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SPATIAL INTERPOLATION OF HIGH-FREQUENCY
MONITORING DATA1

BY MICHAEL L. STEIN

University of Chicago

Climate modelers generally require meteorological information on regu-
lar grids, but monitoring stations are, in practice, sited irregularly. Thus, there
is a need to produce public data records that interpolate available data to a
high density grid, which can then be used to generate meteorological maps at
a broad range of spatial and temporal scales. In addition to point predictions,
quantifications of uncertainty are also needed. One way to accomplish this is
to provide multiple simulations of the relevant meteorological quantities con-
ditional on the observed data taking into account the various uncertainties in
predicting a space-time process at locations with no monitoring data. Using a
high-quality dataset of minute-by-minute measurements of atmospheric pres-
sure in north-central Oklahoma, this work describes a statistical approach to
carrying out these conditional simulations. Based on observations at 11 sta-
tions, conditional simulations were produced at two other sites with monitor-
ing stations. The resulting point predictions are very accurate and the multi-
ple simulations produce well-calibrated prediction uncertainties for temporal
changes in atmospheric pressure but are substantially overconservative for
the uncertainties in the predictions of (undifferenced) pressure.

1. Introduction. The US Department of Energy established the Atmospheric
Radiation Measurement (ARM) Program to evaluate and improve models for
clouds and radiative processes, which are critical components of climate mod-
els. The first such site (there are now three) was the Southern Great Plains site
established in 1992 in north-central Oklahama (see www.arm.gov/sites/sgp.stm).
Among the many meteorological measurement systems that make up this program
is the Surface Meteorological Observation System (SMOS), which records sur-
face wind speed and direction, temperature, relative humidity and pressure every
minute at a network that currently consists of 23 facilities. However, meteorologi-
cal modelers are generally more interested in averages of these quantities over grid
cells and over longer time scales than every minute. Thus, it is important to develop
methods for interpolating the available observations to these spatial and temporal
scales. When using such interpolations for model evaluation, it is helpful to have
realistic assessments of uncertainty in addition to point predictions. This work rep-
resents a small first step of a much larger project (see www.atmos.anl.gov/DMCP/)
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to provide a publicly available system for generating such predictions and their at-
tendant uncertainties. One approach to doing this is to provide a meteorological
equivalent to multiple imputations for censuses with missing data [Rubin (1987)],
although we think the name “data ensembles” is more apt than multiple imputa-
tions in the present context. Indeed, a recent editorial in the Bulletin of the Ameri-
can Meteorological Society [Schneider (2006)] calls for exactly such an approach
to providing more useful meteorological data products to the scientific community.
Since it is difficult to anticipate all the spatial and temporal scales that might be
of interest, a public use dataset should include ensembles of meteorological fields
on fine temporal and spatial scales, which could then be aggregated to obtain such
fields on a variety of coarser scales. It will be essential for the conditional simula-
tions to capture the dependencies in space–time of the interpolation errors in order
to obtain realistic uncertainties for these predictions of aggregated quantities.

This paper considers a very limited effort to produce and evaluate such data
ensembles. Rather than producing an ensemble of all the meteorological quanti-
ties measured by SMOS, I only consider atmospheric pressure, which avoids the
general problem of multivariate spatial-temporal modeling and some of the spe-
cific problems of modeling surface winds, which can have erratic patterns in space
and time. In addition, I only produce the ensembles for a single month, October
2005, thus limiting the size of the problem and avoiding issues of seasonality. Fi-
nally, rather than predicting area averages over some highly resolved set of grid
cells, I left out two SMOS sites from the analysis and then predicted pressure at
these two sites to evaluate directly the quality of the data ensembles. The data at
these two sites were not used in any way whatsoever until after the data ensem-
bles were produced, so comparisons of the resulting data ensembles to the actual
observations, favorable or not, provide a fair test of the method’s ability to predict
pressure over various time scales at unmonitored sites.

This work uses a purely statistical approach with only a minimum of meteo-
rological input (e.g., pressure depends on altitude). Such an approach would be
silly for forecasting more than a few hours into the future, but may be difficult to
improve on for spatial interpolation in the past, especially in the ARM SGP region
for which there is so much data. One might try to improve on this empirical ap-
proach by using the pressure given in, for example, the North American Regional
Reanalysis (NARR) at NCAR (dss.ucar.edu/pub/narr), which incorporates meteo-
rological measurements into a weather model to produce publicly available records
of “hindcasts” of various meteorological quantities. However, the temporal reso-
lution of these records is every 3 hours and the spatial resolution is for grid cells
of 32 km × 32 km, which is coarser in both space and time than we are seeking
here. It is, in principle, possible to do a higher resolution version of a hindcast over
limited regions such as the ARM SGP domain and it would be interesting to see
how much a high-resolution hindcast might improve the kinds of predictions ob-
tained here by, for example, just using these hindcasts as a mean field for pressure.
Publicly available hindcasts such as NARR do not provide any direct information

dss.ucar.edu/pub/narr
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about uncertainties in their outputs, so some kind of statistical modeling would
still be needed to produce uncertainties, especially at finer spatial resolutions than
the spatial grid of the model.

Section 2 discusses some preliminary analyses, such as treatment of missing ob-
servations, adjustments for elevation, removal of the diurnal cycle and the chang-
ing volatility of pressure in order to obtain a processed form of the data that can be
approximated by a stationary Gaussian process in space–time. Section 3 describes
the specific form of the Gaussian process model used here, which is an adaptation
of a model introduced in Stein (2005). Section 4 presents the results of the data
ensembles and shows that they provide very accurate point predictions of pressure
at the two sites withheld from the data analysis. The uncertainties across the en-
semble members do a good job of mimicking the actual uncertainties of temporal
differences in pressure, but have substantially greater variability than the actual
prediction errors for undifferenced pressure, although I will argue that this over-
conservativeness is not necessarily a sign of a problem with the analysis. Section 5
discusses some of the challenges that need to be addressed to produce data ensem-
bles of multiple meteorological quantities at high spatial and temporal resolution.

2. Preliminary analyses. Figure 1 shows the locations and elevations of the
monitoring sites used in this study. At each of these 13 sites, atmospheric pressure
was measured every minute during October 2005, with no more than 8 missing

FIG. 1. Locations of monitoring sites with numbers indicating elevation (m) and large font indicat-
ing prediction sites; the prediction site with elevation 318 m will be called the “central” site and the
one with elevation 513 m the “peripheral” site.
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observations in any of the series. I will only use the first 30 days of this month
to obtain a highly composite series length of 8640, which speeds up the spectral
analyses. Given the tiny fraction of missing observations and the strong continuity
in time of the measurements, missing observations were filled in separately at each
site using linear interpolation between the nearest available observations before
and after each missing observation.

If we could use a Gaussian process model that is stationary in space-time, the
inferential and computational problems in obtaining the data ensembles would be
greatly simplified. However, it is not appropriate to use such a model directly for
the atmospheric pressure process considered here for a number of reasons. First,
pressure is recorded to the nearest hundredth of a kilopascal (kPa) and, due to the
smoothness in time of pressure and the high precision of the instruments, there is
noticeable discreteness in the observations, with the first differences of observed
pressure equaling 0 more than 70% of the time. An easy fix for the future would be
to record pressure to another significant digit, although one should keep in mind
that the overall uncertainty (including various sources of bias) in the measurements
has been determined to be ±0.035 kPa [Ritsche (2008)]. Thus, an extra digit would
help to make pressure changes more nearly Gaussian, but it would not help with
determining absolute pressure levels. Here, I will consider 5-minute averages of
pressure, which, in addition to reducing the discreteness of the data (about 20% of
first differences of these are exactly 0), shrinks the dataset by a factor of 5 while
maintaining high temporal frequency. Write Z(x, t) for the 5-minute average of
atmospheric pressure at site x with a time step of 1 corresponding to 5 minutes.

One nonstationary aspect of the data is that mean pressure varies with site.
Nearly all of this variation can be explained by variations in altitude; pressure
should generally decrease exponentially as altitude increases. Meteorologists com-
monly use temperature-dependent corrections of surface pressure to sea level pres-
sure, but there is no clear consensus on how best to do this [see, e.g., Mass, Steen-
burgh and Schultz (1991)], so I will use a simple approach using just altitude here,
which appears to work quite well for this single month. Denote by Z̄(x) the av-
erage October pressure at x. Regressing the logarithms of these averages on the
altitudes of the 11 stations by least squares yields an R2 of 0.9995 and an esti-
mated mean pressure level of 101.89 exp(−a/8310) kPa, with a being the altitude
of a site in meters. The residuals from this regression show a weak but perceptible
spatial pattern and how we handle this pattern will turn out to have a nontrivial
impact on our predictions. For now, though, I will focus on modeling the first dif-
ferences in time of the corrected to sea level 5-minute average pressure, denoted
by D(x, t), on which Z̄(x) has no effect. Differencing pressure may make meteo-
rological interpretation of the statistical model more difficult, but I will argue at the
end of this section that it is preferable to modeling undifferenced pressure directly.

Another aspect of the data that must be taken into account is the diurnal cycle.
Although not as strong as the diurnal cycle in temperature or relative humidity, it is
still quite noticeable in plots of the data. I regressed the average of D(x, t) over the
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FIG. 2. First differences of 5-minute averages of elevation-adjusted atmospheric pressure, diurnal
cycle removed, for October 2005. Sites, beginning at the top, are arranged from westernmost to
easternmost. Curve at the bottom is the estimated volatility function.

11 sites on cos(2πjt/288) and sin(2πjt/288) for j = 1, . . . ,15, with 15 chosen
based on numerical and visual inspections. This regression removed an average of
12.4% of the variation in these 11 series. Denote by R(x, t) the residuals from this
regression, which are plotted in Figure 2.

It is obvious that these data cannot be plausibly modeled as a stationary
Gaussian process due to the occasional bursts of increased variability that occur
at least roughly simultaneously at all of the sites. The times with higher volatility
are largely related to the passage of weather fronts through the region. To predict
future pressure, we would need to model this volatility process, for which it would
be crucial to use larger-scale meteorological information. However, since here I
only predict at times for which there are observations, I will attempt to remove
this volatility empirically by dividing D(x, t) by a function of just time, denoted
by V (t). I obtain V by, at each time t , computing the sample standard deviation of
the 11 available R(x, t) values and then smoothing the logarithms of these standard
deviations using a cubic smoothing spline (the R program smooth.spline with the
degrees of freedom set to 72). This estimated volatility function is plotted in Fig-
ure 2 and, at least qualitatively, it appears to do a good job of tracking the changing
volatility of the time series. The use of the logarithmic scale was in part to penalize
strongly any very small values for V (t), which could result in small fluctuations in
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FIG. 3. Normal plot of D(x, t), the first differences of the pressure (left) and of A(x, t), the adjusted
residuals (right) at the site in the northwest corner of Figure 1.

pressure having a large impact on the likelihood. The ratio of the maximum to the
minimum value of V (t) is 6.86, so the range of estimated volatilities is quite large.
Note that it is not obvious that using spatial variability in R(x, t) values will cor-
rect for the temporal variability of spread within each series, but this does appear
to be largely the case. Although taking V independent of x throughout this region
may be a decent approximation here, in a larger region it would become untenable.
However, allowing V to depend on x would greatly complicate the modeling, es-
pecially when one wants to predict pressure at unmonitored locations. Denote by
A(x, t) = R(x, t)/V (t) the adjusted residuals. It is these adjusted residuals that I
model by a stationary Gaussian process.

Figure 3 shows normal plots of the raw differences, D(x, t), and the adjusted
residuals at one of the monitoring sites. The raw differences have far fatter tails
than a normal distribution. The adjusted residuals are much closer to normal, but
still with some clear deviations from normality in the extreme tails, especially the
upper tail. Quadrupling the number of knots to 288 in the spline fit to the volatility
does not change this plot substantially. Thus, although the devolitalization proce-
dure helps greatly in making the process closer to Gaussian, it does not completely
solve the problem.

Let us now return to the issue of differencing the observations at each site. In
addition to the problems with interpretability noted earlier, the other disadvantage
of differencing is that we will have to somehow “undifference” our predictions at
unmonitored locations to get actual pressure predictions. Both of these difficulties
could be avoided by analyzing the undifferenced pressure data. However, spectral
analysis would become highly problematic due to the enormous dynamic range of
the undifferenced pressure spectra. More fundamentally, it is not clear to me how
one would remove the changes in volatility without first using some kind of high
pass filter, of which differencing is an example. In particular, the spatial variation
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at a given time of the elevation-adjusted pressure values does not even remotely
track the changes in variability shown in Figure 2. As an alternative to differencing,
one could, at each site, compute the residuals from a running moving average of
sufficiently short duration and divide these residuals by an estimated volatility to
make the process more nearly Gaussian, but then one would have to model the
moving average process and its residuals as a bivariate spatial-temporal process in
order to produce prediction intervals at an unmonitored sites. This appears to me
to be rather more challenging than what I will do in Section 4, in which I just have
to model the spatial pattern of average pressure over the month in order to convert
predictions of first differences into predictions of pressure.

3. Model. Let K(x, t) be the spatial-temporal autocovariance function for the
process A(x, t). For data taken regularly in time at a modest number of sites, Stein
(2005) argued that the following representation for K is helpful for modeling and
estimation:

K(x, t) = 1{x = 0}
∫ π

−π
S0(ω)eiωt dω

(1)
+

∫ π

−π
S1(ω)C(|x|γ (ω))eiu′xθ(ω)+iωt dω,

with 1{·} an indicator function, S0 and S1 even integrable functions, C an isotropic
correlation function on R

2, γ an even positive function, θ an odd function and u
a unit vector. Stein (2005) also considered a version of this model in which the
spatial domain is the surface of a sphere, but the observation domain is fairly small
here and I will act as if it is flat (although I compute distances between sites using
the great circle distances). The function S = S0 + S1 gives the marginal spectral
density of the process at any site. The decomposition of S into two terms, S0 and
S1, appears to improve the fit substantially. Gneiting (2002) calls the contribution
of S0 to K the spatial nugget. The function C gives the spatial correlation function
of A at any given time, γ determines (along with C) the coherence between time
series at different locations and θ and u the phase relationships. See Stein (2005)
for further details.

I will need several critical modifications of the approach used in Stein (2005)
to fit the pressure data here. Stein (2005) used series expansions for the functions
S0, S1, γ and θ , specifically, cosine functions for the logarithms of the even non-
negative functions γ,S0 and S1 and sine functions for the odd θ . This approach
worked well enough for daily wind data, but is rather poorly suited for the high
frequency data here in which most of the variation in the functions is concentrated
in the lower temporal frequencies and the coherences are negligible at higher fre-
quencies. For example, Figure 4 plots empirical coherences (actually, the modulus
of the complex coherence times the sign of its real part) based on lightly smoothed
periodograms and cross-periodograms for the two nearest and two most distant
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FIG. 4. Empirical (solid lines) and fitted (dashed lines) coherences up to the 50-minute frequency
for the two nearest (black) and two most distant (gray) sites. The arrow highlights the daily frequency.

pairs of sites up to the 50-minute frequency. Not surprisingly, the estimated coher-
ences are stronger for the nearest pair of sites and at lower frequencies, but even at
the nearest pair of sites, the plot shows no sign of coherence at frequencies beyond
the hourly. To capture these patterns, I will use cubic B-splines as basis functions
and then place a higher concentration of knots at the lower frequencies to reflect
the expectation that S0, S1 and especially γ and θ have greater variation at these
frequencies.

The lack of coherence at higher frequencies in Figure 4 indicates that γ should
be very large at these frequencies, which leads to unstable parameter estimates
when using B-splines or other localized basis functions. Thus, I replace γ by
δ(ω) = 1/γ (ω), so that δ(ω) should be near 0 at higher frequencies. Indeed, based
on Figure 4 and other evidence, I set δ(ω) = 0 for |ω| > ω0, where ω0 is the hourly
frequency and the coherence is set to 0 whenever d > 0 and δ(ω) = 0. To make δ

a smooth function of ω for all ω (including ω0), on (−ω0,ω0), I take δ as a linear
combination of B-spline basis functions with knots at 0,±ωδ1, . . . ,±ωδb, where
0 < ωδ1 < · · · < ωδb = ω0, and constrain the coefficients of the B-spline to make
δ even and δ(ω0) = δ′(ω0) = δ′′(ω0) = 0, yielding b − 1 independent parameters.
Without additional constraints on these coefficients, the resulting δ may not be
nonnegative. Requiring the coefficients to be all nonnegative is sufficient but not
necessary to make δ nonnegative. Rather than enforcing such a constraint, which
may lead to parameter estimates falling on a boundary of the parameter space,
I replace C(|x|γ (ω)) in (1) by C(|x|/|δ(ω)|). Because the correlation function C

used here has the property that the function and all of its derivatives decay expo-
nentially at large arguments, C(|x|/|δ(ω)|) is, in fact, infinitely differentiable in
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δ(ω) at δ(ω) = 0. Of course, δ and −δ yield the same K , so there is a trivial lack
of identifiability in the model.

For the function θ controlling the phase relationships, I place knots at
0,±ωθ1, . . . ,±ωθc, where 0 < ωθ1 < · · · < ωθc = ω0, and constrain the coeffi-
cients of the B-spline to make θ odd and θ(ω0) = θ ′(ω0) = θ ′′(ω0) = 0, yielding
c − 1 independent parameters. I set θ(ω) = 0 for |ω| > ω0, although there is some
redundancy here as the phase relationship is irrelevant at frequencies for which the
coherence is 0. Rather than fixing the direction u to be from the west as in Stein
(2005), I allow u to be estimated. Note, then, that (θ,u) and (−θ,−u) correspond
to the same model.

Next, consider the models for S0 and S1. For |ω| > ω0, there is no need to distin-
guish between these terms, since the coherence is 0 at these frequencies, whichever
function is allocated power. To obtain smoothness in S at all frequencies, including
ω0, instead of modeling S0 and S1, I model S and β(ω) = log{S1(ω)/S0(ω)}. More
specifically, since the value of β is irrelevant for |ω| > ω0, I model β on (−ω0,ω0)

using a constant function and B-splines with knots at 0,±ωβ1, . . . ,±ωβd , where
0 < ωβ1 < · · · < ωβd = ω0, and constrain the coefficients of the B-spline to make
β even and β ′(ω0) = β ′′(ω0) = 0 [but not β(ω0) = 0], yielding d independent
parameters. To model S, I use a B-spline basis with knots at 0,±ωS1, . . . ,±ωSe,
where 0 < ωS1 < · · · < ωSe = π and the coefficients of the B-spline constrained
to make S even with S′(π) = 0, yielding e + 1 independent parameters. Note that
because δ(ω) is 0 for |ω| > ω0 and is twice differentiable at ω0, the coherence and
phase spectra between any two sites are also twice differentiable at ω0 despite the
fact that β is not constrained to be continuous at ω0.

Finally, for the isotropic correlation function C, I use C(r) = e−r (1 + r),
a Matérn correlation function with smoothness parameter 3

2 , which corresponds
to a process that is exactly once mean square differentiable in any direction [Stein
(1999)]. The thinking behind this choice is that pressure fields ought to be fairly
smooth; choosing correlation functions for yet smoother processes did not lead to
improved fits. There is no need to include a separate range parameter in C, since
multiplying δ by a scalar factor is identical to changing the range by that factor.

4. Results. For fixed knot locations of the functions S, δ,β and θ , one can
then, using the multivariate Whittle likelihood, easily approximate the likelihood
function in the spectral domain [see Stein (2005)] based on the usual approxima-
tions that the (multivariate) periodogram is independent at distinct Fourier frequen-
cies and the expected values of this periodogram are given by the (matrix-valued)
spectral density. I included the zero frequency in my likelihood approximation
since the mean of A(x, t) should be effectively 0 and I will need a value for the
spectral density at this frequency to generate my predictions. The Whittle approx-
imation is improved by having differenced the process, which greatly reduces the
dynamic range of the marginal spectra. The constraint in the model that there is
no coherence for |ω| > ω0 further speeds the computations, since the covariance
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matrix of the multivariate periodogram at these frequencies is then just a multi-
ple of the identity matrix. For given knot locations, I estimated the parameters by
maximizing the Whittle likelihood using the nlm routine in R.

Choosing the numbers and locations of the knots was done by “hand,” iteratively
adding, deleting and moving knots until I found what I felt was a good compro-
mise between goodness-of-fit (as measured by the maximized Whittle likelihood)
and parsimony. The total number of parameters in the final fit was 29: 1 for the
direction of u, 9 for S, 4 for β , 3 for θ and 12 for γ . My strategy was to keep the
knots fairly regularly spaced but with a tendency to have more knots at the lower
frequencies. The actual locations for the knots are given in the appendix. In the
final fitted model, one of the coefficients for δ turned out to be slightly negative,
but the estimated δ itself was everywhere nonnegative.

It is apparent that regular use of this modeling approach would require a more
automated approach to knot selection. There is a substantial literature on auto-
matic knot selection for regression splines [see, e.g., Biller and Fahrmeir (2001);
Friedman (1991); Lee (2000, 2002); Leitenstorfer and Tutz (2007); Molinari, Du-
rand and Sabatier (2004); Osborne, Presnell and Turlach (1998); Zhou and Shen
(2001)], although these works do not explicitly address spectral estimation. Paw-
itan and O’Sullivan (1994) used smoothing splines to estimate the spectrum of
a univariate time series and Pawitan (1996) of a bivariate time series. Dai and
Guo (2004) and Rosen and Stoffer (2007) extended these methods to multivariate
spectra. None of these works on spectrum estimation allow variable amounts of
smoothing across frequencies; nor are they directly applicable to the present set-
ting in which the multivariate spectrum [which includes

(n+1
2

)
distinct spectra and

cross-spectra] is modeled in terms of just 4 functions of frequency. Nevertheless, it
should, in principle, be possible to adapt their approaches to the present setting and
to allow variable amounts of smoothing across frequencies by including a weight
function in the smoothness penalty.

Figure 4 shows that the fitted model does a good job of tracking the empiri-
cal coherences. However, there are some signs of misfit, including the strange dip
in the fitted coherences around the daily frequency and some underestimation of
the coherence for the two nearest sites for frequencies between around 10 and 20
cycles per day. Figure 5 shows the averages over the 11 sites of the unsmoothed pe-
riodograms at the 11 sites and the fitted marginal spectrum, with frequency plotted
on the log scale to highlight the lower frequencies. There is perhaps some evi-
dence of misfit at the lowest frequencies, although one has to keep in mind that,
due to the strong coherence at these frequencies, the corresponding periodogram
values at the 11 sites are strongly correlated, so that the empirical spectrum at these
frequencies is highly variable.

The main goal in this work is to predict pressure at the two sites left out of this
analysis. Let us first consider predicting the first differences of the five-minute av-
erage pressure, �(x, t) = Z(x, t + 1) − Z(x, t), which differs from D(x, t) in that
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FIG. 5. Average (over 11 sites) of raw marginal periodograms (+’s) and fitted marginal spectrum
(solid curve).

these pressure differences have not been corrected to sea level. Specifically, I gen-
erated 99 conditional simulations of �(x, t) at the two sites for t = 1, . . . ,8640.
To take some account of the uncertainty in the parameter estimates, instead of us-
ing the maximum likelihood estimates in each simulation, I simulated 99 sets of
parameter values from the multivariate normal distribution with mean given by the
maximum likelihood estimates and covariance matrix by the inverse Hessian of
the loglikelihood evaluated at its maximum. The simulations of A(x, t) were car-
ried out in the spectral domain. Specifically, defining Â(x,ω) = ∑8640

t=1 A(x, t)eiωt ,
at each Fourier frequency, I independently simulated Â(x,ω) from the appropri-
ate conditional bivariate (complex) normal distribution, then recovered the simu-
lated A(x, t) values by taking the inverse discrete Fourier transform. Note that, for
|ω| > ω0, Â(x,ω) at the prediction sites is independent of Â(x,ω) at the observed
sites, speeding the simulations. If, instead of varying the parameter values across
simulations, the maximum likelihood estimates are used in each of the 99 simula-
tions, then the mean over the 8640 time points of the sample variances of the 99
simulated values of A(x, t) is lessened by only about a quarter percent at each of
the two prediction sites, so perhaps accounting for uncertainty in the number and
location of the knots would not matter much either.

The simulated A(x, t) processes obtained in this way have a period of 30 days.
Thus, this approach is not appropriate for predicting future pressure. However, to
interpolate in space at times at which we have observations, the periodicity of the
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simulated A(x, t) process may have only a modest effect on the simulations of
the undifferenced pressure and then mainly at the very beginning and end of the
time period. The inclusion of the 0 frequency in the conditional simulations of
A(x, t) prevents

∑8640
t=1 A(x, t) from equaling 0, thus avoiding one possible prob-

lem with this approach. The estimated multivariate spectral density is available at
all frequencies in (−π,π), and not just the Fourier frequencies, so it is possible
to calculate the actual estimated K(x, t) as accurately as desired by numerically
integrating (1) over a dense grid of ω values. One could then conditionally simu-
late A(x, t) directly in the space–time domain, although the computational burden
would be much heavier than here, where I have done independent simulations at
every frequency. Furthermore, given that the likelihood was approximated assum-
ing independence in the frequency domain, it is not clear that a conditional simu-
lation that avoided this assumption would actually be better than the simulations
used here when predicting at observed time points.

The simulated �(x, t) series are obtained by multiplying the simulated A(x, t)

series by V (t), adding back in the diurnal cycle, adjusting the pressure to the ap-
propriate altitudes by inverting the relationship used to correct to sea level, then
differencing. Figure 6 shows that the overall coverage properties of the simulated
series are very good at the peripheral prediction site and modestly overconserva-
tive at the central site. This overconservatism may be due to the underestimation
of the coherence at middle frequencies noted in Figure 4. Figure 7 shows a similar
plot for first differences in the hourly averages of pressure. Taking into account the
greater variability due to the lesser number of time points, the results are good at
both sites.

These plots only consider the marginal coverage over time. Considering the
dramatic changes in variability over time, it is worthwhile to look at coverage
properties over a subset of times when V (t) is large. If one selects the times t

corresponding to the largest 10% of V (t) values, the coverage is fairly good, but
Figure 8 shows that the observed differences are too often the largest or smallest
among the simulated values and too infrequently of ranks between 2 and 20 or 80
and 99. Figure 9 shows the observed and the first two simulated series of pressure
differences over October 18–20, which includes the period of greatest volatility.
We see that the simulated curves mimic the magnitude of local variations rea-
sonably well during the periods of lower volatility, but, during the period of high
volatility, the magnitudes of the largest simulated pressure differences are not suffi-
ciently large compared to the observed pressure differences. Using a larger number
of degrees of freedom in the smoothing spline may have helped somewhat here,
but I think a better solution is to take a completely different approach to estimating
the volatility (see Discussion).

Overall, the inferences for �(x, t) at the prediction sites are quite well cali-
brated. However, to simulate the pressure rather than its differences requires in-
ference about some linear combination of Z(x, t) values that is not a function
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FIG. 6. Histogram of ranks of observed first differences in pressure among the simulated values
over the 8640 time points.

of the �(x, t)’s, such as Z(x,1). Instead of trying to model the joint distribu-
tion of Z(x, t) at any one time and the � process, I will conditionally simulate
Z̄(x) = 1

8640
∑8640

t=1 Z(x, t) at the two prediction sites and assume Z̄ is independent
of �. Because I only have Z̄ at 11 sites, I need to use a very simple model for
this spatial process. Specifically, writing a(x) for the altitude at location x, I take
M(x) = Z̄(x) exp{a(x)/8310} to be a stationary (or intrinsic) Gaussian process
with spatial variogram of the form θG(d), with G a valid variogram model and
θ unknown. To estimate θ , I used a restricted maximum likelihood based on the
11 M values available. I simulated M at the two prediction sites from a bivari-
ate t distribution with 10 degrees of freedom to account for the uncertainty in the
estimate of θ [see Handcock and Stein (1993)]. I then undid the corrections to
sea level to obtain simulated values of Z̄(x). As noted in Section 2, there appears
to be a weak but noticeable spatial pattern to the M(x) values, so I tried taking
G(d) = d , the linear variogram. However, the loglikelihood of a model with no
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FIG. 7. Histogram of ranks of observed first differences of hourly pressure among the simulated
values over the 719 available hourly differences.

spatial dependence (a pure nugget effect) is within 0.25 of the linear variogram
model, so, in the interest of conservatism, I chose to view the pure nugget model
as my “primary” model for prediction, although I also produced predictions using
the linear variogram model. Including uncertainty in M substantially increases the
variability across simulations. For example, at the central prediction site, the mean
across time of the sample variances at each time of the 99 simulations is, rela-
tive to simulations with no variation in M , 76% larger when using a pure nugget
variogram for M and 34% larger when using a linear variogram.

Figure 10 shows observed pressure and the envelope of the 99 simulated pres-
sure series at the two prediction sites. The simulated pressure tracks the observed
pressure quite well; Table 1 provides some summary statistics for the predictor
obtained by averaging the 99 series at each time point. The second row of Ta-
ble 1 gives results when a linear variogram instead of a pure nugget effect is used
for M . The last row of Table 1 shows results for a simple nearest neighbor pre-
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FIG. 8. Histogram of ranks of observed first differences of hourly pressure among the simulated
values over the 10% of times with the highest volatilities.

dictor: predict Z(x, t) by Z(x′, t) (adjusted for elevation), where x′ is the location
of the monitoring site closest to x. At the peripheral site, the standard deviation
of the errors for the nearest neighbor predictor is more than 3 times as large as
the other predictors and is about 50% larger at the central site. Table 1 shows that
the average error is generally a substantial component of the root mean squared
error. However, the fact that one method might have smaller average errors at one
site or the other is not very informative since this advantage could easily be due to
luck. We can conclude that if it were possible to come up with better predictions
of Z̄(x), these could lower the root mean squared prediction errors substantially.

The simulation envelopes at both prediction sites are shown in Figure 10. Here,
I will focus on the peripheral site; qualitatively similar results hold at the central
site. The mean width of the simulation envelope at the peripheral site is 0.34 kPa
(the mean width of the 90% prediction intervals is 0.21 kPa). Despite this rather
narrow width, the simulation envelope is far too conservative, with the observed
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FIG. 9. Observed (gray curve) and simulated (two black curves) pressure differences at peripheral
site from October 18–20. Simulations are offset by ±0.1 kPa for legibility.

pressure being outside the envelope only 17 times as opposed to the expected value
of 168 if the intervals were calibrated. Furthermore, the upper envelope is partic-
ularly conservative, as the observed pressure is one of the highest 30 ranks only
0.56% of the time as opposed to 30% of the time for a calibrated interval. This
asymmetry in the upper and lower envelopes should be expected, given the fact

FIG. 10. Observed (black curve) and pointwise maxima and minima (gray curves) of the 99 simu-
lations at the central (upper curves) and peripheral site (lower curves).
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TABLE 1
Sample means and standard deviations of prediction errors and root mean squared errors at the two

prediction sites. The first two rows use the main model presented here, the only difference being
whether a pure nugget effect or a linear variogram is used to model the spatial variations
in M(x). The last row gives results for an elevation-adjusted nearest neighbor predictor

Peripheral site Central site

Model Mean st dev rmse Mean st dev rmse

Pure nugget −0.048 0.029 0.056 −0.035 0.025 0.044
Linear −0.050 0.029 0.058 −0.014 0.025 0.029
Nearest neighbor −0.048 0.091 0.103 −0.010 0.037 0.039

that the predicted values for Z̄(x) are higher on average than the observed Z̄(x).
Since the prediction errors at different times may be strongly correlated, this ap-
parent substantial miscalibration is not necessarily a sign of a problem with the
methodology. For example, if we consider the ranks at each time point of the 100
series (the observed series plus the 99 simulated series), then 19 of these series are
at no time the minimum or maximum of the 100 series. Thus, being outside the
simulation envelope only 17 times is not at all unusual. This overconservativeness
is not caused by too much variability in the simulated values of Z̄, since if we set Z̄

to the same value in all 99 simulated series (given by the elevation-adjusted kriging
predictor under the pure nugget model), then the observed series is the minimum
or maximum at 10 time points, whereas 14 of the 99 simulated series are never the
minimum or maximum.

5. Discussion. This work only considers prediction of a single meteorologi-
cal quantity at two locations. Extending the approach to a large number of loca-
tions and/or to predicting area averages introduces no new conceptual challenges,
although the computational burden would increase. However, the assumption of
no coherence at temporal frequencies higher than hourly is unreasonable at suffi-
ciently small spatial scales, so that conditional simulations at high spatial resolu-
tion under the fitted model here would have high frequency fluctuations with too
much spatial variability at nearby locations. To examine the scope of this problem,
I carried out conditional simulations at two locations, the peripheral prediction site
and a location 1 km north of this site (and assumed to be at the same elevation).
Over the 99 simulations, the average variance of the differences between the sim-
ulated values at the two sites was 0.0030, which is about 14% of the same quantity
when comparing the simulations at the peripheral and central prediction sites. This
average variance corresponds to a standard deviation of 0.054 kPa, which is not
that much bigger than the overall uncertainty in the measurements of 0.035 kPa.

Nevertheless, if one wanted to do something about even these quite small local
fluctuations in pressure, one could change the model to allow spatial dependen-
cies at higher frequencies. For example, consider setting ω0 = π (so that δ is only
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forced to be 0 at ±π ), thus adding a knot at π for δ, θ and β , but otherwise leav-
ing all of the other knot locations given in the appendix unchanged. The lack of
spatial independence at higher frequencies does slow down the computations rela-
tive to the model with ω0 = π/6, but they are still manageable. The loglikelihood
then increases by about 73 with the addition of the three parameters, even though
the fitted coherences at the hourly frequency, which were forced to be 0 in the
smaller model, have quite small values: between 0.0079 and 0.068 for all pairs of
monitoring sites. Unfortunately, making this change does not, in fact, create strong
coherences at high frequencies and small spatial scales because the estimated value
for β is less than −1.88 for all frequencies higher than the hourly, putting an up-
per bound of around 0.132 on coherences in this frequency range no matter how
close two locations are. Thus, it would appear that we would need to remove or
somehow constrain the spatial nugget effect at higher frequencies in order to get
the strong coherences we would want at short spatial scales. Removing the spatial
nugget entirely seriously degrades the fit at lower frequencies. Replacing the spa-
tial nugget term in the first line of (1) by, for example,

∫ π
−π S0(ω)C0(|x|)eiωt dω,

where C0 is a valid, continuous, isotropic correlation function that is identically 0
at all distances greater than the shortest distance between the 11 monitoring sites,
would not have any effect on the likelihood function but would allow coherences
to tend to 1 as distances tend to 0. However, the data provide no information about
the choice of C0, so such a solution would be highly arbitrary. A better solution
would be to collect data for some period of time at a small but tightly spaced set of
sites as part of one of the SGP Field Campaigns that are carried out in the region
(see www.arm.gov/sites/sgp.stm).

Extending this work to the multivariate setting is a greater challenge. Specifi-
cally, it is not obvious how to extend the model in Stein (2005) to the multivariate
setting in a way that allows for realistic dependencies across quantity, space and
time. Although some recent works such as Haas (2002) and Tzala and Best (2008)
consider statistical modeling of multivariate space–time processes, these works
focus on much longer time scales and it is not clear the models and methods they
propose are suitable for capturing the dynamics affecting high-frequency meteo-
rological data. Another challenge in statistically modeling winds and temperatures
is that there are clear diurnal cycles in the dependence structure that may not be
removable by such simple schemes as rescaling the data depending on the hour of
the day. Therefore, it may be necessary to use space–time multivariate models that
are only cyclostationary in time [Hurd and Miamee (2007)] rather than stationary.

Finally, let us return to the issue raised in the Introduction of making use of
further meteorological information. In particular, such information might be of
considerable value in handling the bursts of high volatility. Specifically, to the
extent that rapid changes in pressure are due to the passage of weather fronts and
the space–time evolution of these fronts can be mapped using, for example, upper
level winds, one could try to model the volatility at a particular place and time in
terms of a distance to the nearest front and the strength of that front rather than, as
I did here, assuming the volatility does not depend on spatial location.

www.arm.gov/sites/sgp.stm
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APPENDIX: KNOT LOCATIONS

For each of the functions S,β, δ and θ , I only considered Fourier frequencies
for the knot locations, that is, frequencies of the form πj/4320 for integer j .
For all four functions, whenever πj/4320 is a knot, so is −πj/4320. The j val-
ues for the final knot locations for S are 0,10,30,60,120,400,720,4320; for
δ, 0,5,10,15,25,40,60,90,150,240,360, 480,600,720; and for both β and θ ,
0,40,120,360,720.
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