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FOR OBJECTIVE CAUSAL INFERENCE,
DESIGN TRUMPS ANALYSIS1

BY DONALD B. RUBIN

Harvard University

For obtaining causal inferences that are objective, and therefore have the
best chance of revealing scientific truths, carefully designed and executed
randomized experiments are generally considered to be the gold standard.
Observational studies, in contrast, are generally fraught with problems that
compromise any claim for objectivity of the resulting causal inferences. The
thesis here is that observational studies have to be carefully designed to ap-
proximate randomized experiments, in particular, without examining any fi-
nal outcome data. Often a candidate data set will have to be rejected as inade-
quate because of lack of data on key covariates, or because of lack of overlap
in the distributions of key covariates between treatment and control groups,
often revealed by careful propensity score analyses. Sometimes the template
for the approximating randomized experiment will have to be altered, and the
use of principal stratification can be helpful in doing this. These issues are
discussed and illustrated using the framework of potential outcomes to define
causal effects, which greatly clarifies critical issues.

1. Randomized experiments versus observational studies.

1.1. Historical dichotomy between randomized and nonrandomized stud-
ies for causal effects. For may years, causal inference based on random-
ized experiments, as described, for example, in classic texts by Fisher (1935),
Kempthorne (1952), Cochran and Cox (1950) and Cox (1958), was an entirely
distinct endeavor than causal inference based on observational data sets, de-
scribed, for example, in texts by Blalock (1964), Kenny (1979), Campbell and
Stanley (1963), Cook and Campbell (1979), Rothman (1986), Lilienfeld and
Lilienfeld (1976), Maddala (1977) and Cochran (1983). This began to change
in the 1970’s when the use of potential outcomes, commonly used in the context
of randomized experiments to define causal effects since Neyman (1923), was
used to define causal effects in both randomized experiments and observational
studies [Rubin (1974)]. This allowed the definition of assignment mechanisms
[Rubin (1975)], with randomized experiments as special cases, thereby allowing

Received May 2008; revised June 2008.
1This work was supported in part by NSF Grant SES-05-50887 and NIH Grant R01 DA023879-01.
Key words and phrases. Average causal effect, causal effects, complier average causal effect, in-

strumental variables, noncompliance, observational studies, propensity scores, randomized experi-
ments, Rubin Causal Model.

808

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/08-AOAS187
http://www.imstat.org


FOR OBJECTIVE CAUSAL INFERENCE, DESIGN TRUMPS ANALYSIS 809

both types of studies for causal effects to be considered within a common frame-
work sometimes called the Rubin Causal Model [RCM–Holland (1986)]. In par-
ticular, the same underlying principles can be used to design both types of studies,
and the thesis of this article is that for objective causal inference, those principles
must be used.

1.2. The appeal of randomized experiments for estimating causal effects. For
many years, most researchers have agreed that for drawing inferences about causal
effects, classical randomized experiments, when feasible, are preferable to other
methods [e.g., Cochran (1965)]. However, randomized experiments can be infea-
sible for a variety of ethical and other practical considerations, and the length of
time we may have to wait for their answers can be too long to be helpful for
impending decisions. Nevertheless, the possibility of conducting a randomized ex-
periment should still be considered whenever a causal question arises, a point also
made by Cochran (1965), which he attributed to earlier work by Dorn (1953).

Among the well-known reasons for this admiration for randomized experiments
is the objectivity of the decisions for treatment assignment—the decision rules are
explicit with a probability strictly between zero and one that each experimental
unit will be exposed to either the treatment or control condition (for simplicity of
exposition, this article will deal with the case of only two experimental conditions
or exposures, called generically “treatment” and “control”). These unit-level prob-
abilities, or propensity scores [Rosenbaum and Rubin (1983)], are known from the
design of the experiment, and are all that are needed to obtain unbiased estimates
of average treatment effects (i.e., the average effect of the treatment relative to con-
trol across all units). This unbiasedness property is suggestive of the powerful role
that propensity scores play in causal effect estimation, even though unbiasedness
is not an essential, or even always desirable, property of estimators.

Another reason why randomized experiments are so appealing, a reason, that
is, of course not really distinct from their objectivity, is that they achieve, in ex-
pectation, “balance” on all pre-treatment-assignment variables (i.e., covariates),
both measured and unmeasured. Balance here means that within well-defined sub-
groups of treatment and control units, the distributions of covariates differ only
randomly between the treatment and control units.

A third feature of randomized experiments is that they are automatically de-
signed without access to any outcome data of any kind; again, a feature not en-
tirely distinct from the previous reasons. In this sense, randomized experiments
are “prospective.” When implemented according to a proper protocol, there is no
way to obtain an answer that systematically favors treatment over control, or vice
versa.

The theme of this article is that many of the appealing features of randomized
experiments can and should be duplicated when designing observational compar-
ative studies, that is, nonrandomized studies whose purpose is to obtain, as closely
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as possible, the same answer that would have been obtained in a randomized ex-
periment comparing the same analogous treatment and control conditions in the
same population. In this process of design, the usual models relating observed fi-
nal outcome data to observed covariates and treatment indicators play no part, just
as they do not in the design of a randomized experiment. The only models that are
used relate treatment indicators to observed covariates.

1.3. Observational studies as approximations of randomized experiments. All
statistical studies for causal effects are seeking the same type of answer, and real
world randomized experiments and comparative observational studies do not form
a dichotomy, but rather are on a continuum, from well-suited for drawing causal
inferences to poorly suited. For example, a randomized experiment with medical
patients in which 90% of them do not comply with their assignments and there
are many unintended missing values due to patient dropout is quite possibly less
likely to lead to correct inferences for causal inferences than a carefully conducted
observational study with similar patients, with many covariates recorded that are
relevant to well-understood reasons for the assignment of treatment versus control
conditions, and with no unintended missing values.

The underlying theoretical perspective for the approach taken here was called
the “Rubin Causal Model (RCM)” by Holland (1986) for a sequence of papers
written in the 1970s [Rubin (1974, 1975, 1976a, 1977, 1978, 1979a, 1980)]. The
RCM can be seen as having two essential parts, together called the “potential out-
comes with assignment mechanism” perspective [Rubin (1990a), page 476], and a
third optional part, which involves extensions to include Bayesian inference, only
briefly mentioned here because our focus is on design, not analysis.

The first part of the RCM is conceptual, and it defines causal effects as com-
parisons of “potential outcomes” (defined in Section 2) under different treatment
conditions on a common set of units. It is critical that this first part be carefully ar-
ticulated if causal inferences are to provide meaningful guidance for practice. The
second part concerns the explicit consideration of an “assignment mechanism.”
The assignment mechanism describes the process that led to some units being
exposed to the treatment condition and other units being exposed to the control
condition. The careful description and implementation of these two “design” steps
is absolutely essential for drawing objective inferences for causal effects in prac-
tice, whether in randomized experiments or observational studies, yet the steps are
often effectively ignored in observational studies relative to details of the methods
of analysis for causal effects. One of the reasons for this misplaced emphasis may
be that the importance of design in practice is often difficult to convey in the con-
text of technical statistical articles, and, as is common in many academic fields,
technical dexterity can be more valued than practical wisdom.

This article is an attempt to refocus workers in observational studies on the
importance of design, where by “design” I mean all contemplating, collecting, or-
ganizing, and analyzing of data that takes place prior to seeing any outcome data.
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Thus, for example, design includes conceptualization of the study and analyses
of covariate data used to create matched treated-control samples or to create sub-
classes, each with similar covariate distributions for the treated and control sub-
samples, as well as the specification of the primary analysis plan for the outcome
data. However, any analysis that requires final outcome data to implement is not
part of design. The same point has been emphasized in Rubin (2002, 2007) and the
subsequent editorial by D’Agostino and D’Agostino (2007).

A brief review of the two essential parts of the RCM will be given in Section 2,
which introduces terminology and notation; an encyclopedia entry review is given
by Imbens and Rubin (2008a), a chapter length review is in Rubin (2008), and a
full-length text from this perspective is Imbens and Rubin (2008b). Section 3 fo-
cuses on the assignment mechanism, the real or hypothetical rule used to assign
treatments to the units, and on the importance of trying to reconstruct the hypo-
thetical randomized experiment that led to the observed data, this reconstruction
being conducted without examining any final outcome data in that observational
data set.

Then Section 4 illustrates the design of an observational study using propensity
scores and subclassification, first in the context of a classic single-covariate ex-
ample from Cochran (1968) with one background covariate. Section 4 goes on to
explain how propensity score methods allow the design of observational studies to
be extended to cases with many covariates, first with an example comparing treat-
ments for breast cancer to illustrate how this extension can be applied, and second,
with a marketing example to illustrate the kind of balance on observed covariates
that can be achieved in practice. Section 5 uses a Karolinska Institute example to
illustrate a different point: that the same observational data set may be used to
support two (or more) different templates for underlying randomized experiments,
and one that may be far more plausible than the other. The concluding Section 6
briefly summarizes major points.

2. Brief review of the parts of the RCM relevant to design.

2.1. Part one: units, treatments, potential outcomes. Three basic concepts are
used to define causal effects in the RCM. A unit is a physical object, for example,
a patient, at a particular place and point in time, say, time t . A treatment is an
action or intervention that can be initiated or withheld from that unit at t (e.g., an
anti-hypertensive drug, a job-training program); if the active treatment is withheld,
we will say that the unit has been exposed to the control treatment. Associated with
that unit are two potential outcomes at a future point in time, say, t∗ > t : the value
of some outcome measurements Y (e.g., cholesterol level, income, possibly vector
valued with more than one component) if the active treatment is given at t, Y (1),
and the value of Y at the same future point in time if the control treatment is
given at t, Y (0). The causal effect of the treatment on that unit is defined to be
the comparison of the treatment and control potential outcomes at t∗ (e.g., their
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difference, their ratio, the ratio of their squares). The times t can vary from unit to
unit in a population of N units, but typically the intervals, t∗ − t , are essentially
constant across the N units.

The full set of potential outcomes comprises all values of the outcome Y that
could be observed in some real or hypothetical experiment comparing the active
treatment to the control treatment in a population of N units. Under the “Stable
Unit-Treatment Value Assumption (SUTVA)” [Rubin (1980, 1990a)], the full set
of potential outcomes for two treatments and the population of N units can be rep-
resented by an array with N rows, one for each unit, and two “super” columns, one
for Y(0) and one for Y(1), “super” in the sense that Y can be multi-component.
The fundamental problem facing causal inference [Holland (1986); Rubin (1978),
Section 2.4] is that for the ith unit, only one of the potential outcomes for each unit,
either Y(0) or Y(1), can ever be observed. In contrast to outcome variables, covari-
ates are variables, X, that for each unit take the same value no matter which treat-
ment is applied to the unit, such as quantities determined (e.g., measured) before
treatments are assigned (e.g., age, pre-treatment blood pressure or pre-treatment
education). The values of all these variables under SUTVA is the N row array,
[X,Y (0), Y (1)], which is the object of causal inference called “the science.”

A causal effect is, by definition, a comparison of treatment and control potential
outcomes on a common set of units; for example, the average Y(1) minus the
average Y(0) across all units, or the median log Y(1) verses the median log Y(0)

for those units who are female between 31 and 35 years old, as indicated by their
X values, or the median [logY(1)− logY(0)] for those units whose Y(0) and Y(1)

values are both positive. It is critically important in practice to keep this definition
firmly in mind.

This first part of the RCM is conceptual and can, and typically should, be con-
ducted before seeing any data, especially before seeing any outcome data. It forces
the conceptualization of causal questions in terms of real or hypothetical manip-
ulations: “No causation without manipulation” [Rubin (1975)]. The formal use of
potential outcomes to define unit-level causal effects is due to Neyman in 1923
[Rubin (1990a)] in the context of randomized experiments, and was a marvelously
clarifying contribution. But evidently this notation was not formally extended to
nonrandomized settings until Rubin (1974), as discussed in Rubin (1990a, 2005)
and Imbens and Rubin (2008a, 2008b).

The intuitive idea behind the use of potential outcomes to define causal effects
must be very old. Nevertheless, in the context of nonrandomized observational
studies, prior to 1974 everyone appeared to use the “observed outcome” notation
when discussing “formal” causal inference. More explicitly, letting W be the col-
umn vector indicating the treatment assignments for the units (Wi = 1 if treated,
Wi = 0 if control), the observed outcome notation replaces the array of potential
outcomes [Y(0), Y (1)] with Yobs, where the ith component of Yobs is

Yobs,i = WiYi(1) + (1 − Wi)Yi(0).(2.1)
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The observed outcome notation is inadequate in general, and can lead to serious
errors—see, for example, the discussions in Holland and Rubin (1983) on Lord’s
paradox, and in Rubin (2005), where errors are explicated that Fisher made be-
cause (I believe) he eschewed the potential outcome notation. The essential prob-
lem with Yobs is that it mixes up the science [i.e., Y(0) and Y(1)] with what is done
to learn about the science via the assignment of treatment conditions to the units
(i.e., Wi).

2.2. Part 2: the assignment mechanism. The second part of the RCM is the
formulation, or positing, of an assignment mechanism, which describes the reasons
for the missing and observed values of Y(0) and Y(1) through a probability model
for W given the science:

Pr(W |X,Y (0), Y (1)).(2.2)

Although this general formulation, with the possible dependence of assignments
on the yet to be observed potential outcomes, arose first in Rubin (1975), special
cases were much discussed prior to that. For example, randomized experiments
[Neyman (1923, 1990), Fisher (1925)] are “unconfounded” [Rubin (1990b)],

Pr(W |X,Y (0), Y (1)) = Pr(W |X),(2.3)

and they are “probabilistic” in the sense that their unit level probabilities, or
propensity scores −ei , are bounded between 0 and 1:

0 < ei < 1,(2.4)

where

ei ≡ Pr(Wi = 1|Xi).(2.5)

When the assignment mechanism is both probabilistic [(2.4) and (2.5)] and un-
confounded (2.3), then for all assignments W that have positive probability, the
assignment mechanism generally can be written as proportional to the product of
the unit level propensity scores, which emphasizes the importance of propensity
scores in design:

Pr(W |X,Y (0), Y (1)) ∝
N∏

i=1

ei or = 0.(2.6)

The collection of propensity scores defined by (2.5) is the most basic ingredient
of an unconfounded assignment mechanism because of (2.6), and its use for ob-
jectively designing observational studies will be developed and illustrated here,
primarily in Section 4, but also in the context of a more complex design discussed
in Section 5.



814 D. B. RUBIN

The term “propensity scores” was coined in Rosenbaum and Rubin (1983),
where an assignment mechanism satisfying (2.4) and (2.5) is called “strongly ig-
norable,” a stronger version of “ignorable” assignment mechanisms, coined in Ru-
bin (1976a, 1978), which allows possible dependence on observed values of the
potential outcomes, Yobs defined by (2.1), such as in a sequential experiment:

Pr(W |X,Y (0), Y (1)) = Pr(W |X,Yobs).

But until Rubin (1975), randomized experiments were not defined using (2.3)
and (2.4), which explicitly show such experiments’ freedom from any dependence
on observed or missing potential outcomes. Instead, randomized experiments were
described in such a way that the assignments only depended on available covari-
ates, and so implicitly did not involve the potential outcomes themselves. But ex-
plicit mathematical notation, like Neyman’s, can be a major advance over implicit
descriptions.

Other special versions of assignment mechanisms were also discussed prior to
Rubin (1975, 1978), but without the benefit of explicit equations for the assign-
ment mechanism showing possible dependence on the potential outcomes. For ex-
ample, in economics, Roy (1951) described, without equations or notation, “self-
optimizing” behavior where each unit chooses the treatment with the optimal out-
come. And another well-known example from economics is Haavelmo’s (1944)
formulation of supply and demand behavior. But these and other formulations in
economics and elsewhere did not use the notation of an assignment mechanism,
nor did they have methods of statistical inference for causal effects based on the
assignment mechanism. Instead, “regression” models were used to predict Yobs,i
from Xi and Wi , with possible restrictions on some regression coefficients and/or
on “error” terms. In these models certain regression coefficients (e.g., for Wi or
for interactions with Wi ) were interpreted as causal effects; analogous approaches
were used in other social sciences, as well as in epidemiology and medical re-
search, and are still common. Such regression models were and are based on com-
bined assumptions about the assignment mechanism and about the science, which
were typically only vaguely explicated because they often were stated through re-
strictions on error terms, and therefore could, and sometimes did, lead to mistakes.

Inferential methods based only on the assumption of a randomized assignment
mechanism were proposed by Fisher (1925) and described by Neyman (1923) and
further developed by others [see Rubin (1990a) for some references]. The exis-
tence of these assignment-based methods, and their success in practice, documents
that the model for the assignment mechanism is more fundamental for inference
for causal effects than a model for the science. These methods lead to concepts
such as unbiased estimation and asymptotic confidence intervals (due to Neyman),
and p-values or significance levels for sharp null hypotheses (due to Fisher), all
defined by the distribution of statistics (e.g., the difference of treatment and con-
trol sample means) induced by the assignment mechanism. In some contexts, such
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as the U.S. Food and Drug Administration’s approval of a new drug, such assign-
ment mechanism-based analyses are considered the gold standard for confirmatory
inferences.

The third and final part of the RCM is optional; it involves specifying a full prob-
ability model for the science, the quantity being conditioned on in the assignment
mechanism (2.2), and therefore treated as fixed in assignment-based approaches.
This approach is Bayesian, and was developed by Rubin (1975, 1978) and further
developed, for example, in Imbens and Rubin (1997) and in many other places.
This can, in special simple cases, lead to the use of standard models, such as ordi-
nary least squares regression models, but such models are generally not relevant to
the design of observational studies.

Of course, there are other frameworks for causal inference besides mine, in-
cluding ones where models have some relevance, but that is not the topic or fo-
cus of this article. The reader interested in various uses of models on the science
(X,Y (0), Y (1)) can examine the text by Morgan and Winship (2007), which pro-
vides a fairly comprehensive discussion of different approaches. Also informative,
but with an applied and prescriptive attitude, including some advice on design is-
sues, is the text by Shadish, Cook and Campbell (2002).

3. Design observational studies to approximate randomized trials—gener-
al advice.

3.1. Overview. A crucial idea when trying to estimate causal effects from an
observational dataset is to conceptualize the observational dataset as having arisen
from a complex randomized experiment, where the rules used to assign the treat-
ment conditions have been lost and must be reconstructed. There are various steps
that I consider essential for designing an objective observational study. These will
be described in this section and then illustrated in the remaining parts of this arti-
cle. In practice, the steps are not always conducted in the order given below, but
often they are, especially when facing a particular candidate data set.

3.2. What was the hypothetical randomized experiment that led to the observed
dataset? As a consequence of our conceptualization of an observational study’s
data as having arisen from a hypothetical randomized experiment, the first ac-
tivity is to think hard about that hypothetical experiment. To start, what ex-
actly were the treatment conditions and what exactly were the outcome (or re-
sponse) variables? Be aware that a particular observational dataset can often be
conceptualized as having arisen from a variety of different hypothetical experi-
ments with differing treatment and control conditions and possibly differing out-
come variables. For example, a dataset with copious measurements of humans’
prenatal exposures to exogenous agents, such as hormones or barbiturates [e.g.,
Rosenbaum and Rubin (1985), Reinisch et al. (1995)], could be proposed to have
arisen from a randomized experiment on prenatal hormone exposure, or a ran-
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domized experiment on prenatal barbiturate exposure, or a randomized factorial
experiment on both hormone and barbiturate exposure. But the investigator must
be clear about the hypothetical experiment that is to be approximated by the ob-
servational data at hand. Running regression programs is no substitute for careful
thinking, and providing tables summarizing computer output is no substitute for
precise writing and careful interpretation.

3.3. Are sample sizes in the dataset adequate? If the step presented in Sec-
tion 3.1 is successful in the limited sense that measurements of both treatment
conditions and outcomes seem to be available or obtainable from descriptions of
the observational dataset, the next step is to decide whether the sample sizes in
this dataset are large enough to learn anything of interest. Here is where tradi-
tional power calculations are relevant; also extensions, for example, involving the
ratios of sample sizes needed to obtain well-matched samples [Rubin (1976b), Sec-
tion 5], are relevant, and should be considered before plunging ahead. Sometimes,
the sample sizes will be small, but the data set is the only one available to address
an important question. In such a case, it is legitimate to proceed, but efforts to
create better data should be initiated.

If the available samples appear adequate, then the next step is to strip any fi-
nal outcome measurements from the dataset. When designing a randomized ex-
periment, we cannot look at any outcome measurements before doing the design,
and this crucial feature of randomized experiments can be, and I believe must be,
implemented when designing observational studies—outcome-free design is ab-
solutely critical for objectivity. This point was made very strongly in Rubin (2007),
but somewhat surprisingly, it was not emphasized much in older work, for exam-
ple, in Cochran’s work on observational studies as reviewed in Rubin (1984), or
even in most of my subsequent work on matching summarized in Rubin (2006)
prior to the mid-1990s. But I now firmly believe that it is critical to hide all out-
come data until the design phase is complete. A subtlety here concerns “interme-
diate outcome data” discussed in Section 5, such as compliance measurements.

3.4. Who are the decision makers for treatment assignment and what measure-
ments were available to them? The next step is to think very carefully about why
some units (e.g., medical patients) received the active treatment condition (e.g.,
surgery) versus the control treatment condition (e.g., no surgery): Who were the
decision makers and what rules did they use? In a randomized experiment, the
randomized decision rules are explicitly written down (hopefully), and in any sub-
sequent publication, the rules are likewise typically explicitly described. But with
an observational study, we have to work much harder to describe and justify the hy-
pothetical approximating randomized assignment mechanism. In common practice
with observational data, however, this step is ignored, and replaced by descriptions
of the regression programs used, which is entirely inadequate. What is needed is a
description of critical information in the hypothetical randomized experiment and
how it corresponds to the observed data.
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For example, what were the background variables measured on the experimen-
tal units that were available to those making treatment decisions, whether observed
in the current dataset or not? These variables will be called the “key covariates”
for this study. Was there more than one decision maker, and if so, is it plausible
that all decision makers used the same rule, or nearly so, to make their treatment
decisions? If not, in what ways did the decision rules possibly vary? It is remark-
able to me that so many published observational studies are totally silent on how
the authors think that treatment conditions were assigned, yet this is the single
most crucial feature that makes their observational studies inferior to randomized
experiments.

3.5. Are key covariates measured well? Next, consider the existence and qual-
ity of the key covariates’ measurements. If the key covariates are very poorly mea-
sured, or not even available in the dataset being examined, it is typically a wise
choice to look elsewhere for data to use to study the causal question at hand.
Sometimes surrogate variables can be found that are known to be highly correlated
with unmeasured key covariates and can proxy for them. But no amount of fancy
analysis can salvage an inadequate data base unless there is substantial scientific
knowledge to support heroic assumptions. This is a lesson that many researchers
seem to have difficulty learning. Often the dataset being used is so obviously defi-
cient with respect to key covariates that it seems as if the researcher was committed
to using that dataset no matter how deficient. And interactions and nonlinear terms
should not be forgotten when considering covariates that may be key; for example,
the assignment rules for medical treatments could differ for those with and without
medical insurance.

3.6. Can balance be achieved on key covariates? The next step is to try to
find subgroups (subclasses, or matched pairs) of treated and control units such
that within a subgroup, the treated and control units appear to be balanced with
respect to their distributions of key covariates. That is, within such a subgroup, the
treated and control units should look as if they could have been randomly divided
(usually not with equal probability) into treatment and control conditions. Often,
it will not be possible to achieve such balance in an entirely satisfactory way. In
that situation, we may have to restrict inferences to a subpopulation of units where
such balance can be achieved, or we may even decide that with this dataset we
cannot achieve balance with enough units to make the study worthwhile. If so,
we should usually forgo using this dataset to address the causal question being
considered. A related issue is that if there appear to be many decision makers
using differing rules (e.g., different hospitals with different rules for when to give
a more expensive drug rather than a generic version), then achieving this balance
will be more difficult because different efforts to create balance will be required for
the differing decision makers. This point will be clearer in the context of particular
examples.
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3.7. The result. These six steps combine to make for objective observational
study design in the sense that the resultant designed study can be conceptualized
as a hypothetical, approximating randomized block (or paired comparison) exper-
iment, whose blocks (or matched pairs) are our balancing groups, and where the
probabilities of treatment versus control assignment may vary relatively dramati-
cally across the blocks. This statement does not mean the researcher who follows
these steps will achieve an answer similar to the one that would have been found
in the analogous randomized experiment, but at least the observational study has
a chance of doing so, whereas if these steps are not followed, I believe that it is
only blind luck that could lead to a similar answer as in the analogous randomized
experiment.

Sometimes the design effort can be so extensive that a description of it, with no
analyses of any outcome data, can be itself publishable. For a specific example on
peer influence on smoking behaviors, see Langenskold and Rubin (2008).

4. Examples using propensity scores and subclassification.

4.1. Classic example with one observed covariate. The following very simple
example is taken from Cochran (1968) classic article on subclassification in obser-
vational studies, which uses some smoking data to illustrate ideas. Let us suppose
that we want to compare death rates (the outcome variable of primary interest)
among smoking males in the U.S., where the treatment condition is considered
cigarette smoking and the control condition is cigar and pipe smoking. There ex-
ists a very large dataset with the death rates of smoking males in the U.S., and it
distinguishes between these two types of smokers. So far, so good, in that we have
a dataset with Y and treatment indicators, and it is very large. Now we strip this
dataset of all outcome data; no survival (i.e., Y ) data are left and are held out of
sight until the design phase is complete.

Next we ask (in a simple minded way, because this is only an illustrative ex-
ample), who is the decision maker for treatment versus control, and what are the
key covariates used to make this decision? It is relatively obvious that the main
decision maker is the individual male smoker. It is also relatively obvious that the
dominant covariate used to make this decision is age—most smokers start in their
teens, and most start by smoking cigarettes, not pipes or cigars. Some pipe and
cigar smokers start in college, but many start later in life. Cigarette smokers tend to
have a more uniform distribution of ages. Other possible candidate key covariates
are education, socio-economic status, occupational status, income, and so forth,
all of which tend to be correlated with age, so to illustrate, we focus on age as our
only X variable. Then our hypothetical randomized experiment starts with male
smokers and randomly assigns them to cigarette or cigar/pipe smoking, where the
propensity to be a cigarette smoker rather than a cigar/pipe smoker is viewed as
a function of age. In this dataset, age is very well-measured. When we compare
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the age distribution of cigarette smokers and age distribution of cigar/pipe smok-
ers in the U.S. in this dataset, we see that the former are younger, but that there
is substantial overlap in the distributions. Before moving on to the next step, we
should worry about how people in the hypothetical experiment who died prior to
the assembling of the observational dataset are represented, but, for simplicity in
this illustrative example, we will move on to the next step.

How do we create subgroups of treatment and control males with more similar
distributions of age than is seen overall, in fact, so similar that we could believe
that the data arose from a randomized block experiment? Cochran’s example used
subclassification. First, the smokers are divided at the overall median into young
smokers and old smokers—two subclasses, and then divided into young, middle
aged, and old smokers, each of these three subclasses being equal size, and so
forth. Finally, nine subclasses are used. The age distributions within each of the
nine subclasses are very similar for the treatment condition and the control condi-
tion, just as if the men had been randomly assigned within the age subclasses to
treatment and control, because there is such a narrow range of ages within each
of the nine subclasses. And of great importance, there do exist both treatment and
control males in each of nine subclasses.

The design phase can be considered complete for our simple illustrative exam-
ple. Our underlying hypothetical randomized experiment that led to the observed
dataset is a randomized block experiment with nine blocks defined by age, where
the probability of being assigned to the treatment condition (cigarette smoking)
rather than the control condition (cigar/pipe smoking) decreases with age. We are
now allowed to look at the outcome data within each subclass and compare treat-
ment and control death rates. We find that, averaging over the nine blocks (sub-
classes), the death rates are about 50% greater for the cigarette smokers than the
cigar and pipe smokers. Incidentally, the full data set with no subclassification
leads to nearly the opposite conclusion; see Cochran (1968) or Rubin (1997) for
details.

But what would have happened if we decided that we wanted to subclassify
also on education, socio-economic status, and income, each covariate using, let’s
say, five levels [a minimum number implicitly recommended in Cochran (1968)]?
There would be four key covariates, each with five levels, yielding a total of 625
subclasses. And many observational studies have many more than four key co-
variates that are known to be used for making treatment decisions. For example,
with 20 such covariates, even if each is dichotomous, there are 220 subclasses—
greater than a million, and as a result, many subclasses would probably have only
one unit, either a treated or control, with no treatment-control comparison possi-
ble. How should we design this step of observational studies in such more realistic
situations?

4.2. Propensity score methodology. Rosenbaum and Rubin (1983) proposed a
class of methods to try to achieve balance in observational studies when there are
many key covariates present. In recent years there has been an explosion of work
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on and interest in these methods; the Introduction in Rubin (2006) offers some
references. Sadly, many of the articles that use propensity score methods do not
use them correctly to help design observational studies according to the guidelines
in Section 3, which are motivated by the theoretical perspective of Section 2 and
illustrated in the trivial one-covariate example of Section 4.1. Rather, these inap-
propriate applications, for example, use the outcome data to help choose propen-
sity score models, and use the propensity score only as a predictor in a regression
model with the outcome, Yobs, as the dependent variable.

The propensity score is the observational study analogue of complete random-
ization in a randomized experiment in the sense that its use is not intended to in-
crease precision but only to eliminate systematic biases in treatment-control com-
parisons. In some cases, however, its use can increase precision; for the reason,
see Rubin and Thomas (1992). As we have seen in earlier sections, it is formally
defined as the probability of a unit receiving the treatment condition, rather than
the control condition, as a function of observed covariates, including indicator vari-
ables for the individual decision makers and associated interactions, if needed. The
propensity score is rarely known in an observational study, and therefore must be
estimated, typically using a model such as logistic regression, but this choice, al-
though common, is by no means mandatory or even ideal in many circumstances.
The critical aspect of the propensity score is that it models the reasons for treat-
ment versus control assignment at the level of the decision maker. For instance,
in the context of the expanded tobacco example of Section 4.1, it could model the
choice of a male smoker to smoke cigarettes versus cigars or pipes as a function of
age, income, education, SES, etc. Once estimated, the linear version of it (e.g., the
beta times X in the logistic regression) can be treated as the only covariate, just
like age in the example of Section 4.1, and it is used to match or subclassify the
treatment and control units.

But we are not done yet. We have to check that balance on all covariates has
been achieved. If the propensity score is correctly estimated and there is balance
on it, then Rosenbaum and Rubin (1983) showed that balance is achieved on all
observed covariates. The achieved balance within matched pairs or subclasses must
be assessed and documented before the design phase is finished. With only one
covariate, balance on that covariate is easily achieved (if it can be achieved) by
using narrow enough subclasses (or bins) of the covariate. With many covariates,
the assessment and re-estimation of propensity score to achieve balance can be
tricky, and good guidance for doing this is still being developed. When selecting
matched pairs, using both the propensity score and some prognostically important
functions of key covariates can often result in increased precision of estimation
[see Rubin (1979b), Rosenbaum and Rubin (1985), Rubin and Thomas (2000)].

Here we illustrate these various ideas in the context of some real examples. The
next example concerns the relative success of two treatments for breast cancer, and
illustrates not only the process of selecting the key background variables for use
in the propensity score estimation, but also illustrates that careful observational
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studies can (not necessarily will) reach the same general conclusions as expensive
randomized experiments. The second example is from a large marketing study and
displays the kind of balance that can be achieved following propensity score sub-
classification, as well as the fact that some units can be unmatchable. The last ex-
ample, in Section 5, uses a data set on large volume versus small volume hospitals
to emphasize that one observational data set can be used to support two (or more)
differing templates for the underlying randomized study of a particular question,
and one template may be considered far better than the other.

4.3. GAO study of treatments for breast cancer. The following example ap-
peared in a Government Accounting Office (GAO) publication that was summa-
rized in Rubin (1997). In the 1960s mastectomy was the standard treatment for
many forms of breast cancer, but there was growing interest in the possibility that
for a class of less severe situations (e.g., small tumors, node negative) a more lim-
ited surgery, which just removed the tumor, might be just as successful as the more
radical and disfiguring operation.

Several large and expensive randomized trials were done for this category of
women with less severe cancer, and the results of these trials are summarized in
Table 1. As can be seen there, these studies suggest that for this class of women
who are willing to participate in a randomized experiment, and for these cancer
treating centers and their doctors, who are also willing to participate, the five-year

TABLE 1
Estimated 5-year survival rates for nodenegative patients in six randomized clinical trials

Estimated Estimated
survival survival
rate for rate for Estimated

Study Women Women women women causal effect

Breast
conservation Mastectomy

Study (BC) (Mas) BC Mas BC–Mas

Study n n % % %

U.S.–NCI† 74 67 93.9 94.7 −0.8
Milanese† 257 263 93.5 93.0 0.5
French† 59 62 94.9 96.2 −1.3
Danish‡ 289 288 87.4 85.9 1.5
EORTC‡ 238 237 89.0 90.0 −1.0
U.S.–NSABP‡ 330 309 89.0 88.0 1.0

† Single-center trial; ‡ Multicenter trial.
Reference: Rubin, D. B. Estimated causal effects from large datasets using propensity scores. Annals
of Internal Medicine (1997); 127, 8(II):757–763.
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survival rate appears to be very similar in the two randomized treatment conditions.
There is, however, an indication from Table 1 that the survival is better overall in
the trials conducted in single centers (the top three rows) than in the multi-center
trials (the bottom three rows), possibly because of more specialized care, including
after care.

The reason this last comment is relevant is that based on these results, the U.S.
National Cancer Institute felt that for this category of women, the recommendation
for general practice should be to have breast conserving operations rather than the
radical version. The GAO was concerned that this advice based on these random-
ized trials may not be wise for general practice, where the surgeons involved may
not be as skilled, after care may be lower quality, the women themselves may be
less research-oriented and therefore less medically astute about their own care, and
so forth, than in the randomized trials. It was not possible to initiate a new random-
ized trial in the general population of women and doctors who may not want to be
randomized; even if it were, the funding, planning, implementing, etc., would take
too long and results concerning five-year survival would be first available a decade
in the future.

Consequently, the GAO implemented an observational study using the SEER
(Surveillance, Epidemiology, End Results) data base, which has relatively com-
plete information on all cancer cases in certain catchment areas. Importantly, it had
detailed information on the kind and diagnosed severity of the cancer, so that they
could use the same exclusion criteria as the randomized experiments, and it had
the kind of treatment used by the surgical team; also, it had survival information,
which of course was the key outcome variable. Moreover, it had many covariates.
And it had about five thousand breast cancer cases of the type studied in the six
randomized experiments during the relevant period, which was considered a large
enough sample to proceed.

So far so good. The outcome data were stripped from the files, and the design
phase proceeded. The following description is from an over 15 year old memory,
and no doubt is somewhat distorted by my current attitudes, but is largely accurate,
I believe. The GAO checked with a variety of physicians about who the decision
makers were for choice of surgery for this category of women. The replies were
that they were usually joint choices made by the surgeon and woman, sometimes
with input from the husband or other family members or friends. Some of the
key covariates were obvious, such as the size of the tumor and the woman’s age
and marital status. Others were less obvious, such as urbanization, region of the
country, year, race, and various interactions (e.g., age by marital status). In any
case, a list of approximately twenty key covariates was assembled, and it turned
out that all had been collected in SEER. More good news. Then the consistency
of the decision makers’ rules across the dataset was considered, although at the
time, not as seriously as I would do it now. It was decided that the way women and
doctors used the key covariates was pretty much the same around the country, and
any differences were probably captured by the observed covariates.
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Propensity scores were estimated by logistic regression, and they were used to
create five subclasses of treatment/control women. The women were ranked by
their estimated propensity scores, and the lowest 20% formed subclass 1, the next
20% formed subclass 2, etc. Within each subclass, balance was checked, not only
on the covariates included in the propensity score, but also on all other important
covariates in the database. For example, the average age of a treated women within
each subclass should be approximately the same as the average age of a control
women in that subclass, and the proportion of each that are married should also be
as similar as if the treatment and control women in that subclass had been randomly
divided (obviously, not with equal probability across the subclasses). When less
balance was found on a key covariate within a subclass than would have occurred
in a randomized experiment, terms were added to the propensity score model and
balance was reassessed. Unfortunately, those tables and the processes never sur-
vived into the final report, but such balance was achieved—not perfectly, but close
enough to believe in the hypothetical underlying randomized block experiment
that led to the observed data.

The results of the subclassification on the propensity score are summarized in
Table 2. In general, this observational study’s results are consistent with those from
the randomized trials. There is essentially no evidence for any advantage to the
radical operation, except possibly in those propensity score subclasses where the
women and doctors were more likely to select mastectomy (subclasses 1, 2, 3), but
the data are certainly not definitive. Similarly, for the women and doctors relatively
more likely to select breast conserving operations, there is some slight evidence of
a survival benefit to that choice. If we believed that the treatment effect should
be the same for all women in the study, these changing results across propensity
subclasses could be viewed as evidence of a confounded and nonignorable treat-

TABLE 2
Estimated 5-year survival rates for node-negative patients in SEER data base within each of five
propensity score subclasses: from tables in U.S. GAO Report [General Accounting Office (1994)]

Propensity score
subclass Treatment condition n Estimate

1 Brest conservation 56 85.6%
Mastectomy 1008 86.7%

2 Brest conservation 106 82.8%
Mastectomy 964 83.4%

3 Brest conservation 193 85.2%
Mastectomy 866 88.8%

4 Brest conservation 289 88.7%
Mastectomy 978 87.3%

5 Brest conservation 462 89.0%
Mastectomy 604 88.5%
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ment assignment (i.e., an omitted key covariate). Overall, however, there appears
to be no advantage to recommending one treatment over the other. It is interesting
to note that, consistent with expectations, the overall survival rates in the observa-
tional dataset are not as good as those in the more specialized centers represented
in Table 1.

4.4. Marketing example. Propensity score methods, like randomization, work
best in large samples. For a trivial example, if we have one man and one woman,
one to be treated and one to be control, randomized treatment assignment in expec-
tation would create a half-man treated and half-woman control, but in reality the
man would be either treated or control and the woman would be in the other con-
dition. With a hundred men and a hundred women, we would expect roughly half
of each to be in each treatment arm. Analogously, with propensity scores, the cre-
ation of narrow subclasses or matched pairs should create balanced distributions in
expectation, which should be easier to achieve and to assess in large samples than
in small ones.

The next example, from Rubin and Waterman (2006), illustrates this feature
well because the sample sizes are large: 100,000 treated doctors and 150,000 con-
trol doctors. “Treated” here means visited by a sales representative (rep) at least
once during a certain six month period; the sales rep tells the doctor the details of a
new weight-loss drug being promoted by a pharmaceutical company. The control
doctors are not visited by a sales rep from that company during that period. The
treatment/control indicator variables come from the companies’ records as pro-
vided by the sales reps. The key outcome variable is the number of prescriptions
(scripts) of this drug written by the doctor during the following six months; this
information on scripts is obtained several months later from a third party vendor,
which is updated at regular intervals. The previous version of this data source and
other sources have all sorts of background information on the doctors, such as sex,
race, age, years since degree, size of practice, medical specialty, number of scripts
written in prior years for the same class of drugs as being described by the sales
rep, etc. In fact, there are well over 100 basic covariates available. The objective
of the observational study is to estimate the causal effects of the reps visiting these
doctors. It costs money to pay the sales reps’ salaries to visit the doctors, and more-
over, many reps get commissions based, in part, on the number of scripts written
by the doctors they visited for the detailed drug. Do the visits cause more scripts
to be written, and if so, which doctors should be visited with higher priority? Both
of these, and other similar questions, are causal ones.

The decision-maker for visiting or not the doctors is essentially the sales rep,
and these folks, rather obviously, like to visit doctors who prescribe a lot, who
have large practices, are in a specialty that prescribes a lot of the type of drug
being detailed, etc. Essentially all of these background variables, X, and more, are
available on the purchased data set, which has huge sample sizes; the company has
the indicator W for visited versus not, and next year’s purchased data set will have
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FIG. 1. Histograms for background variable: prior Rx score (0–100) at baseline.

the outcome variables Y on the actual number of scripts written by these doctors
in the next time period. So things look in good shape to estimate and re-estimate
the propensity scores until we achieve balanced distributions within subclasses, or
we decide that there are some types of doctors who have essentially no chance of
being visited or not being visited, and then no estimation of causal effects will be
attempted for them.

Figures 1 and 2 display the initial balance for two important covariates, number
of prior scripts written in the previous year (for drugs in the same class as the de-
tailed drug) on a scale from 0 (minimum) to 100 (the arbitrarily scaled maximum),

FIG. 2. Histograms for background variable: specialty.
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and the specialty. These figures reveal quite dramatic differences between the doc-
tors who were visited and those who were not visited. It is not surprising that the
visited doctors were the ones who wrote many more prescriptions (per doctor) than
the not visited doctors. But the visited doctors also have a different distribution of
specialties than the not visited doctors. For example, ob-gyn doctors are visited
relatively less often than doctors with other specialties; presumably, ob-gyn doc-
tors do not prescribe weight-loss drugs for their pregnant patients, and the sales
reps use this information.

Propensity scores were estimated by logistic regression based on various func-
tions of all of the covariates. Figure 3 displays the histograms for the estimated
linear propensity scores (the β̂X in the logistic regression) among the not visited
and visited doctors. These histograms are shown with 15 subclasses (or bins) of
propensity scores. In some bins, there are only visited doctors, that is, in the bins
with linear propensity scores larger than 1.0; in those two bins, there are no doc-
tors who were not visited. Presumably, they are high prescribing doctors with large
practices, etc. No causal inferences are possible for them without making model-
based assumptions relating outcomes to covariates for which there are no data to
assess the underlying assumptions. Similarly, for the four lowest bins of propen-
sity, with linear scores less than 0.1, all doctors are not visited, and so, similarly,
no causal inferences about the effect of visiting this type of doctor are possible
unless based on unassessable assumptions.

But in the other nine bins, there are both visited and not visited doctors, and
the claim is that within each of those bins, the distributions of all covariates that
entered the propensity score estimation will be nearly the same for the visited

FIG. 3. Histograms for summarized background variables: linear propensity score.
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FIG. 4. Histograms for a variable in a subclass of propensity scores: prior Rx score.

and not visited doctors. To be specific, let us examine the bin between 0.5 and
<0.6. Figures 4 and 5 show the distributions of prior number of prescriptions and
specialties in this bin for the not visited and visited doctors. These distributions are
strikingly more similar than their counterparts shown in Figures 1 and 2. In fact,
they are so similar that one could believe that, within that bin, the visited doctors

FIG. 5. Histograms for a variable in a subclass of propensity scores: specialty.
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are a random sample from all doctors in that bin. And the claim is that this will
hold (in expectation) for all covariates used to estimate the propensity score and in
all bins where there are both visited and not visited doctors.

The process of assessing balance was conducted for all variables and all bins and
considered adequate in the sense that it was considered plausible that a randomized
block experiment had become reconstructed, except for the bins with only visited
or not visited doctors. Admittedly, there is an aspect of “art” operating here, in that
random imbalance of prognostically important covariates (i.e., ones thought to be
strongly related to outcome variables) was considered more important to correct
than more extreme imbalance in prognostically unimportant ones, but the field of
statistics will always benefit from scientifically informed thought. Nevertheless,
better guidance on how to conduct this process more systematically is needed,
and is in development; see, for example, Imbens and Rubin [(2008b), Chapters 13
and 14].

In any case the design phase was complete, except for the specification of
model-based adjustments to be made within the bins, and the more detailed analy-
ses used to rank doctors by priority to visit. Readers interested in the conclusions,
which are a bit surprising, should check Rubin and Waterman (2006).

5. A principal stratification example.

5.1. The causal effect of being treated in large volume versus small volume hos-
pitals. The third example illustrates the point that the design phase in some ob-
servational studies may involve conceptualizing the hypothetical underlying ran-
domized experiment that lead to the observed data as being more complex than a
randomized block or randomized paired comparison. In particular, in some situ-
ations, we may have to view the hypothetical experiment as being a randomized
block with noncompliance to the assigned treatment, a so-called “encouragement”
design [Holland (1988)]. In many settings with human subjects, even an essentially
perfectly designed randomized experiment only randomly assigns the encourage-
ment to take treatment or control because we cannot force people to take one or
the other. In the context of a perfectly double-blind experiment, where the subjects
have no idea whether they are getting treatment or control, there will be no differ-
ence in compliance rates between the treatment versus control groups, but there are
often side effects that create different levels of compliance in the conditions [Jin
and Rubin (2008)]. In such cases, the ideas behind “instrumental variables” meth-
ods [Angrist, Imbens and Rubin (1996)] as generalized to “principal stratification”
[Frangakis and Rubin (2002)] can be very useful.

5.2. Propensity score subclassification for diagnosing hospital type. We illus-
trate this design using a small observational data set from the Karolinska Institute
in Stockholm, Sweden. Interest focuses on the treatment of cardia cancer patients
in Central and Northern Sweden, and whether it is better for these patients to be
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treated in a large or small volume hospital, where volume is defined by the num-
ber of patients with that type of cancer treated in recent years. The data set has
158 cardia cancer patients diagnosed between 1988 and 1995, 79 diagnosed at
large volume hospitals, defined as treating more than ten patients with cardia can-
cer during that period, and 79 diagnosed at the remaining small volume hospitals.
These sample sizes are small, but the data set is the only one currently available in
Sweden to study this important question.

Generally, the commonly held view is that being treated in a large volume hos-
pital is better, but the opposite argument could be made when the large volume
treating hospital is far from a support system of family and friends, which presum-
ably may be more available in small volume hospitals. The most critical policy
issue concerns whether the cardia cancer treatment centers at small volume hos-
pitals can be closed without having a deleterious effect on patient survival. If so,
resources could be saved because patients diagnosed at small volume hospitals
could be transferred to large volume treating hospitals, and if it is true that large
volume cardia cancer treatment centers offer better survival outcomes, then the
small volume ones should arguably be closed in any case. Our data set has hospital
volume and patient survival information in it.

Because of the uniform training of doctors under the socialized medical system
in Sweden, the assignment of large versus small “home hospital type,” where the
cancer was diagnosed, was considered by medical experts to be unconfounded,
that is, essentially assigned at random within levels of measured covariates, X:
age at diagnosis, date of diagnosis, sex of patient and urbanization. The decision
maker is the individual patient, so our dataset seems well-suited for studying the
causal effect of home hospital type on survival.

Propensity score analyses were done to predict diagnosing (home) hospital type
from X, including nonlinear terms in X. It was decided that the age of patient
should be limited to between 35 and 84 because the two patients under 35 (ac-
tually both under 30) were both diagnosed in large volume hospitals, and longer
term survival in the 8 cardia cancer patients 85 and over was considered unlikely no
matter where treated, and would therefore simply add noise to the survival data.
Propensity score analyses on the remaining 148 patients led to five subclasses;
these are summarized in Figures 6–8 are “Love plots” [Ahmed et al. (2006)] sum-
marizing balance before and after this subclassification, for binary and continuous
covariates, respectively.

5.3. Treating hospital type versus home hospital type. If patients were always
treated in the same hospital where they were diagnosed, estimating the causal ef-
fects of hospital type would now be easy because of the assumed unconfounded
assignment of diagnosing hospital type. However, there are transfers between hos-
pital types, typically from small to large—33 of the 75 diagnoised in a small hos-
pital transferred to a large one for treatment, but sometimes from large to small—
2 of 75 transferred this direction. The reasons for these transfers are considered
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FIG. 6. Cardia cancer, number of people, subclassified by propensity score.

quite complex. The decisions are made by the individual patient, but clearly with
input from doctors, relatives, and friends, where the issues being discussed in-
clude speculation about the probability of success of the treatment at one versus
the other, the patient’s willingness to tolerate invasive operations, the importance

FIG. 7. Cardia cancer, difference in means for binary covariates and pscore.
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FIG. 8. Cardia cancer, t-statistics for continuous covariates.

of being close to relatives and friends, and a host of other reasons. Consequently,
there is no doubt that given the observed covariates and the home hospital type,
the assignment of treating hospital type is confounded. Therefore, doing a direct
analysis of treating hospital type, even if propensity score methods were used to
create subclasses of patients with identical distributions of all observed covariates
in large and small treating hospitals, would be considered unsatisfactory because
key covariates were not available in the data set.

We can, however, still make progress based on the assumed unconfounded as-
signment of home hospital type by using a different template for our observational
study of treating hospital type: a randomized experiment with noncompliance.
That is, think of patients who transfer, or, more generally, who would have trans-
ferred if assigned to a different hospital type, as being noncompliers, and therefore,
our template is that of a randomized encouragement design, where the encourage-
ment to be treated in the diagnosing large or small hospital is randomly assigned
within propensity score strata. The crucial idea here is then to stratify also on the
bivariate “intermediate outcome,” treating hospital when assigned to a large home
hospital and treating hospital when assigned to a small home hospital. Even though
only one of these intermediate variables is actually observed, progress can still be
made. Notice that the design phase does here look at intermediate outcome data,
treating hospital type, but not the outcome data on survival, on which decisions
will be based. Survival data are not available at this stage!

Denote the home hospital type by h, which takes the value � when assigned
large hospital type and s when assigned small home hospital type. Similarly, let T
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TABLE 3
Cardia cancer: observed counts in observed groups and approximate counts in principal strata

under monotonicity assumption—subclass 1

(1) (2) (3) (4) (5) (6)

“Assigned”/
randomized

Underlying
Approximate
proportion in
population in

principal strata

Approximate
N in LS

principal
stratum

Treating
hospital
type T

principal
home hospital type strata: h =

h # # � s

(1)
� 5

L 5
L L 44%
L S 56% 3

(2) S 0 S S 0%

(3)
s 25

L 11
L L 44%
S S 0%

(4) S 14 L S 56% 14

denote treating hospital type, which takes the value L when the treating hospital is
large, and takes the value S when treating hospital is small. The first three columns
of Tables 3–7 summarize the observed values of h and T within each of the five
propensity score subclasses. Clearly, in all subclasses, transfers into large hospitals
are common, but only in subclass 5 are there any � → S transfers. But do we
estimate that there are compliers, who are treated in both large and small treating
hospital types, within each subclass? If not, we will not be able to estimate the

TABLE 4
Cardia cancer: observed counts in observed groups and approximate counts in principal strata

under monotonicity assumption—subclass 2

(1) (2) (3) (4) (5) (6)

“Assigned”/
randomized

Underlying
Approximate
proportion in
population in

principal strata

Approximate
N in LS

principal
stratum

Treating
hospital
type T

principal
home hospital type strata: h =

h # # � s

(1)
� 12

L 12
L L 71%
L S 29% 3

(2) S 0 S S 0%

(3)
s 17

L 12
L L 71%
S S 0%

(4) S 5 L S 29% 5
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TABLE 5
Cardia cancer: observed counts in observed groups and approximate counts in principal strata

under monotonicity assumption—subclass 3

(1) (2) (3) (4) (5) (6)

“Assigned”/
randomized

Underlying
Approximate
proportion in
population in

principal strata

Approximate
N in LS

principal
stratum

Treating
hospital
type T

principal
home hospital type strata: h =

h # # � s

(1)
� 17

L 17
L L 38%
L S 62% 11

(2) S 0 S S 0%

(3)
s 13

L 5
L L 38%
S S 0%

(4) S 8 L S 62% 8

causal effect of treating hospital type for the entire group of patients—a critical
design issue with this template.

5.4. Principal strata and the monotonicity assumption. Formally in the RCM,
there are two types of outcomes: (1) the treating hospital type, T , which equals
T (�) when h = � and T (s) when h = s, and (2) the survival time since diagnosis,
Y , which equals Y(�) when h = � and Y(s) when h = s. The possible values of
(T (�), T (s)) will be denoted LL,LS,SL, or SS [where, for simplicity, LL means the

TABLE 6
Cardia cancer: observed counts in observed groups and approximate counts in principal strata

under monotonicity assumption—subclass 4

(1) (2) (3) (4) (5) (6)

“Assigned”/
randomized

Underlying
Approximate
proportion in
population in

principal strata

Approximate
N in LS

principal
stratum

Treating
hospital
type T

principal
home hospital type strata: h =

h # # � s

(1)
� 19

L 19
L L 55%
L S 45% 9

(2) S 0 S S 0%

(3)
s 11

L 6
L L 55%
S S 0%

(4) S 5 L S 45% 5
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TABLE 7
Cardia cancer: observed counts in observed groups and approximate counts in principal strata

under monotonicity assumption—subclass 5

(1) (2) (3) (4) (5) (6)

“Assigned”/
randomized

Underlying
Approximate
proportion in
population in

principal strata

Approximate
N in LS

principal
stratum

Treating
hospital
type T

principal
home hospital type strata: h =

h # # � s

(1)
� 20

L 18
L L 67%
L S 23% 5

(2) S 2 S S 10%

(3)
s 9

L 6
L L 67%
S S 10%

(4) S 3 L S 23% 2

same as (L,L), etc.], and those values define four possible “principal strata.” LS
can be thought of as the stratum of compliers, that is, nontransfer patients; the LL
and SS strata can be thought of as noncompliers who will always be treated at the
same hospital type no matter where assigned, and SL can be thought of as defiers,
who will transfer no matter where assigned. The values of the principal strata are
not affected by assignment of home hospital type—which value [T (�) or T (s)] is
observed is affected by treatment assignment, but the bivariate values are not, and
therefore (T (�), T (s)) is, formerly, a partially observed covariate.

Now, we consider what is called the “monotonicity” assumption or the “no-
defier” assumption—that is, we assume that the SL principal stratum is empty.
In our setting, this assumption is very plausible, and because it excludes the SL
principal stratum, we have only three principal strata: LL, LS and SS. Under this
assumption, the possible principal strata for each observed combination of home
hospital type and treating hospital type in each propensity subclass are shown in
the fourth columns of Tables 3–7. The observed � → S group (the second row
in Tables 3–7) must be composed of SS patients because they can be neither LL
nor SL patients, respectively—because they were assigned � but treated in S and
therefore are not LL patients, and there are no SL patients by the monotonicity
assumption. Similarly, the observed s → L group (the third row of Tables 3–7)
must be LL patients because they were assigned s but were treated in L.

In contrast, the observed � → L subgroup (the first row of Tables 3–7) could be
compliers, and so be in LS, or noncompliers who are members of the LL principal
stratum (who were assigned to home hospital type L, and to which they would
have transferred for their treating hospital type if they were assigned to a small
home hospital type). Hence, we split row 1 into two sub-rows in the fourth column
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of Tables 3–7. Similarly, the observed s → S subgroups (the fourth row of Ta-
bles 3–7) could be compliers, and so be in LS, or noncompliers who are members
of the SS principal stratum, and so is also split into two sub-rows.

We can approximate the proportion of patients in each principal stratum, as
shown in the fifth columns of Tables 3–7. More explicitly, from the second row of
Table 7, columns (1) and (3), we see that 2/20 are observed to be � → S. Because
of the assumed random assignment into � and s within propensity score subclasses,
we have that approximately 10% of the patients belong to the principal stratum SS,
as shown in the fifth column of Table 7. Similarly, from the third row of Table 7,
columns (1) and (3), we infer that approximately 6/9 ≈ 67% of patients belong to
principal stratum LL in this subclass, as shown in the fifth columns of Table 7.

Hence, we can approximate the fraction of compliers, the LS principal stratum in
this subclass, by simple subtraction: 100%−10%−67% = 23%. The sixth column
in Table 7 indicates the approximate number of LS patients in each of the four rows
of observed patients. Analogous calculations are summarized in Tables 3–6 for the
other propensity score subclasses. Even if we could perfectly identify all the LS
patients, which we cannot, the sample sizes are small, and so inference for the
causal effect of treating hospital when it equals home hospital will be imprecise.
Nevertheless, we outline the planned analysis in Section 5.6 because these are the
only data available to study this question. Importantly, we anticipate that in each
subclass there are some compliers who are treated in large volume hospitals and
some compliers who are treated in small volume hospitals.

5.5. ITT and CACE = ITTLS and their estimation. The average causal effect
of home hospital type on survival is the comparison of the potential survival out-
comes of all N patients under hi = � and under hi = s,

ITT = 1

N

N∑

i=1

[Yi(�) − Yi(s)],

where ITT is the Intention-To-Treat (ITT) effect of the assignment of large ver-
sus small home hospital type. Under unconfounded assignment of home hospital
type, we are able to estimate ITT by taking the average observed difference in Y

for large volume hospital patients and small volume hospital patients within each
propensity subclass, weighting each subclass-specific estimate by the total number
in that subclass and averaging the estimates. Because we are not examining sur-
vival outcome data at this design stage, we cannot calculate these estimates, but
we saw this approach in the breast cancer example of Section 4. In this problem
using the template of a randomized block experiment with noncompiliance, the
estimation is more subtle.

When Gi = LS, the home hospital type equals the treating hospital type, that
is, hi = Ti . The causal effect of home hospital type in the LS principal stratum is
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defined to be

CACE ≡ ITTLS = 1

NLS

∑

i∈LS

(
Yi(L) − Yi(S)

)
,

where NLS is the number of LS patients, and CACE means “Compliance Aver-
age Causal Effect” [Imbens and Rubin (1997)]. ITTLS can be interpreted as either
the intention-to-treat effect of home hospital type for complying patients or the
intention-to-treat effect of treating hospital type for complying patients, because
for the LS principal stratum, hi = Ti . Under monotonicity, the LS principal stra-
tum is the only stratum of patients where we can learn about the causal effects of
treating hospital type because the patients in the other principal strata, LL and SS,
will always be exposed to the same treating hospital type.

CACE is easily estimated once we identify the individuals in the LS stratum,
and we have not yet identified any particular member of the � → L or s → S rows
(rows one and four) in Tables 3–7 as being in the LS principal stratum, and so we
cannot yet compare average outcomes in this stratum. Nevertheless, we can find a
unique method-of-moments estimate of the causal effects of assigned (= treating)
hospital type within the LS principal stratum under, what are considered, medically
very justifiable assumptions, which in general are called “exclusion restrictions.”
The resulting estimator of CACE is known as the “instrumental variable estimate”
[Angrist, Imbens and Rubin (1996)]. Better (e.g., Bayesian) methods of estimation
exist [e.g., see Imbens and Rubin (1997)].

5.6. Exclusion restrictions. There are two exclusions restrictions. The first ex-
clusion restriction is for patients in the LL principal stratum. It states that, for all
i ∈ LL, Yi(�) = Yi(s), that is, there is no effect on potential outcomes Y of be-
ing assigned to a large (�) versus small (s) home hospital type for patient i ∈ LL.
The medical justification for this restriction is that patient i would be treated in
a large hospital type (L) under either assignment, and one’s medical outcome is
considered a result of where one is treated not where one is diagnosed. The ex-
clusion restriction for patients in the SS principal stratum is analogous; for all
i ∈ SS, Yi(�) = Yi(s), that is, for those patients who would be treated in a small
hospital type (S) whether assigned to l or s, there is no effect of assignment on
the Y potential outcomes.

Now, ITT for all patients can be written as

ITT = πLSITTLS + πSSITTSS + πLLITTLL,

where πLS, πSS and πLL are the fractions of the sample, and ITTLS, ITTSS and
ITTLL are the intention-to-treat effects in the LS, SS and LL strata, respectively.
Because the exclusion restrictions force ITTSS and ITTLL to be identically zero,
this equation becomes

ITT = πLSITTLS,
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or

ITTLS = ITT/πLS.

Thus, the instrumental variables estimate of the ITT effect of treating hospital
among compliers is found by dividing the estimated ITT effect of home hospital
type by the estimated fraction of the sample in LS.

The planned analysis will use Bayesian versions of this estimator within
each propensity score subclass, and then average over all subclasses. An ini-
tial Bayesian analysis that partially benefits from the propensity score analysis
presented here, but also involves data on stomach cancer patients, is presented
in Rubin et al. (2008).

6. Discussion. This article advocates the position that observational studies
for causal effects need to be designed to approximate randomized experiments.
This enterprise requires careful thought and execution, and not simply running
mindless regression programs and looking at coefficients. In most situations, this
design effort will be more intellectually demanding than a similar effort for an
analogous randomized experiment. Of critical importance, final outcome data can-
not be used in design without compromising the objectivity of the study design.
Propensity score methods are extremely helpful tools for reconstructing the under-
lying hypothetical experiment that lead to the observed data. Sometimes, the hypo-
thetical approximating randomized experiment is one with complications, such as
noncompliance, and then the principal stratification framework can be extremely
helpful. But most important is for the worker in observational studies to stay fo-
cused on approximating a plausible hypothetical underlying randomized experi-
ment.

A final comment concerns the application of this perspective to actual random-
ized experiments, especially those with covariates that have not been used in the
randomization (e.g., not used to create blocks). In such cases, we would expect
random imbalances in some covariates, and if there is concern that these covari-
ates may be related to outcomes, the application of the techniques described here,
with no access to final outcome data, preserves the objectivity of the experiment,
whereas model-based adjustments, unless fully specified a priori, would compro-
mise that objectivity. This approach has been applied, for example, in a study of
school vouchers [Barnard et al. (2003)] and in a study of vertical disease transmis-
sion during delivery [Zell et al. (2007)].
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