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Abstract: We consider the classification problem on the cube [0,1]d

when the Bayes rule is known to belong to some new functions classes.
These classes are made of prediction rules satisfying some conditions re-
garding their coefficients when developed over the (overcomplete) basis of
indicator functions of dyadic cubes of [0, 1]d. The main concern of the paper
is on the thorough analysis of the approximation term, which is in general
bypassed in the classification literature. An adaptive classifier is designed to
achieve the minimax rate of convergence (up to a logarithmic factor) over
these functions classes. Lower bounds on the convergence rate over these
classes are established when the underlying marginal of the design is com-
parable to the Lebesgue measure. Connections with some existing models
for classification (RKHS and “boundary fragements”) are established.
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1. Introduction

We denote by Dn = (Xi, Yi)1≤i≤n a sample of n i.i.d. observations of a couple
(X, Y ) of random variables with values in [0, 1]d × {−1, 1}. We denote by π
the probability distribution of the couple (X, Y ). We want to construct some
measurable functions which associate a label y ∈ {−1, 1} to each point x of
[0, 1]d. Such functions are called prediction rules. The quality of a prediction
rule f is given by the value

R(f) = P(f(X) 6= Y )

called misclassification error of f . It is well known (e.g. Devroye et al. [1996])
that there exists an optimal prediction rule which attains the minimum of R(·)
over all measurable functions with values in {−1, 1}. This function is called the
Bayes rule and is defined by

f∗(x) = sign(2η(x) − 1),

741
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where η is the conditional probability function of Y = 1 knowing X defined by

η(x) = P(Y = 1|X = x).

The value
R∗ = R(f∗) = min

f
R(f)

is known as the Bayes risk. The aim of classification is to construct a prediction
rule, using only the observations Dn, with a risk as close to R∗ as possible. Such
a construction is called a classifier . Performance of a classifier f̂n is measured
by the value

Eπ(f̂n) = Eπ[R(f̂n) −R∗]

called the excess risk of f̂n. In this case, R(f̂n) = P(f̂n(X) 6= Y |Dn) and the
symbol Eπ denotes the expectation w.r.t. Dn, when the probability distribution
of (Xi, Yi) is π for any i = 1, . . . , n. Consider (φ(n))n∈N a decreasing sequence

of positive numbers. We say that a classifier f̂n learns at the convergence rate
φ(n), if there exists an absolute constant C > 0 such that for any integer n,

Eπ[R(f̂n) −R∗] ≤ Cφ(n).

We introduce a loss function on the set of all prediction rules:

dπ(f, g) = |R(f) − R(g)|.

This loss function is a semi-distance (it is symmetric, satisfies the triangle in-

equality and dπ(f, f) = 0). The excess risk of any classifier f̂n can be written
as

Eπ(f̂n) = Eπ[dπ(f̂n, f
∗)],

where the RHS is the risk of f̂n associated with the loss dπ.
Theorem 7.2 of Devroye et al. [1996] shows that no classifier can learn with

a given convergence rate for arbitrary underlying probability distribution π. To
achieve a rate of convergence, we need to assume that the Bayes rule belongs
to some functions classes with a small complexity. For instance, Yang [1999a,b]
provide examples of classifiers learning, with a given convergence rate, under
complexity assumptions on the set of conditional probability functions. Other
rates of convergence have been obtained under the assumption that the Bayes
rule belongs to a class of prediction rules with a finite dimension of Vapnik
and Chervonenkis (cf. Devroye et al. [1996]). In both cases, the problem of
a direct approximation of f∗ is not treated. In the first case, the problem of
approximation of f∗ is shifted to the problem of approximation of the regression
function η. In fact, if f̄ denotes the plug-in rule 1Iη̄≥1/2, where η̄ is a function
with values in [0, 1] then the loss of f̄ satisfies

dπ(f̄ , f∗) ≤ 2E[|η̄(X) − η(X)|] (1)

Thus, under smoothness assumption on the conditional function η, we can con-
trol the approximation term. However, global smoothness assumptions on η are
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somehow too restrictive for the estimation of f∗ since the behavior of η away
from the decision boundary {x ∈ [0, 1]d : η(x) = 1/2} has no effect on the esti-
mation of f∗. In the second case, the approximation term equals to zero, since
the Bayes rule is assumed to belong to a class with a finite VC dimension and
so we don’t need to approach the Bayes rule by a simpler object.

The main difficulty of a direct approximation of f∗ relies on the fact that the
loss function dπ depends on the unknown probability measure π. Given a model
P (a set of probability measures on [0, 1]d×{−1, 1}) with a known complexity, we
want to be able to construct a decreasing family (Fǫ)ǫ>0 of classes of prediction
rules, such that the following approximation result holds:

∀π = (PX , η) ∈ P, ∀ǫ > 0, ∃fǫ ∈ Fǫ : dπ(fǫ, f
∗) ≤ ǫ, (2)

where PX is the marginal distribution of π on [0, 1]d and f∗ = Sign(2η − 1) is
the Bayes rule associated with the regression function η of π. In fact, we want
the classes Fǫ to be parametric in such a way that, for the estimation problem,
we just have to estimate a parametric object in a class Fǫn

, for a well chosen
ǫn (generally obtained by a trade-off between the bias/approximation term and
the variance term, coming from the estimation of the best parametric object in
Fǫn

approaching f∗).
We upper bound the loss dπ , but we still work with a direct approximation

of f∗. For a prediction rule f we have

dπ(f, f∗) = E[|2η(X) − 1|1If(X) 6=f∗(X)] ≤ (1/2)||f − f∗||L1(PX ). (3)

In order to get a distribution-free loss function, we assume that the following
assumption holds. This assumption is close to assuming that the marginal dis-
tribution of X is the Lebesgue measure on [0, 1]d.

Assumption 1 (A1). The marginal probability distribution PX of X is abso-
lutely continuous w.r.t. the Lebesgue measure λd and there exist two constants
0 < a < A < +∞ such that one version of the density function dPX(·)/dλd

satisfies a ≤ dPX(x)/dλd ≤ A, ∀x ∈ [0, 1]d.

The behavior of the regression function η near the level 1/2 is a key char-
acteristic of the classification’s quality (cf. e.g. Tsybakov [2004]). In fact, the
closer is η to 1/2, the more difficult is the classification problem. Here, we work
under the following assumption introduced by Massart and Nédélec [2006].

Assumption 2 (Strong Margin Assumption (SMA)). There exists an
absolute constant 0 < h ≤ 1 such that:

P (|2η(X) − 1| > h) = 1.

Under assumptions (A1) and (SMA) we have, for any prediction rule f ,

ah

2
||f − f∗||L1(λd) ≤ dπ(f, f∗) ≤ A

2
||f − f∗||L1(λd).

Thus, estimation of f∗ w.r.t. the loss dπ is the same as estimation w.r.t. the
L1(λd)−norm, where λd is the Lebesgue measure on [0, 1]d.
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The paper is organized as follows. In the next section, we present in a semi-
informal way, the gist of the approach and an overview of the results. Then, in
Section 3, we introduce a class of functions, with values in {−1, 1}, developed in
a fundamental system of L2([0, 1]d). Section 4 is devoted to the approximation
and the estimation of Bayes rules having a sparse representation in this system.
In Section 5, we discuss this approach. Proofs are postponed to Section 6.

2. Related works and overview of the results

Many authors pointed out the need for developing a suitable approximation
theory for classification. Given a model C of prediction rules, it is written in
p.34 of Boucheron et al. [2005]: “estimating the model bias minf∈C(R(f) −R∗)
seems to be beyond the reach of our understanding. In fact, estimating R∗

is known to be a difficult statistical problem, see Devroye et al. [1996] and
Antos et al. [1999].” In Blanchard et al. [2003], question on the control of the
approximation error for a class of models in the boosting framework is asked. In
this paper, it is assumed that the Bayes rule belongs to the model and form of
distribution satisfying such condition is explored. Another related work is Lugosi
and Vayatis [2004], where, under general conditions, it can be guaranteed that
the approximation error converges to zero for some specific models. In Tsybakov
[2004] and Tsybakov and van de Geer [2005], the author examine classes that
are indexed by a complexity exponent that reflects the smoothness of the Bayes
decision boundary. An argument of entropy is then used to upper bound the
bias term. A generalization of these classes is given in Scott and Nowak [2006].
In Steinwart et al. [2006], the authors present necessary and sufficient conditions
to know wether a function class approximates the Bayes risk for some general
loss functions.

In the present work, we develop the Bayes rule in the overcomplete basis
S made of all the indicator functions of dyadic cubes of [0, 1]d assuming that
the coefficients of this development take their values in {−1, 0, 1}. Then, we
estimate these coefficients by doing a simple majority vote in each dyadic cell
of a partition of [0, 1]d. The resulting estimator can be seen as a decision tree
algorithm, since we can make a link between the analytical development of f∗

in S and the dyadic decision trees representation of the Bayes rule. We obtain
minimax rates of convergence (up to a logarithm factor) for these classes of
Bayes rules.

The best known decision tree algorithms are CART (cf. Breiman et al. [1984])
and C4.5 (cf. Quinlan [1993]). These methods use a growing and pruning algo-
rithm. First, a large tree is grown by splitting recursively nodes along coordi-
nates axes according to an “impurity” criterion. Next, this tree is pruned using
a penalty function. Penalties are usually based on standard complexity regular-
ization like the square root of the size of the tree. Spatially adaptive penalties
depend not only on the complexity of the tree, but also on the spatial dis-
tribution of training samples. More recent constructions of decision trees have
been proposed in Scott and Nowak [2006] and Blanchard et al. [2007]. In Scott
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and Nowak [2006], the authors consider, in the multi-class framework, dyadic
decision trees and exhibit near-minimax rates of convergence by considering
spatial adaptive penalties. They obtained rates of convergence over classes of
prediction functions having a complexity defined in the same spirit as Mammen
and Tsybakov [1999] and Tsybakov [2004]. In Blanchard et al. [2007], a general
framework is worked out including classification for different loss functions. The
authors select among a set of dyadic trees having a finite depth, the best tree
realizing an optimal trade-off between the empirical risk and a penalty term.
Here, the penalty term is proportional to the number of leaves in the tree. They
obtained oracle inequalities and derived rates of convergence in the regression
setup under a regularity assumption on the underlying regression function to
estimate. Rates of convergence, for the classification problem, are not derived
from these oracle inequalities, since they do not treat the bias term.

Our estimation procedure does not provide any tree algorithm in the same
spirit as these previous works. The main reason is that, we obtain results under
the assumption on the marginal distribution given by (A1). This assumption
allows us to work at a given “frequency” and we do not need a multi-scale
construction of the dyadic tree as in the previous related work. Once the opti-
mal frequency is obtained (by trade off), the estimation procedure is a regular
histogram rule as considered in Chapter 9 of Devroye et al. [1996].

The present work focuses on the control of the approximation term and the
introduction of classes of prediction rules having different complexities and ap-
proximation qualities (the complexity of a class is given by the way the number
of coefficients, in the development of the Bayes rule in the basis S, non equal
to zero, is controlled in function of the “depth”(or “frequency”) of these co-
efficients). As we shall see, one crucial difference of our estimator is that it is
able to deal with infinite trees. Such infinite trees can be considered since we
control the bias term. Nevertheless, when the complexity is unknown, we use a
multi-scale approach to construct an adaptive procedure.

3. Classes of Bayes rules with sparse representation

In this section, we introduce a class of prediction rules. For that, we consider
two different representations of a prediction rule.

The first way is to represent a prediction rule as an infinite dyadic tree. An
infinite dyadic decision tree is defined as a partitioning of the hypercube [0, 1]d

obtained by cutting in half perpendicular to one of the axis coordinates, then
cutting recursively the two pieces obtained in half again, and so on. Most of the
time, finite dyadic trees are considered (cf. Blanchard et al. [2007] and Scott and
Nowak [2006]). It means that the previous constructions stop at an arbitrary
point along every branch. For a survey on decision trees we refer to Murthy
[1998]. Here, we consider also infinite dyadic trees.

The other way is more “analytic”. First, we consider the representation of
prediction rules in a fundamental system of L2([0, 1]d, λd) (that is a countable
family of functions such that the set made of all their finite linear combinations
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is dense in L2([0, 1]d, λd)) inherited from the Haar basis. Then, we control the
number of non-zero coefficients (which are restricted here to take only the values
−1, 0 or 1).

3.1. Analytic representation of decision trees

First, we construct a fundamental system of L2([0, 1]d, λd). We consider a se-
quence of partitions of [0, 1]d by setting for any integer j,

I(j)
k = E

(j)
k1

× · · · × E
(j)
kd
,

where k is the multi-index

k = (k1, . . . , kd) ∈ Id(j) = {0, 1, . . . , 2j − 1}d,

and for any integer j and any k ∈ {1, . . . , 2j − 1},

E
(j)
k =















[

k

2j
,
k + 1

2j

)

if k = 0, . . . , 2j − 2

[

2j − 1

2j
, 1

]

if k = 2j − 1

.

Some examples of sets I(j)
k in the 2-dimensional case are given in Figure 1.

I
(1)
(0,0)

I
(1)
(1,0)

I
(1)
(1,1)

I
(2)
(0,2)

I
(2)
(0,3)

I
(2)
(1,2)

I
(2)
(1,3)

0 1

1

Fig 1. Example of a finite dyadic partition of [0,1]2.

We use these dyadic partitions to define a fundamental system of L2([0, 1]d, λd).

Definition 1. The class of indicators functions of the dyadic sets of
[0, 1]d is

S =
(

φ
(j)
k : j ∈ N,k ∈ Id(j)

)

where φ
(j)
k = 1I

I
(j)

k

, ∀j ∈ N,k ∈ Id(j)

and 1IA denotes the indicator of a set A.
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We use this fundamental system of L2([0, 1]d, λd) to construct some statistical
models of prediction rules.

Definition 2. We define the class of functions F
(d) to be the closure set in

L2([0, 1]d, λd) of all the finite linear combinations of elements in S having coef-
ficients only in {−1, 0, 1} intersected with the set of all the prediction rules.

Namely, the functions class F (d) is the set of all the prediction rules f :

[0, 1]d 7−→ {−1, 1} such that there exists a sequence (a
(j)
k )j,k of numbers in

{−1, 0, 1} satisfying

f =

+∞
∑

j=0

∑

k∈Id(j)

a
(j)
k φ

(j)
k .

Since S is not an orthogonal basis of L2([0, 1]d, λd), the expansion of a func-
tion f of F (d) in S is not unique. Therefore, to avoid any ambiguity, we define
a convention on the choice of the coefficients of f when developed in the system
S.

Definition 3. Let f be a prediction rule in F (d) and (a
(j)
k )j,k be a sequence of

numbers in {−1, 0, 1} such that f =

+∞
∑

j=0

∑

k∈Id(j)

a
(j)
k φ

(j)
k . We say that the function

f or the sequence (a
(j)
k )j,k satisfies the writing convention (W) when

• for any j ∈ N and k ∈ Id(j), if a
(j)
k 6= 0 then for any j′ > j and k′ ∈ Id(j′)

such that φ
(j)
k φ

(j′)
k′ 6= 0 we have a

(j′)
k′ = 0

• for any j ∈ N and k ∈ Id(j), the set of coefficients {a(j+1)
k′ s.t. φ

(j)
k φ

(j+1)
k′ 6=

0} is not equal to {1} or {−1}.
In what follows, we use the vocabulary appearing in the wavelet literature.

The index “j” of the coefficient a
(j)
k and the function φ

(j)
k is called “level of fre-

quency”. We can describe a mapping f ∈ F (d) satisfying the writing convention
(W) by using an infinite dyadic decision tree with some restriction on the nodes.

Each node is associated with a coefficient a
(j)
k . The root is a

(0)
(0,...,0). If a node,

describing the coefficient a
(j)
k , is equal to 1 or −1 then it has no branches (this

is the first point of Definition 3), otherwise it has 2d branches, corresponding to

the 2d coefficients {a(j+1)
k′ s.t. φ

(j)
k φ

(j+1)
k′ 6= 0} of the next frequency. The second

point of Definition 3 imposes that a node cannot have all his leaves equal to 1
together (or −1). At the end, all the leaves of the tree equal to 1 or −1 (because
f takes its values only in {−1, 1}) and the depth of a leaf is the frequency of
the associated coefficient.

Remark that, this writing convention is not an assumption. The following
proposition proves that all functions in F (d) can be written using this conven-
tion.

Proposition 1. Let f be a function in F (d). There exists a sequence of coef-

ficients (a
(j)
k )j,k with values in {−1, 0, 1} satisfying the writing convention (W)
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such that

f =

+∞
∑

j=0

∑

k∈Id(j)

a
(j)
k φ

(j)
k .

An example of the development of a prediction rule in the basis S and its
associated decision tree representation is given in Figure 2. This figure illustrate
the overcomplete basis S and the writing convention on this simple example.

0 1

1

1 1

1−1

f = φ
(1)

(0,0)
+ φ

(1)

(1,0)
+ φ

(1)

(1,1)
+ (−1)φ

(1)

(0,1)

f = φ
(1)

(0,0)
+ φ

(1)

(1,0)
+ φ

(1)

(1,1)
+

(−1)(φ
(2)

(0,2)
+ φ

(2)

(1,2)
+ φ

(2)

(0,3)
+ φ

(2)

(1,3)
)

⇑ Writing convention (W) ⇑

0

1 1 −1 1

0

1 1 0 1

−1 −1 −1−1

Fig 2. Example of the writing convention (W) on the analytical and dyadic tree representa-
tions in the 2-dimensional case.

We can avoid the problem of the non-uniqueness of the expansion of a function
in the overcomplete system S. For instance, by replacing S by the wavelet tensor
product of the Haar basis (cf. Meyer [1990]), we obtain an orthonormal wavelet
basis of L2([0, 1]d). In that case, the link with dyadic decision trees is much
more complicated and the obtained results are not easily interpretable.

Remark 1. An interesting fact is that, we can consider the set S, as a dic-
tionary of basic functions. Considering prediction rules as linear combinations
of the functions in this dictionary with coefficients in {−1, 0, 1} (using the con-
vention of writing (W)), we obtain that, the LASSO estimator (cf. Tibshirani
[1996]) is given, in this framework, by

Arg max
f∈F(d)

1

n

n
∑

i=1

1If(Xi) 6=Yi
+ γ

∑

j,k

|a(j)
k |,

where f =
∑+∞

j=0

∑

k∈Id(j) a
(j)
k φ

(j)
k , λd −a.s. Since the coefficients a

(j)
k take their

values in {−1, 0, 1}, the l1-type penalty
∑

j,k |a
(j)
k | is exactly the number of leaves
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of the dyadic tree associated with the prediction rule f. Thus, LASSO estima-
tor, in this framework and for the dictionary S, is the same as the estimator
considered in Blanchard et al. [2007].

It is easy to see that all measurable functions from [0, 1]d to {−1, 1} cannot be
represented in the overcomplete system S. For example, in the one dimensional

case, the set of open subsets {I̊(j)
k : j ∈ N,k ∈ I1(j)} is a basis of open subsets

of [0, 1]. Thus, saying that any measurable function from [0, 1] to {−1, 1} can
be written in the system S with {−1, 0, 1} valued coefficients is equivalent to
say that any measurable subset of [0, 1] is almost everywhere equal to an open
subset of [0, 1]. This fact is not true. A simple example is given by the following
construction. Consider (qk)k≥1 an enumeration of the rational numbers of (0, 1).
Denote by A the union, over k ∈ N, of the open balls B(qk, 2

−(k+1)). This is a
dense open set of Lebesgue measure bounded by 1/2. Now, let O be an open
subset of [0, 1]. If O ⊆ Ac then O = ∅ because A is dense (so the interior
set of Ac is empty) so λ1(O∆Ac) = λ(Ac) ≥ 1/2. If O * Ac then O ∩ A
is a non-empty open subset so λ1(O∆Ac) ≥ λ(O ∩ A) > 0. In both cases,
we have λ1(O∆Ac) > 0. Thus, Ac cannot be equal almost everywhere to any
open subset of [0, 1]. In particular, the prediction rule f = 21IA − 1 cannot
be written in the fundamental system S using coefficients with values only in
{−1, 0, 1} (f /∈ F (1)). “Fat Cantor” are other examples of measurable subsets
which cannot be equal almost everywhere to any open subset. Nevertheless,
under a mild assumption (cf. the following definition) a prediction rule belongs
to F (d).

Definition 4. Let A be a Borel subset of [0, 1]d. We say that A is almost ev-
erywhere open if there exists an open subset O of [0, 1]d such that λd(A∆O) =
0, where λd is the Lebesgue measure on [0, 1]d and ∆ stands for the symbol of
symmetric difference.

Theorem 1. Let η be a function from [0, 1]d to [0, 1]. We consider

fη(x) =

{

1 if η(x) ≥ 1/2
−1 otherwise.

We assume that {η ≥ 1/2} and {η < 1/2} are almost everywhere open. Then,
there exists g ∈ F (d) such that g = fη, λd − a.s..

For instance, if λd(∂{η = 1/2}) = 0 and, either η is λd-almost everywhere
continuous (it means that there exists an open subset of [0, 1]d with a Lebesgue
measure equals to 1 such that η is continuous on this open subset) or if η is
λd−almost everywhere equal to a continuous function, then fη ∈ F (d). Moreover,
the Lebesgue measure satisfies the property of regularity, which says that for
any Borel B ∈ [0, 1]d and any ǫ > 0, there exists a compact subset K and an
open subset O such that K ⊆ A ⊆ O and λd(O−K) ≤ ǫ. Hence, one can easily
check that for any measurable function f from [0, 1]d to {−1, 1} and any ǫ > 0,
there exists a function g ∈ F (d) such that λd({x ∈ [0, 1]d : f(x) 6= g(x)}) ≤ ǫ.
Thus, F (d) is dense in L2(λd) intersected with the set of all measurable functions
from [0, 1]d to {−1, 1}.
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3.2. Class of Bayes rules

In this subsection, we construct some models of prediction rules by taking some
subsets of F (d).

Definition 5. For any function w : N 7−→ N, we denote by F (d)
w the functions

class made of all prediction rules f ∈ F (d) satisfying the writing convention (W)
with

f =

+∞
∑

j=0

∑

k∈Id(j)

a
(j)
k φ

(j)
k ,

where a
(j)
k ∈ {−1, 0, 1} and such that the number of non zero coefficients at each

frequency level satisfies

card
{

k ∈ Id(j) : a
(j)
k 6= 0

}

≤ w(j), ∀j ∈ N.

The richness of the functions class F (d)
w depends on the choice of the function

w. If w is too small then the class F (d)
w is poor. That is the subject of the

following proposition.

Proposition 2. Let w be a mapping from N to N such that w(0) ≥ 1. The two
following assertions are equivalent:

(i) F (d)
w 6= {1I[0,1]d}.

(ii)
∑+∞

j=1 2−djw(j) ≥ 1.

This proposition is strongly connected to the Kraft’s inequality (see e.g. Cover
and Thomas [1991]). Indeed, Kraft’s inequality for a binary tree T says that
∑

l∈L 2−depth(l) ≤ 1, where L is the set of all the leaves of T (note that a leaf
of a tree is a terminal node). This quantity can be written as

∑

l∈L

2−depth(l) =

∞
∑

j=1

∑

l∈Lj

2−j =

∞
∑

j=1

2−jw(j), (4)

where Lj is the set of all the leaves of T of level (or depth) j and w(j) its
cardinality. Kraft’s inequality is a restriction on the sequence Nl = (w(j))j of
number of leaves in a tree. This restriction comes from the fact that, with the
notations here, if we want to fill the interval [0, 1] with disjoint dyadic intervals
there is necessarily a restriction on the sequence Nl (the cumulative mass of
dyadic intervals cannot be greater than 1). In our case, we have to fill all the
interval [0, 1] to construct {−1, 1}-valued functions. So we need the sequence Ns

to be rich enough to fill all this space. That is why the quantity in equation (4)
is a break point in both approaches.

If w is too large then, the approximation of the model F (d)
w , by a parametric

model will be impossible. That is why we give a particular look on the functions
classes introduced in the following definition.
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Definition 6. Let w be a mapping from N to N. If w satisfies

+∞
∑

j=0

w(j)

2dj
< +∞ (5)

then, we say that F (d)
w is a L1−ellipsoid of prediction rules.

We say that F (d)
w is a “L1−ellipsoid” for a function w satisfying (5), because,

the sequence (w(j))j∈N belongs to a L1−ellipsoid of NN, with sequence of radius
(2dj)j∈N. Moreover, Definition 6 can be linked to the definition of a L1−ellipsoid
for real valued functions (cf. Meyer [1990]), since we have a kind of basis, given
by S, and we have a control on coefficients which increases with the frequency.
Control on coefficients, given in equation (5), is close to the one for coefficients of
a real valued function in a L1−ellipsoid of Sobolev (cf. Korostelev and Tsybakov

[1993]), since it deals with the quality of approximation of the class F (d)
w by a

parametric model.

Remark 2. A L1−ellipsoid of prediction rules is made of “sparse” prediction

rules. In fact, for f ∈ F (d)
w with w satisfying (5), the proportion of non-zero

coefficients in the decomposition of f (using the writing convention (W)), at
a given frequency, becomes small (w.r.t. the 2dj coefficients of level j) as the

frequency grows. That is the reason why F (d)
w can be called a sparse class of

prediction rules.

Next, we provide examples of functions satisfying (5). Functions Classes F (d)
w

associated with these functions are used in what follows as statistical models.
We first define the minimal infinite class of prediction rules F (d)

0 which is the

class F (d)
w when w = w

(d)
0 where w

(d)
0 (0) = 1 and w

(d)
0 (j) = 2d − 1, for all

j ≥ 1. To understand why this class is important, we introduce a concept of
local oscillation of a prediction rule. This concept defines a kind of “regularity”
for functions with values in {−1, 1}. Let f be a function from [0, 1]d to {−1, 1}
in F (d), we consider the writing of f in the fundamental system introduced in
Section 4.1 with writing convention (W):

f =

+∞
∑

j=0

∑

k∈Id(j)

a
(j)
k φ

(j)
k .

Let J ∈ N and k ∈ Id(J). We say that I(J)
k is a low oscillating block of f

when f has exactly 2d − 1 non-zero coefficients, in this block, at each level of
frequencies greater or equal to J + 1. In this case we say that f has a low
oscillating block of frequency J . Remark that, if f has an oscillating block
of frequency J , then f has an oscillating block of frequency J ′, for all J ′ ≥ J .

The function class F (d)
0 is made of all prediction rules with one oscillating block

at level 1 and of the indicator function 1I[0,1]d . If we have w(j0) < w
(d)
0 (j0) for

one j0 ≥ 1 and w(j) = w
(d)
0 (j) for j 6= j0 then the associated class F (d)

w contains
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only the indicator function 1I[0,1]d , that is the reason why we say that F (d)
0 is

“minimal”. Figure 3 provides an example of function in F (2)
0 . In this example

the top left cells of the cube [0, 1]2 is a low oscillating block.

0 1

1

1 1

1

−1

−1 −1

1

1

1

−

− −

...

Fig 3. Example of a prediction rule in F
(2)
0 .

Nevertheless, the following proposition shows that F (d)
0 is a rich class of

prediction rules from a combinatorial point of view. We recall some quantities
which measure a combinatorial richness of a class of prediction rules (cf. Devroye
et al. [1996]). For any class F of prediction rules from [0, 1]d to {−1, 1}, we
consider

N(F , (x1, . . . , xm)) = card ({(f(x1), . . . , f(xm)) : f ∈ F})

where x1, . . . , xm ∈ [0, 1]d and m ∈ N,

S(F , m) = max
(

N(F , (x1, . . . , xm)) : x1, . . . , xm ∈ [0, 1]d
)

and the V C-dimension of F is

V C(F) = max (m ∈ N : S(F , m) = 2m) .

Consider xj =
(

2j+1
2j+1 ,

1
2j+1 , . . . ,

1
2j+1

)

, for any j ∈ N. For any integer m, we

have N(F (d)
0 , (x1, . . . , xm)) = 2m. Hence, the following proposition holds.

Proposition 3. The class of prediction rules F (d)
0 has an infinite V C-dimension.

Every class F (d)
w such that w ≥ w

(d)
0 has an infinite V C-dimension (since

F (d)
w ⊆ F (d)

w′ whenever w ≤ w′), which is the case for the following classes.

Let K ∈ N∗. We denote by F (d)
K the class F (d)

w of prediction rules where w is
the function

w
(d)
K (j) =

{

2dj if j ≤ K,
2dK otherwise.

This class is called the truncated class of level K.
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We consider exponential classes. These sets of prediction rules are denoted

by F (d)
α , where 0 < α < 1, and are equal to F (d)

w when w = w
(d)
α for

w(d)
α (j) =

{

2dj if j ≤ N (d)(α)
⌈2dαj⌉ otherwise

,

where N (d)(α) = inf
(

N ∈ N : ⌈2dαN ⌉ ≥ 2d − 1
)

, that is for N (d)(α) = ⌈log(2d−
1)/(dα log 2)⌉.

The classes F (d)
0 , F (d)

K and F (d)
α are examples of L1−ellipsoid of prediction

rules.

4. Rates of convergence over F
(d)
w

under (SMA)

4.1. Approximation result

Let w be a function from N to N and A > 1. We denote by Pw,A the set of
all probability measures π on [0, 1]d × {−1, 1} such that the Bayes rules f∗,

associated with π, belongs to F (d)
w and the marginal of π on [0, 1]d is absolutely

continuous and a version of its Lebesgue density is upper bounded by A. The
following theorem can be seen as an approximation theorem for the Bayes rules
w.r.t. the loss dπ uniformly in π ∈ Pw,A.

Theorem 2 (Approximation theorem). Let F (d)
w be a L1−ellipsoid of pre-

diction rules. We have:

∀ǫ > 0, ∃Jǫ ∈ N : ∀π ∈ Pw,A, ∃fǫ =
∑

k∈Id(Jǫ)

B
(Jǫ)
k φ

(Jǫ)
k

where B
(Jǫ)
k ∈ {−1, 1} and

dπ(f∗, fǫ) ≤ ǫ,

where f∗ is the Bayes rule associated with π. For instance, Jǫ can be the smallest
integer J satisfying

∑+∞
j=J+1 2−djw(j) < ǫ/A.

Theorem 2 is the first step to prove an estimation theorem using a trade-off
between a bias term and a variance term. We write

Eπ(f̂n) = Eπ[dπ(f̂n, f
∗)] ≤ Eπ[dπ(f̂n, fǫ)] + dπ(fǫ, f

∗).

Since fǫ belongs to a parametric model we expect a good control of the variance
term Eπ [dπ(f̂n, fǫ)], depending on the dimension of the parametric model which
is linked to the quality of the approximation in the bias term. Remark that, no
assumption on the quality of the classification problem (like an assumption on
the margin) is required to obtain Theorem 2. Only assumption on the “number
of oscillations” of f∗ is used. Theorem 2 deals with approximation of functions

in the L1−ellipsoid F (d)
w by functions with values in {−1, 1} and no estimation

issues are considered.
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4.2. Estimation result

We consider the following class of estimators indexed by the frequency rank
J ∈ N:

f̂(J)
n =

∑

k∈Id(J)

Â
(J)
k φ

(J)
k , (6)

where the coefficients are defined by

Â
(J)
k =

{

1 if ∃Xi ∈ I(J)
k and N

(J)+
k > N

(J)−
k

−1 otherwise,

where, for any k ∈ I
(J)
d , N

(J)+
k = Card

{

i : Xi ∈ I(J)
k and Yi = 1

}

and N
(J)−
k =

Card
{

i : Xi ∈ I(J)
k and Yi = −1

}

. The estimator f̂
(J)
n realizes a simple majority

vote in each cell I(J)
k for any k ∈ I

(J)
d (for an example we refer to Figure 6.1

p.96 in Devroye et al. [1996]).
To obtain a good control of the variance term, we need to insure a good

quality of the estimation problem. Therefore, estimation results are obtained in
Theorem 3 under the assumption (SMA). Nevertheless, the assumption (SMA)
is not enough to obtain any rate of convergence (cf. Chapter 7 of Devroye et al.
[1996] or corollary 1 at the end of section 4.3). We have to define a model for η
or f∗ with a finite complexity. Here, we assume that the underlying Bayes rule
f∗, associated with π, belongs to a L1−ellipsoid of prediction rules. For that, we
introduce the following models. Let 0 < h < 1, 0 < a ≤ 1 ≤ A < +∞ and w a
mapping from N to N. We denote by Pw,h,a,A the set of all probability measures
π = (PX , η) on [0, 1]d × {−1, 1} such that

1. The marginal PX satisfies (A1).
2. The Assumption (SMA) is satisfied.

3. The Bayes rule f∗, associated with π, belongs to F (d)
w .

Theorem below provides an estimation theorem in the model Pw,h,a,A.

Theorem 3 (Estimation theorem). Let F (d)
w be a L1−ellipsoid of prediction

rules. Let π be a probability measure on [0, 1]d×{−1, 1} in Pw,h,a,A. The excess

risk of the classifier f̂
(Jǫ)
n satisfies, for any ǫ > 0,

Eπ(f̂(Jǫ)
n ) = Eπ[dπ(f̂(Jǫ)

n , f∗)] ≤ (1 + A)ǫ+ exp
(

−na(1 − exp(−h2/2))2−dJǫ
)

,

where Jǫ is the smallest integer satisfying
∑+∞

j=Jǫ+1 2−djw(j) < ǫ/A. Parameters
a, A appear in Assumption (A1) and h is used in (SMA).

4.3. Optimality

This section is devoted to the optimality, in a minimax sense, of estimation in

the classification models F (d)
w . We apply a version of the Assouad Lemma to

lower bound the risk over Pw,h,a,A.
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Theorem 4. Let w be a function from N to N such that

(i) w(0) ≥ 1 and ∀j ≥ 1, w(j) ≥ 2d − 1
(ii) ∀j ≥ 1, w(j − 1) ≥ 2−dw(j).

We have for any n ∈ N,

inf
f̂n

sup
π∈Pw,h,a,A

Eπ(f̂n) ≥ C0n
−1
(

w (⌊logn/(d log 2)⌋+ 1) − (2d − 1)
)

,

where C0 = (h/8) exp
(

−(1 −
√

1 − h2)
)

. Moreover, if w(j) ≥ 2d, ∀j ≥ 1 then

inf
f̂n

sup
π∈Pw,h,a,A

Eπ(f̂n) ≥ C0n
−1.

Remark 3. For a function w satisfying assumptions of Theorem 4 and under
(SMA), we cannot expect a convergence rate faster than 1/n, which is the usual
lower bound for the classification problem under (SMA).

Theorem 7.1 of Devroye et al. [1996] can be deduced from Theorem 4. We
denote by P1 the class of all probability measures on [0, 1]d ×{−1, 1} such that
the marginal distribution PX is λd (the Lebesgue probability distribution on
[0, 1]d) and (SMA) is satisfied with the margin h = 1. The case “h = 1” is
equivalent to R∗ = 0.

Corollary 1. For any integer n, we have

inf
f̂n

sup
π∈P1

E(f̂n) ≥ 1

8e
.

It means that no classifier can achieve any rate of convergence in the classi-
fication model P1.

4.4. Rates of convergence for different classes of prediction rules

In this section, we apply results stated in Theorem 3 and Theorem 4 to different

L1−ellipsoid classes F (d)
w introduced at the end of Section 3. Rates of conver-

gence and lower bounds for these models are stated. Using notation introduced

in Section 3 and Subsection 4.3, we consider the following models. For w = w
(d)
K ,

we denote by P(d)
K the set of probability measures P

w
(d)

K
,h,a,A

and by P(d)
α for

the exponential model with w = w
(d)
α .

Theorem 5. For the truncated class F (d)
K , we have

sup
π∈P

(d)

K

Eπ(f̂(Jn(K))
n ) ≤ CK,h,a,A

logn

n
,

where CK,h,a,A > 0 is depending only on K, h, a, A. For the lower bound, there
exists C0,K,h,a,A > 0 depending only on K, h, a, A such that, for all n ∈ N,

inf
f̂n

sup
π∈P

(d)

K

Eπ(f̂n) ≥ C0,K,h,a,An
−1.



G. Lecué/Classes of Bayes rules with sparse representation 756

For the exponential class F (d)
α where 0 < α < 1, we have for any integer n

sup
π∈P

(d)
α

Eπ(f̂(Jn(α))
n ) ≤ C ′

α,h,a,A

(

logn

n

)1−α

, (7)

where C ′
α,h,a,A > 0. For the lower bound, there exists C ′

0,α,h,a,A > 0 depending
only on α, h, a, A such that, for all n ∈ N,

inf
f̂n

sup
π∈P

(d)
α

Eπ(f̂n) ≥ C ′
0,α,h,a,An

−1+α.

The levels of frequency Jn(α) and Jn(K) are, up to a multiplying constant,
of the order of ⌈log

(

an/(2d logn)
)

/(d log2)⌉.

A remarkable point is that the class F (d)
K has an infinite VC-dimension (cf.

Proposition 3). Nevertheless, the rate logn/n is achieved in this model. Exis-
tence of classes of prediction rules with infinite VC dimension that are consistent
when the marginal distribution of the design X is without atoms has been re-
marked in Devroye et al. [1996].

4.5. Adaptation to the complexity

In this section, we provide an adaptive estimator for the exponential classes.

The estimator f̂
(Jn(α))
n , appearing in equation (7), depends on the complexity

parameter α, since

Jn(α) =

⌈

log(A/(ǫn(2d(1−α) − 1)))

d(1 − α) log 2

⌉

and ǫn = (logn/(nC))1−α, where C = a(1−e−h2/2)2−d(A−1(2d(1−α)−1))1/(1−α).
In practice, we do not have access to this parameter. Thus, it is important to
construct an estimator free from this parameter and which can learn at the
near-optimal rate ((logn)/n)1−α if the underlying probability distribution be-

longs to P(d)
α for any α. This is the problem of adaptation to the complexity

parameter α.
To construct an adaptive estimator, we use an aggregation procedure. We

split the sample in two parts. Denote by D
(1)
m the subsample containing the

first m observations and D
(2)
l the one containing the l(= n−m) last ones. Sub-

sample D
(1)
m is used to construct classifiers f̂

(J)
m for different frequency levels

J ∈ [0, J (n)], for an integer J (n) chosen later. Subsample D
(2)
l is used to con-

struct the exponential weights of our aggregation procedure (cf. Lecué [2007]).

We aggregate the basis classifiers f̂
(J)
m , J ∈ [1, J (n)], by the procedure

f̃n =
J(n)
∑

J=1

w
(l)
J f̂(J)

m , (8)
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where the weights

w
(l)
J =

exp
(

∑n
i=m+1 Yif̂

(J)
m (Xi)

)

∑J(n)

J′=1 exp
(

∑n
i=m+1 Yif̂

(J′)
m (Xi)

) , ∀J = 1, . . . , J (n) (9)

are called the exponential weights.
The classifier that we propose is

f̂n = Sign(f̃n). (10)

Theorem 6. Assume that J (n) is greater than (logn)2 and choose l = ⌈n/ logn⌉
for the learning sample size. For any α ∈ (0, 1), we have, for n large enough,

sup
π∈P

(d)
α

Eπ(f̂n) ≤ 6C ′
α,h,a,A

(

logn

n

)1−α

, (11)

where C ′
α,h,a,A > 0 has been introduced in Theorem 5.

The classifier f̂n does not require the knowledge of the parameter α neither
of a, A, h. Thus, it is also adaptive to the parameters a, A and h.

Remark 4. We may compare our method with the ERM type aggregate defined
by

f̄n ∈ Arg min
f∈{f̂

(0)
m ,...,f̂

(J(n))
m }

n
∑

i=m+1

1I(f(Xi) 6=Yi).

This aggregate also satisfies (11), if we replace f̂n by f̄n (cf. Lecué [2007]). The
difference is that the aggregate (8) uses a multi-scale approach (it associates
a weight to each frequency), whereas the adaptive classifier f̄n selects the best
“empirical frequency”.

The other way to extend our approach deals with the problem of choice of
the geometry by taking S as fundamental system. One possible solution is to
consider classifiers “adaptive to the geometry”. Using an adaptive procedure,
for instance the same as in (8), we can construct classifiers adaptive to the “ro-
tation” and “translation”. Consider, for example, the dyadic partition of [0, 1]2

at the frequency level Jn. We can construct classifiers using the same proce-
dure as (6) but for partitions obtained by translation of the dyadic partitions
by the vector (n1/(2

Jn logn), n2/(2
Jn logn)), where n1, n2 = 0, . . . , ⌈logn⌉. We

can do the same thing by aggregating classifiers obtained by the procedure (6)
for partitions obtained by rotation of center (1/2, 1/2) with angle n3π/(2 logn),
where n3 = 0, . . . , ⌈logn⌉, of the initial dyadic partition. In this heuristic we
don’t discuss about the way to solve problems near the boundary of [0, 1]2.
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5. Related structures and perspectives

5.1. RKHS

Reproducing kernel Hilbert spaces (RKHS) (cf. Aronszajn [1950]) are functions
spaces which are usually used as statistical models for the classification problem
(and other problems). They are usually associated with the support vectors
machines (SVM) estimators. Some of these functions space have a structure
close to the L1-ellipsoids of this paper.

We consider the one-dimensional Haar basis (ψj,k)j,k defined by

ψ−1,0 = φ
(0)
0 and ψj,k = 2j/2(φ

(j+1)
2k − φ

(j+1)
2k+1 ), ∀j ∈ N, k = 0, . . . , 2j − 1

Any function f ∈ L2([0, 1], λ1) can be expanded in the Haar basis. We denote
by fj,k the (j, k)-th coefficient < f, ψj,k > of f . We consider a mapping Γ :
N ∪ {−1} 7−→ N such that

∑

j 2jΓ(j)−1 <∞ and the set of functions

HΓ = {f ∈ L2([0, 1]) : ∀x ∈ [0, 1], f(x) =
∑

j,k

fj,kψj,k(x) and
∑

j,k

Γ(j)|fj,k|2 <∞}

endowed with the inner product < f, h >Γ=
∑

j,k Γ(j)fj,khj,k and the associ-
ated norm denoted by ‖ · ‖Γ. It is easy to see that HΓ is a Hilbert space. Note

that, for any point x ∈ [0, 1], the sum
∑∞

j=−1

∑2j−1
k=0 fj,kψj,k(x) converges when

∑

j,k Γ(j)|fj,k|2 <∞.
We now prove that HΓ is a RKHS. For that, we just have to prove that any

point evaluation is a bounded linear functional. Let x ∈ [0, 1] and f ∈ HΓ.

We have |f(x)| =
∣

∣

∑

j,k fj,kψj,k(x)
∣

∣ ≤
(
∑∞

j=0 2jΓ(j)−1
)1/2‖f‖Γ. Thus, for any

point x, the linear functional f ∈ HΓ 7−→ f(x) is continuous and so HΓ is a
RKHS. The reproducing kernel associated with is given by

Kw(x, y) =
∑

j,k

Γ(j)ψj,k(x)ψj,k(y), ∀x, y ∈ [0, 1].

Let f : [0, 1] 7−→ {−1, 1} be a prediction rule such that ∀x ∈ [0, 1], f(x) =
∑

j,k fj,kψj,k(x) with the coefficients fj,k only in {−2−j/2, 0, 2−j/2} for any j, k.

Let w : N 7−→ N be such that
∑

j 2−jΓ(j)w(j + 1) ≤ ∞ and assume that

card{k ∈ {0, . . . , 2j − 1} : fj,k 6= 0} ≤ w(j). Then, it is easy to see that
f ∈ F (1) ∩HΓ. Comparing the set HΓ intersected with the set of all prediction

rules and some L1-ellipsoids F (1)
w is not an easy task. We do not investigate this

comparison further long in this paper.

5.2. Boundary fragments

Considering the classification problem on the square [0, 1]2, a classifier has to
be able to approach, for instance, the “simple” Bayes rule f∗C which is equal
to 1 inside C, where C is a disc included in [0, 1]2, and −1 outside C. In our
framework, two questions need to be considered:
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• What is the representation of the simple function f∗C in the fundamental
system S using only coefficients with values in {−1, 0, 1}?

• Is the estimate f̂
(Jn)
n , where Jn = ⌈log

(

an/(2d logn)
)

/(d log 2)⌉ is the fre-
quency rank appearing in Theorem 5, a good classifier when the underlying
probability measure has f∗C for Bayes rule?

At a first glance, our point of view is not the right way to estimate f∗C . In
this regular case (the boundary is an infinite differentiable curve), the direct
estimation of the boundary is a better approach. The main reason is that a
2-dimensional estimation problem becomes a 1-dimensional problem. Such a
reduction of the dimension makes the estimation easier (note that, our approach
is specifically good in the 1-dimensional case, since the notion of boundary does
not exist). Nevertheless, our approach is applicable for the estimation of such a
function (cf. Theorem 7). Actually, a direct estimation of the boundary reduces
the dimension but there is a loss of observations since observations far from the
boundary are not used by this estimation point of view (they are only used to
detect the boundary). This may explain why our approach is applicable. Denote
by

N (A, ǫ, ||.||∞) = min
(

N : ∃x1, . . . , xN ∈ R2 : A ⊆ ∪N
j=1B∞(xj, ǫ)

)

the ǫ−covering number of a subset A of [0, 1]2, w.r.t. the infinity norm of R2.
For example, the circle C = {(x, y) ∈ R2 : (x − 1/2)2 + (y − 1/2)2 = (1/4)2}
satisfies N (C, ǫ, ||.||∞) ≤ (π/4)ǫ−1. For any set A of [0, 1]2, denote by ∂A the
boundary of A.

Theorem 7. Let A be a subset of [0, 1]2 such that N (∂A, ǫ, ||.||∞) ≤ δ(ǫ), for
any ǫ > 0, where δ is a decreasing function on R∗

+ with values in R+ satisfying
ǫ2δ(ǫ) −→ 0 when ǫ −→ 0. Consider the prediction rule fA = 21IA − 1. For any
ǫ > 0, denote by ǫ0 the greatest positive number satisfying δ(ǫ0)ǫ

2
0 ≤ ǫ. There

exists a prediction rule constructed in the fundamental system S at the frequency
rank Jǫ0 with coefficients in {−1, 1} denoted by

fǫ0 =
∑

k∈I2(Jǫ0 )

a
(Jǫ0)

k φ
(Jǫ0)

k ,

with Jǫ0 = ⌊log(1/ǫ0)/ log 2⌋ such that

||fǫ0 − fA||L1(λ2) ≤ 36ǫ.

For instance, there exists a function fn, written in the fundamental sys-
tem S at the frequency level Jn = ⌊log(4n/(π logn))/ log 2⌋, which approaches
the prediction rule f∗C with a L1(λ2)-error upper bounded by 36(logn)/n. This
frequency level is, up to a constant factor, the same as the one appearing in
Theorem 5. In a more general way, any prediction rule with a boundary having
a finite perimetry (for instance polygons) is close (w.r.t. the L1(λ2)-norm) to a
function developed in the fundamental system S at the frequency rank Jn, with
an error of the order (logn)/n.
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Now, the problem is about finding a L1−ellipsoid of prediction rules such that
for any integer n the approximation function fn belongs to this ellipsoid. This
problem depends on the geometry of the boundary set ∂A. It comes naturally
since we made the choice of a particular geometry for the basis partitions: dyadic
partitions of the space [0, 1]d, and we have to pay a price for this choice which has
been made independently of the type of functions to estimate. But, this choice
of geometry is, in our case, the same as the choice “a prior” of a wavelet basis,
for instance, in the density estimation problem. Depending on the type of Bayes
rules we have to estimate, a special partition can be considered. Here, “dyadic
approach” is very well adapted for the estimation of Bayes rules associated with
chessboard (with the value 1 for black square and −1 for white square). This kind
of Bayes rules are very badly estimated by classification procedures estimating
the boundary since most of these procedures require regularity assumptions
which are not fulfilled in the case of chessboards.

In the general case, the ideal choice of the geometry is adapted to the par-
ticular geometry induced by the measure µ on [0, 1]d, defined by

µ(A) =

∫

A

|2η(x)− 1|PX(dx),

for any measurable set A ⊆ [0, 1]d. Namely, we do not need a good resolution of
the partition for the regions of [0, 1]d with a low µ−probability. However, we need
a sharper resolution for regions with a high µ−probability. In our case (under
assumptions (A1) and (SMA)), the measure µ is equivalent to the Lebesgue
measure. Thus, we do not need different scale of resolution for different areas of
the square [0, 1]d.

Nevertheless, in some cases, it is possible to make some connections between
the “estimation of the boundary” point of view and the geometrical point of
view presented here. For that, we consider the models introduced in Mammen
and Tsybakov [1999]. They obtain minimax rates of convergence for classes of
Bayes rules f = 21IG−1 where G ⊂ [0, 1]d is a boundary fragment of smoothness
γ. That is G = epi(g) is the epigraph {(s, t) ∈ [0, 1]d : g(s) ≤ t} of a function
g : [0, 1]d−1 7−→ [0, 1] with Hölder regularity γ and Lipschitz constant c (that

is ∀s, t ∈ Rd−1, |g(s) − g(t)| ≤ c|s− t|γ). We denote by F (d)
BF (γ, c) this class of

prediction rules. For γ ≥ 1, the boundary ∂G of a boundary fragment G with
smoothness γ has a finite perimetry and thus is close to an element of F (d) at
frequency Jn (cf. Theorem 7). In this particular case, it is possible to obtain
more precise results written in the following theorem.

Theorem 8. We consider the function w : N 7−→ N defined by w(j) =
(2c

√
d− 1 + 3)2j(d−1), ∀j ∈ N. We have

F (d)
BF (1, c) ⊂ F (d)

w .

By applying Theorem 3 and Theorem 4, we can easily obtain that the mini-

max rate of convergence over F (d)
w for w(j) ∼ 2j(d−1) is between ((logn)/n)1/d

and n−1/d. Moreover, we know by Tsybakov [2004] that the minimax rate of
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convergence over FBF (1, c) (under (SMA)) is n−1/d. First, we can conclude that

the L1-ellipsoid F (d)
w is a larger class of prediction rules than F (d)

BF (1, c) (it is

easy to construct examples of prediction rules which are in F (d)
w but not in

F (d)
BF (1, c)) and there is at most a logarithm loss in the minimax rate. Second,

under the (SMA) and (A1), histogram classifiers provide another way to achieve

the minimax rate of convergence for the class F (d)
BF (1, c). Finally, “geometric”

and “boundary estimation” points of view can provide the same results in some
particular cases.

For previous work on the connections between boundaries fragments and
dyadic trees, we refer the reader to Scott and Nowak [2006].

5.3. Perspectives

We can extend our approach in several ways. First, it seems possible to avoid
assumption (A1) by using the same tools as those used for Histogram rules (cf.
Section 6 in Devroye et al. [1996]). Similarly, assumption (SMA) may be relaxed
in favor of a genral Tsybakov’s noise condition.

Next, consider the dyadic partition of [0, 1]d with frequency Jn. Instead of
choosing 1 or −1 for each square of this partition (like in our approach), we

can do a least square regression in each cell of the partition. Inside a cell I(Jn)
k ,

where k ∈ Id(Jn), we can compute the line minimizing

n
∑

i=1

(f(Xi) − Yi)
21I

(Xi∈I
(Jn)

k
)
,

where f is taken in the set of all indicators of half spaces of [0, 1]d intersecting

I(Jn)
k . Of course, depending on the number of observations inside the cell I(Jn)

k ,
we can consider larger classes of indicators than the one made of the indicators
of half spaces. Our classifier is close to the histogram estimator in density or
regression framework, which has been extended to smoother procedures.

In this paper, we start by considering a model of prediction rules. Then,
we provide an approximation theorem for these models. The form of object
approaching the Bayes rule in these models leads to a particular form of esti-
mators (here the histogram estimators). Finally, the way the estimator depends
on the complexity of the underlying model (here the level of frequency) impose
a way to construct adaptive estimators. As we can see everything depends on
the starting model we consider.

For the one-dimensional case, another point of view is to consider f∗ ∈
L2([0, 1]) and to develop f∗ in an orthonormal wavelet basis ofL2([0, 1]). Namely,
f∗ =

∑

j,k fj,kψj,k,where fj,k =< f∗, ψj,k > for any j ∈ N ∪ {−1} and k =

0, . . . , 2j − 1. For the control of the bias term, a classical assumption is to take
the family of coefficients (fj,k)j,k in a L1−ellipsoid of RN. This point of view
leads to functional analysis and estimation issues. First problem: which func-
tions with values in {−1, 1} have wavelet coefficients in a L1−ellipsoid and which
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wavelet basis is more adapted to this problem (maybe the Haar basis)? Second
problem: what kind of estimators could be used for the estimation of these co-
efficients? As we can see, the main problem is that there is no approximation
theory for functions with values in {−1, 1}. We do not know how to approach,
in L2([0, 1]), measurable functions with values in {−1, 1} by “parametric” func-
tions with values in {−1, 1}. Methods developed in this paper may be seen as
a first step in this direction. We can generalize this approach to functions with
values in Z. When functions take values in R, for instance in the regression prob-
lem, usual approximation theory is used to obtain a control on the bias term.
Finally, remark that functions with values in {−1, 1} can be approximated by
real-valued (possibly smooth) functions; this is for example what is used for
SVM or boosting. In those cases, control of the approximation term is still an
open question (cf. Steinwart and Scovel [April 2007] and Lugosi and Vayatis
[2004]).

6. Proofs

In all the proofs, we use the analytical representation of the predictions rules
to underly the similitude with the technics used in the wavelet literature. Nev-
ertheless, these proofs can be obtained by using the dyadic decision tree repre-
sentation.

Proof of Proposition 1. Let ǫ > 0. We construct recursively an integer N and a

family A = (A
(j)
k )j=0,...,N;k∈Id(j) of elements in {−1, 0, 1} satisfying the writing

convention (W) and such that ‖f −∑N
j=0

∑

k∈Id(j)A
(j)
k φ

(j)
k ‖L2(λd) ≤ ǫ.

First, we initialize the construction with a familyA0 = (A
(j,0)
k )j=0,...,N;k∈Id(j)

of elements in {−1, 0, 1} such that ‖f −∑N
j=0

∑

k∈Id(j)A
(j,0)
k φ

(j)
k ‖L2(λd) ≤ ǫ.

The integer N and the family A0 exist because f belongs to F (d). Without

loss of generality we can take A0 such that ∀j < N,k ∈ Id(j), A
(j,0)
k = 0 and

∀k ∈ Id(N), A
(j,0)
k 6= 0 (we can split the cell of frequency j < N up to the

frequency N).
Then, let p be an integer in {0, . . . , N − 1}. Given is a family Ap of elements

(A
(j,p)
k )j=0,...,J;k∈Id(j) in {−1, 0, 1} such that

∑N
j=0

∑

k∈Id(j)A
(j,0)
k φ

(j)
k takes its

values in {−1, 1} a.s., we construct a family Ap+1 = (A
(j,p+1)
k )j=0,...,J;k∈Id(j)

of elements in {−1, 0, 1} such that: at the frequency J = N − p − 1, for any

multi-index k ∈ Id(J) such that A
(J+1,p)
k′ = 1 for all k′ ∈ Id(J + 1) satisfying

φ
(J)
k φ

(J+1)
k′ 6= 0, we define A

(J,p+1)
k = 1 and the other 2d coefficients A

(J+1,p+1)
k′ =

0 such that φ
(J)
k φ

(J+1)
k′ 6= 0. The same construction holds when we replace 1 by

−1. Otherwise we take A
(J,p+1)
k = A

(J,p)
k and A

(J+1,p+1)
k′ = A

(J+1,p)
k′ for all

k′ ∈ Id(J + 1) satisfying φ
(J)
k φ

(J+1)
k′ 6= 0.

After N iteration, it is easy to see that A = AN satisfies the writing conven-
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tion (W) and by construction

N
∑

j=0

∑

k∈Id(j)

A
(j,0)
k φ

(j)
k =

N
∑

j=0

∑

k∈Id(j)

A
(j,N)
k φ

(j)
k .

Proof of Theorem 1. Since {η ≥ 1/2} is almost everywhere open there exists an
open subset O of [0, 1]d such that λd({η ≥ 1/2}∆O) = 0. If O is the empty
set then take g = −1, otherwise, for all x ∈ O denote by Ix the biggest subset

I(j)
k for j ∈ N and k ∈ Id(j) such that x ∈ I(j)

k and I(j)
k ⊆ O. Remark that

Ix exists because O is open. We can see that for any y ∈ Ix we have Iy = Ix,
thus, (Ix : x ∈ O) is a partition of O. We denote by IO a subset of index (j,k),

where j ∈ N,k ∈ Id(j) such that {Ox : x ∈ O} = {I(j)
k : (j,k) ∈ IO}. For any

(j,k) ∈ IO we take a
(j)
k = 1.

Take O1 an open subset λd-almost everywhere equal to {η < 1/2}. If O1 is
the empty set then take g = 1. Otherwise, consider the set of index IO1 built in

the same way as previously. For any (j,k) ∈ IO1 we take a
(j)
k = −1.

For any (j,k) /∈ IO ∪ IO1 , we take a
(j)
k = 0. Consider

g =

+∞
∑

j=0

∑

k∈Id(j)

a
(j)
k φ

(j)
k .

It is easy to check that the function g belongs to F (d), satisfies the writing
convention (W) and, for λd−almost x ∈ [0, 1]d, g(x) = fη(x).

Proof of Proposition 2. Assume that F (d)
w 6= {1I[0,1]d}. Take f ∈ F (d)

w −{1I[0,1]d}.
Consider the writing of f in the system S using the convention (W),

f =
∑

j∈N

∑

k∈Id(j)

a
(j)
k φ

(j)
k ,

where a
(j)
k ∈ {−1, 0, 1} for any j ∈ N,k ∈ Id(j). Consider b

(j)
k = |a(j)

k | for

any j ∈ N,k ∈ Id(j). Consider f2 =
∑

j∈N

∑

k∈Id(j) b
(j)
k φ

(j)
k . Remark that the

function f2 ∈ F (d) but does not satisfy the writing convention (W). We have
f2 = 1I[0,1]d a.s.. For any j ∈ N we have

card
{

k ∈ Id(j) : b
(j)
k 6= 0

}

= card
{

k ∈ Id(j) : a
(j)
k 6= 0

}

. (12)

Moreover, one coefficient b
(j)
k 6= 0 contributes to fill a cell of Lebesgue measure

2−dj among the hypercube [0, 1]d. Since the mass total of [0, 1]d is 1, we have

1 =
∑

j∈N

2−djcard
{

k ∈ Id(j) : b
(j)
k 6= 0

}

. (13)

Moreover, f ∈ F (d) thus, for any j ∈ N,

w(j) ≥ card
{

k ∈ Id(j) : a
(j)
k 6= 0

}

.
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We obtain the second assertion of Proposition 2 by using the last inequality and
both of the assertions (12) and (13).

Assume that
∑+∞

j=1 2−djw(j) ≥ 1. For any integer j 6= 0, denote by Ind(j)

the set of indexes {(j,k) : k ∈ Id(j)}. We use the lexicographic order of Nd+1

to order sets of indexes. Take Indw(1) the family of the first w(1) elements of
Ind(1). Denote by Indw(2) the family made of the first w(1) elements of Ind(1)
and add, at the end of this family in the correct order, the first w(2) elements

(2,k) of Ind(2) such that φ
(1)
k′ φ

(2)
k = 0 for any (1,k′) ∈ Indw(1), . . ., for the

step j, construct the family Indw(j) made of all the elements of Indw(j − 1) in
the same order and add at the end of this family the indexes (j,k) of Ind(j)

among the first w(j) elements of Ind(j) such that φ
(J)
k′ φ

(j)
k = 0 for any (J,k′) ∈

Indw(j−1). If there is no more indexes satisfying this condition then, we stop the
construction, otherwise, we go on. Denote by Ind the final family obtained by
this construction (Ind can be finite or infinite). Then, we enumerate the indexes

of Ind by (j1,k1) ≺ (j2,k2) ≺ · · · . For the first (j1,k1) ∈ Ind take a
(j1)
k1

= 1, for

the second element (j2,k2) ∈ I take a
(j2)
k2

= −1, etc. . Consider the function

f =
∑

j∈N

∑

k∈Id(j)

a
(j)
k φ

(j)
k .

If the construction stops at a given iterationN then f takes its values in {−1, 1}
and the writing convention (W) is fulfilled since every cells I(j)

k such that a
(j)
k 6=

0 has a neighboring cell associated to a coefficient non equals to 0 with an

opposite value. Otherwise, for any integer j 6= 0, the number of coefficient a
(j)
k ,

for k ∈ Id(j), non equals to 0 is w(j) and the total mass of cells I(j)
k such that

a
(j)
k 6= 0 is

∑

j∈N
2−djcard

{

k ∈ Id(j) : a
(j)
k 6= 0

}

which is greater or equal to 1 by
assumption. Thus, all the hypercube is filled by cells associated with coefficients
non equal to 0. So f takes its values in {−1, 1} and the writing convention

(W) is fulfilled since every cells I(j)
k such that a

(j)
k 6= 0 has a neighboring cell

associated with a coefficient non equals to 0 with an opposite value. Moreover
f is not 1I[0,1]d .

Proof of Theorem 2. Let π = (PX , η) be a probability measure on [0, 1]d ×
{−1, 1} in Pw,A. Denote by f∗ a Bayes rule associated with π (for example
f∗ = sign(2η − 1)). We have

dπ(f, f∗) = (1/2)E[|2η(X)− 1||f(X) − f∗(X)|] ≤ (A/2)||f − f∗||L1(λd).

Let ǫ > 0. Define by Jǫ the smallest integer satisfying

+∞
∑

j=Jǫ+1

2−djw(j) <
ǫ

A
.

We write f∗ in the fundamental system (φ
(j)
k , j ≥ Jǫ) using the convention of

writing of section 4.1. Remark that, we start the expansion of f∗ at the level of
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frequency Jǫ and then, we use the writing convention (W) on the coefficients of
this expansion. Namely, we consider

f∗ =
∑

k∈Id(Jǫ)

A
(Jǫ)
k φ

(Jǫ)
k +

+∞
∑

j=Jǫ+1

∑

k∈Id(j)

a
(j)
k φ

(j)
k .

Next, we define the best approximation of f∗ at the frequency level Jǫ by

fǫ =
∑

k∈Id(Jǫ)

B
(Jǫ)
k φ

(Jǫ)
k , where B

(Jǫ)
k =

{

1 if p
(Jǫ)
k > 1/2

−1 otherwise
(14)

and

p
(Jǫ)
k = P(Y = 1|X ∈ I(Jǫ)

k ) =

∫

I
(Jǫ)

k

η(x)
dPX(x)

PX(I(Jǫ)
k )

, (15)

for all k ∈ Id(Jǫ). Note that, if A
(Jǫ)
k 6= 0 then A

(Jǫ)
k = B

(Jǫ)
k , moreover f∗ takes

its values in {−1, 1}, thus, we have

||fǫ − f∗||L1(λd)

=
∑

k∈Id(Jǫ)

A
(Jǫ)

k
6=0

∫

I
(Jǫ)

k

|f∗(x) − fǫ(x)|dx+
∑

k∈Id(Jǫ)

A
(Jǫ)

k
=0

∫

I
(Jǫ)

k

|f∗(x) − fǫ(x)|dx

≤ 2−dJǫ+1card
{

k ∈ Id(Jǫ) : A
(Jǫ)
k = 0

}

≤ 2

+∞
∑

j=Jǫ+1

2−djw(j) < 2ǫ/A.

Proof of Theorem 3. Let π = (PX , η) be a probability measure on [0, 1]d ×
{−1, 1} satisfying (A1), (SMA) and such that f∗ = sign(2η−1), a Bayes classifier

associated with π, belongs to F (d)
w (an L1−ellipsoid of Bayes rules).

Let ǫ > 0 and Jǫ the smallest integer satisfying
∑+∞

j=Jǫ+1 2−djw(j) < ǫ/A. We
decompose the risk in the bias term and variance term:

E(f̂(Jǫ)
n ) = E

[

dπ(f̂(Jǫ)
n , f∗)

]

≤ E
[

dπ(f̂(Jǫ)
n , fǫ)

]

+ dπ(fǫ, f
∗),

where f̂
(Jǫ)
n is introduced in (6) and fǫ in (14).

Using the definition of Jǫ and according to the approximation Theorem (The-
orem 2), the bias term satisfies:

dπ(fǫ, f
∗) ≤ ǫ.
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For the variance term we have (using the notations introduced in (6) and (14)):

E
[

dπ(f̂(Jǫ)
n , fǫ)

]

=
1

2

∣

∣

∣
E
[

Y (fǫ(X) − f̂(Jǫ)
n (X))

]
∣

∣

∣

≤ 1

2
E

[

∫

[0,1]d
|fǫ(x) − f̂(Jǫ)

n (x)|dPX(x)

]

=
1

2

∑

k∈Id(Jǫ)

E

[

∫

I
(Jǫ)

k

|B(Jǫ)
k − Â

(Jǫ)
k |dPX

]

≤ A

2dJǫ+1

∑

k∈Id(Jǫ)

E[|B(Jǫ)
k − Â

(Jǫ)
k |] ≤ A

2dJǫ

∑

k∈Id(Jǫ)

P
(

|B(Jǫ)
k − Â

(Jǫ)
k | = 2

)

.

Now, we apply a concentration inequality in each cell of the dyadic partition

(I(Jǫ)
k : k ∈ Id(Jǫ)). Let k ∈ Id(Jǫ). We introduce the following events:

Ω
(m)
k =

{

Card{i ∈ {1, . . . , n} : Xi ∈ I(Jǫ)
k } = m

}

, ∀m ∈ {0, . . . , n}

and
Ωk = {N (Jǫ)+

k ≤ N
(Jǫ)−
k },

where N
(Jǫ)+
k and N

(Jǫ)−
k have been defined in subsection 4.2. We have

P(Â
(Jǫ)
k = −1) = P(Ω

(0)c
k ∩ Ωk) + P(Ω

(0)
k )

and

P(Ω
(0)c
k ∩Ωk) =

n
∑

m=1

P(Ω
(m)
k ∩ Ωk)

=

n
∑

m=1

P(Ωk|Ω(m)
k )P(Ω

(m)
k ).

Moreover, if we denote by Z1, . . . , Zn n i.i.d. random variables with a Bernoulli

with parameter p
(Jǫ)
k for common probability distribution (we recall that p

(Jǫ)
k

is introduced in (15) and is equal to P(Y = 1|X ∈ I
(Jǫ)
k )), we have for any

m = 1, . . . , n,

P(Ωk|Ω(m)
k ) = P

(

1

m

m
∑

i=1

Zi ≤
1

2

)

.

The concentration inequality of Hoeffding leads to

P

(

1

m

m
∑

i=1

Zi ≥ p
(Jǫ)
k + t

)

≤ exp(−2mt2) (16)

and

P

(

1

m

m
∑

i=1

Zi ≤ p
(Jǫ)
k − t

)

≤ exp(−2mt2), (17)
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for all t > 0 and m = 1, . . . , n.

Denote by b
(Jǫ)
k the probability P(X ∈ I(Jǫ)

k ). If p
(Jǫ)
k > 1/2, applying in-

equality (17) leads to

P
(

|B(Jǫ)
k − Â

(Jǫ)
k | = 2

)

= P(Â
(Jǫ)
k = −1)

≤
n
∑

m=1

P





1

m

m
∑

j=1

Zj ≤ p
(Jǫ)
k − (p

(Jǫ)
k − 1/2)





(

n
m

)

(b
(Jǫ)
k )m(1 − b

(Jǫ)
k )n−m

+ P(Ω
(0)
k )

≤
n
∑

m=0

exp
(

−2m(p
(Jǫ)
k − 1/2)2

)

(

n
m

)

(b
(Jǫ)
k )m(1 − b

(Jǫ)
k )n−m

=
(

1 − b
(Jǫ)
k (1 − exp(−2(p

(Jǫ)
k − 1/2)2))

)n

≤ exp
(

−na(1 − exp(−2(p
(Jǫ)
k − 1/2)2))2−dJǫ

)

.

If p
(Jǫ)
k < 1/2 then, similar arguments used in the previous case and inequality

(16) lead to

P
(

|B(Jǫ)
k − Â

(Jǫ)
k | = 2

)

= P(Â
(Jǫ)
k = 1)

≤ exp
(

−na(1 − exp(−2(p
(Jǫ)
k − 1/2)2))2−dJǫ

)

.

If p
(Jǫ)
k = 1/2, we use P

(

|B(Jǫ)
k − Â

(Jǫ)
k | = 2

)

≤ 1. Like in the proof of Theorem

2, we use the writing

f∗ =
∑

k∈Id(Jǫ)

A
(Jǫ)
k φ

(Jǫ)
k +

+∞
∑

j=Jǫ+1

∑

k∈Id(j)

a
(j)
k φ

(j)
k .

Since PX(η = 1/2) = 0, if A
(Jǫ)
k 6= 0 then p

(Jǫ)
k 6= 1/2. Thus, the variance term

satisfies:

E
[

dπ(f̂n, f
∗
ǫ )
]

≤ A

2dJǫ

(

∑

k∈Id(Jǫ)

A
(Jǫ)

k
6=0

P
(

|B(Jǫ)
k − Â

(Jǫ)
k | = 2

)

+
∑

k∈Id(Jǫ)

A
(Jǫ)

k
=0

P
(

|B(Jǫ)
k − Â

(Jǫ)
k | = 2

))

≤ A

2dJǫ

∑

k∈Id(Jǫ)

A
(Jǫ)

k
6=0

exp
(

−na(1 − exp(−2(p
(Jǫ)
k − 1/2)2))2−dJǫ

)

+Aǫ.

If A
(Jǫ)
k 6= 0 then η > 1/2 or η < 1/2 over the whole set I(Jǫ)

k , so
∣

∣

∣

∣

1

2
− p

(Jǫ)
k

∣

∣

∣

∣

=

∫

I
(Jǫ)

k

∣

∣

∣

∣

η(x) − 1

2

∣

∣

∣

∣

dPX(x)

PX(I(Jǫ)
k )

.
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Moreover π satisfies P (|2η(X) − 1| ≥ h) = 1, so
∣

∣

∣

∣

1

2
− p

(Jǫ)
k

∣

∣

∣

∣

≥ h

2
.

We have shown that for all ǫ > 0,

E(f̂n) = E[dπ(f̂n, f
∗)] ≤ (1 + A)ǫ+ exp

(

−na(1 − exp(−2(h/2)2))2−dJǫ
)

,

where Jǫ is the smallest integer satisfying
∑+∞

j=Jǫ+1 2−djw(j) < ǫ/A.

Proof of Theorem 4. For all q ∈ N we consider Gq a net of [0, 1]d defined by:

Gq =

{(

2k1 + 1

2q+1
, . . . ,

2kd + 1

2q+1

)

: (k1, . . . , kd) ∈ {0, . . . , 2q − 1}
}

and the function ηq from [0, 1]d to Gq such that ηq(x) is the closest point of Gq

from x (in the case of ex aequo, we choose the smallest point for the usual order

on Rd). Associated to this grid, the partition X ′(q)
1 , . . . ,X ′(q)

2dq of [0, 1]d is defined

by x, y ∈ X ′(q)
i iff ηq(x) = ηq(y) and we use a special indexation for this partition.

Denote by x′
(q)
k1,...,kd

=
(

2k1+1
2q+1 , . . . ,

2kd+1
2q+1

)

. We say that x′
(q)
k1,...,kd

≺ x′
(q)
k′

1,...,k′
d

if

ηq−1(x
′(q)
k1,...,kd

) ≺ ηq−1(x
′(q)
k′

1,...,k′
d
)

or

ηq−1(x
′(q)
k1,...,kd

) = ηq−1(x
′(q)
k′

1,...,k′
d
) and (k1, . . . , kd) < (k′1, . . . , k

′
d),

for the lexicographical order on Nd. Thus, the partition (X ′(q)
j : j = 1, . . . , 2dq)

has an increasing indexation according to the order of (x′
(q)
k1,...,kd

) for the or-
der defined above. This order take care of the previous partition by splitting
blocks in the given right order and, inside a block of a partition, we take the
lexicographic order of Nd. We introduce an other parameter m ∈ {1, . . . , 2qd}
and we define for all i = 1, . . . , m, X (q)

i = X ′(q)
i and X (q)

0 = [0, 1]d − ∪m
i=1X (q)

i .
Parameters q and m will be chosen later. We consider W ∈ [0, m−1], chosen
later, and define the function fX from [0, 1]d to R by fX = W/λd(X1) (where
λd is the Lebesgue measure on [0, 1]d) on X1, . . . ,Xm and (1−mW )/λd(X0) on
X0. We denote by PX the probability distribution on [0, 1]d with the density
fX w.r.t. the Lebesgue measure. For all σ = (σ1, . . . , σm) ∈ Ω = {−1, 1}m we
consider ησ defined, for any x ∈ [0, 1]d, by

ησ(x) =







1 + σjh

2
if x ∈ Xj, j = 1, . . . , m,

1 if x ∈ X0.

We have a set of probability measures {πσ : σ ∈ Ω} on [0, 1]d×{−1, 1} indexed
by the hypercube Ω where PX is the marginal on [0, 1]d of πσ and ησ its condi-
tional probability function of Y = 1 given X. We denote by f∗σ the Bayes rule
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associated to πσ, we have f∗σ(x) = σj if x ∈ Xj for j = 1, . . . , m and 1 if x ∈ X0,
for any σ ∈ Ω.

Now we give conditions on q,m and W such that for all σ in Ω, πσ belongs
to Pw,h,a,A. If we choose

W = 2−dq, (18)

then, fX = 1I[0,1]d (so PX << λ and ∀x ∈ [0, 1]d, a ≤ dPX/dλ(x) ≤ A). We

have clearly |2η(x) − 1| ≥ h for any x ∈ [0, 1]d. We can see that f∗σ ∈ F (d)
w for

all σ ∈ {−1, 1}m iff

w(q + 1) ≥ inf(x ∈ 2dN : x ≥ m)

w(q) ≥
{

2d − 1 if m < 2d

inf(x ∈ 2dN : x ≥ 2−dm) otherwise
. . .

w(1) ≥
{

2d − 1 if m < 2dq

inf(x ∈ 2dN : x ≥ 2−dqm) otherwise
w(0) ≥ 1

.

Since we have w(0) = 1, w(j) ≥ 2d − 1 and w(j − 1) ≥ w(j)/2d for all j ≥ 1

then, f∗σ ∈ F (d)
w for all σ ∈ Ω iff

w(q + 1) ≥ inf(x ∈ 2dN : x ≥ m). (19)

Take q,m and W such that (18) and (19) are fulfilled then, {πσ : σ ∈ Ω} is

a subset of Pw,h,a,A. Let σ ∈ Ω and f̂n be a classifier, we have

Eπσ

[

R(f̂n) − R∗
]

= (1/2)Eπσ

[

|2ησ(X) − 1||f̂n(X) − f∗σ(X)|
]

≥ (h/2)Eπσ

[

|f̂n(X) − f∗σ(X)|
]

≥ (h/2)Eπσ

[

m
∑

i=1

∫

Xi

|f̂n(x) − f∗σ(x)|dPX(x) +

∫

X0

|f̂n(x) − f∗σ(x)|dPX(x)

]

≥ (Wh/2)

m
∑

i=1

Eπσ

[
∫

Xi

|f̂n(x) − σi|
dx

λ(X1)

]

≥ (Wh/2)Eπσ

[

m
∑

i=1

∣

∣

∣

∣

σi −
∫

Xi

f̂n(x)
dx

λ(X1)

∣

∣

∣

∣

]

.

We deduce that

inf
f̂n

sup
π∈Pw,h,a,A

Eπ(f̂n) ≥ (Wh/2) inf
σ̂n∈[−1,1]m

sup
σ∈{−1,1}m

Eπσ

[

m
∑

i=1

|σi − σ̂i|
]

.

Now, we control the Hellinger distance between two neighboring probabil-
ity measures. Let ρ be the Hamming distance on Ω. Let σ, σ′ in Ω such that
ρ(σ, σ′) = 1. We have

H2(π⊗n
σ , π⊗n

σ′ ) = 2

(

1 −
(

1− H2(πσ , πσ′)

2

)n)

,
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and a straightforward calculus leads to H2(πσ, πσ′) = 2W
(

1 −
√

1 − h2
)

. If we

haveW ≤ 1/n then, H2(π⊗n
σ , π⊗n

σ′ ) ≤ β < 2 where β = 2
(

1 − exp(1 −
√

1 − h2)
)

.
One version of the Assouad Lemma (cf. Assouad [1983] or Lecué [2007]) yields

inf
σ̂n∈[−1,1]m

sup
σ∈{−1,1}m

Eπσ

[

m
∑

i=1

|σi − σ̂i|
]

≥ (m/4) (1 − (β/2))2 .

We conclude that

inf
f̂n

sup
π∈Pw,h,a,A

Eπ(f̂n) ≥Wh
m

8

(

1 − β

2

)2

. (20)

Finally, we take m = w (⌊logn/(d log 2)⌋+ 1)− (2d −1), q = ⌊logn/(d log 2)⌋
and W = 2−dq ≤ 1/n. Next, replacing these values in (20), we obtain the
result.

Proof of Corollary 1. It suffices to apply Theorem 4 to the function w defined
by w(j) = 2dj for any integer j and a = A = 1 for PX = λd.

Proof of Theorem 5. First, if we assume that Jǫ ≥ K then
∑+∞

j=Jǫ+1 2−djw
(d)
K (j) =

(2dK )/(2dJǫ(2d − 1)). We take

Jǫ =

⌈

log
(

(A2dK )/(ǫ(2d − 1))
)

d log 2

⌉

and ǫn the unique solution of (1 + A)ǫn = exp(−nCǫn), where C = a(1 −
e−h2/2)(2d − 1)[A2d(K+1)]−1. Thus, ǫn ≤ (logn)/(Cn). For Jn(K) = Jǫn

, we
have

E
(

f̂(Jn(K))
n

)

≤ CK,d,h,a,A
logn

n
,

for any integer n such that logn ≥ 2d(K+1)(2d − 1)−1 and Jn(K) ≥ K, where
CK,d,h,a,A = 2(1 +A)/C.

If we have ⌊logn/(d log 2)⌋ ≥ 2 then w (⌊logn/(d log 2)⌋ + 1) − (2d − 1) ≥
2d, so we obtain the lower bound with the constant C0,K = 2dC0 and if
⌊logn/(d log 2)⌋ ≥ K the constant can be C0,K = C0(2

dK − (2d − 1)).

Second, if we have Jǫ ≥ N (d)(α), then
∑+∞

j=Jǫ+1 2−djw
(d)
α (j) ≤ (2d(1−α)Jǫ(2d(1−α)−

1))−1. We take

Jǫ =

⌈

log(A/(ǫ(2d(1−α) − 1)))

d(1 − α) log 2

⌉

.

Denote by ǫn the unique solution of (1 +A)ǫn = exp(−nCǫ1/(1−α)
n ) where C =

a(1− e−h2/2)2−d(A−1(2d(1−α) − 1))1/(1−α). We have ǫn ≤ (logn/(nC))1−α. For
Jn(α) = Jǫn

, we have

E
(

f̂(Jn(α))
n

)

≤ 2(1 +A)A

2d(1−α) − 1

[

2d

a(1 − e−h2/2)

]1−α(
logn

n

)1−α

.
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For the lower bound we have for any integer n,

inf
f̂n

sup
π∈P

(d)
α

Eπ(f̂n) ≥ C0 max
(

1, n−1
(

2dnα − (2d − 1)
))

.

Proof of Theorem 6. Let α ∈ (0, 1). For n large enough, we have J (n) ≥ Jm(α).
Since the (SMA) assumption is equivalent to the margin assumption introduced
by Mammen and Tsybakov [1999] and Tsybakov [2004] with margin parameter
equal to 1 (cf. proof of Proposition 1 of Lecué [2007]) we have, according to
Corollary 1 of Lecué [2006],

E[R(f̂n) −R∗] ≤ 3 min
J=0,...,J(n)

E[R(f̂(J)
m ) − R∗] +C

(logn) log(J (n) + 1)

n
. (21)

According to Theorem 5, we have

E[R(f̂(J)
m ) − R∗] ≤ C ′

α,h,a,A

( logm

m

)1−α

.

Then, combining the last inequality, the fact that m ≤ n/2 and (21), we com-
plete the proof.

Proof of Theorem 7. Let ǫ > 0. Denote by ǫ0 the greatest positive number sat-
isfying δ(ǫ0)ǫ

2
0 ≤ ǫ. Consider N(ǫ0) = N (∂A, ǫ0, ||.||∞) and x1, . . . , xN(ǫ0) ∈ R2

such that ∂A ⊂ ∪N(ǫ0)
j=1 B∞(xj, ǫ0). Since 2−Jǫ0 ≥ ǫ0, only nine dyadic sets of

frequency Jǫ0 can be used to cover a ball of radius ǫ0 for the infinity norm of R2.
Thus, we only need 9N(ǫ0) dyadic sets of frequency Jǫ0 to cover ∂A. Consider
the partition of [0, 1]2 by dyadic sets of frequency Jǫ0 . Except on the 9N(ǫ0)
dyadic sets used to cover the border ∂A, the prediction rule fA is constant, equal

to 1 or −1, on the other dyadic sets. Thus, by taking fǫ0 =
∑2Jǫ0−1

k1,k2=0 a
(Jǫ0)

k1,k2
φ

(Jǫ0)

k1,k2
,

where a
(Jǫ0 )

k1,k2
is equal to one value of fA in the dyadic set I(Jǫ0)

k1,k2
, we have

||fǫ0 − fA||L1(λ2) ≤ 9N(ǫ0)2
−2Jǫ0 ≤ 36δ(ǫ0)ǫ

2
0 ≤ 36ǫ.

Proof of Theorem 8. Let g : Rd−1 7−→ R be a Hölder function with regularity
γ = 1 and Lipschitz constant c. We denote by G the epigraph of g and by
f = 21IG−1 the prediction rule associated with the set G. By continuity of g and

Theorem 1, f belongs to F (d). By Proposition 1 there exists a sequence (a
(j)
k )j,k

of coefficients with values in {−1, 0, 1} satisfying the writing convention (W)

such that f =
∑

j,k a
(j)
k φ

(j)
k . We denote by N(j) = card{k ∈ {0, . . . , 2dj − 1} :

a
(j)
k 6= 0}, ∀j ∈ N. We want to prove that f ∈ F (d)

w . For that, it is enough to
prove that N(j) ≤ w(j), ∀j ∈ N.

Let j ∈ N − {0}. It is easy to see that the minimal number of cells (I(j)
k :

k ∈ {0, . . . , 2j − 1}d) intersected by ∂G is 2j(d−1) and the maximal number of
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intersected cells of frequency j is c′2j(d−1) where c′ = c
√
d− 1 + 2 (cf. lemma 2

of Scott and Nowak [2006]). We denote by Gj the union of all the cells of

(I(j)
k : k ∈ {0, . . . , 2j − 1}d) intersected by ∂G. By the writing convention all

the others cells at frequency j of [0, 1]d−Gj are associated with a non-negative
coefficient. Thus, we have

∥

∥

∥

j
∑

p=0

∑

k

a
(j)
k φ

(j)
k

∥

∥

∥

2
∈ [1 − c′2−j, 1 − 2−j],

in other words, Sj =
∑j

p=0 2−dpN(p) ∈ [1 − c′2−j, 1 − 2−j ]. This holds for any

j ≥ 1, thus we have 2−d(j+1)N(j + 1) ≤ 1 − Sj − 2−(j+1) ≤ (2c′ − 1)2−(j+1).
This means that ∀j ≥ 1, N(j) ≤ w(j).
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