2.

SUPPLEMENTARY MATERIAL

Supplement A: Datasets on the predictions by two broker—dealers and re-
alized values on several markets (DOI: 10.1214/08-A0AS213SUPPA; .zip). In
this supplement, we provide a zip file containing two Excel files for the predictions
and the realized market values of the two broker—dealers analyzed in this paper.

Supplement B: C code for data analysis and simulations (DOI: 10.1214/08-
AOAS213SUPPB; .zip). In this supplement we provide a zip file containing the
source code in C for the programs used to analyze the datasets and to perform the
simulation study in this paper.

Supplement C: Technical developments and proofs (DOI: 10.1214/08-
AOAS213SUPPC; .pdf). In this supplement we provide the technical develop-
ments for the likelihood comparison between the polychoric correlation and the
GLLVM of Section 4, the development of the LAMLE for ordered multinomial
distributed manifest variables as a complement of Section 5 and the proofs of
Propositions 1-3.
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