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Decode Genetics and Decode Genetics

In an empirical Bayesian setting, we provide a new multiple testing
method, useful when an additional covariate is available, that influences the
probability of each null hypothesis being true. We measure the posterior sig-
nificance of each test conditionally on the covariate and the data, leading to
greater power. Using covariate-based prior information in an unsupervised
fashion, we produce a list of significant hypotheses which differs in length
and order from the list obtained by methods not taking covariate-information
into account. Covariate-modulated posterior probabilities of each null hy-
pothesis are estimated using a fast approximate algorithm. The new method
is applied to expression quantitative trait loci (eQTL) data.

1. Introduction. Science, industry and business possess the technology to
collect, store and distribute huge amounts of data efficiently and often at low cost.
Sensors and instrumentation, data logging capacity and communication power
have increased the breadth and depth of data. Systems are measured more in detail,
giving a more complete but complex picture of processes and phenomena. Also,
it is necessary to integrate many sources of data of different type and quality. In
high-throughput genomics, large numbers of simultaneous comparisons are nec-
essary to discover differentially expressed genes among thirty thousand measured
ones. Similarly, in finance, one wishes to monitor prices of thousands of products
and derivatives simultaneously to detect abnormal behavior, or in geophysics or
brain imaging, questioning thousands of 3D voxels about their properties. Such
tests are often dependent, and the dependency structure is ill specified, so that the
effective number of independent tests is unknown. Sometimes, we expect that only
a small subset of decisions will have a positive result: the solution is then sparse in
the huge parameter space. To discover significant cases, it is necessary to develop
new methods that either exploit available a priori knowledge on the structure of
the solution, or merge different data sets, each adding information. Benjamini and
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Hochberg (1995) proposed the false discovery rate (FDR), which can adapt auto-
matically to sparsity and has been shown to be asymptotically optimal in a cer-
tain minimax sense [Abramovich et al. (2006)]. FDR adjustments of p-values are
nowadays routinely performed on large scale multiple studies in many sciences
and applied areas, from astronomy [Miller et al. (2001)] to genomics [Tusher et
al. (2001); from neuroimaging [Genovese, Lazar and Nichols (2002)] to industrial
organization [Brown et al. (2005)]. Bayesian approaches are based on the estima-
tion of the posterior probability of the null hypothesis. Efron et al. (2001) have
developed the theory of the local false discovery rate, based on an estimation pro-
cedure originally developed by Anderson and Blair (1982). As the FDR provides
a probability of misclassification for sets of tests called significant, the posterior
probability that the null hypothesis is true provides a similar measure, but for a
local set about the particular value of the test statistic. Instead of summarizing the
data by a test statistic, hierarchical Bayesian approaches have been developed that
model parametrically the full measured data [Baldi and Long (2001), Do, Müller
and Tang (2005), Kendziorski et al. (2006), Lonnstedt and Speed (2002), Newton
et al. (2004), and Storey (2007) also makes full use of the data in a hypothesis
testing setting. Both approaches have their strengths and weaknesses, in terms of
validity of the distributional assumptions under the alternative hypothesis, actual
availability of the full data, computational speed and simplicity of the methodol-
ogy. This paper assumes access to summary test statistics for every hypothesis to
be tested.

We propose a simple methodology which allows modulating the posterior prob-
ability of each null hypothesis based on a priori additional external information.
Assume that for each null hypothesis H0i a known covariate xi is available which
could influence the prior probability that H0i is true. Typically, the covariates xi

represent available knowledge deriving from other data and measurement tech-
nologies. Our method is unsupervised and semi-parametric, in the sense that it is
not necessary to model the joint distribution of the test statistics with the covari-
ate. By means of empirical Bayes, we take advantage of prior information on the
probability of each null hypothesis being true, based on such additional data avail-
able for each single test, to produce a more precise list of rejected null hypotheses.
This leads to a measure of the posterior significance of each test i, conditional
on the covariate xi and the data, often leading to greater power. Furthermore, the
ranking of the hypotheses based on the covariate modulated posterior probability
is different from the order provided in absence of the external covariate.

We estimate the covariate modulated posterior probability of each hypothe-
sis by binning the data according to the external covariate, with the help of an
approximate mixture model on p-values (Section 2). Inference is then based on
approximate Bayesian inference [Rue and Martino (2007)], in order to reduce
computational time (Section 3). In Section 4 we present the analysis of expression
quantitative trait loci (eQTL) data, where gene expression measurements obtained
by microarrays are combined with genetic linkage analysis. Our example explicitly
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considers an important case where (1) the test is not a comparison, (2) the covari-
ate cannot be used for testing alone, and (3) there is no way (that we know of) to
produce a full model. We then compare our approach with the recently proposed
Optimal Discovery Procedure (ODP) [Storey (2007)], and show that our method
is optimal in the sense of Storey, when data are available only at test statistic level,
within each covariate-determined bin (Section 5). Section 6 includes a simulation
study, which illustrates the effect of external information on the power of the test.
Section 7 presents some discussion and extensions. Our method provides a simple
unsupervised way of incorporating different information into the Bayesian hypoth-
esis testing framework, when full modeling of the complete data is not practical or
reliable.

2. Covariate-modulated multiple testing. We consider the simultaneous
testing of m hypotheses:

H0i vs. H1i , i = 1, . . . ,m.

For each i, a test statistic Zi = zi is calculated. If H0i is true, then Zi has a known
distribution F0 [e.g., F0 could be N(0,1) or a t-distribution]. Here, large Zi are
evidence against the null hypothesis. Also, for each i, we have a covariate xi which
may influence the prior probability that the null hypothesis is true. We consider the
xi, i = 1, . . . ,m, to be known covariates. We can reasonably assume that xi does
not influence the probability distributions of Zi under H0i , so Zi ∼ F0 under H0i

no matter what the value of xi is. However, for each i, the distribution of Zi under
H1i depends on xi . Assume that, for each i, H1i = Hc

0i in some space of interest.
Let g(zi |xi) be the density of Zi given xi . From the assumptions above, the

following basic model is derived:

g(zi |xi) = π0(xi)g(zi |H0i ) + (
1 − π0(xi)

)
g(zi |H1i , xi),(1)

where π0(xi) = P(H0i |xi). Here, π0(xi) and g(zi |H1i , xi), the density of Zi

given xi under H1i , are unknown, while the distribution function corresponding
to g(zi |H0i ) is known to be F0.

For each test statistic Zi , the corresponding p-value Pi is given by Pi = 1 −
F0(Zi). Hence, based on the observed zi, i = 1, . . . ,m, we can calculate observed
p-values as

pi = 1 − F0(zi), i = 1, . . . ,m.

We can write the basic model (1) in terms of p-values instead of z-scores. Let
f (pi |xi) be the density of p-value pi given covariate xi . Clearly, the distribution
of the p-value Pi under H0i is uniform on [0,1] and does not depend on xi . Ac-
cordingly, the model in terms of p-values is

f (pi |xi) = π0(xi) + (
1 − π0(xi)

)
f (pi |H1i , xi).(2)
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We define the covariate-modulated posterior probability of H0i as P(H0i |pi,

xi).
We have data (pi, xi) and need to estimate π0(xi) and f (pi |H1i , xi). Diaconis

and Ylvisaker [(1985), Theorem 1] showed that any distribution on [0,1] can be
well approximated by a mixture of beta distributions. Allison et al. (2002) investi-
gated this approach further and applied it to estimating the density f underlying a
sample of p-values. In their experience with several sets of data, the simplest pos-
sible model, which is a mixture of a standard uniform, U [0,1], corresponding to
the true null hypotheses and one beta component corresponding to the alternative
hypotheses, seemed to be sufficient; furthermore, Parker and Rothenberg [(1988),
Section 3] noted that adding more beta components will increase the number of
observed rejections. Therefore, using only one single beta component correspond-
ing to the false null hypotheses can be seen as a conservative choice, as we avoid
overestimating the proportion of false null hypotheses. We have chosen to use a
mixture of a uniform density and a beta density as our model.

To account for the dependence on xi in f (pi |xi), we bin the p-values into B

sets B1,B2, . . . ,BB increasing in x. We assume that bins are small enough so
that π0(x) is nearly constant in x for each bin Bj , that is, π0(x) = π0j for all
x ∈ Bj , and similarly for the parameters of the beta distribution. Thus, we drop
the dependence on x within each bin. We assume that within each bin Bj , the
uniform-beta mixture model holds, so

fj (pi) = π0j + (1 − π0j )
�(ξj + θj )

�(ξj )�(θj )
p

ξj−1
i (1 − pi)

θj−1(3)

for pi ∈ Bj , where � denotes the gamma function, and ξj > 0 and θj > 0 are
the parameters of the beta density in bin Bj . The covariate-modulated posterior
probability of H0i corresponding to a p-value pi in bin Bj is then

P(H0i |pi, xi) = P(H0i |xi)

f (pi |xi)
= π0j

fj (pi)
.

Since small (large) p-values should correspond to false (true) null hypotheses,
p-value densities should be nonincreasing. Hence, we assume that, in each bin j ,
fj (p) is a nonincreasing function of p for p ∈ [0,1]. [See also Wu, Guan and
Zhao (2006), who show that fj (p) is always decreasing for p-values from a like-
lihood ratio test.] In addition, we make the assumption that fj (p) is convex. This
is done to avoid underestimation of fj (p) near p = 1, which would lead to un-
derestimation of π0j [since π0j = fj (1)]. Without the convexity assumption, the
assumption of non-increasingness for a density with bounded support may lead to
underestimation due to a “drop-down effect” near the right endpoint. See Langaas,
Lindqvist and Ferkingstad (2005) for further discussion of the convexity assump-
tion. It can be shown that fj (p) is nonincreasing and convex if and only if ξj ≤ 1
and θj ≥ 2.
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At this point, we have a separate model for each bin. The next step is to smooth
over the different bins and borrow strength between neighboring bins, leading to
improved estimates. This can be done using a Bayesian approach, as follows.

Defining a smoothness prior on the sequence of π01, . . . , π0B is complicated by
the fact that each π0j is limited to the interval [0,1]. We address this issue using
reparametrization

π̃0j = log
π0j

1 − π0j

,

so that π̃0j is defined on the whole real line. The smoothness prior is now taken to
be

f (π̃01, . . . , π̃0B) ∝ exp

(
−λ1

2

B∑
j=2

(
π̃0j − π̃0(j−1)

)2
)

(4)

to encourage the parameter values in neighboring bins to be similar. Here, λ1 is
the smoothing parameter. Note that (4) is improper as it is invariant to adding any
constant to its arguments.

The remaining two parameter sequences, ξ1, . . . , ξB , and θ1, . . . , θB have sim-
ilar restrictions, as ξj ∈ [0,1] and θj > 2, for each j . The smoothness priors for
{ξj } and {θj } are defined similarly as for {π0j }, using the reparametrization

ξ̃j = log
ξj

1 − ξj

and θ̃j = log(θj − 2).

Denote the smoothing parameters as λ2 and λ3, respectively.
Now, denoting the p-values in bin j by pj1,pj2, . . . , pjmj

, the simultaneous
posterior of interest is then

f ({π̃0j }, {̃ξj }, {̃λj } | λ1, λ2, λ3,data)

∝ f ({π̃0j })f ({̃ξj })f ({θ̃j })
(5)

×
mj∏
h=1

[
π0j (π̃0j ) + (

1 − π0j (π̃0j )
)

× �(ξj (̃ξj ) + θj (θ̃j ))

�(ξj (̃ξj ))�(θj (θ̃j ))
p

ξj (̃ξj )−1
jh

(1 − pjh
)θj (θ̃j )−1

]
.

We perform inference on the transformed parameters as this is an unconstrained
parametrization, but can easily transform back to the original parameters.

For nearest-neighborhood improper priors, smoothing is regulated by the
smoothing parameters (λ1, λ2, λ3). These need to be estimated or tuned in cal-
ibration experiments. Among the various approaches for estimating smoothing
parameters, we mention cross-validation [Thompson et al. (1991)], estimates
based on approximate models, and fully Bayesian inference [Kunsch (1994),
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Heikkinen and Penttinen (1999)]. We find preliminary estimates of the parame-
ters π̃0j , ξ̃j , θ̃j ; j = 1, . . . ,B , without smoothing; then we fit a Gaussian model to
each parameter and estimate (λ1, λ2, λ3) based on the estimated inverse variances.
Thus,

λ̂1 = B
/ B∑

j=2

( ˆ̃π0j − ˆ̃π0(j−1)

)2
,

and λ̂2 and λ̂3 are defined similarly. In addition, we consider scaling each smooth-
ing parameter by a tuning parameter c > 0, leading to cλ̂1, cλ̂2, cλ̂3. The eQTL
data analysis in Section 4 is performed for both c = 1 and c = 5 for comparison.

It is easy to estimate the beta-mixture model from equation (3) with only one
bin, B = [0,1], thus discarding the information in the covariate. We will refer to
this as the “one-bin model.” The estimated posterior probabilities from the one-bin
model are useful for assessing the usefulness of the information contained in the
covariate, by comparing the number of rejections given by the one-bin and B-bin
models.

Finally, note that the ordering of tests by significance will often be different for
the covariate-modulated posterior probability method than for methods not taking
the covariate into account, such as Efron’s local FDR and the one-bin model. If,
for example (as in the data set considered in Section 4), the covariate-modulation
function π0(x) is decreasing in x, then tests corresponding to a low value of x may
move down in the significance list, and tests corresponding to a high x may move
up in the list. This reordering of significance will be illustrated for the eQTL data
set analyzed in Section 4.

We estimate the π0j , ξj , θj and the covariate-modulated posterior probability
of the H0i simultaneously using the approximate Bayesian method described in
Section 3.

3. Computational strategy. This section discusses how to develop an effi-
cient strategy for doing inference from the full posterior of interest (5). Although
inference is possible using Markov chain Monte Carlo methods, we need a com-
putationally faster approach for our problem. The amount of data in each bin,
combined with the Gaussian smoothing, justify to approximate the joint posterior
of {π̃0j }, {̃ξj }, {θ̃j } as Gaussian. The posterior mean is the modal configuration,
and the posterior covariance matrix is the inverse of the negative Hessian at the
mode. Note that the Gaussian approximation is likely to be less accurate without
reparametrization, due to the constraints of the parameters.

To compute the posterior mean and the covariance matrix, we need to optimize
the log posterior, that is, the log of (5). We do this in two steps; in the first step we
compute reasonable initial values for the parameters in each of the B bins, while
in the second step we start from these initial values and optimize the log posterior
with respect to all the parameters to locate the mode:



720 FERKINGSTAD ET AL.

1. The initial values for the parameters of interest are determined sequentially. We
start with the first bin. We use only the data in the first bin to optimize the log
likelihood with respect to π̃01, ξ̃1, θ̃1. Then we go on to the second bin using
the initial values found from the first bin to initialize the optimization in bin 2.
This process continues until all the B bins are processed.

2. The log posterior is then optimized with respect to all the parameters starting
from the initial values found in the previous step.

Many numerical optimization schemes can be used in each of the two steps, and
we use the classical Newton–Raphson algorithm. The main motivation is that both
the gradient and the Hessian of the log posterior (both in the full model and for
each bin separately) are relatively easy to compute. Further, the Hessian matrix of
the log posterior will be sparse in the full model since the parameters in each bin
are only linked to the previous and following bin. As a side effect, we can invert
the negative Hessian used at the last iteration to obtain the covariance matrix.

As all the parameters are (approximately) jointly Gaussian, then so are the pos-
terior marginals for each π̃0j , ξ̃0j and θ̃0j , and they can be found analytically.

The posterior density of P(H0i |pi, xi) for bin j can be computed from the joint
posterior for π̃0j , ξ̃j , θ̃j . Such an approach is feasible but cumbersome using nu-
merical integration. For this reason, we attack this problem using the delta-method:
Expand P(H0i |pi, xi) around the posterior mean of (π̃0j , ξ̃j , θ̃j ), (π̃∗

0j , ξ̃
∗
j , θ̃∗

j ),
say, to obtain

P(H0i |pi, xi) = a + bT (
(π̃0j , ξ̃j , θ̃j ) − (π̃∗

0j , ξ̃
∗
j , θ̃∗

j )
) + · · · .

We now approximate the posterior of P(H0i |pi, xi) at bin j , by a Gaussian with
mean a and variance bT �jb, where �j is the posterior covariance of (π̃0j , ξ̃j , θ̃j ).

We have verified our Gaussian approximations using long runs of an MCMC
algorithm without being able to detect any relevant differences.

4. eQTL data. Through the collection of phenotypic and genetic data for in-
dividuals in family clusters, linkage analysis is a standard method to map genetic
variants that can influence a trait to specific regions of the genome [Ott (1999)].
Recently, there was the recognition that the magnitude of gene expression, mea-
sured using modern microarray technology for many genes simultaneously, varies
among individuals and often has a genetic component [Jansen and Nap (2001),
Schadt et al. (2003), Brystrykh et al. (2005)]. It hence can be treated as a quan-
titative genetic trait. The loci affecting gene expression are referred to as expres-
sion quantitative trait loci (eQTLs). While the same linkage methodology applies,
there are specific characteristics that distinguish the study of eQTLs from the study
of other more traditional traits. First, often the expressions of tens of thousands
of genes are studied simultaneously. Second, a variant that affects the expression of
a certain gene that is located in the immediate neighborhood of where the gene re-
sides is called a cis-variant, whereas a variant that can affect the expression of the
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gene, directly or indirectly, but is located far away (e.g., on a different chromo-
some), is a trans-variant. In general, given the phenotypic and genetic data, for
each trait, a linkage score can be calculated for every position on the genome (re-
ferred to as a genome-scan). Here we focus on the test of whether a cis-variant
exists so that only the linkage score evaluated at the known location of the gene is
used. The data involve the expressions of 22317 expressed sequence tags (ESTs)
for 370 Icelandic individuals clustered into 85 families. The data structure is sim-
ilar to that of Morley et al. (2004) and Monks et al. (2004), the difference being
that we have a larger sample size and the gene expressions are measured in blood
instead of lymphoblastoid cell lines.

Denote the gene expression (phenotype) data by E and the genotype data by G.
Using linkage analysis, the joint data (E,G) is used to test the null hypothesis

H0 : No cis-variant is affecting E,

through the conditional distribution P(G|E), for each EST (index dropped here
for simplicity). In a linkage analysis, as opposed to an association analysis, we do
not use the correlation between the genotype data G and E directly. Rather, the
genotype data are used to track the segments of chromosomes that are shared by
relatives identical by descent. Evidence of linkage of a phenotype to a genomic
region shows up when relatives having similar phenotypes share a region by de-
scent in excess of what is expected based on their known relationships, and rel-
atives with phenotypes that are substantially different have a deficit of sharing.
The test we used is particularly simple. Under H0, G is independent of E, or
P0(G|E) = P(G), and the distribution of any test statistic has a known distribu-
tion under H0 with no nuisance parameters. Specifically, what we used here is an
allele-sharing score, an extension of that described in Kong and Cox (1997) and
closely related to the method of Sham et al. (2002). Through exponential tilting
which leads to a one-parameter alternative distribution for the allele-sharing score,
a simple likelihood ratio test is used for each EST. The linkage score is calculated
using the program Allegro [Gudbjartsson et al. (2000)]. Simulation shows that the
p-values calculated using the chi-square distribution as the reference are very well
calibrated, as expected.

While linkage analysis involves the study of the co-segregation of phenotypes
and genetic material, the phenotype data alone can be used to estimate heritability,
that is, the strength of the correlation of phenotypes among relatives can be used
to estimate the fraction of the phenotype variance that is potentially accounted for
by genetic variants. Denote the estimated heritability by H(E), which we compute
from E using the program SOLAR [Almasy and Blangero (1998)] for each of the
22317 ESTs.

It might appear that we have artificially partitioned the overall information cap-
tured by the joint distribution P(G,E) into two parts, one based on the conditional
distribution P(G|E), and one based on P(E). However, in this case, as in many
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other real data problems, there is substantial asymmetry between the information
captured by P(G|E) and P(E). As noted above, the test we used to directly test H0
and compute p-values is simple and straightforward. It is very different for H(E).
Specifically, H(E) can be significantly and substantially different from zero for at
least four different reasons:

(A) There exists cis-variants that affect E.
(B) There exist trans-variants (variants that are located in regions of the genome

that are away from the gene for which the expression is measured) that, di-
rectly or indirectly, affect E.

(C) H(E) is capturing familial clustering/similarities that result from shared en-
vironment among relatives instead of genetic factors.

(D) Subjects and families are often not collected completely at random. Nonran-
dom ascertainment with respect to traits such as obesity, which are associated
with some of the expression phenotypes, could lead to bias in the estimate of
heritability.

Reason (A) above is the alternative for H0 as specified above, but E or H(E)

cannot be used to directly test H0 against the truth of (A). Therefore, we are not
able to use H(E) directly to compute p-values. However, there are obvious rea-
sons to believe that the probability for (A) being true is correlated with H(E).
Making as little assumptions as possible, our approach is to use H(E) through a
semi-parametric empirical-Bayes procedure to provide a prior distribution for H0
and (A).

Covariate-modulated posterior probabilities were calculated as described in
Sections 2 and 3. Twenty bins were used, with bin 1 containing the p-values with
corresponding heritability estimated exactly equal to zero, and the other bins cho-
sen to contain an approximately equal number of p-values. Smoothing scaling fac-
tors c = 1 and c = 5 were used. Resulting estimates in four of the bins, for c = 5,
with 0.95 pointwise symmetric credibility intervals, are shown in Figure 1. Here
we see that, for any given value of p, the covariate-modulated posterior probabil-
ity of H0 decreases for increasing bin index (increasing heritability). This effect
seems to be quite strong.

The one-bin model was used to assess the effects of covariate-modulation. Fig-
ure 2 shows a comparison between the results of the covariate-modulated poste-
rior probability method and the one-bin, no-covariate method. This plot shows a
2-dimensional histogram of the (covariate, test statistic) pair for each of the 22317
ESTs. A higher density of tests (ESTs) is indicated by a darker gray tone in the
histogram. Assume that a test is called significant if the posterior probability of the
null hypothesis is smaller than 0.05. The step-like solid curve is the significance
threshold at level 0.05 for the 20-bin covariate-modulated posterior probability
based method. The dashed line shows the significance threshold, also at level 0.05,
for the one-bin, noncovariate based, posterior probability. A total of 818 tests were
called significant by both methods, while 704 tests were called significant by the
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FIG. 1. Estimated covariate-modulated posterior probabilities of H0 in bins 1, 7, 13 and 20. The
solid line shows the estimate, while the dashed lines are approximate pointwise 95% symmetric
credibility intervals.

20-bin method only. 53 tests (corresponding to EST’s with low heritability) were
called significant by the one-bin method, but discarded as such by the covariate-
modulated 20-bin method. These results are for smoothing scale c = 5. Results for
smoothing scale c = 1 are similar, with 817 tests called significant for both meth-
ods, 738 tests called significant for the 20-bin method only, and 54 tests called
significant for the one-bin method only.

The impact of using heritability information is huge. Looking at Figure 2, it
is evident that there is a large difference when using the covariate-modulated
method compared to the no-covariate method. In Figure 2 the 53 tests in the
region below the 20-bin threshold and above the one-bin threshold are consid-
ered by the covariate-based method as false discoveries, obtained erroneously by
a no-covariate method. These points are in a region of lower heritability, while
the 704 points below the one-bin significance line and above the 20-bin signifi-
cance curve (which are “gained” by introducing covariate-modulation) are in the
region with higher heritability. As expected, the tests with low heritability are ef-
fectively down-weighted by the 20-bin method, while tests with high heritability
are up-weighted, in a nonsupervised fashion by the Bayesian rule. Thus, there are
two potential gains of using our method: Higher overall power, and better focus on
individual findings supported by additional information.
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FIG. 2. Two-dimensional histogram of pairs of covariate (heritability) and test statistic (z-score)
for each of the 22317 tests (EST’s). A darker gray tone indicates a higher density of points
(tests) in each pixel. The solid step-like curve shows the significance threshold using the covari-
ate-modulated, 20-bin posterior probability of H0. The dashed line shows the significance threshold
for the no-covariate, one-bin posterior probability. Both thresholds are at posterior probability level
0.05. 53 tests fall in the significance region of the one-bin method, but outside the significance region
of the 20-bin method, 704 tests fall in the significance region of the 20-bin method, but outside the
significance region of the one-bin method, while 818 tests are within the significance region of both
methods. Using heritability has a very large impact.

It may also be of interest to study the estimated covariate-modulated functions
(i.e., the estimated π01, π02, . . . , π0B ) directly. A plot of π0j vs. covariate x for is
shown in Figure 3. Clearly, the dependence on the covariate, heritability, is very
strong. The covariate-modulation function also illustrates the effect of smoothing.
The above plot shows the case c = 1, while the below plot shows the case c = 5.
In this case, smoothing c = 5 seems most appropriate, based on the degree of
smoothness and the a priori expectation that the covariate-modulation function
should be decreasing in x.
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FIG. 3. Covariate-modulation functions for the eQTL data: Estimated π0j versus covariate (heri-
tability) x. The steps correspond to bins. Two degrees of smoothing are shown (scaling factors c = 1
and c = 5, resp.). Pointwise 95% symmetric credibility intervals are shown as dashed lines.

The one-bin model gives the posterior estimate π̂0 = 0.701, with approximate
symmetric 95% credibility interval (0.687,0.714), for the overall proportion of
true null hypotheses π0. By comparison, the estimates π̂ s

0 of Storey (2002) and
π̂ c

0 of Langaas et al. (2005) are π̂ s
0 = 0.601 and π̂ c

0 = 0.615, respectively, so it is
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possible that the one-bin uniform-beta mixture model gives a conservative estimate
in this case.

As mentioned in Section 2, the ranking of genes according to the posterior prob-
ability of the alternative hypothesis may be different for the covariate-modulated
posterior probability and for the one-bin, no-covariate posterior probability. This
is illustrated in Figure 4, which shows the change in rankings for the top 100 genes
for the 20-bin, covariate based method. Reshuffling is quite evident. Rank infor-
mation is important for further analysis and experiments on the most promising
EST’s, with potential impact on drug-discovery plans.

FIG. 4. Comparison of ranks based on no-covariate (1-bin) posterior probability versus covari-
ate-modulated (20-bin) posterior probability for the eQTL data. The EST’s with lowest covari-
ate-modulated posterior probability of H0 are ranked along the left y-axis. Each segment ends on
the right y-axis of the plot on the rank given to that EST by the one-bin method. Segments moving
down indicate EST’s which are more strongly cis-regulated according to the covariate-modulated
posterior probability, while segments moving up indicate the opposite. Reshuffling of ranks is due to
the merging of expression data with heritability knowledge. Some lines escape the plot; for these the
final rank is written on the segment.
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5. Connections to other methods and optimality. Several multiple testing
methods use, for each test, the full likelihood of the data rather than a one-
dimensional p-value/statistic summary. Use of the full likelihood implies that tests
are reordered with respect to plain p-value ranking, thanks to information not
conveyed by the corresponding univariate p-values. This happens also in our ap-
proach, but the additional information comes from external covariates, while in
the full-likelihood (FL) methods there is a borrowing of strength between tests
(internally).

In some cases our “external covariate” may be incorporated into the likelihood
model (and thus become “internal” in our terminology), and the FL methods de-
scribed below may be used directly. However, in many cases this will be impos-
sible, impractical or unnatural. Our eQTL application below is an example where
it would be inappropriate to use the covariate in this way, as was explained in
Section 4.

Our method has the advantage that since everything is done conditionally on the
covariate, no model for the covariate is needed. In this sense, our approach uses a
minimal set of assumptions to provide a generally applicable way of using covari-
ate information. FL methods are currently implemented for k-class comparisons
(like the differential expression problem), while our methodology may readily be
applied for any multiple testing problem where external covariate information is
available.

Recently, Storey (2007) and Storey, Dai and Leek (2007) introduced a frequen-
tist FL method called the Optimal Discovery Procedure (ODP). The ODP is a
theoretically optimal procedure based on a generalized likelihood ratio thresh-
olding function. The optimality goal is that of maximizing the expected num-
ber of true positives for each fixed expected number of false positives, where
the former expectation is calculated under the subset where the alternative is
true and the latter expectation is calculated under the subset where the null is
true.

In the ODP method, two main steps are distinguished:

1. ordering tests by significance, and
2. choosing a cutoff to obtain a specified error rate.

The procedure is defined as follows. Suppose that we have m significance
tests performed on observed data sets y1,y2, . . . ,ym, where yi is the vector of
data for test i. Test i has density fi under H0 and density gi under H1. As-
sume that H0i is true for i = 1, . . . ,m0 and H1i is true for i = m0 + 1, . . . ,m.
The ODP for test i is then given by the following significance thresholding func-
tion:

SODP(yi ) = f1(yi ) + · · · + fm0(yi ) + gm0+1(yi ) + · · · + gm(yi )

f1(yi ) + f2(yi ) + · · · + fm0(yi )
,(6)
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rejecting null hypothesis H0i if and only if SODP(yi ) ≥ λ. Notice that step 1 above
is here accomplished by the specification of the thresholding function (6), while
step 2 is done by choosing λ. In our approach the cutoff is immediate to find, since
we rank according to posterior probabilities.

Since the expression (6) for SODP(yi ) involves several unknown quantities, the
actual procedure is based on an estimated thresholding function ŜODP(yi ). Storey,
Dai and Leek (2007) propose to assume normality for the yi , and plug the maxi-
mum likelihood estimate into the Gaussian density functions to estimate gi . [Note
that ĝm0+j (yi) is estimated using data ym0+j .] In addition, in the presence of nui-
sance parameters, it is necessary to provide a preliminary estimate of the summa-
tion of the true null densities. This may be done by ranking the tests by ordinary
univariate significance criteria (e.g., p-values), estimating the proportion π0 of true
null hypotheses, and then deciding that the m(1 − π̂0) tests with smallest p-values
have a true H1, while the rest have a true H0. Optimality is lost at this point,
but satisfactory results are reported in practice. Choice of λ is done using a boot-
strapping procedure, described in the Online Supplement of Storey, Dai and Leek
(2007).

The ODP procedure is closely related to our method. To see this, first disre-
gard the presence of the external covariate, and assume that each null hypoth-
esis H0i has the same probability π0 of being true. In this case, it is shown in
Storey (2007) (page 364) that the ODP thresholding function is equivalent to the
thresholding function given by the posterior probability that the alternative hy-
pothesis is true given the data yi . This implies that the ranking using this pos-
terior probability is optimal in the ODP sense. Now, consider the use of exter-
nal covariates. Our method is based on the posterior probability of H1i given
a one-dimensional (p-value/test statistic) summary of the data and the covariate
xi . Thus, our method may be seen as a version of the ODP method in the set-
ting where we only use a p-value/test statistic summary. Therefore, by optimal-
ity of the ODP, our method is optimal within each bin among methods based on
one-dimensional summary statistics, but optimality over all bins is not guaran-
teed. It should be noted that all methods that are based on the posterior probabil-
ity of the H0i (H1i) can be seen as variants of the ODP method in this general
sense.

It is a disadvantage of the ODP method to assume normality (or any other spe-
cific parametric model under H1) of the measurements y and make an ad hoc
preliminary guess of the status of each null hypotheses. In addition, the use of
plug-in estimation is an issue. Our method is based on much fewer assumptions,
basically only that valid p-values may be calculated, and that p-values/test statis-
tics are independent of the covariate under the null. In this sense, our approach is
unsupervised and data driven, and allows to incorporate covariates in a very simple
and intuitive way.

Furthermore, our covariate-modulation ideas may be combined with the full-
likelihood version of the ODP in at least two ways. One approach is to bin the data
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yi by the covariate and estimate the ODP separately in each bin, extending a sug-
gestion in Storey (2007) (page 353) to an external covariate. A problem with this
approach is that is not clear how one could smooth between bins, which should
be beneficial. Another approach is to first apply the ODP method to the data ig-
noring the covariate, calculate ODP-based adjusted p-values [as described in the
Supplementary Material of Storey, Dai and Leek (2007), equation (10), page 5],
and finally apply our method using the ODP-based p-values and the external co-
variate.

Other FL methods are based on hierarchical Bayesian mixture modeling. Rel-
evant references include Baldi and Long (2001), Do, Müller and Tang (2005),
Kendziorski et al. (2006), Lonnstedt and Speed (2002), Newton et al. (2004). As
in our approach, inference is based on posterior probabilities of the null and al-
ternative hypotheses. These methods require full Bayesian modeling and distrib-
utional assumptions, which are looked at with skepticism by practitioners used to
unsupervised testing. As for the ODP, the hierarchical Bayesian mixture models
may be combined with our approach. This can again be done by binning, and in
the Bayesian approach smoothing between bins is now more immediately applica-
ble. However, the use of our approach in a fully Bayesian setting may become
computationally demanding.

The one-bin model differs from Efron’s local FDR in that the one-bin model
assumes a specific parametric mixture model for the p-values, whereas in the
local FDR method the density of the p-values is estimated using parametric
smoothing of the p-value histogram. A by-product of the estimation of the one-
bin model is an estimate of π0, the probability that a given null hypothesis is
true (or, equivalently, the proportion of true null hypothesis). This is an inter-
esting quantity in its own right, and several methods have been proposed for
its estimation, such as the estimator of Storey (2002), and the convex decreas-
ing estimator of Langaas, Lindqvist and Ferkingstad (2005). When estimating
the full B-bin model, similarly an estimate of π0j can readily be found using
the methods of Storey (2002) or Langaas, Lindqvist and Ferkingstad (2005) in
each bin j , and this may be compared to the estimated π0j from the B-bin
model.

6. Simulation experiment. This simulation experiment shows that the es-
timated covariate-modulated posterior probabilities of the null hypotheses are
close to the true values in a controlled setting, and visualizes the effect of vary-
ing degrees of covariate modulation. Simulations were done for varying degrees
of covariate-dependence and varying overall proportions of true null hypothe-
ses.

The main procedure for the generation of each simulated data set is as follows:
First, covariates xi, i = 1, . . . ,m, are sampled iid from Unif[0,1], m = 30000.
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A covariate-modulation function π0(x) is specified (see below). For each i, we let
H0i be true with probability π0(xi), and let H1i be true with probability 1−π0(xi).
We sample zi from N(0,1) if H0i is true, and sample zi from N(2,1) otherwise.
The sampled zi are then test statistics for m tests of H0i : θ = 0 vs. H1i : θ = 2,
where Zi ∼ N(θ,1).

As a first step in choosing a suitable covariate-modulation function, we decide
on an overall level for the proportion of true null hypotheses, that is, we set π̄0 ≡∫ 1

0 π0(x) dx to some fixed number. The strength of the dependence on the covariate
is determined by the steepness of the function π0(x). We have chosen the following
parametric form for π0(x):

π0(x) = exp
(−α − (β − α)xγ )

,(7)

where α, β and γ are positive constants, and π0(x) is decreasing if and only if
α > β . We have confined our simulation experiment to decreasing π0(x).

For each value of π̄0, we set the strength of the covariate-dependence by
choosing appropriate α and β , implicitly setting π0(0) and π0(1) since α =
− log(π0(0)) and β = − log(π0(1)), and then choosing γ such that

∫ 1
0 exp(−α −

(β − α)xγ ) dx = π̄0.
The simulation results reported below are all from 1000 runs of the algorithm

described in Section 3. Pointwise medians, 5% quantiles and 95% quantiles were
calculated based on the 1000 runs. In each run a total number of 30000 test sta-
tistics were simulated. In each case, one-bin no-covariate and 10-bin covariate-
modulated posterior probabilities were calculated for the same data sets. True pos-
terior probabilities were calculated as described in the Supplementary Material
[Ferkingstad, Frigessi, Rue, Thorleifsson and Kong (2008)].

We first consider two simulated data sets with relatively weak covariate-
modulation. We choose α, β and γ in (7) such that π̄0 = 0.5, π0(0) = 0.55 and
π0(1) = 0.45. The top row in Figure 5 show the estimated posterior probabil-
ities for the 10-bin and one-bin methods, compared to the true posterior prob-
abilities, in bins 1, 3, 5, 7 and 9. The red curves show the median estimated
covariate-modulated posterior probabilities (solid lines) together with 0.05 and
0.95 quantiles (dashed lines) from the 1000 runs. The green curves show the
true posterior probabilities. Only posterior probabilities for p-values in the range
[0,0.1] are shown, since the posterior probabilities are too high to be of interest
outside this range. Notice first that the one-bin posterior probability is invariant
over different bins, since this does not depend on covariate-information. How-
ever, the estimated covariate-modulated posterior probability and the true poste-
rior probability vary over different bins. From the two top rows of Figure 5, we
see that the estimated 10-bin posterior probability is very close to the truth. The
one-bin estimated posterior probability is a good estimate for bins corresponding
to a moderate value of the covariate (bin 5), but deteriorates for more extreme val-
ues of the covariate (other bins). This is as expected: Since covariate modulation
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FIG. 5. Simulated data sets. The top row shows estimated posterior probabilities for π̄0 = 0.5
with weak covariate-modulation, the middle row shows results for π̄0 = 0.9 with weak covari-
ate-modulation and the bottom row shows results for π̄0 = 0.5 with strong covariate-modulation.
Ten bins were used in the calculations, but only bins 1, 3, 5, 7 and 9 are shown here. For each bin,
the bold green curve shows the true posterior probabilities. The red curves show estimated 10-bin
covariate-modulated posterior probabilities, where the solid curve is the median of the 1000 simula-
tions, and the dashed curves are 0.05 and 0.95 quantiles. Similarly, the blue curves show estimated
no-covariate (one-bin) posterior probabilities (median with 0.05 and 0.95 quantiles).

is quite weak, the information in the covariate should not change the discoveries.
This result is consistent with what we saw for a second real data set, as reported
in the Supplementary Material [Ferkingstad, Frigessi, Rue, Thorleifsson and Kong
(2008)].

As the second case of weak covariate-modulation, we choose π̄0 = 0.9, π0(0) =
0.95 and π0(1) = 0.85. Results, shown in the middle row of Figure 5, are similar to
what we saw in the first case. Again, it is seen that the covariate-based estimation
method gives a very close approximation to the truth, while the noncovariate-based
method misses off slightly, particularly for the bins corresponding to extreme (par-
ticularly small or large) values of the covariate.
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Finally, we consider a simulated data set where there is strong covariate-
modulation. Here, we have chosen π̄0 = 0.5, π0(0) = 0.9 and π0(1) = 0.1. The
results are shown in the bottom row of Figure 5. We again see that the estimated
10-bin covariate-modulated posterior probabilities are very close to the true val-
ues. Clearly, the covariate-modulation method does well in capturing the infor-
mation in the covariate in this case. There is a big difference between the 10-bin
posterior probability and the no-covariate method. The no-covariate method does
not work well in any bins (except possibly bin 5). When covariate information is
available, using it, even in an unsupervised fashion, has a potentially important
impact.

7. Discussion. We defined the covariate-modulated posterior probability as
P(H0i |pi, xi), where pi is the ith p-value and xi the corresponding covariate
for i = 1, . . . ,m hypothesis tests. More generally, we can consider P(H0i |pi,x),
where x = (x1, x2, . . . , xm) is a vector of covariates.

We use the assumption that g(zi |H0i , xi) = g(zi |H0i ), where g denotes the den-
sity of the test statistics. However, the method could also be adapted to the case
where g(z|H0i , xi) is known as a function of xi .

Furthermore, additional beta components can be added to the mixture (3). Also,
it is possible to incorporate measurement error in the covariate, by adding a further
level to the Bayesian hierarchical model.

In the Supplementary Material [Ferkingstad, Frigessi, Rue, Thorleifsson and
Kong (2008)] we test for differentially expressed genes, between breast cancer
tumors with and without a mutation in the gene TP53. Here, we use genome-wide
CGH copy number alteration as the covariate modulating the a priori belief in each
null hypothesis. This data set is chosen to illustrate a case where the information
contained in the covariate is limited, but its use does not corrupt the results.

An important application where a covariate can play an important role is
genome-wide association studies where hundreds of thousands of SNPs (single
nucleotide polymorphisms) are tested for association to quantitative or qualitative
traits. With gene expression traits, p-values calculated for SNPs residing in the
neighborhood of the corresponding genes (cis-variants) could again be evaluated
using our approach. Here both the heritability and the cis linkage score could be
used as covariates, either individually or jointly. A related application is an associ-
ation study for a disease trait (e.g., diabetes). Here the notion of a cis variant does
not apply and it is expected that a large number of SNPs, but nonetheless a very
small fraction of all the SNPs typed, could be associated to the disease. A com-
mon design is a case-control study, and the association scores for the hundreds
of thousands of SNPs genotyped and tested have to be evaluated taking multiple
comparisons into account. Indeed, it has been proposed that the linkage scores
resulting from a family study of the disease could be used to assist the analysis
through differential weighting of the p-values [Roeder et al. (2006), Genovese et
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al. (2006)] with the weights working like prior probabilities. The method we pro-
posed here is an alternative to the weighting method. This application also raises
the possibility that instead of modeling the distribution of the p-values under H1
directly, one can model the effect sizes of the association; given a distribution of
the effect sizes, there is a corresponding distribution for the p-values. Modeling
this way can in theory provide for each SNP, at the end of the analysis, not only
the probability that the alternative hypothesis is true, but also the posterior distri-
bution of its effect size. The shrinkage characteristics of such methods could be
a potential solution to the winner’s curse, where the observed effect sizes for the
SNPs that showed the strongest associations tend to be biased upward even when
they are true positives.
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Unsupervised empirical Bayesian multiple testing with external covariates
(doi: 10.1214/08-AOAS158SUPP; .pdf).
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