
The Annals of Applied Statistics
2008, Vol. 2, No. 4, 1452–1477
DOI: 10.1214/08-AOAS178
© Institute of Mathematical Statistics, 2008

A MIXTURE OF EXPERTS MODEL FOR RANK DATA WITH
APPLICATIONS IN ELECTION STUDIES
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A voting bloc is defined to be a group of voters who have similar vot-
ing preferences. The cleavage of the Irish electorate into voting blocs is of
interest. Irish elections employ a “single transferable vote” electoral system;
under this system voters rank some or all of the electoral candidates in order
of preference. These rank votes provide a rich source of preference infor-
mation from which inferences about the composition of the electorate may
be drawn. Additionally, the influence of social factors or covariates on the
electorate composition is of interest.

A mixture of experts model is a mixture model in which the model para-
meters are functions of covariates. A mixture of experts model for rank data
is developed to provide a model-based method to cluster Irish voters into vot-
ing blocs, to examine the influence of social factors on this clustering and to
examine the characteristic preferences of the voting blocs. The Benter model
for rank data is employed as the family of component densities within the
mixture of experts model; generalized linear model theory is employed to
model the influence of covariates on the mixing proportions. Model fitting
is achieved via a hybrid of the EM and MM algorithms. An example of the
methodology is illustrated by examining an Irish presidential election. The
existence of voting blocs in the electorate is established and it is determined
that age and government satisfaction levels are important factors in influenc-
ing voting in this election.

1. Introduction. The President of Ireland is elected every seven years by the
Irish electorate through a preferential voting system known as the single trans-
ferable vote (STV). Under this system voters rank some or all of the presidential
candidates in order of preference. An intricate vote counting process involving the
elimination of candidates and the transfer of votes results in the election of one
candidate as President.

A voting bloc is defined to be a group of voters who have similar voting pref-
erences. The cleavage of any electorate into voting blocs is of interest to political

Received October 2007; revised February 2008.
1Supported by a Government of Ireland Research Scholarship in Science, Engineering and Tech-

nology provided by the Irish Research Council for Science, Engineering and Technology, funded by
the National Development Plan.

2Supported in part by a Science Foundation of Ireland Research Frontiers Programme Grant
(06/RFP/M040).

Key words and phrases. Rank data, mixture models, generalized linear models, EM algorithm,
MM algorithm.

1452

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/08-AOAS178
http://www.imstat.org


A MIXTURE OF EXPERTS MODEL FOR RANK DATA 1453

scientists, politicians and voters. The cleavage of the Irish electorate is of particular
interest, given the detailed, multi-preference votes expressed under the STV voting
system. All the information expressed in the ranked preferences of the votes must
be exploited in order to determine the true composition of the electorate. Further,
the influence of social factors on the voting bloc membership of a voter is also of
interest.

This work aims to establish the presence of voting blocs within the 1997 Irish
presidential electorate, and to determine the characteristic voting preferences of
these blocs. Additionally, the influence of social factors on the voting bloc mem-
berships of voters is explored. The ranked nature of the voting data is modeled
using the Benter model for rank data [Benter (1994)] and a mixture model of
these distributions provides a model-based approach to clustering voters into vot-
ing blocs [Gormley and Murphy (2008a)]. Voting bloc membership probabilities
are treated as multinomial logistic functions of the social factors (or covariates)
associated with a voter. Such a mixture model in which the membership probabili-
ties are functions of covariates is a mixture of experts model [Jacobs et al. (1991)].
Thus, a mixture of experts model for rank data is developed, thereby extending the
mixture model for rank data developed in [Gormley and Murphy (2006, 2008a)]
by including covariate information to aid the characterization of the mixture com-
ponents.

Section 2 details the setting of the 1997 Irish presidential election and provides
an example of the mechanics of the STV vote counting process. A mixture of
experts model for rank data is formulated in Section 3 and unique model fitting
aspects are discussed in Section 4. Model fitting is achieved via a hybrid of the
popular EM algorithm [Dempster, Laird and Rubin (1977)] with the MM algo-
rithm [Hunter and Lange (2004), Lange, Hunter and Yang (2000)] to produce an
algorithm which we call the Expectation Minorization Maximization (EMM) algo-
rithm. The mixture of experts model for rank data is fitted to the 1997 presidential
electorate and the resulting model parameter estimates are discussed in Section 5.
We compare the results in this analysis to other analyses of the data in Section 6.
The article concludes with a discussion of the developed methodology.

2. Irish presidential elections. Irish presidential elections employ the Sin-
gle Transferable Vote (STV) system. Under this system voters rank some or all
of the electoral candidates in order of preference. The votes are totalled through
a series of counts, where candidates are eliminated and their votes are transferred
between candidates. An in-depth description of the electoral system, including the
method of counting votes, is given in Sinnott (1999) and good introductions to
the Irish political system are given in Coakley and Gallagher (1999) and Sinnott
(1995). Further, an illustrative example of the manner in which votes are counted
and transferred follows in Section 2.2. We start with a description of data from the
1997 presidential election in Section 2.1.
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2.1. The 1997 presidential election. The current President of Ireland, Mary
McAleese, is in her second term of office. Originally elected in 1997, she was
automatically re-elected in 2004 as the only validly nominated candidate.

In the 1997 presidential election there were five candidates: Mary Banotti, Mary
McAleese, Derek Nally, Adi Roche and Rosemary Scallon. As detailed in Table 2,
some candidates were endorsed by political parties and others were independent
candidates. Mary McAleese had a high public profile and received the backing
of Fianna Fáil, who were the main political party in the coalition government
at the time. Mary Banotti was another high profile candidate who was endorsed
by the main government opposition party, Fine Gael. Adi Roche was supported by
the Labour party, who were also a government opposition party. The remaining
two candidates ran on independent tickets. In terms of campaign themes, Mary
Banotti, Derek Nally and Adi Roche were considered to be liberal candidates,
whereas Mary McAleese and Rosemary Scallon were deemed more conservative
candidates. A detailed description of the entire presidential election campaign, in-
cluding the nomination and selection of candidates, is given in Marsh (1999).

An opinion poll conducted by Irish Marketing Surveys one month prior to the
election is analyzed in this article. Interviews were conducted on 1100 respondents,
drawn from 100 sampling areas. Interviews took place at randomly located homes,
with respondents selected according to a socioeconomic quota. A range of soci-
ological questions was asked of each respondent, as was their voting preference,
if any, for each of the candidates. These preferences were utilized as a statement
of the intended voting preferences of each respondent. Of the respondents inter-
viewed, 17 indicated that they did not intend to vote—these respondents were ex-
cluded from the analysis. Table 1 details the set of sociological covariates recorded
in the poll.

TABLE 1
The set of covariates recorded in the presidential election opinion poll and the associated levels (in

the case of categorical variables). An explanation of the socioeconomic group codes
are provided in Appendix B

Age Area Gender Government Marital Socioeconomic
satisfaction status group

— City Housewife Satisfied Married AB
Town Nonhousewife Dissatisfied Single C1
Rural Male No opinion Widowed C2

DE
F50+
F50−
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2.2. The vote counting process. A brief overview of the vote counting process
is given here. For illustrative purposes, the transfer of votes in the 1997 Irish pres-
idential election is shown in Table 2.

Under the STV electoral system, a “quota” of votes is calculated which is depen-
dent on the number of seats available and the number of valid votes cast. Specifi-
cally, the quota is computed as

total valid votes cast

number of seats to be filled + 1
+ 1.

Thus, for the 1997 presidential election, where 1,269,836 valid votes were cast and
a single presidential seat was to be filled, the quota was calculated to be 634,919.
Once any candidate at any counting stage obtained or exceeded 634,919 votes, this
candidate was deemed elected as President of Ireland. As detailed in Table 2, in
the first stage of the counting process the number of first preference votes obtained
by each candidate is totaled. No candidate received enough first preference votes
to exceed the quota. Mary McAleese received the largest number of first prefer-
ence votes with 45% of the vote share. Candidates Nally, Roche and Scallon were
eliminated from the election race after the first count, as the sum of their votes was
less than the votes of the next lowest candidate (Mary Banotti).

At the second stage of counting, Nally, Roche and Scallon’s 323,410 first pref-
erence votes were transferred to the candidates given the next valid preference on
those ballot papers. Of votes to be transferred, 66,061 were nontransferable be-
cause only a single preference was expressed on these ballots or lower preferences
on the ballots were for eliminated candidates. Mary McAleese received 131,835

TABLE 2
The transfer of votes in the 1997 presidential election. The quota required to be elected President of

Ireland was 634,919. Mary McAleese (denoted in bold font) was elected

Candidate Endorsing party Count 1 Count 2

Mary Banotti Fine Gael 372,002 +125,514
497,516

Mary McAleese Fianna Fáil 574,424 +131,835
706,259

Derek Nally Independent 59,529 −59,529
Eliminated

Adi Roche Labour 88,423 −88,423
Eliminated

Rosemary Scallon Independent 175,458 −175,458
Eliminated

Nontransferable votes +66,061
66,061

Total valid votes 1,269,836 1,269,836
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of the transferred votes and was therefore elected at the second counting stage, as
she exceeded the quota with 706,259 votes.

3. A mixture of experts model for rank data. The mixture of experts (MoE)
model [Jacobs et al. (1991), Jordan and Jacobs (1994)] combines the ideas of
mixture models [McLachlan and Peel (2000)] and generalized linear models
[McCullagh and Nelder (1983), Dobson (2002)]. A mixture model is used to model
the heterogeneous nature of a population; generalized linear model theory provides
the statistical structure within the mixture.

MoE models account for the relationship between a set of response and covari-
ate variables where it is assumed that the conditional distribution of the response
given the covariates is a finite mixture distribution. The conditional probability of
voter i’s ballot xi , given their associated covariates wi , is

P(xi |wi) =
K∑

k=1

πikP(xi |θk),

where K denotes the number of components (or expert networks) in the mixture,
the gating network coefficient πik = πk(wi) is the probability of voter i being
a complete member of expert network k and θk represents the parameters of the
probability model of the kth expert network. In the current context, an expert net-
work corresponds to a voting bloc in the electorate. A more general mixture of
experts model would allow the expert network parameters to depend on the covari-
ates wi , however, such a model would be difficult to interpret in terms of voting
blocs.

The gating network coefficients are weighting probabilities constrained such
that they are nonnegative and sum to one for each voter. The probability of voter
i’s ballot according to the expert networks in the mixture model are blended by the
gating network coefficients to produce an overall probability. Thus, the probability
of voter i’s ballot is a convex combination of the output probabilities from the ex-
pert networks. Figure 1 provides a graphical illustration of the structure of a single
layer MoE model—a hierarchical MoE model consists of multiple layers of expert
networks and gating networks.

Traditional MoE models, such as those fitted in Jordan and Jacobs (1994),
Jacobs et al. (1991) and Peng, Jacobs and Tanner (1996), employ probability den-
sities for the expert networks which are members of the exponential family, that
is, the traditional MoE model has the form of a mixture of generalized linear mod-
els. In the context of STV voting data, however, the expert network probability
densities must appropriately model the ranked nature of the data. Thus, the Ben-
ter model for rank data [Benter (1994)] is employed; full details are provided in
Section 3.1.

As illustrated in Figure 1, the gating network coefficients are assumed to be
functions of the voter covariates. The intuition here is that the covariates of a voter
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FIG. 1. Graphical illustration of the structure of a single layer mixture of experts model with two
expert networks. The probabilities of voter i’s ballot according to the expert networks P(xi |θ1) and
P(xi |θ2) are blended by the gating network coefficients πi1 and πi2 to produce an overall probability
of voter i’s ballot. The gating network coefficients are assumed to be a function of voter i’s covariates
wi .

determine their voting bloc membership and, in turn, their characteristic vot-
ing preferences. Specifically, the gating network coefficients are assumed to be
multinomial logistic functions of the voter covariates; details are provided in Sec-
tion 3.2.

The tree-like structure of MoE models naturally induces comparisons to other
tree-based classification methods, such as Classification and Regression Trees
(CART) [Breiman et al. (2006)] or Multivariate Adaptive Regression Splines
(MARS) [Friedman (1991)]. Both CART and MARS are nonparametric tech-
niques which provide a hard partition of the data space—using these tools each
voter would be classified as belonging to one and only one voting bloc. In con-
trast, the statistical models underlying the expert network probability densities
mean MoE models are parametric in nature. Additionally, the MoE model pro-
vides a probabilistic “soft” partition of the space in that data points may belong
to multiple expert networks, that is, under the MoE model each voter has an asso-
ciated probability of belonging to each voting bloc. Further comparison of these
methods is provided in Peng, Jacobs and Tanner (1996) and Bishop (2006).

3.1. Benter’s model for rank data. In previous versions of the MoE model
[Jacobs et al. (1991), Jordan and Jacobs (1994), Peng, Jacobs and Tanner (1996)]
it is assumed that each component of the mixture model (i.e., each expert network)
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produces its output as a generalized linear function of input predictor variables.
Within the context of STV voting data, each expert network must appropriately
model the ranked nature of the data. Thus, it is assumed that each expert network
is a Benter model distribution for rank data [Benter (1994)]. Each expert network is
characterized by a differently parameterized Benter model where the parametriza-
tion is constant with respect to the voter covariates. It would be possible to allow
covariates to contribute to the expert networks [see Jordan and Jacobs (1994) and
Peng, Jacobs and Tanner (1996)], but this is not examined here due to the fact that
interpreting the expert networks in terms of voting blocs would be difficult.

The Benter model for rank data has two parameters—a support parameter and
a dampening parameter:

(i) Support parameter. Within expert network k, the support parameter vector
is denoted p

k
= (pk1, . . . , pkN), where 0 ≤ pkj ≤ 1,

∑N
j=1 pkj = 1 and N denotes

the number of candidates available for selection. The support parameter pkj may
be interpreted as the probability of candidate j being given a first preference by
a complete member of voting bloc k.

(ii) Dampening parameter. The global dampening parameter vector is de-
noted by α = (α1, . . . , αN), where αt ∈ [0,1] for t = 1, . . . ,N . To avoid over-
parametrization of the model, the constraints α1 = 1 and αN = 0 are imposed. The
dampening parameters model the way in which some preferences may be chosen
less carefully than other preferences within a ballot.

Let c(i, t) denote the candidate ranked in t th position by voter i and ni be the total
number of preferences expressed by voter i. Given the Benter model parameters,
the probability of voter i’s ballot (conditional on voter i being a complete member
of voting bloc k) is

P(xi |θk) = P(xi |pk
,α) = p

α1
kc(i,1) · p

α2
kc(i,2)∑N

s=2 p
α2
kc(i,s)

· · · p
αni

kc(i,ni)∑N
s=ni

p
αni

kc(i,s)
(3.1)

=
ni∏

t=1

p
αt

kc(i,t)∑N
s=t p

αt

kc(i,s)

.

Thus, the Benter model states that the probability of a rank ballot is the product
of the probabilities of each chosen candidate being ranked first where, at each
preference level, the probabilities are appropriately normalized to account for the
fact that the cardinality of the choice set has been reduced. Moreover, at preference
level t , the care with which a preference is made is modeled by “dampening” each
probability by αt .

Under the Benter model, the log odds of selecting candidate a over candidate b

at preference level t is αt log(pka/pkb). Thus, the t th level dampening parameter
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αt can be interpreted as how the log odds of selecting candidate a over candidate b

is affected by the selection being made at preference level t .
The Benter model has been successfully employed to model rank data [see

Gormley and Murphy (2006, 2008a)], but alternative rank data models are also
available; the Plackett–Luce model for rank data [Plackett (1975)] is a special case
of the Benter model in which the dampening parameter vector is constrained such
that α = 1. Under the Plackett–Luce model, it is assumed that a voter makes their
choice at each preference level with equal certainty. Mixtures of Plackett–Luce
models have been fitted to rank data in Gormley and Murphy (2006) and the fitting
algorithms for these models are more efficient due to the fixed α value. The Benter
and Plackett–Luce models are both multistage ranking models [Marden (1995)]; in
Fligner and Verducci (1986) this large class of models are defined as those which
decompose the ranking process into a series of independent stages. Such models
have an “item-effect” approach [Fligner and Verducci (1986)] in that the probabil-
ity of the preference of one item over another is the element of interest. Another
set of rank data models are “distance” based such as those based on Mallow’s
model [Mallows (1957)]; in such models the probability of observing a ranking x

decreases as the distance between x and the modal ranking y increases. Other
distance based approaches are detailed in Gordon (1979) and Fligner and Ver-
ducci (1986). Cluster analysis via mixtures of distance based models is described
in Murphy and Martin (2003) and Busse et al. (2007). Given the type of choice
process undertaken by a voter when generating an STV ballot paper, the Benter
model for rank data was deemed the most applicable in this context.

3.2. Gating network coefficients and generalized linear models. The gating
network coefficients in the MoE model can be viewed as the success probabilities
from a generalized linear model. In particular, the success probability of belonging
to each of K expert networks is a multinomial logistic function of the covariates
(see Figure 1). Voter i’s gating network coefficients πi = (πi1, πi2, . . . , πiK) are
modeled by a logistic function of their L covariates wi = (wi1,wi2, . . . ,wiL), that
is,

log
(

πik

πi1

)
= βk0 + βk1wi1 + βk2wi2 + · · · + βkLwiL,(3.2)

where expert network 1 is used as the baseline expert network and βk0 is an in-
tercept term. Similar methodology was employed in Jordan and Jacobs (1994) and
Peng, Jacobs and Tanner (1996) when modeling the gating network coefficients.

4. Fitting the MoE model via the EMM algorithm. To determine the com-
position and voting characteristics of the Irish electorate, estimates of the Benter
model parameters and of the gating network coefficients are required. Model fitting
of the MoE model is achieved in Jacobs et al. (1991) and Jordan and Jacobs (1994)
via the Expectation Maximization (EM) algorithm. Estimation of the MoE model
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within the Bayesian framework is detailed in Peng, Jacobs and Tanner (1996), in
which Markov chain Monte Carlo methods [Tanner (1996)] are used. An alterna-
tive approach to estimation of the MoE parameters within the Bayesian framework
through the use of variational methods is detailed in Bishop and Svensén (2003).

In this article parameter estimation is achieved through a hybrid algorithm
known as the “EMM” algorithm. As the name implies, the EMM algorithm com-
bines the well-known EM algorithm [Dempster, Laird and Rubin (1977)] with
ideas from the MM algorithm [Lange, Hunter and Yang (2000)].

4.1. The EM algorithm for the MoE model. The EM algorithm is most com-
monly known as a technique to produce maximum likelihood estimates (MLEs)
of model parameters in settings where the data under study is incomplete or when
optimization of the likelihood would be simplified if an additional set of vari-
ables were known. The iterative EM algorithm consists of an expectation (E) step
followed by a maximization (M) step. Generally, during the E step the expected
value of the log likelihood of the complete data (i.e., the observed and unobserved
data) is computed. In the M step the expected log likelihood is maximized with
respect to the model parameters. In practice, the imputation of latent variables of-
ten makes maximization of the expected log likelihood feasible. The parameter
estimates produced in the M step are then used in a new E step and the cycle con-
tinues until convergence. The parameter estimates produced on convergence are
estimates which achieve at least a local maximum of the likelihood function of the
data.

It is difficult to directly obtain MLEs from the likelihood of the MoE model
for M rank observations:

L(β,p, α|x,w) = p(x|w,β,p, α) =
M∏
i=1

K∑
k=1

πik(wi)P(xi |pk
,α).

To alleviate this problem, the data is augmented by imputing latent variables. For
each voter i = 1, . . . ,M , the latent variable zi = (zi1, . . . , ziK) is imputed where
zik takes the value 1 if voter i is a complete member of expert network k and the
value 0 otherwise. This provides the complete data likelihood

LC(β,p, α|x, z,w) = p(x, z|w,β,p, α) =
M∏
i=1

K∏
k=1

{πik(wi)P(xi |pk
,α)}zik ,

the expectation of (the log of) which is obtained in the E step of the EM algorithm.
Details are provided in Appendix C, but, in brief, the E step consists of replacing
the missing data z with their expected values ẑ. In the M step the complete data
log likelihood, computed with the estimates ẑ, is maximized to provide estimates
of the Benter parameters p̂ and α̂ and the gating network parameters β̂ .

The EM algorithm for fitting the MoE model for rank data is straightforward in
principle, but the M step is difficult in practice. This is largely due to the complex
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form of the Benter model density (3.1) and the large parameter set. A modified ver-
sion of the EM algorithm, the Expectation and Conditional Maximization (ECM)
algorithm [Meng and Rubin (1993)], is therefore employed. In the ECM algo-
rithm, the M step consists of a series of conditional maximization steps. Again, in
the context of the MoE model for rank data, these maximizations are not straight
forward and, thus, the conditional M step is implemented using the MM algorithm.

4.2. The MM algorithm. The MM algorithm is a summary term for opti-
mization algorithms which operate by transferring optimization from the objec-
tive function of interest to a more tractable surrogate function. Good summaries
of the methodology are provided in Lange, Hunter and Yang (2000), Hunter and
Lange (2004) and Hunter (2004). The initials MM depend on the type of optimiza-
tion required. In a maximization problem MM stands for minorize and maximize;
in a minimization problem, majorize and minimize. A minorizing (or majorizing)
surrogate function is constructed by exploiting mathematical properties of the ob-
jective function or of terms within it. The MM philosophy is that iteratively opti-
mizing a suitable surrogate function drives the objective function uphill or down-
hill as required. Iteratively maximizing a minorizing surrogate function produces
a sequence of parameter estimates which converges to at least a local maximum
of the objective function. A graphical illustration of the mechanics of the MM al-
gorithm is given in Figure 2. Details of the stability of MM algorithms and their
relation to the EM algorithm (the EM algorithm is in fact an MM algorithm) are
detailed in Lange, Hunter and Yang (2000) and Hunter and Lange (2004).

In the context of fitting MoE models for rank data, the optimization problems
in the conditional M step of the EM algorithm are overcome by embedding several
iterations of the MM algorithm in place of the conditional M step. Details of the
construction of the necessary surrogate functions are provided in Appendix C.

5. The MoE model for rank data and the Irish electorate. The MoE model
for rank data was fitted to the set of voters polled in the Irish Marketing Surveys
opinion poll detailed in Section 2.1. For reasons of numerical stability and ease of
interpretation, covariates were initially standardized such that 0 ≤ wil ≤ 1, where
wil denotes the value of the lth covariate for voter i. A single layer MoE model
rather than a hierarchical model was assumed to be sufficient in this context due to
the small number of candidates in the presidential race.

Within a single layer MoE model, the number K of expert networks (or vot-
ing blocs) present in the electorate needs to be estimated. In Jordan and Jacobs
(1994) K is chosen to be the value which minimizes a test set error rate; the varia-
tional Bayes approach taken in Bishop and Svensén (2003) provides a framework
in which both the number of expert networks in and the topology of the MoE model
may be estimated. The Bayesian Information Criterion (BIC) [Schwartz (1978)] is
utilized here to select the optimal number of experts. The BIC is an information
criterion motivated by the aim of minimizing the Kullback–Leibler information of
the true model from the fitted model. The usual justification for the BIC is that, for
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FIG. 2. A graphical illustration of one iterative step in a maximization MM algorithm. A minoriz-
ing surrogate function g(θ |θn) (in red) is first fitted to the objective function f (θ) (in black) at the
parameter value θn. Maximizing this minorizing surrogate function provides a new parameter esti-
mate θn+1. A new minorizing surrogate function is fitted (in blue) to the objective function at θn+1.
The process continues, driving the objective function uphill, until the parameter estimates converge,
indicating that at least a local maximum of the objective function has been reached.

regular problems, it is an approximation of the Bayes factor for comparing models
under certain prior assumptions [Kass and Raftery (1995)]. The BIC is defined as

BIC = 2(maximized likelihood) − (number of parameters) log(M),(5.1)

where M is the total number of data points. The BIC trades off model fit [assessed
by the first term in (5.1)] against model complexity [assessed by the second term
in (5.1)]. The use of BIC for model selection is not completely accepted; Gelman
and Rubin (1995) and Raftery (1995) provide two contrasting views. Although
mixture models do not satisfy the conditions necessary for the Bayes factor ap-
proximation to hold, there is much in the literature to support its use in this context
[see, e.g., Leroux (1992), Keribin (1998), Keribin (2000) and Fraley and Raftery
(1998)]. Within the context of this application, BIC gives reasonable results in
terms of the voting blocs found.

As with any iterative procedure, starting values may be influential on the out-
put of the algorithm. Starting values for the Benter support parameters, dampening
parameters and missing membership labels were obtained by initially running the
EMM algorithm for 500 iterations for a straight forward mixture of Benter models
(i.e., the gating network coefficients are not treated as functions of the voter covari-
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TABLE 3
The five best fitting MoE models as deemed by the BIC. Larger BIC values indicate better fitting
models. The number of expert networks K and the associated covariates of the models are also

reported

BIC K Covariates

−8490.43 4 Age
Government satisfaction

−8498.59 3 Age

−8507.33 3 Age
Government satisfaction

−8511.37 3 Government satisfaction

−8512.62 5 Age
Government satisfaction

ates). Good starting values for the gating network parameters were then obtained
by running 1000 of the logistic regression style M steps [see (C.5)] of the EMM
algorithm. The full EMM algorithm to provide MLEs of the model parameters
was then iterated until convergence as deemed by Aitken’s acceleration criterion
[Böhning et al. (1994)]. Subsequent to convergence, approximate standard errors
of the MLEs were calculated as detailed in McLachlan and Krishnan (1997) and
McLachlan and Peel (2000).

The MoE model was fitted over the range K = 1,2, . . . ,5 expert networks using
a backward elimination style method to choose the informative covariates. Inter-
action terms were avoided. A model with all six covariates was initially fitted, then
models with only five of the covariates. From this set of models the “best” model
as deemed by the BIC was selected and models with only four of the selected co-
variates were then fitted. This selection of the best subset of covariates and then
backward elimination was continued until only one covariate was left in the model.
The BIC values for all the fitted models were then compared. Table 3 details the
five best fitting models as deemed by their BIC values. The covariates within each
selected model are also detailed.

Each of the five best fitting models considered age and/or government satis-
faction as important covariates. The optimal model with K = 4 expert networks
where age and government satisfaction are the influential covariates is discussed
below.

5.1. Benter support parameter estimates. Figure 3 is a mosaic plot illustrating
the Benter support parameter estimates within each of the four voting blocs in
the optimal model. The voting blocs are each represented by a column and their
associated marginal membership probabilities are reported.
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FIG. 3. A graphical representation of the maximum likelihood estimates of the Benter support pa-
rameters for the Irish Marketing Surveys opinion poll. Each column of the mosaic represents an
expert network or voting bloc—the segments within the columns represent the magnitudes of the sup-
port parameters for the candidates within each voting bloc. The maximum likelihood estimates of the
support parameters are detailed within each segment; standard errors are provided in parentheses.
The width of each column represents the marginal probability πk of belonging to each voting bloc k.

Voting bloc 1 appears to favor the conservative candidates of McAleese and
Scallon. The opinion poll was conducted at an early stage of the electoral cam-
paign and Scallon had not yet established herself as a main presidential contender.
Thus, the 31% support for Scallon in this voting bloc is the largest support she
obtains. Voting bloc 2 also reveals characteristics of the early stages of the pres-
idential campaign. Adi Roche has large support in this voting bloc—at the start
of the campaign Roche was a very popular candidate, but her support quickly
dropped when she became embroiled in difficulties and her campaign went into
decline. Voting bloc 3, the largest voting bloc in terms of marginal membership
probabilities, has a large support parameter for Mary McAleese. McAleese, who
was subsequently elected, was backed by the current governmental political party,
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Fianna Fáil, and thus, she had a high public profile. There is also some level of
support for the other high profile candidate, Mary Banotti. Voting bloc 4 is a pro-
Banotti voting bloc with more uniform levels of support for the other candidates.
Of note are the low levels of support for Nally in all of the voting blocs—Nally
joined the electoral campaign later than the other candidates on September 29th
and so had little time to win support prior to this October 2nd poll.

5.2. Benter dampening parameter estimates. Under the optimal model, the
Benter dampening parameter estimates are

α̂ = (1.00,0.99(0.10),0.97(0.12),0.99(0.15),1.00)

(standard errors are given in parentheses). The estimates suggest that the certainty
with which voters rank their preferences remains constant with respect to choice
level. The proximity of the dampening parameter estimates to 1, along with their
relatively large standard errors, suggest a Plackett–Luce model (Section 3.1) would
be adequate for modeling this poll data.

The Benter dampening parameters appear to depend somewhat on the cardinal-
ity of the choice set; in this case, where the choice set is small, α ≈ 1. In Gormley
and Murphy (2008a) the Benter model is employed when modeling a larger choice
set and α is shown to differ from 1. Intuitively, the certainty associated with the
ranking of objects from a small choice set would be greater than that associated
with the ranking of objects from a large choice set.

5.3. Gating network parameter estimates. Under the MoE model for rank
data, the gating network coefficients are functions of voter covariates. Accord-
ing to the BIC (see Table 3), the “age” and “government satisfaction” covariates
influence the voting bloc membership probabilities of a voter. Table 4 details the
associated gating network parameter estimates, their odds ratios and the relevant
95% confidence intervals for the odds ratios. The gating network parameters as-
sociated with the “conservative” voting bloc (i.e., voting bloc 1) are used as the
reference parameters, that is, β

1
= (β10, . . . , β1L) = (0, . . . ,0).

Within the smallest voting bloc (i.e., voting bloc 2 or the pro-Roche bloc), for
every one unit increase in age the odds for being best described by voting bloc 2 are
100 times less than the odds for being described by the conservative voting bloc 1.
This would appear to be an intuitive characteristic of the Irish electorate—the more
elderly generations in Ireland would, in general, be considered more conservatively
minded. Note also the relatively small associated odds ratio confidence interval.
The 95% confidence intervals for the government satisfaction covariate odds ratios
both enclose 1, implying it is likely that the political views of voters in this bloc
have little influence. Thus, younger voters appear to be best described by voting
bloc 2 and are more in favor of the liberal Adi Roche.

In terms of the gating network parameters which refer to voting bloc 3 (the
pro-McAleese bloc), the confidence interval for the age parameter odds ratio in-
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TABLE 4
Gating network parameter estimates β̂

k
, the associated odds ratios and the 95% odds ratio

confidence intervals under the MoE model for rank data fitted to the Irish Marketing Surveys
opinion poll data. The covariates selected as informative are age and government satisfaction.

“Do not know/no opinion” was used as the reference level within the categorical
government satisfaction covariate

Intercept Age Satisfied Not satisfied

Voting Log odds (β̂2) 0.92 −5.16 0.13 1.03

bloc Odds ratio [exp(β̂2)] 2.52 0.01 1.14 2.80
2 95% CI (Odds ratio) [0.78, 8.16] [0.00,0.05] [0.42, 3.11] [0.77, 10.15]

Voting Log odds (β̂3) −0.46 −0.05 1.14 1.33

bloc Odds ratio [exp(β̂3)] 0.63 0.95 3.12 3.81
3 95% CI (Odds ratio) [0.16, 2.49] [0.32,2.81] [0.94, 10.31] [0.90, 16.13]

Voting Log odds (β̂4) 0.54 0.44 −1.05 1.25

bloc Odds ratio [exp(β̂4)] 1.71 1.56 0.35 3.50
4 95% CI (Odds ratio) [0.52, 5.58] [0.35, 6.91] [0.12, 0.98] [1.07, 11.43]

cludes 1, suggesting age is not a driving covariate. The government satisfaction
covariate appears to be more influential: the odds of a voter being best described
by voting bloc 3 are around 3 times greater than the odds for voting bloc 1, given
that the voter has some political opinion. Thus, voters with an interest in politics
appear to favor Mary McAleese.

The gating parameters for voting bloc 4 indicate that voters with a dislike for
the current government favor Mary Banotti. The confidence interval for the age
covariate again includes 1, suggesting it has little effect. The odds of a voter who
indicated a dislike for the 1997 government (a coalition government of Fianna Fáil
and the Progressive Democrats) being best described by voting bloc 4 were 3.50
times greater than being described by voting bloc 1. In contrast, the odds of a voter
in favor of the current government being best described by voting bloc 4 are 0.35
times greater than the odds for voting bloc 1. These results make intuitive sense
within the context of the 1997 presidential election. Mary Banotti was endorsed by
Fine Gael, the main opposition party to Fianna Fáil. Thus, voters best described by
voting bloc 4 appear to be Fine Gael supporters. Those voters in favor of the 1997
coalition government were more likely to be described by voting bloc 1, which had
large levels of support for Fianna Fáil backed McAleese.

6. Comparison.

6.1. Results. The analysis completed here is an extension of previous work
exploring voting blocs in Irish elections [Gormley and Murphy (2008a)]. The mix-
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ture of experts model provides an extension of the mixture model because it allows
us to assess which social factors influence voting bloc membership. The mixture
of experts analysis suggests that “age” and “government satisfaction” influence
voting bloc membership.

The analysis presented in Gormley and Murphy (2008a), for the same opinion
poll presented here, finds just two voting blocs in the electorate. A mosaic plot
illustrating the support parameters in the two voting blocs is given in Figure 4. The
first voting bloc is a “noise” component where each candidate has equal support;
such a component can collect small voting blocs and voters with unusual prefer-
ence patterns. In this case, voting bloc 1 and, to an extent, voting bloc 4 from the
mixture of experts model (Figure 3) are being combined in the noise group. The
second voting bloc in Figure 4 is very similar to voting bloc 3 in the mixture of ex-
perts analysis, but also contains some of the voters from voting blocs 2 and 4. It is
not surprising that more voting blocs are found using the mixture of experts model,
because voting bloc membership is estimated from covariates recording social fac-
tors and voting behavior, whereas in the mixture model we only have voting data.
Hence, the mixture of experts model is able to exploit the more detailed structure
within the electorate than the standard mixture model can.

A comparison of the voting blocs found in the analysis of an opinion poll one
month prior to the election (as presented here) with the voting blocs found for
the exit poll [as shown in Figure 2 in Gormley and Murphy (2008a)] shows very
different results. Noticeably, voting bloc 2 in the mixture of experts analysis is not
present in the exit poll analysis—this is because support for Roche collapsed in the
intervening month. However, both polls show voting blocs that have strong support
for McAleese and Banotti respectively.

A latent space model was used in Gormley (2006) and Gormley and Murphy
(2007) to model rank data and, in particular, Irish election data. They showed that
the 2002 Irish general election and the 1997 presidential elections can be mod-
eled using a one or two-dimensional latent space. In particular, the opinion poll
considered in this paper was analyzed in Gormley (2006) and it was found that
the election could be modeled using a one or two-dimensional latent space. The
low dimensionality of the latent space found in Gormley (2006) is mirrored in the
small number of voting blocs found in the mixture model in Gormley and Murphy
(2008a) and the mixture of experts model here.

An analysis of the opinion poll data from the presidential election presented in
van der Brug, van der Eijk and Marsh (2000) showed that a large number of voters’
first preference candidate coincided with their first preference national party, so the
election had a partisan aspect to it. However, they suggest that the election was not
strongly partisan. Our analysis gives similar results in suggesting that support for
the government was an important aspect in the membership of voting blocs but
that voter age was also influential.
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FIG. 4. A graphical representation of the maximum likelihood estimates of the support parameters
in the two component Plackett–Luce mixture model with a noise component. Each column of the
mosaic represents a mixture component or voting bloc—the segments within the columns represent
the magnitudes of the support parameters for the candidates within the voting bloc. The width of each
column represents the mixture component probability πk of belonging to each voting bloc. Standard
errors of the estimates are given in parentheses.

6.2. Methods. The methods presented in this work are closely related to other
statistical methods proposed for the analysis of social science data. Of particular
relevance are the following methods.

A mixture model was used in Hill (2001) for the analysis of opinion-changing
behavior so that different types of opinion behaviors could be accommodated.

An alternative extension to the mixture model is the mixed membership model
for multivariate binary data [Pritchard, Stephens and Peter (2000), Erosheva, Fien-
berg and Joutard (2007)] and network data [Airoldi et al. (2008)]; such models
could be used to study voting blocs in elections that use an approval voting sys-
tem or votes within a parliamentary system. A mixed membership model for rank
data has been developed in Gormley (2006) and Gormley and Murphy (2008) to
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accommodate mixed membership of voting blocs in STV voting data. The mixed
membership model finds more extreme voting blocs than the mixture model be-
cause voters are allowed to have partial membership of more than one bloc.

The existence and characterization of voting blocs in the US Senate has been
considered in Jakulin and Buntine (2004). Their analysis using exploratory and
model-based techniques reveals three Republican and two Democrat voting blocs
in the US Senate. An analysis of Asian voting behavior in Tam (1995) showed that
Asian voters should not be treated as a monolithic voting bloc. Multidimensional
scaling methods were utilized in Holloway (1990) to study voting blocs and their
development over time in the United Nations General Assembly.

7. Discussion and further work. This article develops a mixture of experts
model for rank data coupled with an efficient hybrid EMM algorithm for model
fitting. The model is employed as a model-based clustering technique in which
covariate information contributes to the clustering solution. The covariate infor-
mation contributes to the clustering solution by modeling the component member-
ship parameters of an observation as a generalized linear function of observation
covariates. Within the context of rank data, each component in the population is
characterized by an appropriate rank data model, the Benter model for rank data.

The MoE model for rank data has been used to establish the presence of four
voting blocs in the electorate one month prior to the 1997 Irish Presidential Elec-
tion. The voting blocs show that the electorate is divided on an ideological and
partisan basis with each of the prominant candidates having a bloc of support. We
found that age and government satisfaction levels were important social factors in
determining membership of the voting blocs.

The dampening parameter in the Benter model indicates that voters were select-
ing all of their preferences with great care. In fact, the fitted Benter model is very
close to the Plackett–Luce model because the dampening parameter is almost equal
to one for each choice level. This phenomenon can be explained by the fact that
the election only had five candidates. It has previously been shown in Gormley and
Murphy (2008a) that in elections with a greater number of candidates the voters
select lower preference candidates with less certainty.

The MoE model was able to find a more detailed voting bloc structure than
a mixture model analysis of the data. This was because the covariates and the
voting behavior both contribute to the structure of the voting blocs, whereas in a
mixture model only voting behavior does.

Although the MoE model for rank data proved an appropriate model for Irish
voting data, there is still much scope for future research. As stated, a single layer
MoE model rather than a hierarchical model was assumed to be sufficient in this
context due to the small number of candidates in the presidential race. Irish gov-
ernmental elections typically involve a large number of candidates and in such
a context a single layer model is unlikely to be sufficient. Within the methodology
developed in this article, there is no natural metric for selecting the complexity
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and structure (i.e., the topology) of a hierarchical MoE tree. The use of variational
Bayesian methods to estimate a hierarchical MoE model [Bishop and Svensén
(2003)] allows both the number of experts and the topology of the associated tree
to be determined within a statistically sound framework. The extension to the esti-
mation of a hierarchical MoE model for rank data is a future area of research.

If a multi-layer MoE model is appropriate, the underlying intuition is that the
choice process of a voter is a nested process. For example, perhaps a conservatively
minded voter chooses a set of conservative candidates first and then from that set
chooses a particular candidate. Nested choice models [McFadden (1978), Train
(2003)] could be used to model such a choice procedure. These models assume
that choices are made in a hierarchical manner; the voters begin with coarse cate-
gories which are refined during the choice process. Nested choice models could be
extended to nested ranking models using a multi-stage ranking model approach.

The scope of MoE models for rank data lies beyond modeling Irish election
data. Many other nations employ preference based voting systems [Gormley and
Murphy (2008a)] and the model proposed here can be easily adapted to model such
electorates. A number of scholarly societies, including the Institute of Mathemat-
ical Statistics and the Royal Statistical Society, use STV voting in their elections
and the methods proposed here could be applied to the analysis of their elections.
The methodology presented may also be utilized to model other preference data.
Irish third level college application choices are analyzed in Gormley and Murphy
(2006) using a mixture of Plackett–Luce models and establish the existence of ho-
mogeneous groups of applicants. The extension of this research to examine the
influence of applicant covariates on third level course choices is a topic of social
and educational interest. Additionally, the proposed methodology could be applied
to the analysis of customer choice data in marketing applications, where customers
express preferences for different products.

APPENDIX A: DATA SOURCES

The 1997 Irish presidential opinion poll data set was collected by Irish
Marketing Surveys and is available through the Irish Elections Data Archive
http://www.tcd.ie/Political_Science/elections/elections.html, which is maintained
by Professor Michael Marsh in the Department of Political Science, Trinity Col-
lege Dublin, Ireland.

APPENDIX B: SOCIOECONOMIC GROUP CODES

Definitions of the socioeconomic group codes used in the opinion poll con-
ducted by Irish Marketing Surveys are provided in Table 5. Further details
may be obtained from Millward Brown/Irish Marketing Surveys Limited, www.
millwardbrown.com.

http://www.tcd.ie/Political_Science/elections/elections.html
http://www.millwardbrown.com
http://www.millwardbrown.com
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TABLE 5

Code Socioeconomic definition

AB upper middle class & middle class
C1 lower middle class
C2 skilled working class
DE other working class & lowest level of subsistence
F50+ large farmers
F50– small farmers

APPENDIX C: THE EMM ALGORITHM FOR THE MIXTURE OF EXPERTS
MODEL FOR RANK DATA

Supplementary material [Gormley and Murphy (2008c)] provides a program
in C code which may be used to implement the EMM algorithm for the mixtures
of experts model for rank data.

When fitting a MoE model for rank data, the EMM algorithm consists of the
following steps:

0. Let h = 0 and choose initial parameter estimates for the Benter model parame-
ters p(0), α(0) and for the gating network parameters β(0).

1. E step: Compute the estimates

ẑik = π
(h)
ik P{xi |p(h)

k
, α(h)}∑K

k′=1 π
(h)
ik′ P{xi |p(h)

k′ , α(h)} for i = 1, . . . ,M and k = 1, . . . ,K .

Note that by (3.2) the gating network coefficients are defined by

πik = exp(βT
k
wi)∑K

k′=1 exp(βT
k′wi)

.

2. M step: Substituting the ẑik values obtained in the E step into the complete data
log likelihood forms the “Q function”

Q =
M∑
i=1

K∑
k=1

ẑik

[
βT

k
wi − log

{
K∑

k′=1

exp(βT

k′wi)

}

(C.1)

+
ni∑

t=1

{
αt logpkc(i,t) − log

N∑
s=t

p
αt

kc(i,s)

}]
,

which is maximized with respect to the model parameters during the M step.
The dependence of the parameters in Q on estimates from the hth iteration of
the algorithm is implicit; the notation is suppressed here for reasons of clarity.
Due to maximization difficulties, steps from the MM algorithm are embedded
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in the M step to obtain MLEs of the parameters. Details of the MM algorithm
steps are detailed in Appendix C.1. The new maximizing values are p(h+1),
α(h+1) and β(h+1).

3. If converged, then stop. Otherwise, increment h and return to Step 1.

C.1. The M step. The gating network parameters β and the Benter model
parameters (p, α) influence the Q function (C.1) through distinct terms. Hence,
the M step reduces to separate maximization problems for each parameter set.
Moreover, an ECM algorithm is implemented where the M step consists of a series
of conditional maximization steps. Here, the conditional maximizations are with
respect to p

1
, . . . , p

K
, α2, . . . , αN−1 and β

2
, . . . , β

K
.

The conditional maximizations are difficult in practice and are therefore imple-
mented using the MM algorithm. This algorithm works by first constructing a sur-
rogate function which minorizes the objective Q function and then maximizing
the minorizing surrogate function. This process is iterated leading to a sequence of
parameters estimates giving increasing values of the objective Q function.

To construct surrogate functions, mathematical properties of the objective func-
tion, or of terms within it, are exploited. One such property is the supporting hy-
perplane property (SHP) of a convex function. If f (θ) is a convex function with
differential f ′(θ), then the SHP states that

f (θ) ≥ f
(
θ(h)) + f ′(θ(h))(θ − θ(h)).(C.2)

The SHP provides a linear minorizing function which is an ideal candidate for
a surrogate function in an optimization transfer algorithm.

Sometimes it may be preferable to form a quadratic or higher order surrogate
function. For example, if f (θ) is a concave function bounding it around θ(h), using
a quadratic gives

f (θ) ≥ f
(
θ(h)) + [

f ′(θ(h))]T (
θ − θ(h))

(C.3)
+ 1/2

(
θ − θ(h))T B

(
θ − θ(h)),

where B is a negative definite matrix such that H(θ(h)) > B and H(θ(h)) is the
Hessian d2f/d(θ(h))2.

Both these tools are used within the EMM algorithm for rank data as detailed
below:

1. Maximization with respect to the Benter support parameters. When condition-
ally maximizing with respect to pkj , the dampening parameters are treated as
fixed constants, ᾱ, equal to the estimates from the previous iteration. Within the
Q function (C.1), the term − log

∑N
s=t p

ᾱt

kc(i,s) is problematic in terms of opti-
mization with respect to pkj . However, since the − log(θ) function is a strictly
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convex function, a linear minorizing surrogate function may be obtained via the
SHP (C.2), that is,

− log
N∑

s=t

p
ᾱt

kc(i,s) ≥ − log
N∑

s=t

p̄
ᾱt

kc(i,s) + 1 −
∑N

s=t p
ᾱt

kc(i,s)∑N
s=t p̄

ᾱt

kc(i,s)

,

where p̄kj is a constant and, in practice, is the estimate of pkj from the previ-
ous iteration. Substituting the nonconstant terms into the objective function, it
follows that, up to a constant,

Q ≥
M∑
i=1

K∑
k=1

ni∑
t=1

ẑik

[
ᾱt logpkc(i,t) −

(∑N
s=t p

ᾱt

kc(i,s)∑N
s=t p̄

ᾱt

kc(i,s)

)]
,

which still poses maximization problems. However, implementing the SHP
(C.2) of the convex function f (p) = −pᾱt ,

−pᾱt ≥ −p̄ᾱt − ᾱt p̄
ᾱt−1(p − p̄)

again provides the surrogate function

Q ≥
M∑
i=1

K∑
k=1

ni∑
t=1

ẑik

[
ᾱt logpkc(i,t) −

{
N∑

s=t

p̄
ᾱt

kc(i,s)

}−1{
N∑

s=t

ᾱt p̄
ᾱt−1
kc(i,s)pkc(i,s)

}]

up to a constant. Iterative maximization of the surrogate function produces a se-
quence of pkj values which converge to a maximum of Q. Straight forward
maximization provides

p̂kj = ωkj∑M
i=1

∑ni

t=1 ẑik{∑N
s=t p̄

ᾱt

kc(i,s)}−1{∑N+1
s=t ᾱt p̄

ᾱt−1
kj δijs}

,

where

ωkj =
M∑
i=1

ni∑
t=1

ẑikᾱt1{j=c(i,s)},

given that 1{j=c(i,s)} is the usual indicator function and

δijs =
⎧⎨
⎩

1, if j = c(i, s) and 1 ≤ s ≤ ni ,
1, if j �= c(i, l) for 1 ≤ l ≤ ni and s = N + 1,
0, otherwise.

The methodology presented here is similar to that used when a mixture of Ben-
ter models is fitted via the EMM algorithm as detailed in Gormley and Murphy
(2008a).
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2. Maximization with respect to the Benter dampening parameters. In this case the
support parameters are treated as constant with p̄kj denoting the estimate from
the previous iteration. Returning to the original objective function (C.1), the
problematic term − log

∑M
s=t p̄

αt

kc(i,s) is a convex function of αt , and employing
the SHP (C.2) again gives

Q ≥
M∑
i=1

K∑
k=1

ni∑
t=1

ẑik

[
αt log p̄kc(i,t) +

(−∑N
s=t p̄

αt

kc(i,s)∑N
s=t p̄

ᾱt

kc(i,s)

)]
.

As before, this surrogate function still poses optimization problems. However,
as f (α) = −p̄α is a concave function, by (C.3),

−p̄α ≥ −p̄ᾱ − (log p̄)p̄ᾱ(α − ᾱ) − 1/2(α − ᾱ)2(log p̄)2,

since H(ᾱ) > B = −(log p̄)2. This provides the surrogate function

Q ≥
M∑
i=1

K∑
k=1

ni∑
t=1

ẑik

[
αt log p̄kc(i, t)

+
(

N∑
s=t

p̄
ᾱt

kc(i,s)

)−1{
N∑

s=t

(− log
(
p̄kc(i,s)

)
p̄

ᾱt

kc(i,s)(αt − ᾱt )

− 1/2(αt − ᾱt )
2(

log p̄kc(i,s)

)2)}]

up to a constant which is a quadratic in αt . Iterative maximization leads to
a sequence of αt estimates which converge to a local maximum of Q. Similar
methodology is implemented in Gormley and Murphy (2008a) and formulae
for α̂t may be found therein.

3. Maximization with respect to the gating network parameters. Maximization of
(C.1) with respect to the gating network parameters βkl for k = 2, . . . ,K and
l = 0, . . . ,L is also not straight forward. The MM algorithm for logistic re-
gression is detailed in Hunter and Lange (2004) and similar methodology is
implemented here to achieve MLEs of the gating network parameters.

The Q function, up to a constant, as a function of β is

Q =
M∑
i=1

[
K∑

k=1

ẑik(β
T

k
wi) − log

{
K∑

k′=1

exp(βT

k′wi)

}]
,(C.4)

since, by definition,
∑K

k=1 zik = 1. As (C.4) is a concave function, by (C.3), the
quadratic function of β

k
,

Q
(
β(h)

k

) + Q′(β(h)

k

)T (
β

k
− β(h)

k

) + 1/2
(
β

k
− β(h)

k

)T B
(
β

k
− β(h)

k

)
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minorizes Q(β
k
) at the point β(h)

k
where B = −1/4

∑M
i=1 wiw

T
i such that

H(β(h)
k

) > B.
Maximizing this minorizing surrogate function gives the iterative update for-

mula

β(h+1)

k
= β(h)

k
− B−1Q′(β(h)

k

)
,(C.5)

which only requires the inversion of B once during the iterative algorithm. The
similarity with the well-known Newton–Raphson update is apparent — the MM
algorithm update (C.5) trades the computational inefficiency of the Newton–
Raphson update for an increased number of iterations.

By embedding these MM algorithm steps in the M step of the EM algorithm, a
sequence of parameter estimates is produced which converges to (local) MLEs of
the Benter model parameters (p, α) and of the gating network parameters β .
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SUPPLEMENTARY MATERIAL

Computing code for “A mixture of experts model for rank data with appli-
cations in election studies” [Gormley and Murphy (2008c)] (DOI: 10.1214/08-
AOAS178SUPP; .zip). This package contains the data and C programs used to pro-
duce the results in this manuscript. The code is explained in the file README.txt
and is easily modified to fit the model to alternative data.
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