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RECONSTRUCTING THE ENERGY LANDSCAPE OF
A DISTRIBUTION FROM MONTE CARLO SAMPLES1

BY QING ZHOU AND WING HUNG WONG

University of California, Los Angeles and Stanford University

Defining the energy function as the negative logarithm of the density,
we explore the energy landscape of a distribution via the tree of sublevel
sets of its energy. This tree represents the hierarchy among the connected
components of the sublevel sets. We propose ways to annotate the tree so
that it provides information on both topological and statistical aspects of the
distribution, such as the local energy minima (local modes), their local do-
mains and volumes, and the barriers between them. We develop a computa-
tional method to estimate the tree and reconstruct the energy landscape from
Monte Carlo samples simulated at a wide energy range of a distribution. This
method can be applied to any arbitrary distribution on a space with defined
connectedness. We test the method on multimodal distributions and posterior
distributions to show that our estimated trees are accurate compared to the-
oretical values. When used to perform Bayesian inference of DNA sequence
segmentation, this approach reveals much more information than the standard
approach based on marginal posterior distributions.

1. Introduction. The concept of a distribution is fundamental in many parts
of modern science. In statistics we may model a set of observed data by assuming
that they are sampled from a distribution specified up to some parameters, and
then estimate the parameters based on the empirical data. Furthermore, if we use
a Bayesian approach to statistical inference, then our knowledge of the parameters
given the data is contained in the posterior distribution. In physics the Boltzmann
distribution of a system in thermal equilibrium at temperature T is

p(x;T ) = 1

Z(T )
exp(−h(x)/T ),(1)

where h(x) is the energy and Z(T ) = ∫
exp(−h(x)/T ) dx < ∞ is the normaliza-

tion constant. Here the density (1) is defined with respect to a measure, so that
discrete cases are covered by the use of counting measure. To unify terminology,
we define the energy function of a distribution f (x), which may be unnormalized,
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as

h(x) = − logf (x).(2)

One can view f (x) as a Boltzmann distribution with energy h(x) at temperature
T = 1.

In many situations the distribution of interest is completely specified in the sense
that we know how to compute f (x) for any x. However, in general, knowing the
distribution in this way does not allow us to understand the information it em-
bodies. To understand the nature of the distribution, we must seek answers to a
multitude of questions, such as what is the expectation of a certain function g(X)

when a random variable X is drawn from this distribution, where is the mode of the
distribution and how dispersed is the distribution around it, and are there multiple
regions with high probabilities that are well separated in the sample space?

Before the development of modern numerical computing on digital computers,
it was not possible to answer any of these questions except in very special cases,
such as when f (x) is a multivariate normal distribution. With the emergence of
computers in the mid-twentieth century, physicists developed several Monte Carlo
algorithms that allow the generation of samples from f (x) numerically. In par-
ticular, Markov Chain based methods, such as the Metropolis–Hastings algorithm
[Metropolis et al. (1953) and Hastings (1970)], can be applied to sample from a
distribution in a very high dimensional space. Later, when statisticians adapted
it to applications in Bayesian inference [Geman and Geman (1984); Tanner and
Wong (1987); Gelfand and Smith (1990)], Monte Carlo sampling quickly became
a popular means to extract information from a posterior distribution.

In principle, the availability of a large sample will allow us to understand the na-
ture of the distribution by the use of standard data analysis tools. For example, the
expectation of g(X) can be estimated by the sample average and the distribution
of g(X) can be approximated by the corresponding histogram. Although power-
ful, such approaches can only provide limited information, as illustrated by the
following example. The energy function h(x) [equation (2)] in this example has
seven local minima, as indicated by red numbers in Figure 1(A), and the global
minimum is located at the origin. It is very hard to recover the seven modes from
any projection of samples from this distribution. However, the topology of the in-
teriors of various contours (sublevel sets) actually contains information about the
local modes. At very low energy levels, the contours and their interiors form dis-
connected solid disks, each containing a local minimum. Then modes 2–4 become
connected at energy level h(x) = 12, and so do modes 5–7. At this level, the inte-
riors of the contours become three disconnected regions. For an energy level ≥ 20,
the interior of the contour is completely connected, which links the three groups
of modes together. Such information can be summarized by a tree of sublevel sets
of the energy function [Figure 1(B)], in which terminal nodes represent the local
minima and internal nodes give the energy at which the modes become connected
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(A) (B)

FIG. 1. An illustrative example. (A) The contour plot of the energy function of a 2-D distribution
with seven modes indicated by red numbers. The black numbers are energy levels of the contours.
(B) The tree of sublevel sets of the energy function.

(energy barriers). Such a tree was first studied by Hartigan (1975, 1981) in sta-
tistics and it is also related to the concept of a disconnectivity graph in chemical
physics [Becker and Karplus (1997)]. Please see Section 2 for a rigorous definition.

In this paper we propose a general method to estimate the tree of sublevel sets
from Monte Carlo samples. We focus on the application of this method in under-
standing the energy landscape of a posterior distribution in Bayesian inference.
This paper is organized into seven sections. Section 2 defines the tree of sublevel
sets for a distribution. In Section 3 we develop an algorithm to estimate the tree and
present related theoretical results. The method is tested on multimodal functions
and posterior distributions in Section 4. A detailed application of this method in
the Bayesian inference of DNA sequence segmentation is presented in Section 5.
The paper is concluded with discussions in Section 6. Mathematical proofs are
provided in the Appendix.

2. The tree of sublevel sets. Consider a continuous energy function h(x) of
a distribution (2) defined on a connected space X with (global) minimum u0. For
any u > u0, suppose the sublevel set A(u) = {x | h(x) < u} contains a finite num-
ber K(u) of connected components {Ak(u) | k = 1, . . . ,K(u)}. We may simply
call them components if the meaning is clear from the context. As pointed out
by Hartigan (1975, 1981), the collection A = {Ak(u) | k = 1, . . . ,K(u),u > u0}
has a hierarchical structure: For any two sets Ai(u1) and Aj(u2) with u1 < u2,
either Ai(u1) ⊂ Aj(u2) or Ai(u1) ∩ Aj(u2) = φ. One can represent such hi-
erarchy by a tree. The root of the tree is defined at the energy level u1 =
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(A) (B)

FIG. 2. The definition of the tree of sublevel sets. (A) A hypothetical energy function. (B) The tree
of sublevel sets of the energy function. In this tree internal nodes u1 (root) and u2 represent two
energy barriers, while u3, u4 and u5 are local minima.

inf{u|A(u) is connected and nonempty}. If A(u) is connected for all u > u0, then
u1 = u0 and A(u1) is empty, which results in a terminal node. Otherwise, A(u1)

is disconnected with K(u1) > 1 components and it represents an internal node.
We further define its kth child node at the energy level u1k = inf{u|A(u) ∩
Ak(u1) is connected and nonempty} for k = 1, . . . ,K(u1). Recursively applying
the above definition to each internal node defines the tree of sublevel sets. The
leaves (terminal nodes) of the tree correspond to the local minima of h(x) and the
internal nodes correspond to the energy barriers that separate the minima. See Fig-
ure 2 for an illustration. Such a tree was also called the cluster tree in the context
of clustering analysis [e.g., Stuezle (2003)].

To provide further information on the energy landscape, we propose to annotate
the tree by local density of states. The density of states �(u) is a function of energy
defined as the derivative of the volume of A(u) with respect to u:

�(u) = d

du

∫
1
(
x ∈ A(u)

)
dx,

where 1(·) is the indicator function. By definition, the infinitesimal volume of the
level set {x | h(x) ∈ [u−du,u)} is �(u)du. Similarly, for each component Ak(u),
we define

�k(u) = d

du

∫
1
(
x ∈ Ak(u)

)
dx

as the local density of states for k = 1, . . . ,K(u). Obviously, �(u) = ∑
k �k(u).

From local density of states one can readily compute many statistical properties of
a local minimum at different temperatures. Suppose xm is a local minimum of h(x)

whose parent on the tree of sublevel sets is B . Here we use B to denote the node
on the tree as well as its energy. For any u > h(xm) there exists a unique integer
k ∈ {1, . . . ,K(u)} such that xm ∈ Ak(u), and we denote this integer by k(u,xm).
Let i = k(B,xm). Then Ai(B) defines a unique local domain of the minimum
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before it reaches any energy barrier. For example, in Figure 2(B), the unique local
domain of the node u4 corresponds to the branch between the nodes u2 and u4 on
the tree. It will be informative to compute expectations over such local domains
with respect to the Boltzmann distribution (1). For instance, the probability of
visiting Ai(B) at temperature T , which is called the probability mass of the local
minimum xm hereafter, can be computed by

P(Ai(B);T ) =
∫ B

h(xm)

1

Z(T )
�k(u,xm)(u)e−u/T du

(3)

=
∫ B
h(xm) �k(u,xm)(u)e−u/T du∫

�(u)e−u/T du
,

which only involves one-dimensional integrals. A similar formulation may be
adapted to calculate marginal likelihood in Bayesian model selection as in Skilling
(2006). Note that both the tree of sublevel sets and the local density of states are
independent of temperature T and intrinsically determined by the energy func-
tion. In statistics, this implies that once they are estimated for a distribution
f (x), we can use them to calculate expectations and describe the energy land-
scape for a tempered distribution, [f (x)]1/T ∝ exp(−h(x)/T ), or a truncated one,
exp(−(h(x) ∨ H)) ≡ exp(−max(h(x),H)).

3. Estimation of the tree of sublevel sets. Now we turn to the central ques-
tion of this article: How to construct the tree of sublevel sets based on Monte Carlo
samples from a distribution f (x)? It is practically impossible to obtain informa-
tion about minima and barriers at high energy levels if we only have samples from
the target distribution f (x). To construct a reasonable estimate of the high en-
ergy portion of the tree, we need to generate samples from tempered versions of
the distribution as used in parallel tempering [Geyer (1991)], that is, f (x;T ) ∝
exp(−h(x)/T ), or from tempered-truncated versions as in the equi-energy sam-
pler [Kou, Zhou and Wong (2006)], that is, f (x;T ,H) ∝ exp(−(h(x)∨H)/T ). In
what follows we assume that we have generated samples from a sequence of tem-
pered or tempered-truncated distributions and for each sample we have recorded
its energy h(x). Estimating the tree is then equivalent to partitioning all the Monte
Carlo samples into the components of various sublevel sets. Given u1 < u2 < · · · <
uM , we define M level sets (energy rings), C(m) = {x | h(x) ∈ [um−1, um)} for
m = 1, . . . ,M , where u0 ≡ −∞.

3.1. Connected components of level sets. Let us use the example in Figure 1
to motivate our algorithm. In this example the energy values of mode 1 and the
other six modes are 0 and 2, respectively. Let um = m for m = 1, . . . ,70. If we
have partitioned the sublevel set A(um−1) = ⋃

r≤m−1 C(r) into its connected com-
ponents {Aj(um−1) | j = 1, . . . ,K(um−1)}, then there exist only three possibili-
ties to induce the partition of A(um) from the components of C(m), denoted by
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{C(m)
i }. First, C

(m)
i is not connected to any components of A(um−1), which im-

plies that it represents a terminal node (local minimum), such as the components
containing minima 2 to 7 of the level set C(3) = {x | h(x) ∈ [2,3)}. Second, C

(m)
i

is connected to a single component Aj(um−1), j ∈ {1, . . . ,K(um−1)}, such as any
level set component on the branch between mode 1 and its parent (the barrier at
energy = 20). Third, C

(m)
i is connected to multiple components of A(um−1) and

it corresponds to a barrier on the tree, for example, C(21) = {x | h(x) ∈ [20,21)}.
Clearly, the components of level sets serve as the building blocks for an inductive
construction of the tree.

3.2. The main algorithm. Define an empirical level set Ĉ(m) and sublevel set
Â(m) by the collections of samples in C(m) and in A(um), respectively, for u1 <

u2 < · · · < uM . A (connected) cluster of a set of samples generated in D ⊂ X
is defined as the maximal subset of the samples in a connected component of D.
Given a metric of the space, we employ single-linkage clustering (SLC) to partition
an empirical level set into clusters. SLC recursively merges two closest subsets of
samples according to the nearest neighbor distance (NND) between them. Define
the maximum NND of a set of samples by the NND between the two subsets
that are merged at the last step in the SLC. Based on NNDs and subset sizes, we
develop statistical methods to identify clusters in R

p and in a discrete space with
details given in Sections 3.4 and 5.3, respectively.

As illustrated in the previous subsection, we can construct the tree of sublevel
sets by partitioning samples into clusters of empirical sublevel sets via a bottom-up
induction. Thus, we call this method the bottom-up partition (BUP) algorithm, as
outlined below.

1. Initialization: Perform SLC on Ĉ(1) to obtain clusters {Ĉ(1)
k }K1

1 and the respec-

tive maximum NNDs of these clusters {d(1)
k }K1

1 . Let {Â(1)
k }K1

1 = {Ĉ(1)
k }K1

1 be the
clusters of Â(1).

2. Induction: For m = 2, . . . ,M :
(a) Perform SLC on Ĉ(m) to obtain clusters {Ĉ(m)

i }K∗
m

1 and their maximum

NNDs {r(m)
i };

(b) Connect Ĉ
(m)
i and Â

(m−1)
j if the NND between them is ≤ max(r

(m)
i , d

(m−1)
j )

for i = 1, . . . ,K∗
m and j = 1, . . . ,Km−1;

(c) Merge the resulting connected clusters to obtain {Â(m)
k }Km

1 , the clusters of

Â(m), and update their maximum NNDs d
(m)
k = max{r(m)

i , d
(m−1)
j |Ĉ(m)

i ,

Â
(m−1)
j ⊂ Â

(m)
k } for k = 1, . . . ,Km.

If the distribution f (x) is defined on a finite number of disconnected regions,
this algorithm may build multiple trees, each for a connected component of the do-
main. Note that in step (2b) multiple Ĉ

(m)
i ’s may be connected to the same Â

(m−1)
j .
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This happens when different connected components of C(m) belong to the same
component of A(m).

If �̂m is an estimated density of states for the mth level set, the algorithm also
provides a simple way to approximate the local density of states:

�̂m,k = n
(m)
k /n(m) · �̂m for k = 1, . . . ,Km,(4)

where n(m) and n
(m)
k are the sample sizes of the level sets Ĉ(m) and

⋃{Ĉ(m)
i |

Ĉ
(m)
i ⊂ Â

(m)
k }, respectively. The estimation (4) follows immediately from the defi-

nition of density of states and the fact that samples in a level set are approximately
uniform. In this work density of states is estimated by the iterative approach imple-
mented in the equi-energy (EE) sampler [Kou, Zhou and Wong (2006), Section 4],
which is also applicable to samples generated by parallel tempering.

3.3. Theoretical considerations. Define a discretized version of the tree of
sublevel sets at discrete energy levels {um}Mm=1 by the tree that represents the hi-
erarchy among the collection {Ak(um) | k = 1, . . . ,K(um),m = 1, . . . ,M}. Intu-
itively, one may imagine to use M horizontal lines at energy levels u1 < u2 <

· · · < uM to intersect the original tree. Each intersection represents a component
Ak(um) of the sublevel set A(um) (1 ≤ m ≤ M). Then we use a line segment to
link Aj(um−1) to Ak(um) if and only if Aj(um−1) ⊂ Ak(um) for m = 2, . . . ,M .
The resulting graph is the discrete tree which can be viewed as an approximation
to the original tree.

DEFINITION. Given u1 < u2 < · · · < uM , let T̂n = {Â(m)
k | k = 1, . . . ,Km,

m = 1, . . . ,M} represent a tree constructed from an empirical sublevel set Â(M) of
size n. We say that T̂n is consistent if the following statements hold in probability
for all m as n → ∞:

(i) Km → K(um);
(ii) supx∈Ak(um) d(x, Â

(m)
k ) → 0, where d(x,A) is the minimal distance from x

to the set A;
(iii) Â

(m−1)
j ⊂ Â

(m)
k if and only if Aj(um−1) ⊂ Ak(um).

The BUP algorithm will build a consistent tree if we have the following: (1) SLC
on Ĉ(m) can provide a consistent estimate of the components of C(m) in the sense
of (i) and (ii) in the above definition; (2) Ĉ

(m)
i and Â

(m−1)
j can be connected con-

sistently in step (2b). Some theoretical considerations for the verification of these
two conditions are provided.

LEMMA 1. Let f (x) be a continuous density on X ⊂ R
p . Suppose D ⊂ X

is a compact subset with a connected interior D0 and f (x) > 0 ∀x ∈ D. If an f -
irreducible Markov chain {Xt } with invariant distribution f is Harris recurrent,
then the maximum NND of D̂n = {Xt | Xt ∈ D, t = 1, . . . , n} and supx∈D0 d(x, D̂n)

converge to 0 almost surely as n → ∞.
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The proof of this lemma is given in the Appendix. As discussed in Tierney
(1994), most MCMC algorithms, such as irreducible Gibbs samplers and Metropo-
lis algorithms, are Harris recurrent under mild conditions, to which Lemma 1 ap-
plies. Note that any nonempty C(m) has compact closure {x | h(x) ∈ [um−1, um]},
similarly for A(um). If an empirical level set Ĉ(m) is generated by multiple Harris
recurrent Markov chains with invariant distributions strictly positive on C(m), such
as tempered or truncated target distributions, then condition (1) will be satisfied if
the distance between any two components of C(m) is positive.

LEMMA 2. Suppose f (x) and D satisfy the same conditions in Lemma 1.
A random sample {Xi} of size n is drawn from f and SLC is performed on D̂n =
{Xi ∈ D} with a distance threshold ρ/n. For some ρ, there exists a big cluster that
includes a positive fraction of D̂n and passes within εn of every element of D̂n, and
every other cluster has diameter (maximum within-cluster distance) < εn, where
εn → 0 in probability as n → ∞.

Lemma 2 is a mild modification of Theorem 1 in Hartigan (1981). If C
(m)
i and

A
(m−1)
j are connected and each has a positive volume, then there is a distance

threshold ρ/n with which SLC produces a big cluster that contains fractions of
samples in both sets, while every other cluster is arbitrarily small. This implies
that ρ/n < max(r

(m)
i , d

(m−1)
j ) and P(Rn < ρ/n) → 1 as n → ∞, where Rn is the

NND between Ĉ
(m)
i and Â

(m−1)
j . Thus, condition (2) for the consistence of the

algorithm will be satisfied with an i.i.d. sample as the input. If {Xt } is a Markov
chain as stated in Lemma 1, one can apply the BUP algorithm to a subsequence
{Xti | i = 1, . . . , n} with (ti+1 − ti) sufficiently large such that this subsequence
behaves like an i.i.d. sample from f .

3.4. Clustering level sets in R
p . Given that samples in a level set are approxi-

mately uniform if (um − um−1) is small, we consider the following results, which
are proved in the Appendix.

LEMMA 3. Let h(x) be a continuous function in R
p . Suppose a connected

level set C = {x | h(x) ∈ [u − �u,u)} has a finite volume VC > 0 and a random
sample of size n, {X1, . . . ,Xn}, is drawn uniformly on C. Let n → ∞.

(1) Denote by ri the NND between Xi and the other sample points. Then
nr

p
i /VC follows an identical exponential distribution (denote its mean by θ ) and

is independent of nr
p
j /VC (j �= i).

(2) Denote by d the NND between a finite subset X∗ = {Xi1, . . . ,Xik } and the
other sample points. Then given X∗, ndp/VC follows an exponential distribution
with mean θ/β(β > 1).
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This lemma suggests that the NNDs in the SLC on an i.i.d. uniform sample de-
cay exponentially fast in the order of (VC/n)1/p for points within a connected com-
ponent, which become significantly smaller than between-component distances
(BCD) when the sample size is large. Thus, one may treat BCDs as outliers in an
exponential sample and develop methods to detect them. Suppose that a random
sample {Y1, . . . , Yn} is drawn from Exp(θ) with mean θ and that the largest k ob-
servations are missing. Denote the observed order statistics by y(1) < · · · < y(n−k).
Then the observed data likelihood is

L
(
θ |y(1), . . . , y(n−k)

) = [
exp

(−y(n−k)/θ
)]k n−k∏

i=1

θ−1 exp
(−y(i)/θ

)
,

which leads to the MLE of θ :

θ̂k =
∑n−k

i=1 y(i) + ky(n−k)

n − k
.

Let yi = nr
p
i with ri (i = 1, . . . , n) the NNDs in the SLC of an i.i.d sample of

(n + 1) points from a level set C. Suppose that C has K + 1 connected compo-
nents and the NNDs among them are d(K) ≥ · · · ≥ d(1) > 0. As n → ∞, we have
approximately

θ̂k →
⎧⎪⎨
⎪⎩ θ +

K−k∑
i=1

d
p
(i) + kd

p
(K−k), for 0 ≤ k ≤ K − 1,

θ, for k ≥ K .

This suggests that one may estimate K by the value of k from which θ̂k starts to sta-
bilize. In order to choose a more interpretable threshold, we define P̂k ∝ 1/θ̂k for
k = 0,1, . . . ,Kmax − 1 and normalize P̂k such that

∑
k P̂k = 1, where Kmax � K

is a pre-determined maximal number of components of a level set. Consequently,
P̂k increases to a level slightly above 1/Kmax with the increase of k, as illustrated
in Figure 3. For this particular level set with seven components, P̂0, . . . , P̂5 �
1/Kmax, while the other P̂k’s are all very close to and slightly above 1/Kmax.
Such a pattern allows us to define two bounds for the number of components,
Kb = 1 + min{k | P̂k > δb · 1/Kmax} for b = L,H , in which 0 < δL < δH < 1.
From the SLC of an empirical level set Ĉ(m), we first obtain KL clusters. If we
gradually increase the number of clusters from KL to KH , (KH − KL) clusters
will be split sequentially. We discard a resulting daughter cluster from a split if

it contains ≤ Nmin points. The remaining ones form the clusters {Ĉ(m)
i }K∗

m

1 for
the level set. Such a cluster either contains more than Nmin points or its NND
is among the largest KL − 1. This procedure rules out those small and often false
clusters with moderate between-cluster distances. From our empirical studies, this
approach seems to work very well even for samples generated from a Markov
chain when the sample size is reasonably large.
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FIG. 3. The log(P̂k) (solid dots, k = 0, . . . ,99) of an empirical level set constructed from MCMC
samples of a 5-D mixture normal distribution. This level set has seven components. The height of the
horizontal solid line = log(1/Kmax) = − log(100).

3.5. Practical issues. First, the complexity of the BUP algorithm is dominated
by SLC of empirical level sets. If the samples are generated by an MCMC method,
we typically resample without replacement about 20% of the samples as the input.
This can reduce the computation greatly without degrading the performance. We
divide the samples into enough level sets such that the size of each set is in the order
of 5K to 10K. Second, the default values for the parameters in level set clustering
are specified as δL = 0.5, δH = 0.95, Kmax = 100 and Nmin = 50. These values
are used in all the examples presented in this article. We note that, for a level set of
size 5K or more, the performance of the algorithm is not sensitive to the choice of
these parameters. For some distributions, the algorithm tends to underestimate the
number of components (K∗

m) when a level set is close to an energy barrier since
the between-cluster distance tends to be small. Considering that another reasonable
upper bound for the number of components of C(m) is Km−1, the estimated number
of components of A(um−1), if no new minima occur, we modify our upper bound
to be max(KH ,Km−1), where KH is the original bound defined by δH . Finally,
a more efficient way to determine whether Ĉ

(m)
i and Â

(m−1)
j should be connected

in step (2b) of the BUP algorithm is to sequentially compute the distances between
Ĉ

(m)
i and different level sets in Â

(m−1)
j in the descending order of their energy.

We stop the computation once we identify a level set whose NND to Ĉ
(m)
i is ≤

max(r
(m)
i , d

(m−1)
j ).

The BUP algorithm may take as input from a variety of Monte Carlo methods
besides the EE sampler and parallel tempering. The multicanonical sampling [Berg
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and Neuhaus (1991)] and related methods [Hesselbo and Stinchcombe (1995);
Wang and Landau (2001); Liang (2005, 2007); Atchadé and Liu (2006); Liang,
Liu and Carroll (2007)] can generate samples at various energy levels and estimate
density of states. The outputs from these algorithms should be suitable for our
method to estimate the tree of sublevel sets as well. With slight modifications, the
nested sampling proposed by Skilling (2006) may be another candidate sampler to
produce inputs for the BUP algorithm.

4. Examples in a continuous space. To demonstrate the use of the BUP algo-
rithm in constructing the tree of sublevel sets, we test it on posterior distributions
given multivariate t data and a multimodal distribution with many local modes.

4.1. Posterior inference from multivariate t data. Suppose we have observed
a random sample Y = {y1, . . . ,yn} from a multivariate t distribution tν(μ,�) with
known degree of freedom and scale matrix, ν = 5 and � = Ip , where p is the
dimensionality of the distribution. With a flat prior, our goal is to make inference
on the location parameter μ from its posterior distribution given the data Y. In this
case, the energy function of the posterior distribution is

h(μ) = − log[P(μ|Y)] = ν + p

2

n∑
i=1

log
[
1 + 1

ν
‖yi − μ‖2

]
,(5)

up to an additive constant. Since multimodality of a t-likelihood occurs with an
appreciable chance for a small sample size, we design an observed data matrix
(n = 6) as ⎡

⎢⎢⎢⎢⎢⎢⎣

y1
y2
y3
y4
y5
y6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

A A a1 a1 0 0
A A 0 0 a1 a1
a2 a2 A A 0 0
0 0 A A a2 a2
a3 a3 0 0 A A

0 0 a3 a3 A A

⎤
⎥⎥⎥⎥⎥⎥⎦

,(6)

where A � aj > 0 (j = 1,2,3). Note the heterogeneity of the observed data in the
sense that they form three sub-groups, each composed of two data points, in the
6-D space.

We first set A = 40 and a1 = a2 = a3 = 4 so that the data set is composed of
three symmetric pairs of points. To set up the energy ladder for the EE sampler, we
did the following pilot study on the posterior distribution. We randomly generated
100 points from the hyper-cube defined by the boundary values of the observed
data, that is, [0,40]6, evaluated their energy (5), and chose the maximum as the
upper bound for the energy ladder. We then performed a few runs of gradient-
based minimization to obtain the energy values of some local minima, and set
the lower bound for the energy ladder as the smallest local minimum minus 3.
In this way, the energy ladder was set geometrically between [166,220] and the
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(A) (B) (C)

FIG. 4. Estimated trees of sublevel sets for the posterior distributions given the t data: (A) sym-
metric data set, (B) asymmetric data set without local sampling, and (C) asymmetric data set with
local sampling. Nodes are indexed in correspondence among the three trees.

temperature ladder between [0.2,4]. Note that a higher temperature for this target
distribution would cause an improper posterior. The combination of the energy
and temperature ladders allowed the EE sampler to generate samples in a wide
energy range from local minima to high energy barriers. We utilized 10 chains,
each generating 200K samples, and resampled 20% of the samples to estimate
the tree with M = 50 level sets. This computation was repeated 10 times, each
with an independent input of EE samples. The topology of the constructed tree,
exactly identical among different EE samples, is shown in Figure 4(A) with critical
energy values reported in the left column of Table 1. The estimated tree of sublevel
sets is composed of three long branches for a wide range of energy levels from
B4 = 197.5 to Bi = 171.0 (i = 1,2,3). Further down the energy level, each of
these branches splits into two symmetric local minima. Each local minimum Mi

is located near a data point yi for i = 1, . . . ,6. To verify this constructed tree, we
utilized a gradient-based local search from many random initial values, including
the six data points to identify local minima, as reported in the column “Approx.” in
Table 1, which gave us exactly the same six local modes as identified on the tree.
Furthermore, we approximated the energy barriers by finding the maximal energy
along the line segment between every pair of local minima. These approximated
barriers are all very close to what we have obtained on the tree (Table 1).

From the estimated local density of states, we computed that the probability
mass of each local mode (3) is only 0.015, while the total probability of the three
long branches between B4 and Bi (i = 1,2,3) is around 0.91. This suggests that
the three within-component averages of the empirical sublevel set Â(B4) form a
good representation of the posterior distribution [Figure 4(A)]. It is definitely better
than the overall posterior mean which is located outside of any high probability
region. It is also more appropriate than the six local modes which seem to “overfit”
the small highest probability regions with posterior probability < 0.1. Clearly, the
tree of sublevel sets provides much more information to interpret the posterior
distribution than marginal averages and posterior modes.
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TABLE 1
Critical energy estimation for the posterior distributions given the t data

Symmetric Asymmetric

Node Estimate (s.e.) Approx. Estimate (s.e.) Approx.

M1 169.20 (0.015) 169.18 162.34 (0.003) 162.33
M2 169.20 (0.007) 169.18 —
M3 169.20 (0.006) 169.18 166.59 (0.008) 166.57
M4 169.20 (0.009) 169.18 166.58 (0.009) 166.57
M5 169.20 (0.006) 169.18 169.62 (0.007) 169.60
M6 169.21 (0.012) 169.18 169.62 (0.008) 169.60
B1 171.0 (0.075) 170.9 —
B2 171.0 (0.084) 170.9 167.0 (0.018) 167.0
B3 171.0 (0.074) 170.9 171.4 (0.040) 171.3
B4 197.5 (0.273) 198.5 198.5 (0.893) 200.5

Next we reset a1 = 2 and a2 = 3 to obtain an asymmetric data matrix in (6).
After a similar pilot study on the energy function (5) to set the energy ladder in
[160,220], we applied the EE sampler followed by the BUP algorithm with exactly
the same parameter settings for 10 independent runs. There are only three branches
on each of the constructed trees [Figure 4(B)], with a global minimum (M1,2) near
the center of y1 and y2. The other two local minima Mi,j [(i, j) = (3,4), (5,6)]
show larger variability: they are close to either yi or yj . This implies that we may
need to generate more samples on these two branches to refine our estimates. If we
naively increased the sample size in the EE sampler, it would cause a much heav-
ier computational burden on tree construction without any obvious improvement
for the problem, since the local density of states on the branch [M1,2,B4] is ex-
ponentially larger than those on the other two branches. However, with a coarsely
estimated tree, one can design a more efficient way to refine the local sampling of
a branch. Given an energy level H ∗ between B4 and Mk for k = (3,4) or (5,6), we
wish to restrict the EE sampler to the connected component Ak(H

∗) that contains
the minimum Mk . This can be achieved by defining a modified energy function,

hk(μ) =
{

h(μ), if μ ∈ A(H ∗) ∩ B(Mk, dk),
∞, otherwise,

where B(Mk, dk) is the ball centered at Mk with radius dk . Based on the coarse
tree, we chose dk and H ∗ such that A(H ∗) ∩ B(Mk, dk) = Ak(H

∗). Then we per-
formed EE sampling from the two modified local energy functions for M3,4 and
M5,6, respectively, with 5 chains of 200K samples. The energy ladders were set be-
tween (Mk −2) and H ∗ = (0.3Mk +0.7B4). Here we use Mk to denote as well the
energy of the local minimum. Other parameters for sampling and tree construction
were identical to the previous calculations. This refined tree estimation with local
sampling was performed for 10 independent runs based on the estimated coarse
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trees. The refined tree is shown in Figure 4(C) with critical energy values reported
in the right column of Table 1, which are consistent with gradient-based approx-
imations. Now one sees that two small minima have been recovered on each of
the refined branches. Note that by the volume of Ak(H

∗), one can renormalize the
local density of states estimated from local sampling to obtain its corresponding
value on the coarse tree, and thus perform related probabilistic calculation. For in-
stance, the probability masses are estimated to around 1.2 × 10−4 for M3 and M4,
and around 1.7 × 10−4 for M5 and M6. This example demonstrated the flexibility
and power to manipulate posterior sampling with the aid of the tree of sublevel
sets.

4.2. The Rastrigin function. We further test our method on a distribution
with a large number of local modes. Let x = [x1, . . . , xp]. The Rastrigin function
[Gordon and Whitley (1993)] is defined as

h(x) =
p∑

i=1

x2
i + A

[
p −

p∑
i=1

cos(πxi)

]
,(7)

where A is a positive constant and p is the dimensionality of the variable x. This is
one of the benchmark functions used to test a global optimization algorithm such
as the genetic algorithm [Holland (1975)]. Although closely related, our purpose of
constructing the tree of sublevel sets is more challenging than global optimization.
We take A = 2 and p = 4 in (7) to obtain an energy function with 34 = 81 local
minima formed by all the elements of the product set {−1.805,0,+1.805}4. These
minima have five distinct energy values shown in the theoretical tree [Figure 5(A)],
dependent on the combinations of their coordinates. Correspondingly, we group
them into five layers so that the j th layer contains local minima whose coordinates

(A) (B)

FIG. 5. The trees of sublevel sets of the Rastrigin function. (A) Theoretical tree; (B) Estimated
tree. The critical energy values are labeled on the trees and the number of minima in each layer is
indicated in the parentheses.
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TABLE 2
Local minima and barriers of the 4-D Rastrigin function

Layer 1 2 3 4 5

Count 1 8 24 32 16
A Energy 0 3.62 7.24 10.87 14.49

Barrier — 5.11 8.74 12.36 15.98

Count 1 (0) 8 (0) 12.1 (2.96) 0 (0) 0 (0)
B Energy 0.005 (0.003) 3.70 (0.070) 7.62 (0.107) — —

Barrier — 5.13 (0.085) 8.54 (0.318) — —

Count 1 (0) 8 (0) 23.9 (0.32) 0 (0) 0 (0)
C Energy 0.005 (0.003) 3.67 (0.023) 7.39 (0.074) — —

Barrier — 5.13 (0.085) 8.76 (0.151) — —

Note: “Count” and “Energy” refer to the number and the energy of the local minima in a layer, respec-
tively. “Barrier” is the energy barrier between the current and the previous layers [see Figure 5(A)].
Theoretical values and estimated values without/with linear interpolation are given in panels A, B
and C, respectively. The standard errors of estimates in the same layer from 10 independent EE
samples are given in the parentheses.

are composed of (5−j) zeros and (j −1) ±1.805, for j = 1, . . . ,5. The theoretical
values of the local minima and energy barriers are given in Table 2 panel A.

We applied the EE sampler to this energy function with 20 chains, in which
the energy was truncated evenly between [0,19] and the temperature was fixed at
T = 0.5. Thus, the target distribution of the kth chain was fk(x) ∝ exp[−(h(x) ∨
k)/T ] for k = 0, . . . ,19 and T = 0.5. We generated 100K samples from each chain
and resampled 20% of them to construct the tree with M = 50 level sets. This
whole process was repeated 10 times independently. As reported in panel B of Ta-
ble 2, for all the 10 independent inputs of EE samples, the BUP algorithm identified
all the 9 minima in the first two layers and about half of those in the third layer. It
also detected unambiguously the energy barriers associated with these three layers
of minima.

There might be two reasons why our method failed to identify some high-energy
local modes in layer three and beyond. First, the EE sampler did not visit them be-
cause of the tiny probability associated with these modes. Even for a truncated
energy function, the local density of states of such a mode may be much smaller
than that of the connected component which contains low-energy modes, and thus,
the EE sampler has almost no chance to explore them. For example, the ratio of
the local density of states of a mode in the fourth layer at energy u = 10.9 over
that of the middle main branch which connects to lower energy nodes on the tree
[Figure 5(A)] is approximately 3 × 10−5. Intuitively, one may think of the main
branch as much “thicker” than the leaves of the same height. Second, it is possi-
ble that the EE sampler visited some of these modes, but with insufficient samples
they were not identified by the BUP algorithm as clusters of a level set. Recall that
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a detected cluster with a moderate NND (ranked between KL and KH ) must have
at least Nmin = 50 samples, which might be too stringent for a small high-energy
mode. This motivated us to use linear interpolation of the energy function to en-
hance the sensitivity in identifying clusters of a level set. Given KL and KH , con-
sider splitting a cluster in-between as described in Section 3.4. Suppose a resulting
daughter cluster D has less than Nmin points. We define for D a pair of points in
the current empirical level set by (x∗,y∗) = arg minx∈D,y/∈D d(x,y), which deter-
mine the NND for agglomerating D with its closest cluster (sister cluster). Note
that x∗ and y∗ can be obtained along with single-linkage clustering and no addi-
tional computation is needed. Then we evaluate the energy values of 100 points
evenly distributed along the line segment between x∗ and y∗. The maximal energy
of these interpolated points serves as an approximation to the barrier between x∗
and y∗ or between D and its nearest neighbor cluster. Consequently, D will not
be discarded if the maximal interpolated energy is higher than the upper energy
bound of the current level set.

When we applied the BUP algorithm with this linear interpolation to the same
ten sets of EE samples from the Rastrigin function, it identified almost all the
33 local minima in the first three layers with reduced biases and standard errors
(Table 2 panel C). For nine sets of samples, the method identified all the 33 local
modes exactly. For the other one set, it missed one local mode in the third layer. All
the constructed trees have a similar topology as shown in Figure 5(B). Although
it failed to recover the tree topology for layers four and five, our approach still
provided a global understanding of the energy landscape of this distribution since
any statistical property of the distribution is unlikely to be affected, in practice, by
ignoring those high-energy modes of tiny probabilities.

5. Bayesian segmentation of DNA sequences. To account for the hetero-
geneity of DNA sequences, statistical models have been proposed to segment a
DNA sequence into pieces with more homogeneous nucleotide compositions [e.g.,
Liu and Lawrence (1999); Boys and Henderson (2004); Keith (2006)]. Bayesian
inference on these models is performed via posterior sampling of segmentations
(or change points). In this study we adopt the model of Liu and Lawrence (1999)
to sample from a posterior distribution of change points. Then we apply the BUP
algorithm to reconstruct the energy landscape of the posterior distribution which
is expected to be quite complicated.

5.1. A Bayesian model. Denote a DNA sequence of length L by Y =
[y1, . . . , yL] ≡ y1:L, where yl ∈ {a, c, g, t} for l = 1, . . . ,L. Assume that there ex-
ist at most N change points. Let Z = [z1, . . . , zp] (0 ≤ p ≤ N ) denote the locations
of change points, which segment the sequence into p + 1 pieces. Note that p = 0
implies that the whole sequence is in one segment. We assume that the prior dis-
tribution for the number of change points p is uniform on {0,1, . . . ,N}. Given p,
we assume that every possible placement of the p change points is equally likely
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in the prior. Within a segment defined by the change points, the nucleotides follow
a multinomial distribution. We are interested in the posterior distribution of the
locations of the change points Z given the sequence data Y,

P(Z|Y) ∝ π(p)π(Z|p)P (Y|Z),(8)

where π(·) is used as a generic notation for prior distributions. Note that under
a conjugate Dirichlet prior for the multinomial distribution in a segment, P(Y|Z)

in (8) can be computed exactly by ratios and products of gamma functions.

5.2. Posterior sampling. Exact sampling from the posterior distribution (8)
can be achieved via dynamic programming as used in Liu and Lawrence (1999).
This approach first samples from the marginal posterior distribution of p (the num-
ber of change points) and then samples sequentially all the p change points from zp

to z1. The key to this exact sampling is a recursion on the conditional probability
of observing a partial sequence y1:l given that it has k change points p1:l = k,

P(y1:l |p1:l = k) =
l∑

zk=k+1

P(y1:zk−1|p1:zk−1 = k − 1)

(9)
× P(yzk :l|pzk :l = 0)π(zk|p1:l = k),

where π(zk|p1:l = k) is the conditional prior probability to place the kth change
point at zk , given that there are k change points between y1 and yl . We pre-compute
the probability of every subsequence yi:l (1 ≤ i ≤ l ≤ L), given that it is generated
from a multinomial distribution, that is, P(yi:l|pi:l = 0), which can be calculated
in closed-form based on gamma functions as we mentioned before. Then recursive
forward summation (9) is applied to compute P(y1:l |p1:l = k) for k = 0, . . . ,N

and l = 1, . . . ,L. After all the summations, we sample the number of change
points p = p1:L from P(p1:L = k|Y) ∝ π(k)P (y1:L|p1:L = k). Given p, one can
sequentially impute the change points zp, . . . , z1 based on the additive terms in the
summation (9). Please refer to Liu and Lawrence (1999) for more details.

We define the energy function of Z (a set of change points or a segmentation)
by

h(Z) = − logP(Z|Y)(10)

and a tempered distribution at temperature T by

P(Z|Y;T ) ∝ exp(−h(Z)/T ) = [P(Z|Y)]1/T .

It is easy to see that one can use a similar dynamic programming method to sample
from P(Z|Y;T ) for any T > 0. Our strategy for this problem is to generate (inde-
pendent) samples at various temperatures and use them to reconstruct the energy
landscape of the posterior distribution.
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5.3. Metric and clustering. The space of change points is discrete in nature.
We need to define connectedness in this space based on some metric. A natural
choice of a metric between two sets of change points (segmentations) is the num-
ber of sequence positions that are partitioned into distinct segments. Write the
segments defined by Z = [z1, . . . , zp] as {[zk−1, zk) | k = 1, . . . , p + 1}, where
z0 ≡ 1 and zp+1 ≡ L + 1, and the segments by X = [x1, . . . , xq] as {[xj−1, xj ) |
j = 1, . . . , q +1} similarly. For a one-to-one map g from a subset of {1, . . . , p+1}
into {1, . . . , q + 1}, the total number of common sequence positions between all
pairs of mapped segments is

Sg(Z,X) = ∑
k:g(k) �=φ

∣∣[zk−1, zk) ∩ [
xg(k)−1, xg(k)

)∣∣,
where | · | returns the number of integers in a set. We find the map that maximizes
Sg(Z,X) and then define the metric (distance) between Z and X as d(Z,X) =
L−maxg Sg(Z,X). For example, if L = 10, Z = [3,9] and X = 8, then the desired
map is g∗(2) = 1 and g∗(3) = 2, which maps segments 2 ([3,8]) and 3 ([9,10])
defined by Z to segments 1 ([1,7]) and 2 ([8,10]) defined by X respectively, and
the resulting distance is 3. Note that the minimal distance between two distinct
segmentations is 1, which implies a natural way to define connectedness. We say
that a set D in this space is connected if for any two segmentations Za,Zb ∈ D,
there exist m segmentations Z1, . . . ,Zm ∈ D with Z1 = Za and Zm = Zb such that
d(Zi ,Zi+1) = 1 for i = 1, . . . ,m − 1.

Suppose n + 1 segmentations have been sampled in a level set C and the re-
sulting NNDs in SLC are d1, d2, . . . , dn. Motivated by the observation that the
histogram of di (i = 1, . . . , n) decays exponentially if C is connected, we model
them by a geometric distribution, P(di |β) = βdi (1 − β) (di = 0,1, . . .), where
β ∈ (0,1) is an unknown parameter. We rank di to obtain the order statistics
d(1) ≤ d(2) ≤ · · · ≤ d(n). If C consists of K + 1 connected components, one ex-
pects the largest K NNDs to be significantly greater than the rest when n is large.
By the similar missing data formulation as in Section 3.4, the MLE of β if the
largest k distances are not observed is

β̂k =
∑n−k

i=1 d(i) + kd(n−k)∑n−k
i=1 d(i) + kd(n−k) + (n − k)

.

Then the mean of the geometric distribution can be estimated by

θ̂k = β̂k

1 − β̂k

=
∑n−k

i=1 d(i) + kd(n−k)

n − k
.

From the memoryless property of the geometric distribution, the expected value
of di given di ≥ d(n−k) and θ̂k . Denote by Kmax(= 100) the pre-determined max-
imal number of components. For k = 1, . . . ,Kmax − 1 we compute θ̂k and define
γk = (d(n−k+1) − d(n−k))/θ̂k as a statistic to test whether the observed largest k



RECONSTRUCTING ENERGY LANDSCAPES 1325

NNDs are significantly greater than that expected from the other n − k distances.
Let KL ≡ 1 and find KH = 1 + max{k | γk > α,d(n−k+1) ≥ 2}, where α = 10, and
we define the maximum of an empty set as 0. Then the same pruning procedure
as described for a continuous space by the size of a potential cluster is applied to
obtain the final clusters of an empirical level set.

5.4. A simulation study. We simulated 10 DNA sequences each of length
L = 1000 from the above segmentation model with four change points [201,401,

601,801]. Denote the nucleotide composition of the ith segment (i = 1, . . . ,5) by
θ i = [θi1, . . . , θi4] for a, c, g, t , respectively. For the first four segments, θii = 0.4
and θij = 0.2 (j �= i). For the last segment, θ5j = 0.25 for all j .

Set the maximal number of segments N + 1 = L/100 = 10. We found from a
pilot study that, at T = 0.5, samples were concentrated around the global mode,
while at T = 2 most samples were composed of 8 or 9 random change points. Thus,
we applied the exact posterior sampling at 10 temperatures between 0.5 and 2 with
geometric progression. For each temperature, 50K samples were generated. All
the samples from different temperatures were partitioned into M = 100 level sets
for estimating the tree of sublevel sets. The estimated trees have quite complicated
structures, with an average of 45.3 local minima and 24.7 energy barriers. The
number of local minima ranges from 21 to 74 and the number of energy barriers
ranges from 6 to 49 for the 10 sequences. A local minimum in this discrete space
is defined as a segmentation Z whose energy (10) is lower than the energy of
all the neighbors (whose distance to Z equals one). For such a discrete space, it is
feasible to verify an identified local minimum by this definition. Among the total of
453 detected minima on the 10 trees, 436 of them are true ones. We further applied
steepest-descent optimization to the remaining 17 detected minima. It turned out
that 16 of them led to distinct local minima on their respective trees and only one
out of the 453 detected minima was produced by a false split of a terminal branch.
These results demonstrated the high specificity of our tree construction algorithm.

We illustrate the results by one of the constructed trees. The posterior probabil-
ities of the locations of change points (T = 1) are shown in Figure 6(A). As one
can see, there are many peaks along the sequence and it is hard to find a reasonable
principle to predict change points based on these marginal posterior probabilities,
since the information on the combinatorial pattern among these potential change
points is not revealed by such marginal statistics. However, the estimated tree of
sublevel sets [Figure 6(B)] provides an informative way to understand this com-
plicated posterior distribution. At the energy level of 1388, the sublevel set of the
energy function of this posterior distribution is composed of three disconnected
valleys. The first valley contains two local minima (indexed as 29 and 26 in the
figure), the second valley contains a single local minimum 27, and the third valley
contains many local minima. We report the respective lowest minima of the three
valleys (minima 26, 27 and 6) in Table 3, from which we see that they are com-
posed of 3, 5 and 4 change points, respectively. The change points of minimum 6,
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(A) (B)

FIG. 6. Results for a simulated sequence. (A) Marginal posterior probabilities of change point
locations along the sequence. (B) The estimated tree for the posterior distribution. The numbers in
the figure are the indices of local minima.

which is the global mode, are close to the four simulated ones. Minimum 26 does
not contain the last change point, while minimum 27 splits the last change point
into two. In addition, there exists another branch with a high-energy minimum 31,
which has 3 change points around positions 400, 600 and 800. We further focus on
the third valley which contains many local minima and report a few representative
ones from different branches (minima 8, 12, 2 and 25) in the table. They all have
four change points around the true locations, but with different combinations of
local shift compared to minimum 6. The tree of sublevel sets definitely provided
much more insights on the Bayesian inference of this problem: Not only did it
detect multiple modes, but also recovered the hierarchy among them and revealed
the combinatorial pattern among change points.

5.5. Mouse upstream sequences. A recent study identified eight genes that are
up-regulated and function as activators in mouse embryonic stem cells [Zhou et al.
(2007)], namely, Oct4, Sox2, Nanog, Esrrb, Tcf7, Nr5a2, Otx2 and Etv5. We ex-

TABLE 3
Selected local minima of change points on a simulated sequence

Index Change points Index Change points

26 [205,393,608] 8 [205,393,609,787]
27 [205,393,608,756,816] 12 [205,393,609,806]

6 [205,393,609,813] 2 [199,396,609,813]
31 [393,609,818] 25 [216,394,609,813]
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(A) (B)

FIG. 7. Results for the upstream sequence of Nanog. (A) Marginal posterior probabilities of change
point locations along the sequence. (B) The estimated tree of the posterior distribution with labeled
valleys and minima.

tracted upstream 1,500 bases to downstream 500 bases around the transcription
start sites and call them the upstream sequences of the genes. We set the maximal
number of segments N + 1 = L/100 = 20 and applied posterior sampling fol-
lowed by the BUP algorithm with exactly the same parameters as we used in the
simulation study. The energy landscapes of the posterior distributions as revealed
by estimated trees exhibit very different characteristics for different genes. The
tree of the Oct4 upstream sequence contains only one minimum with no change
points (i.e., the whole sequence is in one segment), while the tree of the Esrrb
upstream contains 55 local minima. On average there are 28.9 local minima and
17.6 barriers on the estimated trees. Among all the 231 detected minima on the
eight trees, 227 of them are verified to be true ones, three of them lead to distinct
minima via steepest-descent optimization, and only one of them corresponds to a
false prediction.

We choose the results of the Nanog upstream sequence as an illustration. The
posterior probabilities of change point locations are shown in Figure 7(A), where
likely locations of change points indicated by peaks in the plot are mostly distrib-
uted in the intervals [100,400] and [1100,1500]. (Note that the transcription start
site is at position 1500.) The estimated tree of sublevel sets contains 53 local min-
ima [Figure 7(B)] and a few deep energy valleys (big branches on the tree) labeled
as A,B, . . . ,E in the figure. We select eight representative local minima labeled in
the figure and reported in Table 4. The overall picture of the energy landscape is
very clear. The deep valleys correspond to segmentations with different number of
change points, such as valleys A and D which contain minima with 4 and 6 change
points respectively. Within a valley defined in Figure 7(B), the local minima gen-
erally have similar combinations of change points. For example, the three labeled
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TABLE 4
Selected local minima of change points on the Nanog sequence

Valley Minimum Change points

A 6 [225,361,1376,1460]
A 12 [254,361,1376,1460]
B 47 [225,361,1376,1410,1461]
C 23 [225,307,333,355,1376,1410,1461]
D 3 [254,307,333,355,1376,1460]
D 5 [225,307,333,355,1376,1460]
D 8 [275,307,333,355,1376,1460]
E 53 [225,307,333,355,1240,1251,1376,1413,1460]

minima in valley D, each in a sub-branch of D, share five common change points,
but differ in the location of the first one between 220 and 280 (Table 4).

Compared with the marginal posterior probabilities in Figure 7(A), the esti-
mated tree clearly revealed much more information on the posterior distribution.
From the marginal probabilities one can only identify change points from the lo-
cal peaks with no information to determine the combination among them. How-
ever, the tree of sublevel sets not only identified different possible combinations
of change points, but also organized them into a hierarchical structure that brings
connectivity to differentiate and group these local minima. As illustrated, such
information is very helpful for understanding the posterior distribution. One can
view the posterior distribution as a multilevel mixture. At the first level, its energy
landscape can be roughly represented by a mixture of a few large valleys [such
as the ones labeled in Figure 7(B)]. Each valley may be further decomposed into
smaller sub-valleys represented by various local minima.

6. Discussion. We have formulated the tree of sublevel sets to characterize the
energy landscape of a distribution, and developed the BUP algorithm to estimate
the tree from Monte Carlo samples. The use of level sets as the building blocks in
our method for tree construction has two advantages: (1) The samples in a level
set are roughly uniform, which helps the development of algorithms to identify
clusters; (2) Level set clustering requires much less computation as compared to
clustering sublevel sets. The design of the BUP algorithm fits very well the EE
sampler, which constructs empirical energy rings (level sets) for a wide spectrum.
As we have mentioned in Section 3.5, a few other Monte Carlo methods are also
good candidates for generating input samples with estimated density of states for
the BUP algorithm.

Similar concepts of the tree have been used independently to describe the energy
landscape of a physical system under the name of a disconnectivity graph [Becker
and Karplus (1997)], with applications to peptide models [e.g., Krivov and Karplus
(2002), Evans and Wales (2003)], lattice spin systems [e.g., Garstecki, Hoang and
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Cieplak (1999)] and protein folding pathways [Evans and Wales (2004), Carr and
Wales (2005)] among others. A disconnectivity graph is constructed given a data-
base of critical states of an energy surface, such as local minima, transition states
(energy barriers) and pathways from a local minimum to a transition state. Opti-
mization methods are often employed to search an energy surface for its critical
states, mostly based on gradient approaches that utilize the first and second deriv-
ative matrices or ad hoc approximations for specific models [see Wales (2005) for
a review]. The BUP algorithm in this article can also be used to construct the dis-
connectivity graph of a given potential energy surface. A unique feature of our
method is that the construction of the tree is based on level set clustering of Monte
Carlo samples and can be applied to any configuration space on which connect-
edness is defined through the use of a metric (or even a pseudo-metric). This is
very important for statistical applications since a derivative-based search may be
very difficult (e.g., for missing data problems) and even impossible (e.g., for dis-
crete spaces). A firm comparison between the BUP algorithm and other chemical
physics methods in constructing potential/free energy landscapes will be an inter-
esting future direction of this work.

We believe that, with the fast development of powerful sampling methods and
the exponential increase in computing capacity, computational statistical methods
to extract useful information from large-size simulated samples, such as the BUP
algorithm in this paper, are expected to play critical roles in many modern scientific
fields.

APPENDIX

PROOF OF LEMMA 1. Since D is compact, for any ε > 0 its interior D0

can be covered by a finite number of ε-balls, B(xi , ε), where xi ∈ D and Bi =
D0 ∩ B(xi , ε) is nonempty for i = 1, . . . ,N . Because f (x) > 0 ∀x ∈ D and f (x)

is continuous, every Bi has positive probability measure induced by f . The Har-
ris recurrence of {Xt } implies that the chain will visit Bi infinitely often (i.o.)
with probability 1, that is, P(Xt ∈ Bi, i.o.|X0 = x) = 1, for all x ∈ X and all
i = 1, . . . ,N . Since N is finite,

P

(
N⋂

i=1

{Xt ∈ Bi, i.o.}
∣∣∣X0 = x

)
= 1.

Thus, there exists at least one Xt in each Bi with probability 1 as n → ∞, which
implies that supx∈D0 d(x, D̂n) < 2ε. Because D0 is connected, any two points in
D̂n can be linked by a continuous path covered by a subset of {Bi}. Thus, the two
points will be joined in SLC with maximal NND distance < 4ε, which completes
the proof. �
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PROOF OF LEMMA 3. (1) Let Vi = αpr
p
i be the maximal volume of a

ball centered at Xi that does not contain any other points, where αp is a pos-
itive constant. Let Bi be the open ball centered at Xi with volume v/n. The
probability P(Vi > v/n) = (1 − VBi∩C/VC)n−1, where VBi∩C is the volume
of Bi ∩ C. Since h(x) is continuous, P(Bi ⊂ C) → 1 as n → ∞ and, thus,
P(Vi > v/n) → (1 − v/(nVC))n−1 → e−v/VC . This shows that the asymptotic
distribution of nr

p
i /VC is identically exponential with mean θ = 1/αp for any i.

Because P(Bi ∩ Bj �= φ) → 0 as n → ∞, the joint probability P(Vi > v/n,Vj >

w/n) → e−(v+w)/VC and, thus, nr
p
i /VC and nr

p
j /VC are independent asymptoti-

cally.
(2) We put k balls of identical radius centered at Xi1, . . . ,Xik . Then αpdp is

the maximal ball volume such that none of the k balls contains any points other
than X∗. Similarly, one can show that P(αpdp > v/n|X∗) → e−βv/VC as n → ∞,
where 1 < β ≤ k. Obviously, the conditional mean of ndp/VC is θ/β . �
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