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Consider a random walk whose (light-tailed) increments have positive
mean. Lower and upper bounds are provided for the expected maximal value
of the random walk until it experiences a given drawdown d. These bounds,
related to the Calmar ratio in finance, are of the form (exp{αd} − 1)/α and
(K exp{αd} − 1)/α for some K > 1, in terms of the adjustment coefficient α

(E[exp{−αX}] = 1) of the insurance risk literature. Its inverse 1
α has been re-

cently derived by Aumann and Serrano as an index of riskiness of the random
variable X.

This article also complements the Lundberg exponential stochastic upper
bound and the Crámer–Lundberg approximation for the expected minimum
of the random walk, with an exponential stochastic lower bound. The tail
probability bounds are of the form C exp{−αx} and exp{−αx}, respectively,
for some 1

K
< C < 1.

Our treatment of the problem involves Skorokhod embeddings of random
walks in martingales, especially via the Azéma–Yor and Dubins stopping
times, adapted from standard Brownian motion to exponential martingales.

1. Introduction.

Drawdowns of Brownian motion with positive drift. Let {W(t) | t ≥ 0,

W(0) = 0} be standard Brownian motion (SBM) and let {B(t) | B(t) = μt +
σW(t), t ≥ 0} be Brownian motion (BM) with drift μ > 0 and diffusion para-
meter σ ∈ (0,∞). For d > 0, define the stopping time

τBM
d = min

{
t
∣∣∣ max

0≤s≤t
B(s) ≥ B(t) + d

}
(1.1)

to be the first time to achieve a drawdown of size d . That is, τBM
d is the first

time that BM has gone down by d from its record high value so far. As moti-
vated by Taylor [21], an investor that owns a share whose value at time t is Vt =
V0 exp(B(t)) may consider selling it at time τBM

d (for some d > 0) because it has
lost for the first time some fixed fraction 1 − exp(−d) of its previously held high-
est value V0 exp(Md) [where Md = MBM

d = max0≤s≤τBM
d

B(s) = B(τBM
d ) + d],

a possible indication of change of drift.
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As pointed out in Meilijson [18], drawdowns are gaps for Dubins and Schwarz
[12], extents for Goldhirsch and Noskovicz [13] and downfalls for Douady,
Shiryaev and Yor [9]. Taylor [21] (see also [18]) presents a closed-form formula for
the joint moment generating function of τBM

d and B(τBM
d ), from which it follows

that MBM
d is exponentially distributed, with expectation

E[MBM
d ] = σ 2

2μ

(
exp

{
2μ

σ 2 d

}
− 1

)
.(1.2)

A direct proof of the mean (1.2) and (exponential) distribution of MBM
d is pre-

sented in Section 4.

Maximum of Brownian motion with negative drift. The maximum max(BM) =
inft>0{B(t)} is well known to have the exponential distribution

P
(
max(BM) > x

) = 1 ∧ exp
{
−2|μ|

σ 2 x

}
.(1.3)

This article contributes to the generalization of (1.2) and (1.3) from BM to ran-
dom walks (RW). There is a rather vast literature on the maximum of RW with
negative drift. Kingman [16] showed that P(max(RW) > x) ≈ 1 ∧ exp{−2|μ|

σ 2 x}
for small μ, Siegmund [19] studied first-order corrections to this approximation
via renewal-type overflow distributions and Chang and Peres [8] developed asymp-
totic expansions of P(max(RW) > x) for the Gaussian case. Blanchet and Glynn
[6] improved on these approximations. In the insurance risk literature, exponen-
tial bounds and approximations of P(max(RW) > x) are referred to as Lundberg’s
inequality or Crámer–Lundberg approximations (see Asmussen’s comprehensive
treatise [1]).

This paper is methodologically different from the above; instead of relying on
change of measure and renewal theory, our setup involves exponential martingales
and Skorokhod embeddings, in a way reminiscent of Wald’s [22] method for de-
riving the OC characteristic of the Sequential Probability Ratio Test. As part of the
change, we will give up on trying to save the inaccurate role of 2|μ|

σ 2 as the expo-
nential rate in the questions under study, in favor of the so-called adjustment coeffi-
cient of the insurance risk literature, provided by the α solving E[exp{−αX}] = 1.
However, the rate 2|μ|

σ 2 will stay around: the RW will be coupled with a BM for

which 2|μ|
σ 2 is α.

More explicitly, using Skorokhod ([20] and also [4, 7, 10, 17]) embeddings,
mean-zero RW can be viewed as optional sampling of SBM. This idea will be
mimicked here to embed the exponential martingale exp{−αSn} into the martin-
gale exp{−αB(t)}. This method could be useful in obtaining other approximate
extensions of pricing under log-normal models to more general distributions.

Aumann and Serrano [3] asked a scalar index of riskiness Q(X) of the random
variable (r.v.) X to satisfy a homogeneity axiom Q(tX) = tQ(X) and a duality
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axiom that models the increased preference of a more risk-averse individual for
constant wealth w over random wealth w + X. The unique solution (up to a mul-
tiplicative constant) is the inverse 1

α
of the adjustment coefficient. The role played

by α in our subject matter is clearly consistent with riskiness—a large α corre-
sponds to low risk, as it (i) protects against heavy initial losses before eventual
divergence of the RW to ∞, and (ii) makes the RW reach high yield before expe-
riencing sizable drawdowns.

The Calmar ratio (see Atiya and Magdon-Ismail [2] and the implementation of
their work in the Matlab financial toolbox) of a financial asset with positive drift is
a measure of the likely drawdown in the logarithm of its price in a given interval
of time, such as a year. Since height (and time) are exponential in the drawdown,
the Calmar ratio is heavily influenced by the length of this time interval. Besides,
typical drawdown in a given time span is harder to analyze than our subject matter,
typical height (or time) to achieve a given drawdown. We propose the use of the
adjustment coefficient or its inverse as a Calmar-type measure of the risk of a
financial asset, and provide simple approximate formulas to quantify its effects.
The more commonly used Sharpe index, or ratio of net drift (drift minus market
interest rate) to volatility (standard deviation), lets volatility penalize the asset even
when it favors gains. In contrast, drawdown-based indices measure risk in a more
reasonable asymmetric sense.

2. Results. From now on, we only consider BM and RW with positive drift
and thus unify the presentation of the two problems, by switching from the com-
monly studied maximum of BM and RW with negative drift to the equivalent treat-
ment of the minimum of BM and RW with positive drift.

PROPERTY PMLLT. The distribution of the r.v. X satisfies Property PMLLT
(positive mean, light left tail) if E[X] ∈ (0,∞), P(X < 0) > 0 and there is α > 0
such that E[exp{−αX}] = 1.

Since (if finite) the moment generating function �(t) = E[exp{tX}] is strictly
convex with � ′(0) = E[X] > 0 and �(t) → ∞ as |t | → ∞, such α exists and is
unique as long as the moment generating function is finite wherever relevant. This
assumption is satisfied, for example, for Gaussian r.v.’s and for r.v.’s bounded from
below. If X ∼ N(μ,σ 2), then α is indeed 2μ

σ 2 [see (1.2)].
Besides α, we need other characteristics of the distribution F of X:

d+ = 1

α
sup

0<x<esF

− log
(
E

[
e−α(X−x)|X ≥ x

])
,

d− = 1

α
sup

eiF <x<0
log

(
E

[
eα(x−X)|X < x

])
,(2.1)

d0 = d+ + d−,



1018 I. MEILIJSON

where esF = sup{y|F(y) < 1} and eiF = inf{y|F(y) > 0} are the essential supre-
mum and infimum of F . By Jensen’s inequality, d+ is bounded from above by the
simpler and more natural supx E[X − x|X ≥ x] and d− is accordingly bounded
from below. These constants are defined in terms of excesses of the r.v. X itself,
unlike the Siegmund or Crámer–Lundberg approximations, built in terms of the
renewal overflow distribution of the random walk with X-increments.

Let Xi , i = 1,2, . . . (generically, X) be i.i.d. PMLLT F -distributed random vari-
ables and let S0 = 0; Sn = ∑n

i=1 Xi be the corresponding random walk (RW). The
definition of α makes exp{−αSn} a martingale with mean 1.

Drawdowns, maximal heights MRW
d achieved prior to drawdowns and the cor-

responding stopping times τRW
d can be defined for random walk in much the same

way they are defined for Brownian motion. Restating Lundberg’s inequality as the
RHS of (2.3), the purpose of this paper is to prove the other three inequalities in
(2.2) and (2.3).

THEOREM 1. Let X satisfy Property PMLLT and let d+, d−, d0 be as defined
in (2.1). Then

eαd − 1

α
≤ E[MRW

d ] ≤ eα(d+d0) − 1

α
(2.2)

and, for x > 0,

e−α(x+d−) ≤ P
(−min(RW) > x

) ≤ e−αx.(2.3)

Furthermore, the upper bound in (2.2) is a stochastic inequality: MRW
d is sto-

chastically smaller than the exponentially distributed random variable MBM
d+d0

.

Theorem 1 will be proved in Section 6 after developing some background ma-
terial in Section 5.

We thus have lower and upper bounds for E[MRW
d ] whose ratio stays bounded

as d increases, provided d0 is finite. These bounds clearly show that drawdowns
are logarithmic in the highest value achieved so far, and precisely identify the
exponential rate α at which the latter grows as a function of the former. We do not
provide a stochastic lower bound for MRW

d . In contrast, (2.3) provides stochastic
upper and lower bounds on the minimum of RW.

The upper bound in (2.2) can be improved by letting d0 depend on d and be
defined as d0 in (2.1) but restricting the maximization to x ∈ (0,min(esF , d)) and
x ∈ (max(eiF ,−d),0). This improved upper bound is finite for every d .

3. A few examples.

Example 1: The Gaussian case. Let φ and � stand respectively for the stan-
dard normal density and cumulative distribution function.
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LEMMA 1. Let X ∼ N(μ,σ 2). Then

α = 2μ

σ 2 ; eαd+ = eαd− = �(μ/σ)

1 − �(μ/σ)
.(3.1)

COROLLARY 1. Let X ∼ N(μ,σ 2). Then

e2μ/σ 2d − 1

2μ/σ 2 ≤ E[Md ]
(3.2)

≤ (�(μ/σ)/(1 − �(μ/σ)))2e2μ/σ 2d − 1

2μ/σ 2 ,

1 − �(μ/σ)

�(μ/σ)
e−2μ/σ 2x ≤ P

(−min(RW) > x
) ≤ e−2μ/σ 2x.(3.3)

REMARK 1. If we view the normal random walk as sampling Brownian mo-
tion with drift μ and diffusion coefficient σ at regular intervals, α is independent
of the grid length δ but the three d’s are not, predictably vanishing with the grid

length: by (3.1), d+ = d− = 1
α

log �(μ/σ
√

δ)

1−�(μ/σ
√

δ)
→ 0 as δ ↓ 0.

PROOF OF LEMMA 1. The LHS of (3.1) is well known and easy to obtain from
the formula exp{μ + σ 2t2/2} of the moment generating function of the normal
distribution. As for the RHS, it requires evaluating via

E[e−βZ|Z > z] = e1/2β2 1√
2π

∫ ∞
z exp{−1/2(t + β)2}dt

1 − �(z)
(3.4)

= e1/2β2 1 − �(z + β)

1 − �(z)

the expressions

E[e−αX|X > x] = E
[
e−α(μ+σZ)|μ + σZ > x

]
(3.5)

= e−2μ2/σ 2
E

[
e−2μ/σZ

∣∣∣Z >
x − μ

σ

]
1 − �((x + μ)/σ)

1 − �((x − μ)/σ)
,

E[e−αX|X < x] = �((x + μ)/σ)

�((x − μ)/σ)
,(3.6)

from which the RHS of (3.1) follows, at least in the sense of plugging x = 0.
To see that x = 0 is indeed the correct choice for each side, observe that for
the normal distribution the residual distributions L(X − x|X > x) are ordered by
monotone likelihood ratio, thus also by stochastic inequality [ φ(x1+t)

1−�(x1)
/

φ(x2+t)
1−�(x2)

=
K(x1, x2) exp{(x2 − x1)t} is a monotone function of t]. Hence, the expectations
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of monotone functions (e.g., exponential) are ordered accordingly. This argument
applies equally to the two tails. �

Relevant material on monotone likelihood ratio and stochastic ordering can be
found in Lehmann and Romano ([14], Section 3.4).

Example 2: The double exponential case. Let X have density pθ exp{−θx} for
x > 0 and (1 − p)μ exp{μx} for x < 0, with p > p0 = θ

μ+θ
to achieve E[X] > 0.

Then

E[X] = p

θ
− 1 − p

μ
; α = pμ − (1 − p)θ(3.7)

with the corresponding bound ingredients

eαd+ = (μ + θ)p

θ
; eαd− = μ

(μ + θ)(1 − p)
; eαd0 = pμ

(1 − p)θ
.(3.8)

There is no clear-cut inequality between α and the Gaussian-like version 2E[X]
Var[X] .

The rate α exceeds 2E[X]
Var[X] iff p is in the interval with endpoints p0 and [2μ

θ
−1]p0.

Hence, if μ ≤ θ (heavier left tail), the rate α is below 2E[X]
Var[X] for all feasible p. If

μ > 2θ , the opposite inequality holds for all feasible p. In the complementary,
intermediate case, the latter holds only for p between p0 and [2μ

θ
− 1]p0.

Example 3: The shifted exponential case. Let X have exponential distribution
with mean 1

θ
shifted down by � < 1

θ
so as to allow negative values and still pre-

serve positive mean. It is easier to express the inverse function to α:

1

α
log

(
1 + α

θ

)
= �(3.9)

from which

d+ = �; eαd+ = 1 + α

θ
; eαd− = 1 − e−(θ+α)�

1 − e−θ�
;

(3.10)

eαd0 = 1 + α/θ

1 − e−θ�
.

The Gaussian-motivated rate 2E[X]
Var[X] is 2θ(1 − θ�), always smaller than α. That

is, a random walk with shifted exponential increments gets to higher heights before
a given drawdown than a normal one with the same mean and variance.

Example 4: A dichotomous case. Let P(X = −1) = 1 − p and P(X = 1) =
p > 1

2 . Then α = log p
1−p

and, obviously, d+ = d− = 1. As is well known from
the Gambler’s ruin problem, the probability of reaching +1 before (integer) −d



DRAWDOWNS OF RANDOM WALK 1021

is P + = 1−exp{−αd}
1−exp{−α(d+1)} . MRW

d is nothing but the number of independent such at-
tempts until a first “failure.” Hence, it is (−1 plus) a geometric r.v., and its mean
is

E(MRW
d ) = −1 + 1

1 − P + = p

2p − 1
(eαd − 1).(3.11)

For noninteger d , the ceiling of d should be substituted in (3.11). Even without
doing so, the LHS of (2.2) is verified, because α = log p

1−p
>

2p−1
p

. To ascertain

the RHS, take E(MRW
d+1) as worst-case ceiling and check that p

2p−1(eα(d+1) − 1) is
below the bound (exp{α(d + 2)} − 1)/α.

Just as in the shifted exponential case, the rate of growth α exceeds the rate
2E[X]
Var[X] = 1

2( 1
1−p

− 1
p
) that would have been obtained in the Gaussian case. How-

ever, we have the following example:

Example 5: A skew dichotomous case. Let P(X = −1) = b
1+b

and P(X =
b(1+ε)) = 1

1+b
. The mean is E[X] = εb

1+b
so let us take ε = 0.2 to achieve positive

mean and b = 0.1 to tilt the distribution toward bigger losses. Then α = 0.318
but 2E[X]

Var[X] = 0.351. This shows that even for dichotomous variables the inequality
between the two can go both ways, like in Example 2 under lighter left tail.

In all the previous examples, the distribution F has nondecreasing failure rate
and the “excess lifetime” over x looks shorter as x increases. That is why the d’s
are attained at x = 0 [see (2.1)]. This is not always the case: it is easy to produce
a four-point distribution with one negative atom in which d+ will be the distance
between the two rightmost atoms.

Example 6: A power-law right tail. If F is light left tailed but behaves like
power law at the right tail, then α is finite but d+ is infinite because its maximand
behaves like logx. To wit,

E
[
e−α(X−x)|X > x

] = γ

x

∫ ∞
0

e−αt

(1 + t/x)γ+1 dt ≈ γ

αx
(3.12)

so − 1
α

log(E[exp{−α(X − x)}|X > x]) = log(x) + o(1). Although much smaller
than E[X −x|X > x] = O(x) [see the sentence following (2.1)], it still goes to ∞.
However, the improved definition of d+ sets it as log(d) up to a vanishing term.

This example illustrates that yield-to-drawdown, while at least as high as the
Brownian lower bound, may in principle be superexponential.

4. Miscellaneous.

The record high value MBM
d is exponentially distributed. This is so because as

long as first hitting times of positive heights occur before achieving a drawdown
of d , these times are renewal times: knowing that MBM

d > x is the same as knowing
that B has not achieved a drawdown of d by the time it first reaches height x. But
then it starts anew the quest for a drawdown.
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A direct argument for (1.2). Since the mean-1 martingale exp{−αB} stopped
at τBM

d is uniformly bounded, it is also uniformly integrable. Hence,

1 = E
[
e−αB(τBM

d )] = E[e−αMBM
d ]eαd .(4.1)

Since MBM
d is exponentially distributed, E[exp{−αMBM

d }] = 1
1+αE[MBM

d ] .

5. Skorokhod embeddings in martingales. The problem as posed and
solved by Skorokhod in [20] is the following: given a distribution F of a r.v. Y

with mean zero and finite variance, find a stopping time τ in SBM W , with finite
mean, for which W(τ) is distributed F . The Chacon–Walsh [7] family of solutions
is easiest to describe: Express Y as the limit of a martingale Yn = E[Y |Fn] with
dichotomous transitions (i.e., the conditional distribution of Yn+1 given Fn is a.s.
two-valued), and then progressively embed this martingale in W by a sequence of
first exit times from open intervals.

Dubins [10] was the first to build such a scheme, letting F1 decide whether
Y ≥ E[Y ] or Y < E[Y ] by a first exit time of W starting at E[Y ] from the
open interval (E[Y |Y < E[Y ]],E[Y |Y ≥ E[Y ]]). It then proceeds recursively.
For example, if the first step ended at E[Y |Y ≥ E[Y ]], then the second step ends
when W , restarting at E[Y |Y ≥ E[Y ]], first exits the open interval (E[Y |E[Y ] ≤
Y < E[Y |Y ≥ E[Y ]]],E[Y |Y ≥ E[Y |Y ≥ E[Y ]]]).

One of the analytically most elegant solutions to Skorokhod’s problem is the
Azéma–Yor stopping time TAY (see Azéma and Yor [4] and Meilijson [17]), de-
fined in terms of HF (x) = E[Y |Y ≥ x] = ∫ ∞

x y dF (y)/(1 − F(x−)), the upper
barycenter function of F , as

TAY = min
{
t
∣∣∣ max

0≤s≤t
W(s) ≥ HF (W(t))

}
.(5.1)

Among all uniformly integrable càdlàg martingales with a given final or lim-
iting distribution, SBM stopped at the Azéma–Yor stopping time to embed this
distribution is extremal, in the sense that it stochastically maximizes the maximum
of the martingale (see Dubins and Gilat [11] and Azéma and Yor [4]). That is, if
TAY embeds F , then MTAY is stochastically bigger than the maximum of any such
martingale.

The connection of the Azéma–Yor stopping time to the Chacon–Walsh family
becomes apparent (see Meilijson [17]) if the r.v. Y has finite support {x1 < · · · <

xk}. In this case, let Fn be the σ -field generated by min(Y, xn+1), that is, let the
atoms of Y be incorporated one at a time, in their natural order: the first stage
decides whether Y = x1 (by stopping there) or otherwise (by temporarily stopping
at E[Y |Y > x1]), etc. This is precisely the Azéma–Yor stopping rule: stop as soon
as a value of Y is reached after having visited the conditional expectation of Y

from this value and up.
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Clearly, there is a mirror-image notion TAY− to Azéma and Yor’s stopping time
that stochastically minimizes the minimum of the martingale. Simply put, apply
TAY to embed the distribution of −X in −W .

The stopping time TDAY to be applied in the next section is a hybrid of the
Dubins and Azéma and Yor stopping times. It starts as the Dubins stopping time by
a first-exit time of SBM W from the interval (E[Y |Y < E[Y ]],E[Y |Y ≥ E[Y ]]).
If exit occurred at the top, it proceeds by embedding the law L(Y |Y ≥ E[Y ]) by
TAY in the remainder SBM starting at E[Y |Y ≥ E[Y ]]. If, on the other hand, exit
occurred at the bottom, it proceeds by embedding the law L(Y |Y < E[Y ]) by
TAY− in the remainder SBM starting at E[Y |Y < E[Y ]].

Once a distribution F is embeddable in SBM W , so is the random walk with
increments distributed F . Plainly, embed X1 at time τ1, then use the same rule to
embed X2 at time τ2 in the SBM W ′(t) = W(τ1 + t) − W(τ1), etc. Skorokhod’s
original idea was to infer the Central Limit Theorem for Sn√

n
from the Law of Large

Numbers for
∑n

i=1 τi

n
. This idea was extended by Holewijn and Meilijson [15] from

random walks to martingales with stationary ergodic increments, to obtain a simple
proof of the Billingsley and Ibragimov [5] CLT.

6. Proof of Theorem 1. Assume the Xi to be i.i.d. PMLLT random variables.
Just as the random walk Sn can be embedded in SBM, the exponential martin-
gale exp{−αSn} can be embedded in the continuous-time continuous martingale
exp{−αB(t)}, where the BM B has drift μ and diffusion coefficient σ such that
2μ

σ 2 = α. At the time the RW reaches drawdown at least d , BM has also gone
down by at least d , but may have gone higher in the meantime. Thus, τBM

d is a.s.
smaller than τRW

d . Now we may compute, under the obvious property � ≥ d a.s.
of � = MRW

d − B(τRW
d ),

μE[τBM
d ] = E[B(τBM

d )] = E[MBM
d ] − d

(6.1)
≤ μE[τRW

d ] = E[B(τRW
d )] = E[MRW

d ] − E[�]
so E[MRW

d ] ≥ E[MBM
d ]. We have proved the LHS inequality in (2.2) by the

method of coupling.
The RHS inequality in (2.2) is proved by using the Dubins–Azéma and Yor

stopping time τDAY for the above embedding. If this embedding in exp{−αW }
ends up with W below (resp. above) some x > 0 (nonpositive), the underlying
process could not have reached the exponential barycenter height above (below)
the closest support point to the right (left) of x, because then the stopped value
would have been from this support rightward (leftward). For the first increment
of RW following the maximal (minimal) value the relevant x is 0, but for values
embedded later the starting x is lower (higher). It should now be clear that the BM
path cannot reach as far up as MRW

d + d+ nor as far down as B(τRW
d ) − d− before
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RW achieves drawdown d . Hence, BM cannot reach drawdown d + d0 before RW
reaches drawdown d , or τBM

d+d0
≥ τRW

d a.s. The RHS inequality in (2.2) follows.
This RHS inequality holds stochastically, since the cumulative maximum of BM

exceeds the cumulative maximum of the embedded RW timewise. Thus, it holds a
fortiori if the former is measured later than the latter. This argument fails for the
LHS because then the latter is measured before the former.

The proof of (2.3) follows similar coupling lines: the two claimed stochastic in-
equalities are pointwise (a.s.) satisfied by the embedded random walk versus BM.
Whatever the Skorokhod embedding stopping time be, if RW ever goes below −x,
then a fortiori the BM it samples has gone below −x, thus the RHS. To prove the
LHS, assume embedding to be by the Azéma–Yor stopping time. If BM embeds a
RW visit at height y, it will stop and embed the next RW visit at the latest upon
reaching as far down as y − 1

α
log(E[eα(y−X)|X < y]) ≥ y − d−. Hence, if BM

ever falls below −x − d−, it must have embedded a RW visit at height below −x.
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