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Invariant HPD credible sets and MAP

estimators

Pierre Druilhet∗ and Jean-Michel Marin†

Abstract. MAP estimators and HPD credible sets are often criticized in the
literature because of paradoxical behaviour due to a lack of invariance under
reparametrization. In this paper, we propose a new version of MAP estimators
and HPD credible sets that avoid this undesirable feature. Moreover, in the special
case of non-informative prior, the new MAP estimators coincide with the invari-
ant frequentist ML estimators. We also propose several adaptations in the case of
nuisance parameters.

Keywords: Bayesian statistics, HPD, MAP, Jeffreys measure, nuisance parameters,
reference prior

1 Introduction

The Maximum A Posteriori estimator (MAP) is defined to be the value (not necessarily
unique) that maximizes the posterior density w.r.t. the Lebesgue measure, denoted
by λ. The MAP is the Bayesian equivalent to the frequentist Maximum Likelihood
estimator (ML) and both coincide for the non-informative Laplace prior. Unlike MLs,
MAPs are not invariant under smooth reparametrization. Because of this undesirable
feature, many authors do not recommend their use.
Consider the following example: X |θ ∼ N (θ, σ2) and θ ∼ N (µ, τ2) where σ2, µ and τ2

are assumed to be known. The posterior distribution of θ is normal and

MAP(θ) =
τ2

τ2 + σ2
x +

σ2

τ2 + σ2
µ .

For the new parameterization α = eθ, the posterior distribution of α is log-normal and

MAP(α) = e
τ2

τ2+σ2 x+ σ2

τ2+σ2 µ−
√

τ2σ2

τ2+σ2 6= eMAP(θ) .

The lack of invariance for the MAP is mainly due to the choice of the Lebesgue measure
as dominating measure , see Lehmann and Romano (2005) [section 5.7] and Berger
(1985) [section 4.3.2]. Indeed, the MAP is based only on the density of the posterior
distribution and not on the exact distribution. Obviously, the MAP depends entirely
on the choice of the dominating measure.
Consider a model given by the density f(x|θ), where the parameter θ lies in an open
subset Θ of R

p. We denote by Π the (possibly improper) continuous prior distribution
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on θ and by Πx the posterior distribution of θ which is assumed to be proper. Denote
respectively by πλ(θ) and πλ(θ|x) ∝ f(x|θ) πλ(θ) the prior and posterior density of θ
w.r.t. λ. Consider a new dominating measure ν whose density w.r.t. λ is given by
g(θ) > 0. Similarly, denote respectively by πν(θ) and πν(θ|x) ∝ f(x|θ) πν (θ) the prior
and posterior density of θ w.r.t. ν. We named MAPν the MAP based on the dominating
measure ν, i.e.

MAPν(θ) = Argmax
θ∈Θ

πν(θ|x) = Argmax
θ∈Θ

[

πλ(θ|x)

g(θ)

]

. (1)

With this notation, MAP = MAPλ. There is in fact no clear justification for the choice
of the Lebesgue measure as dominating measure. In this paper, we discuss another
choice for the MAP.

Another possibility to get information on θ through the posterior distribution is to
use credible sets, regions to which θ belongs with a given posterior probability. One
way to choose such sets is to define Highest Probability Density credible sets (HPDs).
Formally, a set HPDγ(θ) ⊂ Θ is an HPD of level γ if there exists a constant kγ such
that

{θ : πλ(θ|x) > kγ} ⊂ HPDγ(θ) ⊂ {θ : πλ(θ|x) ≥ kγ} and

Πx ({θ : πλ(θ|x) > kγ}) ≤ γ ≤ Πx ({θ : πλ(θ|x) ≥ kγ}) .

If Πx({θ : πλ(θ|x) = kα}) = 0 (this is not the case for example if the posterior distribu-
tion is uniform or is flat on some intervals), we simply write:

HPDγ(θ) = {θ : πλ(θ|x) ≥ kγ} and Πx (HPDγ(θ)) = γ . (2)

From now on, to avoid unnecessary complicated writing, we assume that HPDs
can always be written as in (2). It is well known that HPDγ(θ) minimizes the length
(or volume in the multivariate case) among the credible sets of level greater or equal
to γ, where the unit of length or volume is given by the Lebesgue measure λ. It is
worth noting that when the MAP exists and is unique and when πλ(θ|x) is regular (e.g.
semi-continuous), the MAP can be obtained from HPDs by

MAP(θ) =
⋂

0<γ<1

HPDγ(θ) . (3)

From now on, we omit the subscript γ in HPDγ . As MAPs, HPDs are criticized for
their lack of invariance under reparametrization leading to paradoxical behaviours.
Consider for example X |θ ∼ B(θ) and θ ∼ U]0,1[. The HPD for θ is

HPD(θ) =
{

θ : θx(1 − θ)1−x ≥ kγ

}

.

For the new parameterization α = log(θ/(1 − θ)) = logit(θ),

HPD(α) =

{

α :
e(x+1)α

(1 + eα)3
≥ kγ

}

.
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Moreover, for the parametrization β = θ/(1 − θ) = exp(α) = ODD(θ),

HPD(β) =

{

β :
βx

(1 + β)3
≥ kγ

}

.

Figures 1 presents the posterior densities of θ, α and β when x = 1. The case
x = 0 is similar. In the original parameterization by θ, the HPDs are one-sided,
while for a monotonic reparametrization by α, the HPDs become two-sided and ob-
viously, HPD(α) 6= logit(HPD(θ)). For x = 1, MAP(θ) = 1 which corresponds to
α = +∞, whereas MAP(α) = log(2) which corresponds to θ = 2/3. The case of the
ODD parametrization is much more interesting. Indeed, for x = 1, MAP(β) = 1/2
(which corresponds to θ = 1/3) whereas one expected a MAP larger than 1. This is due
to the fact that the ODD parametrization breaks the natural symmetry, around 1/2
for θ and around 0 for α. The Lebesgue measure as dominating measure does not take
into account this change. As MAPs, HPDs are defined only through the density of the
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Figure 1: Posterior densities of θ, α and β when x = 1

posterior distribution and therefore depends on the arbitrary choice of the dominating
measure, or equivalently the unit of length or volume. The implicit choice for the HPD
is the Lebesgue measure. If we choose ν as dominating measure, we can define a new
HPD region, named HPDν(θ), by

HPDν(θ) = {θ : πν(θ|x) ≥ kγ} . (4)

With this notation, HPD(θ) = HPDλ(θ). Note that HPDν is the region of level γ with
minimal length or volume where lengthν(C) =

∫

C dν(θ).
The aim of this paper is to discuss a new choice of dominating measure that makes
MAPs and HPDs invariant under 1 − 1 smooth reparametrization. Of course, the
choice should only depend on the model f(x|θ). To make coherent the Bayesian and
frequentist approaches, we impose that the new MAP and the ML coincide for a non
informative prior. Under these conditions, it is natural to choose the Jeffreys measure
as dominating measure. It is worth noting that the choice of a dominating measure is
not directly connected with the choice of a prior distribution which corresponds to a
prior knowledge on the parameter.
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In Section 2, we discuss the implication of such a choice for the dominating mea-
sure. In Section 3, we adapt our approach to the delicate case of models with nuisance
parameters.

2 Invariant MAP and HPD

In this section, we assume the usual regularity conditions on the model given by f(x|θ)
so that the Fisher information I(θ) is well defined. We also assume that I(θ) is positive
definite for each θ ∈ Θ. The Jeffreys measure for θ, denoted by Jθ, is the measure with
density |I(θ)| 12 w.r.t. λ. We denote by JMAP(θ) = MAPJθ

(θ) the MAP obtained by
taking the Jeffreys measure as dominating measure. Similarly, we denote by JHPD(θ) =
HPDJθ

(θ) the HPD region with the Jeffreys measure as dominating measure. We have:

JMAP(θ) = Argmax
θ∈Θ

f(x|θ) |I(θ)|− 1
2 πλ(θ) , (5)

and
JHPD(θ) = {θ : f(x|θ) |I(θ)|− 1

2 πλ(θ) ≥ kγ} . (6)

The first motivation for using JHPDs and JMAPs is that they lead to invariant
inference under differentiable reparametrization. Rousseau and Robert (2005) briefly
considered a similar idea in a discussion on a paper of Bernardo (2005). Considering
now a differentiable reparametrization α = h(θ), the posterior density of α w.r.t. to the
Jeffreys measure for α, denoted by Jα, is:

πJα
(α|x) =

πλ

(

h−1(α)|x
) ∣

∣

d
dαh−1(α)

∣

∣

|I(h−1(α))|− 1
2

∣

∣

d
dαh−1(α)

∣

∣

= πJθ

(

h−1(α)|x
)

. (7)

From Eq. (7), we obtain the functional invariance properties of the JMAP and the
JHPD:

JMAP(h(θ)) = Argmax
α∈h(Θ)

πJα
(α|x)

= Argmax
α∈h(Θ)

πJθ

(

h−1(α)|x
)

= h(JMAP(θ)) . (8)

and

JHPD(α) = {α : πJα
(α|x) ≥ kγ}

=
{

α : πJθ

(

h−1(α)|x
)

≥ kγ

}

= h (JHPD(θ)) . (9)

Let us consider the normal example of Section 1, X |θ ∼ N (θ, σ2) and θ ∼ N (µ, τ2).
We have I(θ) ∝ 1 and JMAP(θ) = MAPλ(θ). For α = exp(θ), we can derive JMAP(α)
from JMAP(θ) by

JMAP(α) = eJMAP(θ) .
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Consider now the Bernoulli example of Section 1, X |θ ∼ B(1, θ) and θ ∼ U]0,1[. We
have I(θ) = 1/(θ(1 − θ)) and

JHPD(θ) =
{

θ : θx+1/2(1 − θ)1−x+1/2 ≥ kγ

}

.

For α = h1(θ) = log(θ/(1 − θ)), we have

JHPD(α) =

{

α :
exp((x + 1/2)α)

(1 + exp(α))2
≥ kγ

}

= h1(JHPD(θ)) .

For β = h2(θ) = θ/(1 − θ), we have

JHPD(β) =

{

β :
βx+1/2

(1 + β)2
≥ kγ

}

= h2(JHPD(θ)) .

Figures 2 presents the posterior densities of θ, α and β w.r.t. the Jeffreys dominating
measures. Contrary to the Lebesgue dominating measures case, we obtain two-sided
regions. Moreover, we have JMAP(θ) = 3/4, JMAP(α) = 3 and JMAP(β) = log(3).
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Figure 2: Posterior densities of θ, α and β w.r.t. the Jeffreys measure when x = 1

As a new example, let us consider a sample x1, . . . , xn (n > 2) from an exponential
distribution with mean 1/θ and denote by x̄ the sample mean. Let us suppose that the
prior distribution on θ is a Gamma distribution with parameter (a, b) (mean b/a). It is
very easy to see that

MAP(θ) =
n + a − 1

b + nx̄
; JMAP(θ) =

n + a − 3

b + nx̄
;
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and, if β = 1/θ,

MAP(β) =
b + nx̄

n + a + 1
6= 1/MAP(θ) ;

JMAP(β) =
b + nx̄

n + a − 3
= 1/JMAP(θ) .

We also consider a sample of size N from a right censored exponential distribution.
The censoring occurs at time x0 and the number of observations greater than x0 is
known and equal to m < N . Let n > 0 be the number of observations less than x0 and
denote these observations by x1, . . . , xn. Letting θ be the failure rate, the likelihood
function of θ is given by

N !m!n!θn exp

(

−θ

n
∑

i=1

xi − θmx0

)

.

It is well-known (see Deemer and Votaw (1955)) that the maximum likelihood of θ is

θ̂ = n

(

mx0 +

n
∑

i=1

xi

)−1

.

Moreover, for such a model, the Fisher information is such that

I(θ) ∝ θ−2(1 − exp(−θx0))

(see Halperin (1952)). Therefore, if we choose the Jeffreys measure as non-informative
prior distribution for θ, πλ(θ) ∝ θ−1

√

(1 − exp(−θx0)) and

JMAP(θ) = θ̂ = n

(

mx0 +

n
∑

i=1

xi

)−1

.

If we change the parametrization and consider the new parameter β = 1/θ (where β
corresponds to the mean of the exponential distribution)

JMAP(β) = 1/θ̂ =

(

mx0 +

n
∑

i=1

xi

)

/

n .

The other motivation for the choice of Jθ as dominating measure is that the Jeffreys
measure is a classical non-informative prior for θ (Jeffreys 1961; Kass and Wasserman
1996). Recall that, providing there are no nuisance parameters, Bernardo (1979) showed
that the Jeffreys prior distribution minimizes the asymptotic expected Kullback-Leibler
distance between the prior and the posterior distributions. Using our approach, if no
prior knowledge is available on θ and if we accept the Jeffreys measure as noninformative
prior, then the JMAP is equal to the frequentist ML whatever the parametrization is,
provided the Fisher information is defined. Moreover, in this case, when the posterior
distribution is unimodal w.r.t. the Jefrreys measure, JHPDs can then be thought as
credible sets “around” the ML.
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3 Models with nuisance parameter

In this section, we discuss several methods to derive an equivalent of JMAPs and JHPDs
when nuisance parameter are present in the model. We assume that the parameter θ is
split into two parts: θ = (θ1, θ2) ∈ Θ1 ⊗Θ2 where θ1 is the parameter of interest and θ2

is the nuisance parameter. We denote by πν(θ1|x) the density of the marginal posterior
distribution of θ1 w.r.t. the measure ν. The corresponding MAPν and HPDν are

MAPν(θ1) = Argmax
θ1∈Θ1

πν(θ1|x) (10)

and HPDν(θ1) = {θ1 : πν(θ1|x) ≥ kγ} (11)

Because the Jeffreys prior does not distinguish between parameter of interest and nui-
sance parameter, Bernardo (1979) proposed a new approach called reference prior ap-
proach. In this section, we show how we can use this reference prior as dominating
measure to define invariant MAPs and HPDs, called by analogy with section 2, JMAPs
and JHPDs. Two cases are considered: the case where there is conditional subjective
information for the nuisance parameter and the case where there is none.

3.1 A subjective conditional prior is available

Suppose that a subjective conditional prior is available for θ2 given θ1. We denote by
πλ(θ2|θ1) its density w.r.t. λ. In this case, Sun and Berger (1998) proposed two different
approaches to derive reference priors for θ1. We mimic their approaches and there are
two reasonable options for finding a dominating measure on Θ1.

Option 1. Consider the marginal model f(x|θ1) =
∫

f(x|θ1, θ2)πλ(θ2|θ1)dθ2. Denote by
Im(θ1) the Fisher information matrix for θ1 obtained from the marginal model. A dom-
inating measure can be the Jeffreys measure on Θ1 with density w.r.t. λ proportional
to |Im(θ1)|1/2. In this case, the JMAP and the JHPD are defined by

JMAP1(θ1) = Argmax
θ1∈Θ1

[

πλ(θ1|x)

|Im(θ1)|1/2

]

,

JHPD1(θ1) =

{

θ1 :
πλ(θ1|x)

|Im(θ1)|1/2
≥ kγ

}

.

JMAP1 and JHPD1 are obviously invariant for a 1−1 smooth reparametrization on the
parameter of interest. Unfortunately, the Fisher information matrix for

∫

f(x|θ1, θ2)πλ(θ2|θ1)dθ2

is often difficult to compute. This difficulty motivates the introduction of another option.
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Option 2. Following Bernardo (1979), Sun and Berger (1998) proposed to maximize
asymptotically the expected Kullback-Leibler divergence between the marginal posterior
of θ1 and the marginal prior of θ1. This leads to the distribution on Θ1 with density
w.r.t. λ proportional to

exp

{

1

2

∫

πλ(θ2|θ1) log

( |I(θ1, θ2)|
|Ic(θ2|θ1)|

)

dθ2

}

(12)

where I(θ1, θ2) is the Fisher information matrix based on f(x|θ1, θ2) and Ic(θ2|θ1) is the
Fisher information matrix based on the model f(x|θ1, θ2) where θ1 is known. This is
essentially the solution used in Berger and Bernardo (1989, 1992), but here a subjective
conditional prior for the nuisance parameter given the parameter of interest is used. We
propose to use the distribution defined by Equation (12) as dominating measure on Θ1.
In this case, the JMAP and the JHPD are defined by

JMAP2(θ1) = Argmax
θ1∈Θ1





πλ(θ1|x)

exp
{

1
2

∫

πλ(θ2|θ1) log
(

|I(θ1,θ2)|
|Ic(θ2|θ1)|

)

dθ2

}



 ,

JHPD2(θ1) =







θ1 :
πλ(θ1|x)

exp
{

1
2

∫

πλ(θ2|θ1) log
(

|I(θ1,θ2)|
|Ic(θ2|θ1)|

)

dθ2

} ≥ kγ







.

JMAP2 and JHPD2 are obviously invariant for a 1−1 smooth reparametrization on the
parameter of interest.

Let us consider a sample X1, . . . , Xn from a normal distribution with expectation
θ2 = µ and standard deviation θ1 = σ, the parameter of interest. This example is
denoted as the normal nuisance example. Suppose that the conditional prior distribution
for µ given σ is normal with expectation m and variance τ 2. Applying proposition 2 of
Sun and Berger (1998), Option 1 dominating measure has density w.r.t. λ proportional

to

(

1

σ2
+

σ2

(n − 1)(σ2 + nτ2)2

)1/2

, and Option 2 dominating measure has density w.r.t.

λ proportional to 1/σ. These two dominating measures are different. However, when
n → ∞, the first density converges uniformly to the second one.

Let us now consider the bivariate binomial model proposed by Crowder and Sweeting
(1989) and revisited by Polson and Wasserman (1990):

f(x1, x2|θ1, θ2) =

(

m
x1

)

θx1

1 (1 − θ1)
m−x1

(

x1

x2

)

θx2

2 (1 − θ2)
x1−x2

I{1,...,m}(x1)I{1,...,x1}(x2) .

where IA is the indicator function on A and m is supposed to be known. Suppose that
the conditional distribution of θ2 given θ1 is a Beta distribution with parameter a and b.
For such a model, |I(θ1, θ2)| = (1−θ1)

−1θ−1
2 (1−θ2)

−1 and |Ic(θ2|θ1)| = θ1(θ2(1−θ2))
−1.

It is very easy to show that Option 1 and Option 2 dominating measures are the same

and have density w.r.t. λ proportional to θ
−1/2
1 (1 − θ1)

−1/2.
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Sun and Berger (1998) also considered the case where θ1 and θ2 are independent. For
this other prior information, we can also mimic their approach to define a dominating
measure on Θ1.

3.2 No subjective conditional prior available

If no subjective conditional prior for θ2 given θ1 is available, we propose to mimic
the reference prior approach of Berger and Bernardo (1989, 1992). This leads to the
dominating measure on Θ1 with density w.r.t. λ proportional to

exp

{

1

2

∫

|Ic(θ2|θ1)|1/2 log

( |I(θ1, θ2)|
|Ic(θ2|θ1)|

)

dθ2

}

.

Often, the integral
∫

|Ic(θ2|θ1)|1/2 log
(

|I(θ1,θ2)|
|Ic(θ2|θ1)|

)

dθ2 is not defined.

The compact support argument that is typically used in the reference prior approach
(Berger and Bernardo 1992) may then be applied here. Choose a nested sequence
Θ1 ⊂ Θ2 ⊂ . . . of compact subsets of the parameter space Θ such that ∪iΘi = Θ
and |Ic(θ2|θ1)|1/2 has finite mass on Ωi = {θ2; (θ1, θ2) ∈ Θi} for all θ1. Let Ki(θ1) =
∫

Ωi
|Ic(θ2|θ1)|1/2dθ2 and

πi(θ1) = exp

{

1

2

∫

|Ic(θ2|θ1)|1/2 log

( |I(θ1, θ2)|
|Ic(θ2|θ1)|

)

dθ2

}

.

The dominating measure on Θ1 has then density w.r.t. λ proportional to

lim
i→∞

Ki(θ1)πi(θ1)

Ki(θ
(0)
1 )πi(θ

(0)
1 )

where θ
(0)
1 is any fixed point in Θ1. Datta and Ghosh (1996) established the invariance of

this procedure under 1−1 smooth reparametrization on θ1. Therefore, the corresponding
JMAP and JHPD are invariant under a smooth reparametrization on the parameter of
interest.

Let us consider again the normal nuisance example. Applying the previous proce-
dure, the dominating measure on σ has density w.r.t. λ proportional to 1/σ, which
is the invariant measure for scale models. We assume now that no prior information
is available on σ. So, the non-informative reference prior is given by πλ(σ) = 1/σ.
Equivalently, if the parameter of interest is σ2, the reference prior and dominating
measure have density w.r.t. Lebesgue proportional to 1

σ2 , which is again the cor-
responding invariant measure. In that case JMAP(σ2) is equal to the frequentist
REML (REstricted Maximum Likelihood) estimator. This is a new interpretation of
the REML estimator which also corresponds to the MAP under the Laplace prior for
σ2 (Harville 1974). By invariance of the JMAP, we have, JMAP(σ) =

√
REML. If

we change σ into log(σ), then the reference prior is the Lebesgue measure. In that
case, JMAP(log(σ)) = MAP(log(σ)) = 1

2 log(REML). Note that these results can be
extended to more general variance components models.
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4 Conclusion

The JMAPs and JHPDs proposed in this paper give a simple and coherent alternative
to the usual MAPs and HPDs, avoiding peculiar behaviour under reparametrization.
However, there are many important non-regular problems where the Jeffreys measure
does not exist and some developments should be done in this direction.
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