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ESTIMATING A CONCAVE DISTRIBUTION FUNCTION FROM
DATA CORRUPTED WITH ADDITIVE NOISE

BY GEURT JONGBLOED AND FRANK H. VAN DER MEULEN

Delft University of Technology

We consider two nonparametric procedures for estimating a concave dis-
tribution function based on data corrupted with additive noise generated by a
bounded decreasing density on (0,∞). For the maximum likelihood (ML) es-
timator and least squares (LS) estimator, we state qualitative properties, prove
consistency and propose a computational algorithm. For the LS estimator and
its derivative, we also derive the pointwise asymptotic distribution. Moreover,
the rate n−2/5 achieved by the LS estimator is shown to be minimax for esti-
mating the distribution function at a fixed point.

1. Introduction. Let X1,X2, . . . be an i.i.d. sequence of random variables
with unknown distribution function F . Moreover, let ε1, ε2, . . . be an i.i.d. se-
quence of random variables, independent of the Xi ’s, with known probability den-
sity function k. We want to estimate the distribution function F , based on data
Z1,Z2, . . . ,Zn, where Zi = Xi + εi . In other words, we wish to estimate F based
on a sample from the density

gF (z) =
∫

R

k(z − x)dF (x).(1)

Since gF is the convolution of the unknown distribution function with the (known)
density k, the problem of estimating aspects of the distribution function F based
on a sample from gF is known as a deconvolution problem.

Deconvolution problems were studied quite extensively during the past two
decades. Given a class F of distribution functions F , one can qualitatively state
that the smoother the noise density k, the worse the optimal estimation rate for F .
See Fan (1991). Alternatively, given a noise density k, it is obvious that the smaller
the class of distribution functions F , the better the optimal estimation rate for F .

One popular approach to this estimation problem is based on kernel smooth-
ing and Fourier methods [see, e.g., Carroll and Hall (1988) and Delaigle and Hall
(2006)]. These estimators can achieve optimal rates of convergence under a wide
range of smoothness assumptions. A characteristic feature of this approach is the
need for a bandwidth, preferably chosen in an asymptotically optimal way. Many
methods have been developed to determine such a bandwidth [see, e.g., Stefanski
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and Carroll (1990) and Delaigle and Gijbels (2004)]. Another popular approach
is based on wavelets [see, e.g., Pensky and Vidakovic (1999)]. For both Fourier
inversion methods and wavelet methods it is difficult to incorporate shape con-
straints on the distribution of interest in the estimation procedure. For example,
density estimates can easily become negative.

Another method that can be employed to estimate the distribution function F

is maximum likelihood. Based on the density (1) of Zi , the log likelihood of a
density g (or equivalent distribution function F ) is easily computed. A maximum
likelihood estimator is then defined as the maximizer of the log likelihood func-
tion over an appropriate class of distribution functions. See, for example, Groene-
boom and Wellner (1992) for the case where it is maximized over the class of all
distribution functions on [0,∞). Another general method to estimate F is least
squares. Based on a naive estimator of F outside the class F of distribution func-
tions of interest, this estimator is defined as the minimizer of the L2 distance to
this naive estimator over the class of interest. Typically, maximum likelihood and
least squares estimators do not require a bandwidth. Moreover, shape constraints
can quite naturally be imposed on the estimator by restricting the feasible set of
distribution functions in their definition. This in contrast to the aforementioned
kernel and wavelet based methods of estimation.

In this paper we estimate the distribution function F under the assumption that
it is concave. More precisely, we assume F to belong to the class

F := {F |F is a concave distribution function on [0,∞)}.(2)

We restrict the convolution kernel k to the class of convolution kernels

K = {k : [0,∞) → [0,∞) :k is a
(3)

bounded and decreasing probability density}.
However, as pointed out in side remarks, the existence, characterization and con-
sistency results for the maximum likelihood estimator can be extended to more
general classes of kernel functions at the cost of extra technicalities.

Our initial motivation to study nonparametric estimators for shape-constrained
distribution functions in deconvolution models was the financial application stud-
ied in Jongbloed, van der Meulen and van der Vaart (2005). There, we find the
problem of recovering a unimodal distribution from data corrupted with additive
noise with a smooth density. The current setting with decreasing kernel k is too re-
strictive to be applicable in that context. However, in this simplified model we can
obtain asymptotic results for the LS estimator. These are of independent interest.
To our knowledge, this paper is the second setting where the so-called Groene-
boom distribution described in Groeneboom, Jongbloed and Wellner (2001a) ap-
pears in the limit. The first setting is that of estimating a convex decreasing density
studied in Groeneboom, Jongbloed and Wellner (2001b). In both situations, the
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rescaling rate of the estimator is n2/5. We expect that the role played by Chernoff’s
distribution [Chernoff (1964)] in situations with cube root n asymptotics [Kim and
Pollard (1990)] is played by the Groeneboom distribution in situations with n2/5

asymptotics. Examples of other estimation problems where we expect this to hap-
pen are that of estimating a log concave density [Dümbgen and Rufibach (2004)]
and that of estimating a concave distribution function from current status data. (We
conjecture that the maximum likelihood estimator has the same asymptotics as the
least squares estimator in the setting of this paper.)

In Section 2 we define two nonparametric estimators for the concave distribu-
tion function F : the maximum likelihood estimator and a least squares estimator.
The consistency of both estimators is proved in Section 3. Computational issues of
the estimators are addressed in Section 4. Subsequently, we derive an asymptotic
local minimax lower bound on the optimal estimation rate for F(x0) and f (x0) in
Section 5. In Section 6 we derive the asymptotic distribution of the random vec-
tor (F̃n(x0), f̃n(x0)). It turns out that the asymptotic variance of the LS estimator
depends on the functions k and f in exactly the same way as the minimax lower
bound of Section 5.

2. Two nonparametric estimators: definition and properties. In this sec-
tion we define two nonparametric estimators for F : the maximum likelihood (ML)
and least squares (LS) estimators. In the context of convex density estimation,
Groeneboom, Jongbloed and Wellner (2001b) show that the ML and LS estima-
tors have the same asymptotic pointwise behavior. The least squares estimator,
however, is much more tractable to study both from an algorithmic and asymptotic
point of view. The same phenomenon will be seen to occur in the deconvolution
setting of this paper.

2.1. Maximum likelihood. Let

Zn = {Z1, . . . ,Zn}(4)

be the set of observations. Denoting by Gn the empirical distribution function of
Zn, the log-likelihood function evaluated at a distribution function F is given by

ln(F ) =
∫

R

loggF (z) dGn(z),(5)

where gF is defined as the convolution of k and F : gF (z) = ∫
[0,∞) k(z−x)dF (x).

In Groeneboom and Wellner (1992) it is shown that the maximizer of this func-
tion over the class of all distribution functions is a discrete distribution function
with mass concentrated at the observed data points. We show that the maximum
likelihood estimator of a concave distribution function F , based on a sample of
size n from gF , is a proper piecewise linear distribution function that can only
have changes of slope at the observed data points. We also establish a characteri-
zation of the estimator in terms of inequalities.
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Define the set Fbasis := {Fθ | θ > 0} by

Fθ(x) = x

θ
1[0,θ ](x) + 1(θ,∞), θ > 0 (x ∈ R),(6)

that is, Fθ is the distribution function of a uniformly distributed random variable
on [0, θ ]. Any F ∈ F can be written as a mixture of elements from Fbasis: there
exists a probability measure μ = μF on [0,∞) such that F = ∫

[0,∞) Fθ dμF (θ).
In fact, dμF (θ) = −θ dF ′(θ). This implies

gF (x) =
∫
[0,∞)

∫
[0,∞)

k(x − u)dFθ(u) dμF (θ) =
∫
[0,∞)

gθ (x) dμF (θ),

where

gθ (x) :=
∫
[0,∞)

k(x − u)dFθ(u)

(7)

= 1

θ

(
K(x) − K(x − θ)

)
, θ > 0 (x ∈ R).

(K denotes the primitive of k.) Thus we can reformulate the maximum-likelihood
problem as to maximize ln(g) = ∫

logg(x) dGn(x) over G, where

G :=
{
g|g(·) =

∫
[0,∞)

gθ (·) dμ(θ) for some probability measure μ on [0,∞)

}
.

Once we know the mixing probability measure μ̂n corresponding to the maxi-
mizer ĝn, the maximum-likelihood estimator for F is given by F̂n = ∫

Fθ dμ̂n(θ).

THEOREM 2.1. Let k ∈ K as defined in (3). Then a maximizer F̂n of (5) over
the class of all concave distribution functions on [0,∞) exists and can be chosen
to be a piecewise linear distribution function with bend points concentrated on the
set of observations Zn.

PROOF. We start by showing that if F̂n exists, there is a version that is piece-
wise linear with bend points concentrated on {Z1, . . . ,Zn}. Consider an arbitrary
concave distribution function F and its linearly interpolated version (between the
observed Zi’s) F̄ . Then, writing Z(0) = 0, we get for each i

gF

(
Z(i)

) =
i∑

j=1

∫ Z(j)

Z(j−1)

k
(
Z(i) − y

)
dF(y)

(8)

≤
i∑

j=1

∫ Z(j)

Z(j−1)

k
(
Z(i) − y

)
dF̄ (y) = gF̄

(
Z(i)

)
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implying that ln(F ) ≤ ln(F̄ ). Inequality (8) holds because we can write for each
summand (treating the Z(i)’s as fixed and denoting the distribution of a uniformly
distributed random variable U on [0,1] by J )∫ Z(j)

Z(j−1)

k
(
Z(i) − y

)
dF(y) = EF k

(
Z(i) − Y

)
1(Z(j−1),Z(j)](Y )

= EJ k
(
Z(i) − F−1(U)

)
1(Z(j−1),Z(j)](F−1(U))

≤ EJ k
(
Z(i) − F̄−1(U)

)
1(Z(j−1),Z(j)](F̄−1(U))

= EF̄ k
(
Z(i) − Y

)
1(Z(j−1),Z(j)](Y )

=
∫ Z(j)

Z(j−1)

k
(
Z(i) − y

)
dF̄ (y).

Here we use that F−1(u) ∈ (Z(j−1),Z(j)] ⇐⇒ F̄−1(u) ∈ (Z(j−1),Z(j)] and that
for each u ∈ (0,1), F−1(u) ≤ F̄−1(u) implying that k(Z(i) − F−1(u)) ≤ k(Z(i) −
F̄−1(u)).

To show existence of F̂n, we only have to consider distribution functions having
bend points at the observations and these can be parameterized as follows:

F =
n∑

j=1

τjFZj

with τ ∈ � =
{
τ ∈ R

n : 0 ≤ τj ≤ 1 for 1 ≤ j ≤ n and
∑n

j=1 τj = 1

}
.

Expressed in terms of τ , the log likelihood function becomes n−1×∑n
i=1 log(

∑n
j=1 τjgZj

(Zi)), which is a concave function that attains a finite
value for some feasible τ . Since � is compact, existence follows. �

REMARK 2.2. Existence and piecewise linearity with at most n changes of
slope of F̂n can also be proved under the less-restrictive assumption that k should
be initially nondecreasing on R, that is under the assumption that there exists a
constant M ∈ R such that k is nondecreasing on (−∞,M). In that situation we
should allow F̂n to have a point mass at zero. This implies that Fbasis should be
augmented with the function 1[0,∞). In this more general setting, the bend points
of the MLE can be outside the set of observed data points.

THEOREM 2.3 (Characterization of the MLE). The (piecewise linear) distri-
bution function F maximizes (5) over the class F if and only if∫

gθ (z)

gF (z)
dGn(z) ≤ 1(9)

for all θ > 0. Here gθ is as defined in (7). In fact, equality holds for those θ that
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belong to the set of bend points of F .

PROOF. First necessity. Suppose F maximizes the log likelihood. Then, for
all θ > 0 and ε ∈ [0,1],

F + ε(Fθ − F) ∈ F ⇒ lim
ε↓0

ε−1(
ln

(
F + ε(Fθ − F)

) − ln(F )
) ≤ 0.(10)

Writing out this limit gives (9). That the inequality actually is an equality for those
points where μF ({θ}) > 0 follows immediately upon noting that for those points
F + ε(Fθ − F) ∈ F also for small negative values of ε.

For sufficiency, let F̃ = ∫
Fθ dμ̃(θ) be an arbitrary (sub-)distribution function

in F . Then,

ln(F̃ ) − ln(F ) =
∫

log
g̃(z)

gF (z)
dGn(z) ≤

∫ (
g̃(z)

gF (z)
− 1

)
dGn(z)

=
∫ 1

gF (z)

∫
gθ (z) dμ̃(θ) dGn(z) − 1

=
∫ (∫

gθ (z)

gF (z)
dGn(z)

)
dμ̃(θ) − 1 ≤ 0. �

2.2. Least squares. We now turn to an alternative nonparametric estimator
for F , the least squares (LS) estimator. In order to define this estimator we need
a “type of inverse” for the kernel k. In Lemma 2.4 we will prove that under mild
conditions there exists a function p, such that p ∗ k(x) = id+(x) := x1[0,∞)(x).
We now explain how we can use this result to define a least squares estimator. First
note that

p ∗ g(x) = (p ∗ k) ∗ dF(x) = (id+ ∗ dF)(x) =
∫ x

0
F(u)du,

which implies that the survival function of the random variable X, defined by
s = 1 − F , satisfies

s(x) := U ′(x) with U(x) := x − (p ∗ g)(x).

Define an empirical estimate of U by

Un(x) = x − (p ∗ dGn)(x),

and denote the class of survival functions associated with F by

S = {s ∈ L2[0,∞) : s is nonnegative, convex, decreasing and s(0) ∈ (0,1]}.
We would like to define the LS estimator ŝn by arg mins∈S Qn(s), where

Qn(s) = 1

2

∫ ∞
0

s(x)2 dx −
∫ ∞

0
s(x) dUn(x).(11)



788 G. JONGBLOED AND F. H. VAN DER MEULEN

This definition is motivated by considering the L2-distance between s and (the
nonexistent) U ′

n. In the decomposition∫ (
s(x) − U ′

n(x)
)2

dx =
∫

s(x)2 dx − 2
∫

s(x)U ′
n(x) dx +

∫
U ′

n(x)2 dx,

the last term does not depend on s, and
∫

s(x)U ′
n(x) dx is interpreted as∫

s(x) dUn(x). Although not stated explicitly there, the isotonic inverse estima-
tor studied in Van Es, Jongbloed and Van Zuijlen (1998) can be interpreted in the
same way as the LS estimator considered here. The only difference is that Qn is
minimized over all decreasing rather than convex decreasing functions [0,∞).

The main reason for considering the survival function s instead of the distrib-
ution function F in the definition of the least square estimator is that the survival
function is convex and decreasing and, henceforth, we can exploit results from
Groeneboom, Jongbloed and Wellner (2001b) more naturally. We now provide
conditions on existence of the reciprocal kernel p.

LEMMA 2.4. To each kernel function k ∈ K defined in (3), there corresponds
a reciprocal kernel p (or “type 1 resolvent”), solving the first kind Volterra inte-
gral equation of convolution type

(p ∗ k)(x) :=
∫ x

0
p(x − y)k(y) dy = x1[0,∞)(x).(12)

This function p is increasing, equals zero on (−∞,0) and satisfies p(0+) =
1/k(0+). Moreover, limt→∞ t−1p(t) = 1. If, in addition, k is smooth in the sense
that it can be written as

k(x) = k(0+) −
∫ x

0
κ(y) dy =

∫ ∞
x

κ(y) dy,(13)

for a Lipschitz continuous nonnegative function κ on (0,∞), then the function p

admits a representation

p(t) = 1

k(0+)
+ L(t) = 1

k(0+)
+

∫ t

0
�(s) ds(14)

for a nonnegative continuous function � on (0,∞) that is Lipschitz continuous on
each bounded interval.

REMARK 2.5. For some kernels k ∈ K , p is explicitly known. For exam-
ple, p(t) = (1 + t)1[0,∞)(t) for the standard exponential k and p(t) = (1 +
�t�)1[0,∞)(t) for the uniform(0,1) kernel k. For other situations p can be easily
approximated numerically using numerical integration procedures.

PROOF OF LEMMA 2.4. For the first part we refer to Van Es, Jongbloed and
Van Zuijlen (1998) and Pipkin (1991), Chapter 6. For the result on smooth kernels,
consider the Volterra convolution integral equation of the second kind

�(t) −
∫ t

0

κ(t − u)

k(0+)
�(u) du = κ(t)

k(0+)2(15)
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and note that if � solves this equation, p defined in (14) solves (12). Existence of
a continuous solution to (15) is guaranteed by Theorem 3.5 in Gripenberg, Lon-
den and Staffans (1990) because κ is continuous. Using Lipschitz continuity of κ ,
Lipschitz continuity of � follows. Indeed, denote the Lipschitz constant of κ by K ,
and let t ∈ [0,M] and h > 0 sufficiently small. Then

|�(t + h) − �(t)| =
∣∣∣∣
∫ t

0

κ(t − u + h) − κ(t − u)

k(0+)
�(u) du

+
∫ t+h

t

κ(t + h − u)

k(0+)
�(u) du + κ(t + h) − κ(t)

k(0+)2

∣∣∣∣
≤

{
K

k(0+)
sup
[0,M]

|�(u)|
(

1 + sup
[0,M]

|κ(u)|
)

+ K

k(0+)2

}
h = cMh.

The result now follows from continuity of both � and κ on the compact interval
[0,M]. �

ASSUMPTION 2.6. Throughout the rest of the paper we will assume that k

admits representation (13) with Lipschitz continuous nonnegative function κ .

REMARK 2.7. Note that Un is a right-continuous function. The limit behavior
of p implies that Un(x) = o(x), as x → ∞. It is obvious that Un(x) = x for x ∈
[0,Z(1)) and that Un has negative jumps of size 1

n
p(0) at all observation points.

There are two natural ways to define the least squares estimator. The first is to
define it as the minimizer of Qn over the set S, as done above. A drawback of this
approach is that additional assumptions on k are needed to show that the estimator
ŝn is well defined and to derive its asymptotic properties. We follow an alternative
approach (avoiding these conditions) where we define the least squares estimator
as the minimizer of Qn over the set

Sn = {
s : s convex and decreasing,

(16)
s(0) = 1, s

(
Z(n)

) = 0, s piecewise linear with kinks only in Zn

}
.

THEOREM 2.8. The least squares estimator s̃n, defined as the minimizer of Qn

over Sn, exists uniquely.

PROOF. Uniqueness is immediate from strict convexity of Qn. For existence,
note that any s ∈ Sn can be written as s = ∑n

i=1 αisZi
, where sθ = 1 −Fθ [with Fθ

defined in (6)], all αi ∈ [0,1] and
∑n

i=1 αi = 1. Hence, the minimization problem
is equivalent to that of minimizing

(α1, . . . , αn) 
→ 1

2

n∑
i=1

n∑
j=1

αiαj

∫
sZi

sZj
dx −

n∑
i=1

αi

∫
sZi

dUn
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over the set C = {αi ∈ [0,1] (i = 1, . . . , n),
∑n

i=1 αi = 1}. The existence now fol-
lows from the compactness of C and the continuity of the mapping in the preceding
display. �

REMARK 2.9. The following argument shows why we can restrict the min-
imization to functions that equal one at zero. To show that ŝn(0) = 1, note that
the integral in objective function (11) can be split in the regions [0,Z(1)) and

[Z(1),Z(n)]. The first part is 1
2

∫ Z(1)

0 s(x)(s(x) − 2) dx, where the convex integrand
is minimized pointwisely by taking s(x) = 1. Hence, for any s ∈ S with s(0) < 1,
the objective function can be decreased by moving s on [0,Z(1)) as closely as pos-
sible to one. This boils down to changing it to the linear function connecting (0,1)

with (Z(1), s(Z(1))).

We now state necessary and sufficient conditions that characterize s̃n.

THEOREM 2.10. The function s minimizes Qn over all functions in Sn, if and
only if for all θ ∈ Zn

Hn(θ; s) =
∫ θ

t=0

∫ t

v=0
s(v) dv dt − θ

(∫ ∞
0

s(t)2 dt −
∫ ∞

0
s(t) dUn(t)

)
(17)

≥
∫ θ

0
Un(t) dt = Yn(θ),

with equality whenever θ is a kink of s.

PROOF. For necessity, assume s minimizes Qn over Sn. Because s + ε(sθ −
s) ∈ Sn for all θ ∈ Zn and ε ∈ [0,1], and s minimizes Qn over Sn, we have that

lim
ε↓0

ε−1(
Qn

(
s + ε(sθ − s)

) − Qn(s)
) ≥ 0.

Writing out this limit, we get∫ ∞
0

s(x)
(
sθ (x) − s(x)

)
dx −

∫ ∞
0

(
sθ (x) − s(x)

)
dUn(x) ≥ 0 ∀θ ∈ Zn.

Denote, for the moment, by s̄ the primitive of s, which is zero at zero. Then we
have ∫ ∞

0
s(x)sθ (x) dx =

∫ θ

0
sθ (x) ds̄(x) = 1

θ

∫ θ

0
s̄(x) dx

and ∫ ∞
0

sθ (x) dUn(x) = 1

θ

∫ θ

0
Un(x) dx.

This leads to the necessary inequality for optimality given in (17).
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FIG. 1. Deconvolution with k(x) = e−x1[0,∞)(x). Left: n = 10. Right: n = 100. True: red dotted;
MLE: blue solid; LSE: black dash-dotted.

Now, for sufficiency, suppose s satisfies conditions (17). Let s̃ = ∫
sθ dμ̃(θ) ∈

Sn, arbitrary. Define the function ε 
→ ϕ(ε) := Qn(s + ε(s̃ − s)), which is convex
on [0,1]. Moreover, Qn(s̃) = ϕ(1) ≥ ϕ(0) + ϕ′(0) = Qn(s) + ϕ′(0), where the
derivative is interpreted as right derivative. Hence, s minimizes Qn over Sn if
ϕ′(0) ≥ 0. To see that this holds, note that

ϕ′(0) =
∫
θ>0

1

θ

(
Hn(θ; s) − Yn(θ)

)
dμ̃(θ) ≥ 0.

If we take s̃ = s, then we obtain an equality in this display. This implies that,
for all θ where s has a kink, Hn(θ; s) = Yn(θ). �

Figures 1 and 2 show the maximum likelihood estimator and least squares
estimator for the case that the “true” distribution function F equals F(x) =
min(

√
x/5,1) (x > 0). In Figure 1 the noise is standard exponentially distrib-

uted, and in Figure 2 the noise is sampled from the distribution with density
k(x) = 2(1−x)1[0,1](x). The sample sizes were taken equal to 10 and 100. The es-
timators were calculated using the algorithms described in Section 4. Figure 3

FIG. 2. Deconvolution with k(x) = 2(1 − x)1[0,1](x). Left: n = 10. Right: n = 100. True: red
dotted; MLE: blue solid; LSE: black dash-dotted.
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FIG. 3. Deconvolution with k(x) = e−x1[0,∞)(x) (n = 10). The curves show that the characteri-
zation of the MLE and LSE, as given in Theorems 2.3 and 2.10, respectively, are satisfied. MLE: blue
solid; LSE: black dash-dotted.

gives a plot corresponding to the left-hand side picture of Figure 1. It shows that
the MLE and LSE satisfy the characterizations of Theorems 2.3 and 2.10, respec-
tively.

3. Consistency of the estimators. In Theorems 3.1 and 3.3 we prove consis-
tency of the maximum likelihood and least squares estimators, respectively.

3.1. Maximum likelihood.

THEOREM 3.1. Let k ∈ K satisfy Assumption 2.6. Then, almost surely, ‖F̂n −
F0‖∞ → 0. That is, the MLE is strongly uniformly consistent. In addition, we have
for all x > 0

F l
0(x) ≥ lim sup

n→∞
F̂ l

n(x) ≥ lim inf
n→∞ F̂ r

n (x) ≥ F r
0 (x).(18)

Here the superscripts “l” and “r” denote left and right derivatives, respectively.

PROOF. If F̂n maximizes ln over F , then, by Theorem 2.3∫
gF0(z)

g
F̂n

(z)
dGn(z) =

∫ ∫
gθ (z)

g
F̂n

(z)
dμF0(θ) dGn(z)

(19)

=
∫ ∫

gθ (z)

g
F̂n

(z)
dGn(z) dμF0(θ) ≤ 1.

By the Glivenko–Cantelli theorem, if 
0 := {‖Gn(·,ω) − G0‖∞ → 0}, where G0
is the distribution function corresponding to gF0 , then P(
0) = 1. Fix ω ∈ 
0.

Choose an arbitrary subsequence (m) of (n). Using the Helly selection princi-
ple, a subsequence (l) of (m) and a concave subdistribution function F̃ on [0,∞)

can be extracted such that F̂l(x) converges to F̃ (x) for all x > 0. By Lemma A.1
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in the Appendix, this vague convergence implies for the corresponding convolu-
tion densities ĝl = g

F̂l
and (sub) density g̃ = g

F̃
that for all closed intervals I

in (0,∞), supz∈I |ĝl(z) − g̃(z)| → 0 as l → ∞. Following exactly the argument
of Theorem 3.2 in Groeneboom, Jongbloed and Wellner (2001b), it can be shown
that necessarily g0 = g̃.

Hence, any subsequence of the sequence {F̂n}n has a further subsequence {F̂l}l
with F̂l

w−→ F̃ for some F̃ . Furthermore, we saw that g̃ = g
F̃

= g0 = gF0 . This
implies F̃ = F0, so there is only one possible limit for the subsequence. There-
fore, for all ω ∈ 
0, F̂n(ω)

w−→ F0. Since F0 is concave, it is continuous. This
implies that almost surely ‖F̂n − F0‖∞ → 0, as n → ∞. The statement in (18)
is a consequence of Marshall’s lemma [Robertson, Wright and Dykstra (1988),
page 332]. �

REMARK 3.2. If we consider the more general setting mentioned in Re-
mark 2.2, then the preceding argument can be extended to prove consistency for
this case as well.

3.2. Least squares. Next we prove consistency for the least squares estimator.
Let U0(x) = ∫ x

0 s0(y) dy and define

Q0(s) = 1

2

∫ ∞
0

s(x)2 dx −
∫ ∞

0
s(x) dU0(x)

= 1

2

∫ ∞
0

(
s(x) − s0(x)

)2
dx − 1

2

∫ ∞
0

s0(x)2 dx.

THEOREM 3.3. Assume s0 ∈ S. If we denote the L2-norm of functions
on [0,∞) by ‖ · ‖2, then ‖s̃n − s0‖2

a.s.−→ 0 and ‖s̃n − s0‖∞
a.s.−→ 0, as n → ∞.

PROOF. Note that

S1 ⊆ S2 ⊆ · · · ⊆ Sn ⊆ · · ·S ⊆ L2[0,∞).

For each i ≥ 1, the set Si is closed with respect to the topology induced by the L2-
norm. This follows from the fact that s ∈ Si is bounded and piecewise linear, with
kinks at at most i points. Furthermore, Si is convex. Therefore, the L2-projection
of s0 ∈ S onto Si exists. Denote the latter by �is0. Using the fact that s̃n minimizes
Qn over Sn, we get

1

2
‖s̃n − s0‖2

2

= Q0(s̃n) + 1

2
‖s0‖2

2

= Q0(s̃n) − Qn(s̃n) + Qn(s̃n) + 1

2
‖s0‖2

2
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≤ Q0(s̃n) − Qn(s̃n) + Qn(�ns0) + 1

2
‖s0‖2

2

= Q0(s̃n) − Qn(s̃n) + Qn(�ns0) − Q0(�ns0) + Q0(�ns0) + 1

2
‖s0‖2

2

≤ 2 sup
s∈Sn

|Q0(s) − Qn(s)| + Q0(�ns0) + 1

2
‖s0‖2

2

= 2 sup
s∈Sn

|Q0(s) − Qn(s)| + 1

2
‖�ns0 − s0‖2

2.

On the other hand, we have that

U0(x) − Un(x) =
∫ x

0
p(x − y)d(Gn − G0)(y)

= 1

k(0)
(Gn − G0)(x) +

∫ x

0
L(x − y)d(Gn − G0)(y),

where the second equality follows from equation (14). This implies that, for s ∈ Sn,

Qn(s) − Q0(s) =
∫ (

−s(x)

k(0)
+

∫ ∞
x

s(y)�(y − x)dy

)
d(Gn − G0)(x).

Substituting this equality in the preceding inequality gives

‖s̃n − s0‖2
2

≤ 4 sup
s∈Sn

∣∣∣∣
∫ (

−s(x)

k(0)

+
∫ ∞
x

s(y)�(y − x)dy

)
d(Gn − G0)(x)

∣∣∣∣ + ‖�ns0 − s0‖2
2

≤ 4 sup
s∈S

∣∣∣∣
∫ (

−s(x)

k(0)

+
∫ ∞
x

s(y)�(y − x)dy

)
d(Gn − G0)(x)

∣∣∣∣ + ‖�ns0 − s0‖2
2.

Since
⋃∞

n=1 Sn = S almost surely, ‖�ns0 − s0‖2, tends to zero almost surely, as
n → ∞. If the class{

x 
→ −s(x)

k(0)
+

∫ ∞
x

s(y)�(y − x)dy, s ∈ S

}

is Glivenko–Cantelli, then the first term tends to zero as well. That this class
is indeed Glivenko–Cantelli can be seen as follows. First, the class S itself is
Glivenko–Cantelli [Example 3.7.1 in Van de Geer (2000)]. Moreover, {v :v(x) =∫ ∞

0 s(x + y)�(y) dy, s ∈ S} ⊂ S is Glivenko–Cantelli for the same reason. Hence,
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by the triangle inequality, the class consisting of sums of two functions, one from
each class, is Glivenko–Cantelli, too.

Now suppose that s̃n does not converge to s0 pointwisely. Then there exists
a point x > 0, and ε > 0 and a subsequence of n, such that for all n along this
subsequence |s̃n(x) − s0(x)| > ε. Because all s̃n and s0 are convex and decreas-
ing, there is a fixed neighborhood of x, such that for all y in this neighborhood
and n along this subsequence, |s̃n(y) − s0(y)| > ε/2. This implies that ‖s̃n − s0‖2
does not converge to zero. Hence, with probability one s̃n(x) → s0(x) for all x,
as n → ∞. Uniform consistency follows from this pointwise result because s̃n
and s0 are convex and decreasing (the proof is similar to the proof of the classical
Glivenko–Cantelli theorem). �

4. Computing the estimators by a support-reduction algorithm. Both es-
timators can be computed by the support-reduction algorithm as discussed in
Groeneboom, Jongbloed and Wellner (2008). This is an iterative algorithm for
minimizing a convex objective function Q over a convex cone or convex hull gen-
erated by a parametrized function class. Suppose the objective function is denoted
by Q, and let the convex cone F generated by the functions {fθ : θ ∈ 
} be given
by

F =
{
f

∣∣∣f (x) =
∫

fθ (x) dμ(θ),μ is a positive finite measure on 


}
,

where 
 is some subset of R. (If we minimize over a convex hull, then the mea-
sure μ is a probability measure.) We aim to compute f̂ = arg minf ∈F Q(f ).

Both the computation of the ML estimator and the LS estimator fit within this
framework. For the MLE we minimize Q(f ) = − ∫

logf (x) dGn(x) + ∫
f (x) dx

over the convex cone generated by the functions {gθ : θ ∈ Zn}; for the LSE we
minimize Q(f ) = 1

2

∫
f (x)2 dx −∫ ∞

0 f (x) dUn(x) over the convex hull generated

by the functions {sθ : θ ∈ Zn}. If the solution is given by f̂n = ∫
fθ dμ̂n(θ), then

F̂n = ∫
Fθ dμ̂n(θ).

The main steps of the algorithm are briefly explained in Section 6.1 of Jong-
bloed, van der Meulen and van der Vaart (2005). For additional details we refer to
Groeneboom, Jongbloed and Wellner (2008). Computational details for the current
setup can be found in the Appendix.

5. Asymptotic lower bound on local minimax risk. In this section, we de-
rive an asymptotic lower bound to a local minimax risk for estimating the concave
distribution function F0 and its (decreasing) derivative F ′

0 = f0 at an interior point
x0 > 0 of its support. On f we impose a local assumption near the point x0:

f0(x) = f0(x0) + f ′
0(x0)(x − x0)

(
1 + o(1)

)
(20)

as x → x0 and f ′
0 is continuous at x0.
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Moreover, we assume an integrability condition on k and F0 jointly:∫ ∞
x0

k′(x − x0)
2

gF0(x)
dx < ∞.(21)

Define for a fixed kernel function k that can be expressed as in (13) the class of
sampling densities

G =
{
g :g(z) =

∫ z

0
k(z − x)f (x) dx,

(22)

z ≥ 0 with f decreasing density on (0,∞)

}
.

Endow this class of densities with the Hellinger distance,

H(g,h) =
(

1

2

∫ ∞
0

(√
h(x) −

√
g(x)

)2
dx

)1/2

,

and denote by Gg a subset of G containing a Hellinger ball of positive radius around
the fixed density g ∈ G.

Now consider the problem of estimating the functionals

T1(g) = F(x0) and T2(g) = f (x0)(23)

based on a sample from density g. The difficulty of the problem of estimating
a functional T (g) based on a sample of size n from the density g ∈ G can be
quantified using the concept of a local minimax risk:

R(n,T ,Gg) = inf
tn

sup
g∈Gn

Eg⊗n |tn(X) − T (g)|,(24)

where the infimum is taken over all estimators tn based on the sample X =
(X1, . . . ,Xn). In Jongbloed (2000), an asymptotic lower bound to this quantity
is given in terms of a (local) modulus of continuity mg of T over Gg :

mg(ε;T ) = sup{|T (h) − T (g)| :h ∈ Gg and H(h,g) ≤ ε}.
In fact, if it can be shown that

mg(ε;T ) ≥ (cε)r
(
1 + o(1)

)
as ε ↓ 0,(25)

then [Corollary 2 in Jongbloed (2000)]

lim inf
n→∞ nr/2R(n,T ,Gg) ≥ 1

4
e−r/2

(
1

2
c
√

r

)r

.(26)

THEOREM 5.1. Let T1 and T2 be defined as in (23) and G as in (22). Assume
that condition (20) is satisfied for the density f0 associated with g0. Then, for the
local minimax risk defined in (24), we have

lim inf
n→∞ n2/5R(n,T1,Gg0) ≥ 1

8

( |f ′
0(x0)|g0(x0)

2

100e2k(0)4

)1/5
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and

lim inf
n→∞ n1/5R(n,T2,Gg0) ≥ 1

4

( |f ′
0(x0)|3|g0(x0)|

4ek(0)2

)1/5

.

PROOF. We construct a family {gε : ε ∈ [0, ε0]} ⊂ G with the following prop-
erties:

|T1(gε) − T1(g0)| = 1
2ε2f ′

0(x0)
(
1 + o(1)

)
and

(27)
|T2(gε) − T2(g0)| = εf ′

0(x0)
(
1 + o(1)

)
for ε ↓ 0. Moreover,

H(gε, g0) ≤ (c1ε)
5/2(

1 + o(1)
)

(28)
⇒ H(gε2/5/c1

, g0) ≤ ε
(
1 + o(1)

)
as ε ↓ 0,

where

c1 =
(

2k(0)2f ′
0(x0)

2

5g0(x0)

)1/5

.

This means that for ε ↓ 0

mg(ε;T1) ≥ ∣∣T1(gε2/5/c1
) − T1(g0)

∣∣(1 + o(1)
) = |f ′

0(x0)|ε4/5

2c2
1

(
1 + o(1)

)
and

mg(ε;T2) ≥ ∣∣T2(gε2/5/c1
) − T2(g0)

∣∣(1 + o(1)
) = f ′

0(x0)ε
2/5

c1

(
1 + o(1)

)
.

Using these facts in (25) and (26), the statement of the theorem follows.
Let us now define the class {gε : ε ∈ [0, ε0]} and prove (27) and (28). This class is

defined based on a perturbation of the underlying distribution function F0. Indeed,

gε(z) =
∫ z

0
k(z − x)dFε(x)

with

Fε(x) =

⎧⎪⎪⎨
⎪⎪⎩

F0(x), if x /∈ [x0 − cεε, x0 + ε],
F0(x0 − cεε) + (x − x0 + cεε)

×f0(x0 − cεε), if x ∈ [x0 − cεε, x0 − ε],
F0(x0 + ε) + (x − x0 − ε)f0(x0 + ε), if x ∈ (x0 − ε, x0 + ε].

Here, cε is chosen in such a way that Fε is continuous at x0 −ε. Note that cε → 3 as
ε ↓ 0 and Fε is a concave distribution function on [0,∞), for all small values of ε.
By assumption (20), the statements in (27) follow immediately. A proof of (28) is
given in the Appendix. �



798 G. JONGBLOED AND F. H. VAN DER MEULEN

6. Asymptotic distribution theory for the LS-estimator. Theorem 2.10
gives a characterization of the least squares estimator that can be used to derive
the limit behavior of the estimator at a fixed point. Let Tn ⊂ Zn = {Z1, . . . ,Zn}
denote the set of bend points of s̃n.

In this section we prove the following result.

THEOREM 6.1. Suppose that s0 is twice continuously differentiable in a
neighborhood of x0, with strictly positive second derivative. Then,(

n2/5c1(s0, k)
(
s̃n(x0) − s0(x0)

)
n1/5c2(s0, k)

(
s̃′
n(x0) − s′

0(x0)
))

→
d

(
H ′′(0)

H ′′′(0)

)
.(29)

Here (H ′′(0),H ′′′(0)) are the second and third derivatives at zero of the invelope
H of the stochastic process

Y(t) =
∫ t

0
W(s)ds + t4

(where W is standard two-sided Brownian motion), introduced in Theorem 2.1 of
Groeneboom, Jongbloed and Wellner (2001a). The constants c1 and c2 are given
by

c1(s0, k) =
(

24k(0)4

g0(x0)2s′′
0 (x0)

)1/5

and c2(s0, k) =
(

24

s′′
0 (x0)

)3/5(
k(0)2

g0(x0)

)1/5

.

PROOF. Consider the processes

Hn(x) =
∫ x

0

∫ y

0
s̃n(u) dudy − x

(∫
s̃n(u)2 du −

∫
s̃n(u) dUn(u)

)
(30)

and

Yn(x) =
∫ x

0
Un(y) dy.

By Theorem 2.10, the characterization of the LS estimator can be written as

Yn(x)

{≤ Hn(x), for all x ∈ Zn,
= Hn(x), for all x ∈ Tn.

Now define, for t ∈ [−n1/5x0,∞), localized versions of Yn and Hn:

Y loc
n (t) = n4/5(

Yn(x0 + n−1/5t)

− Yn(x0) − n−1/5tY ′
n(x0) − 1

2
n−2/5t2s0(x0) − 1

6
n−3/5t2s′

0(x0)
)

= n4/5
∫ x0+n−1/5t

x0

(
Un(v) − Un(x0)

−
∫ v

x0

(
s0(x0) + (u − x0)s

′
0(x0)

)
du

)
dv
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and

H loc
n (t) = n4/5(

Hn(x0 + n−1/5t) − Hn(x0)

− n−1/5tH ′
n(x0) − 1

2n−2/5t2s0(x0) − 1
6n−3/5t3s′

0(x0)
)

+ An + Bnt,

where

An = n4/5(
Hn(x0) − Yn(x0)

)
and Bn = n3/5(

H ′
n(x0) − Y ′

n(x0)
)
.(31)

By Lemma A.2, the random variables An and Bn are tight.
The necessary and sufficient conditions for optimality can then be rewritten as

Y loc
n (t)

{≤ H loc
n (t), for all t ∈ [−n1/5x0,∞) with x0 + n−1/5t ∈ Zn,

= H loc
n (t), for all t with x0 + n−1/5t ∈ Tn.

If we define the process Zn by

Zn(t) := n3/5(
(Un − U0)(x0 + n−1/5t) − (Un − U0)(x0)

)
then the process Y loc

n can be rewritten as

Y loc
n (t) = n4/5

∫ x0+n−1/5t

x0

(
Un(v) − Un(x0) − (

U0(v) − U0(x0)
))

dv

+ n4/5
∫ x0+n−1/5t

x0

∫ v

x0

(
s0(u) − s0(x0) − (u − x0)s

′
0(x0)

)
dudv

=
∫ t

0
Zn(v) dv + 1

24
s′′

0 (x0)t
4 + o(1),

where for any c > 0 the o(1) term is uniformly in t ∈ [−c, c] as n tends to infinity.
By Lemma A.6 and the continuous mapping theorem, it now follows that

Y loc
n (t)→

d

√
g(x0)

k(0)

∫ t

0
W(s)ds + 1

24
s′′

0 (x0)t
4.

Now we proceed by rescaling the axes in the necessary conditions for optimality
in such a way that the limiting process behavior of Y loc

n will no longer depend on
the underlying functions s0 and k. For any α,β > 0, the necessary and sufficient
conditions can be rewritten as

H̃ loc
n (t) := αH loc

n (βt)

⎧⎪⎨
⎪⎩

≥ αY loc
n (βt) =: Ỹ loc

n (t), for all t ∈ [c, c],
= αY loc

n (βt) =: Ỹ loc
n (t), for all t ∈ [−c, c]

with x0 + n−1/5βt ∈ Tn.

In the limit, the right-hand side is given by

α

√
g(x0)

k(0)

∫ βt

0
W(s)ds + αβ4

24
s′′

0 (x0)t
4.
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By Brownian scaling, that is, using that for each γ > 0,
√

γW(·/γ ) is Brownian
motion whenever W is, we get that in distribution this process is the same as

αβ3/2
√

g(x0)

k(0)

∫ t

0
W(s)ds + αβ4

24
s′′

0 (x0)t
4.

In order to get a process that does not depend on properties of g0 or s0, we choose α

and β such that

αβ3/2
√

g(x0)

k(0)
= 1 and

αβ4

24
s′′

0 (x0) = 1,

yielding

α =
(

s′′
0 (x0)

24

)3/5(
k(0)2

g0(x0)

)4/5

and β =
(

24
√

g(x0)

s′′
0 (x0)k(0)

)2/5

.

Note that

(H̃ loc
n )′′(0) = αβ2n2/5(

s̃n(x0) − s0(x0)
) = c1(s0, k)n2/5(

s̃n(x0) − s0(x0)
)

and

(H̃ loc
n )′′′(0) = αβ3n1/5(

s̃′
n(x0) − s′

0(x0)
) = c2(s0, k)n1/5(

s̃′
n(x0) − s′

0(x0)
)
.

From this point on, essentially the same reasoning can be followed as in
the proof of Theorem 6.3 in Groeneboom Jongbloed and Wellner (2001b). In-
deed, the necessary and sufficient conditions for optimality can be pushed to the
limiting characterization related to the process studied in [Groeneboom, Jong-
bloed and Wellner (2001b), pages 1689–1690], where also Lemma A.4 is needed
to use their tightness argument. This leads to the convergence of the vector
((H̃ loc

n )′′′(0), (H̃ loc
n )′′(0)), as described in (29). �

REMARK 6.2. Because s′
0 = −f0 by definition, the asymptotic standard de-

viations of s̃n and s̃′
n coincide with the asymptotic bounds on the minimax risk

given in Theorem 5.1, apart from some constants not depending on the underlying
functions s0 and k.

APPENDIX

LEMMA A.1. Let Fn be a sequence of concave distribution functions on
[0,∞) converging to the concave (sub)distribution function F pointwisely on
(0,∞) (i.e., the corresponding sequence of distributions converges vaguely to the
subdistribution corresponding to F ). Let k be a density on (0,∞) satisfying As-
sumption 2.6. Denote by gn and g the convolutions of k with Fn and F respectively.
Then, gn converges to g uniformly on closed bounded intervals not containing 0.
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PROOF. Denote for p = 1,2, . . . by k(p) compactly supported functions such
that for all p, 0 ≤ k(p) ≤ k and such that ‖k − k(p)‖1 ≤ 1/p. Choose arbitrary
M > 0, and define ‖g‖1,M = ∫ M

0 |g(z)|dz by the triangle inequality

‖gn − g‖1,M ≤ ∥∥gn − g(p)
n

∥∥
1 + ∥∥g(p)

n − g(p)
∥∥

1,M + ∥∥g − g(p)
∥∥

1,(32)

where g
(p)
n = k(p) ∗ dFn and g(p) = k(p) ∗ dF . Now, choose ε > 0 and take

p > 3/ε. For the last term in (32) we have, via Fubini,

∥∥g − g(p)
∥∥

1 =
∫ ∞

0

∫ z

0

(
k(z − x) − k(p)(z − x)

)
dF(x) dz

≤ ∥∥k − k(p)
∥∥

1 ≤ 1/p < ε/3.

The first term in (32) is smaller than ε/3 for the same reason. By the assumed
vague convergence, we have for all z, |g(p)

n (z) − g(p)(z)| → 0 because k(p) is
bounded, continuous and has bounded support. Because g(p)(z) ≤ g(z) ≤ k(0+),
‖g(p)

n − g(p)‖1,M < ε/3 for n sufficiently large by dominated convergence. Now,
consider for η > 1 an interval [1/η, η]. Note that on this interval the densities of Fn

and F necessarily take values in the interval [0, η]. This means that all gn and g

are Lipschitz continuous with constant ‖κ‖∞ + k(0)η:

|g(z + h) − g(z)| ≤
∫ z

0
|k(z + h − x) − k(z − x)|dF(x)

+
∫ z+h

z
k(z + h − x)f (x) dx

≤ h
(‖κ‖∞ + k(0)η

)
.

This, together with the ‖ · ‖1,M convergence, implies the uniform convergence on
[1/η, η]. �

Computational details for the maximum likelihood estimator. We aim to
minimize

ln(g) = −
∫

logg(x) dGn(x) +
∫

g(x) dx

over the set

G :=
{
g :g(x) =

∫
[0,∞)

gθ (x) dμ(θ),μ is a positive finite measure
}
.

The addition of the
∫

g(x) dx-term in the objective function enables us to minimize
over a convex cone instead of a convex hull, since the minimizer of ln can in fact be
shown to be a probability density. By Theorem 2.1, it suffices to consider measures
supported on Zn.
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As shown in Section 7 of Groeneboom, Jongbloed and Wellner (2008), given a
current iterate ḡ, instead of ln, we can minimize the local objective function

ln(g; ḡ) =
∫

g(x) dx +
∫ {

1

2

(
g(x)

ḡ(x)

)2

− 2
g(x)

ḡ(x)

}
dGn(x),

which is a local quadratic approximation of the objective function near ḡ. This
quadratic function can be minimized over the (finitely generated) cone using the
support reduction algorithm, yielding

ḡq = arg min{ln(g; ḡ) :g ∈ cone(gθ : θ ∈ Zn)}.
The next iterate is then obtained as ḡ+λ(ḡq − ḡ) (λ chosen appropriately to assure
monotonicity of the algorithm).

We now turn to the details of the support reduction algorithm. To find a new
support point (a direction of descent), we first compute

ln(g + εgθ ; ḡ) − ln(g; ḡ) = 1
2ε2c2(θ) + εc1(θ;g).

Here,

c1(θ;g) = 1 − 2
∫

gθ

ḡ
(x) dGn(x) +

∫
ggθ

ḡ2 (x) dGn(x),

c2(θ) =
∫

g2
θ

ḡ2 dGn(x).

Computations that are completely analogous to those of Section 4 in Groeneboom,
Jongbloed and Wellner (2008), then show that the most promising direction is
given by

θ̂ = arg min
θ∈Zn

c1(θ;g)√
c2(θ)

.(33)

The second step consists of minimizing ln(
∑m

i=1 αigθi
; ĝ) over α1, . . . , αm (with-

out restrictions on αi). Now

ln

(
m∑

i=1

αigθi
; ḡ

)
=

m∑
i=1

αi

(
1 − 2

∫
gθi

ḡ
(x) dGn(x)

)

+ 1

2

m∑
i=1

m∑
j=1

αiαj

∫
gθi

gθj

ḡ2 (x) dGn(x).

Differentiating with respect to αi yields the linear system of equation A(α1, . . . ,

αm)′ = b, where

Ai,j =
∫

gθi
gθj

ḡ2 (x) dGn(x), bi = −1 + 2
∫

gθi

ḡ
(x) dGn(x).



ESTIMATING A CONCAVE DISTRIBUTION FUNCTION 803

Computational details for the least squares estimator. The least squares
estimator is defined as the minimizer of

Qn(s) = 1

2

∫ ∞
0

s(x)2 dx −
∫ ∞

0
s(x) dUn(x)

over the set Sn as defined in (16). If s ∈ Sn , then s(x) = ∫ ∞
0 sθ (x) dμ(θ), where

sθ (x) = (1 − x/θ)+ and μ is a probability measure supported on Zn. In the fol-
lowing, we denote 〈f,g〉 = ∫

f (x)g(x) dx and 〈f, dUn〉 = ∫
f (x) dUn(x).

In the first step of the support reduction algorithm we look for a direction of
descent. Given an iterate s, the directional derivative in the direction of sθ is given
by

c1(θ; s) = lim
ε↓0

ε−1(
Qn(s + εsθ ) − Qn(s)

) = 〈s, sθ 〉 − 〈sθ , dUn〉.

The new support point is given by θ̂ = arg minθ∈Zn c1(θ; s). By Theorem 2.10, the
optimal solution ŝ satisfies c1(θ; ŝ) ≥ 〈ŝ, ŝ〉 − 〈ŝ, dUn〉.

The second step of the algorithm consists of minimizing Qn(
∑m

i=1 αisθi
) over

all αi , such that
∑m

i=1 αi = 1. If m = 1, we simply have α1 = 1. Else, we set
α1 = 1 − ∑m

i=2 αi and minimize over α2, . . . , αm (without restrictions). We can
write

Qn

(
m∑

i=1

αisθi

)
= 1

2

m∑
i=1

m∑
j=1

αiαj 〈sθi
, sθj

〉 −
m∑

i=1

αi〈sθi
, dUn〉

= 1

2
α2

1〈sθ1, sθ1〉 + α1

m∑
i=2

αi〈sθ1, sθi
〉 + 1

2

m∑
i=2

m∑
j=2

αiαj 〈sθi
, sθj

〉

− α1〈sθ1, dUn〉 −
m∑

i=2

αi〈sθi
, dUn〉.

Differentiating with respect to αi (i = 2, . . . ,m), yields the linear system of equa-
tions A(α2, . . . , αm)′ = b, where

Ai−1,j−1 = 〈sθ1 − sθi
, sθ1 − sθj

〉, i, j = 2, . . . ,m,

and

bi−1 = 〈sθ1 − sθi
, sθ1 − dUn〉, i = 2, . . . ,m.

Proof of (28). For ease of notation we shall omit subscripts on f and g in the
proof. Thus, we write f instead of f0. We use Lemma 2 from Jongbloed (2000),
which states that

H 2(gε, g) ∼ 1

8

∫
{x : g(x)>0}

(gε(x) − g(x))2

g(x)
dx = I (1)

ε + I (2)
ε + I (3)

ε as ε ↓ 0,
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where I
(1)
ε , I

(2)
ε and I

(3)
ε are defined as the integral over the regions [x0 − cεε,

x0 − ε], (x0 − ε, x0 + ε] and (x0 + ε,∞) respectively. Note that, for all x ≥ 0,

g(x) − gε(x) =
∫ x0−ε

x0−cεε
k(x − u)

(
f (u) − f (x0 − cεε)

)
du

+
∫ x0+ε

x0−ε
k(x − u)

(
f (u) − f (x0 + ε)

)
du

and that, for x < x0 − cεε, this difference is zero, since k(x) = 0 for x < 0. For
x ∈ [x0 −cεε, x0 −ε], we have that g(x)−gε(x) = ∫ x

x0−cεε
k(x−u)(f (u)−f (x0 −

cεε)) du. Since k satisfies (13), supu∈(x0−cεε,x) |k(x − u) − k(0)| = o(1) as ε ↓ 0.

Furthermore, condition (20) implies

f (u) − f (x0 − cεε) = (u − x0 + cεε)f
′(ξ),

ξ ∈ (x0 − cεε, u) ⊆ (x0 − cεε, x0 − ε).

If ε ↓ 0, then ξ → x0 and f ′(ξ) → f ′(x0), since f ′ is continuous at x0. Hence,

g(x) − gε(x) =
∫ x

x0−cεε

(
k(0) + o(1)

)
(u − x0 + cεε)

(
f ′(x0) + o(1)

)
du

= 1

2
k(0)f ′(x0)[(u − x0 + cεε)

2]xx0−cεε

(
1 + o(1)

)
(34)

= 1

2
k(0)f ′(x0)(x − x0 + cεε)

2(
1 + o(1)

)
.

Hence,

I (1)
ε = 1

8

∫ x0−ε

x0−cεε

(gε(x) − g(x))2

g(x)
dx

= k(0)2f ′(x0)
2

32

∫ x0−ε

x0−cεε

(x − x0 + cεε)
4

g(x)

(
1 + o(1)

)
dx

= k(0)2f ′(x0)
2

5g(x0)
ε5(

1 + o(1)
)
.

For x ∈ (x0 − ε, x0 + ε),

g(x) − gε(x) =
∫ x0−ε

x0−cεε
k(x − u)

(
f (u) − f (x0 − cεε)

)
du

+
∫ x

x0−ε
k(x − u)

(
f (u) − f (x0 + ε)

)
du.

In exactly the same manner as the previous case, we can find asymptotic order
relations for this expression. For the first term we get, from (34),∫ x0−ε

x0−cεε
k(x − u)

(
f (u) − f (x0 − cεε)

)
du = 2k(0)f ′(x0)ε

2(
1 + o(1)

)
.
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For the second term we get∫ x

x0−ε
k(x − u)

(
f (u) − f (x0 + ε)

)
du

= 1

2
k(0)f ′(x0)[(x − x0 − ε)2 − 4ε2](1 + o(1)

)
.

This gives g(x) − gε(x) = 1
2k(0)f ′(x0)(x − x0 − ε)2(1 + o(1)), and thus

I (2)
ε = 1

8

∫ x0+ε

x0−ε

(gε(x) − g(x))2

g(x)
dx = k(0)2f ′(x0)

2

5g(x0)
ε5(

1 + o(1)
)
.

Now take x > x0 + ε. Then we can write

g(x) − gε(x)

=
∫ x0−ε

x0−cεε
k(x − u)

(
f (u) − f (x0 − cεε)

)
du

+
∫ x0+ε

x0−ε
k(x − u)

(
f (u) − f (x0 + ε)

)
du

=
∫ x0+ε

x0−ε

{
k(x − u)[f (u) − f (x0 + ε)]

+ k
(
x − u + (cε − 1)ε

)[
f

(
u − (cε − 1)ε

) − f (x0 − cεε)
]}

du.

Next, we use relations like

f (u) − f (x0 + ε) = (u − x0 − ε)f ′(x0)
(
1 + o(1)

)
and

k(x − u) = k(x − x0) + (x0 − u)k′(x − x0)
(
1 + o(1)

)
to obtain

g(x) − gε(x)

= k′(x − x0)f
′(x0)

∫ x0+ε

x0−ε

{
(x0 − u)(u − x0 − ε) + · · ·
+ (u − x0 + ε)

× (
x0 − u + (cε − 1)ε

)}
du

(
1 + o(1)

)
= 8

3
k′(x − x0)f

′(x0)ε
3(

1 + o(1)
)
.

Now

I (3)
ε = 8

9
f ′(x0)

2ε6
∫ ∞
x0+ε

k′(x − x0)
2

g(x)
dx

(
1 + o(1)

)
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by (21)

H 2(gε, g) ∼ 2k(0)2f ′(x0)
2

5g(x0)
ε5(

1 + o(1)
)

as ε ↓ 0.

Technical results for deriving the asymptotic distribution. In what follows
we assume, as in Theorem 6.1, that s0 is twice continuously differentiable in a
neighborhood of x0, with strictly positive second derivative.

LEMMA A.2. The random variables An and Bn as defined in (31) are tight.

To be able to prove the lemma, we first need to prove several other lemmas.

Distance between successive bend points of the estimator. Recall that Tn

denotes the set of bend-points of s̃n. For a sequence ξn converging to x0, define the
bend points to the left and right of ξn by

τ−
n = max{x ∈ Tn :x ≤ ξn} and τ+

n = min{x ∈ Tn :x > ξn}.(35)

By consistency and the local assumption of strict convexity of s0 in a neighborhood

of x0, it follows that τ+
n − τ−

n

p−→ 0 as n → ∞. The lemma below strengthens this
to a rate result for τ+

n − τ−
n that is used to obtain a rate result for the LS estimator

itself.

LEMMA A.3. Let ξn be a sequence converging to x0. Let τ+
n and τ−

n be defined
according to (35) Then,

τ+
n − τ−

n = OP (n−1/5).

PROOF. Define, for u < v, the v-shaped functions connecting the points
(u,1), ((u + v)/2,−1), and (v,1), also used in Mammen (1991):

fu,v(x) =
(

4

v − u

∣∣∣∣x − u + v

2

∣∣∣∣ − 1
)

1[u,v](x).

Note that ∫
fu,v(x) dx =

∫
xfu,v(x) dx = 0 and

(36) ∫
x2fu,v(x) dx = (v − u)3/24.

Now, take u = τ−
n and v = τ+

n and define the function f̃u,v as follows. First, set
f̃u,v(0) = 0. For x = Z1, . . . ,Zn, let f̃u,v(x) := fu,v(Zi). In between these points
define f̃u,v by linear interpolation. For x > Z(n), f̃u,v(x) = 0. Note that f̃u,v and
fu,v only differ on the spacings containing u, (u + v)/2 and v. Using (36) and
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that the maximal distance between successive order statistics is OP (n−1 logn), it
follows that∫

f̃u,v(x) dx = OP

(
logn

n

)
,

∫
xf̃u,v(x) dx = OP

(
logn

n

)
(37)

and ∫
x2f̃u,v(x) dx = (v − u)3/24 + OP

(
logn

n

)
.(38)

Observe that, for small positive ε, the function ŝn + εf̃u,v ∈ Sn. This implies that

lim
ε↓0

ε−1(
Q(ŝn + εf̃u,v) − Q(ŝn)

) ≥ 0

hence
∫

ŝn(x)f̃u,v(x) dx − ∫
f̃u,v(x) dUn(x) ≥ 0.

Note that, by (37) and the fact that ŝn is linear on [u, v], the first term is
OP (n−1 logn). Hence,∫

f̃u,v(x) d(Un − U0)(x) +
∫

f̃u,v(x) dU0(x) ≤ OP

(
logn

n

)
.(39)

Using that U ′
0 = s0 and using a Taylor expansion for s0 as well as (37) and (38),

we can write for the second term in (39)∫
f̃u,v(x) dU0(x) = 1

48
s′′

0 (x0)(v − u)3 + OP

(
logn

n

)
+ o((v − u)3)

yielding ∫
f̃u,v(x) d(Un − U0)(x) + 1

48
s′′

0 (x0)(v − u)3

(40)

≤ OP

(
logn

n

)
+ o

(
(v − u)3)

.

For the first term in (40), we have∫
f̃u,v(x) d(Un − U0)(x) = (Un − U0)(v) − (Un − U0)(u)

+ 4

v − u

{∫ (u+v)/2

u
−

∫ v

(u+v)/2

}
(Un − U0)(x) dx

=
∫

ϕu,v(x) d(Gn − G0)(x) + OP

(
logn

n

)
,

using the notation p̄(x) = ∫ x
0 p(y)dy,

ϕu,v(x) = p(u − x) − p(v − x)

− 4

v − u

(
p̄(u − x) − 2p̄

(
u + v

2
− x

)
+ p̄(v − x)

)
.
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We now show that, for any ε > 0, by taking A > 0 sufficiently large,

P

(
∃u ∈ (ξn − δ, ξn], v ∈ (ξn, ξn + δ] :

(41) ∣∣∣∣
∫

ϕu,v(x) d(Gn − G0)(x)

∣∣∣∣ > ε(v − u)3 + An−3/5
)

can be made arbitrarily small, uniformly in n. To this end, define for i, j ∈ Kn =
{1,2, . . . , �n1/5δ�} the sets

Ii = (
ξn − in−1/5, ξn − (i − 1)n−1/5]

and

Jj = (
ξn + (j − 1)n−1/5, ξn + jn−1/5]

and note that the class of functions Fi,j = {ϕu,v :u ∈ Ii, j ∈ Jj } is a VC class with
envelope

x 
→
⎧⎨
⎩

c(j + i)n−1/5, for x ∈ [0, ξn − in−1/5),
c, for x ∈ [ξn − in−1/5, ξn + jn−1/5],
0, for x > ξn + jn−1/5,

(42)

where c > 0 is a constant. For deriving this envelope function, we use relation (14)
and the Lipschitz continuity of �. For y ≤ u,

|ϕu,v(y)| ≤ ‖�‖∞(v − u) + 4

v − u
|p(ξu,v,y)(v − u)/2 − p(νu,v,y)(v − u)/2|

≤ ‖�‖∞(v − u) + 2‖�‖∞|νu,v,y − ξu,v,y | ≤ 3‖�‖∞(v − u).

Taking into account that, for u ∈ Ii and j ∈ Jj , 0 ≤ v − u ≤ (i + j)n−1/5, we get
the first inequality in (42). The other bounds in (42) can be deduced similarly.

For the probability in (41) we can now write

P

(
∃i, j ∈ Kn :∃u ∈ Ii,

v ∈ Jj :
∣∣∣∣
∫

ϕu,v(x) d(Gn − G0)(x)

∣∣∣∣ > ε(v − u)3 + An−3/5
)

≤ P

(
∃i, j ∈ Kn :∃u ∈ Ii,

v ∈ Jj :
∣∣∣∣n3/5

∫
ϕu,v(x) d(Gn − G0)(x)

∣∣∣∣ > ε(j + i − 2)3 + A

)

≤ P

(
∃i, j ∈ Kn : sup

u∈Ii ,v∈Jj

∣∣∣∣n3/5
∫

ϕu,v(x) d(Gn − G0)(x)

∣∣∣∣
> ε(j + i − 2)3 + A

)
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≤ ∑
i∈Kn

∑
j∈Kn

P

(
sup

u∈Ii ,v∈Jj

∣∣∣∣n1/10n1/2
∫

ϕu,v(x) d(Gn − G0)(x)

∣∣∣∣
> ε(j + i − 2)3 + A

)

≤ ∑
i∈Kn

∑
j∈Kn

n1/5

(ε(j + i − 2)3 + A)2

× E

(
sup

u∈Ii ,v∈Jj

∣∣∣∣n1/2
∫

ϕu,v(x) d(Gn − G0)(x)

∣∣∣∣
)2

.

To bound the expectation in the summand in this expression, we can then use
Theorem 2.14.1 in van der Vaart and Wellner (1996), with envelope function (42),
yielding, for some positive c,

E

(
sup

u∈Ii ,v∈Jj

∣∣∣∣n1/2
∫

ϕu,v(x) d(Gn − G0)(x)

∣∣∣∣
)2

≤ c
(
(i + j)n−1/5 + (i + j)2n−2/5)

.

This gives, as upper bound for probability (41),

∞∑
i=1

∞∑
j=1

c((i + j) + (i + j)2n−1/5)

(ε(j + i − 2)3 + A)2 = c

∞∑
k=2

k(k − 1) + k2(k − 1)n−1/5

(ε(k − 2)3 + A)2 ,

which, by dominated convergence, can be made arbitrarily small by taking A suf-
ficiently large.

Combining this result with inequality (40), taking ε = s′′
0 (x0)/96, we obtain that

by taking A sufficiently large, we have with arbitrarily high probability that

n3/5s′′
0 (x0)

48
(τ+

n − τ−
n )3 ≤ n3/5

∣∣∣∣
∫

ϕτ−
n ,τ+

n
(x) d(Gn − G0)(x)

∣∣∣∣ + OP

(
logn

n2/5

)

≤ n3/5s′′
0 (x0)

96
(τ+

n − τ−
n )3 + A + OP

(
logn

n2/5

)

implying that τ+
n − τ−

n = OP (n−1/5). �

Rate results for the estimator. The next lemma shows that, in OP (n−1/5)

neighborhoods of x0, the minimal value of the difference between s̃n and s0 over
this neigborhood is OP (n−2/5).

LEMMA A.4. Let ξn be a sequence converging to x0. For any ε > 0 there exist
an M > 1 and a c > 0, such that the following holds with probability greater than
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1 − ε. There are bend points τ−
n < ξn < τ+

n of s̃n with n1/5 ≤ τ+
n − τ−

n ≤ Mn1/5,

and for any such points we have

inf
t∈[τ−

n ,τ+
n ]

|s̃n(t) − s0(t)| ≤ cn−2/5 for all n.

PROOF. Applying Lemma A.3 to the sequences ξn ± n−1/5 implies that for
any ε > 0 we can find an M > 1, such that with probability greater than 1−ε there
are bend points of s̃n satisfying ξn − Mn−1/5 ≤ τ−

n ≤ ξn − n−1/5 ≤ ξn + n−1/5 ≤
τ+
n ≤ ξn + Mn−1/5.

Now, fix ε > 0 and define the M and τ±
n accordingly. Define the functions ϕ

(1)
n

and ϕ
(2)
n by

ϕ(1)
n (x) = (τ+

n − x)1(τ−
n ,τ+

n ](x) and ϕ(2)
n (x) = (τ+

n − x)1[τ−
n ,τ+

n ](x)

and note that, for ε > 0 sufficiently small, the piecewise linear functions defined
by s̃n(zi) + εϕ

(1)
n (zi) and s̃n(zi) − εϕ

(2)
n (zi) (and linear interpolation between ob-

servation points) belong to the class Sn. Hence,

lim
ε↓0

ε−1(
Q

(
s̃n + εϕ(1)

n

) − Q(s̃n)
) ≥ 0.

This implies, taking into account issues related to piecewise linearity of the func-
tion via the OP (n−1 logn) term,∫ τ+

n

τ−
n

(τ+
n − x)s̃n(x) dx −

∫
[τ−

n ,τ+
n ]

(τ+
n − x)dUn(x) ≥ OP

(
logn

n

)
.(43)

Similarly, taking −εϕ
(2)
n instead of εϕ

(1)
n , we obtain∫ τ+

n

τ−
n

(τ+
n − x)s̃n(x) dx −

∫
[τ−

n ,τ+
n ]

(τ+
n − x)dUn(x) ≤ 0.(44)

From (43) and (44) we obtain∣∣∣∣
∫ τ+

n

τ−
n

(τ+
n − x)

(
s̃n(x) − s0(x)

)
dx −

∫
[τ−

n ,τ+
n ]

(τ+
n − x)d(Un − U0)(x)

∣∣∣∣
(45)

= OP

(
logn

n

)
.

Now, suppose that

inf
x∈[τ−

n ,τ+
n ]

|s̃n(x) − s0(x)| > cn−2/5.(46)

Then ∣∣∣∣
∫ τ+

n

τ−
n

(τ+
n − x)

(
s̃n(x) − s0(x)

)
dx

∣∣∣∣ > c(τ+
n − τ−

n )2n−2/5
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which, in view of (45), implies (using that τ+
n − τ−

n ≥ n−1/5)∣∣∣∣
∫
[τ−

n ,τ+
n ]

(τ+
n − x)d(Un − U0)(x)

∣∣∣∣ > c(τ+
n − τ−

n )2n−2/5 ≥ cn−4/5.(47)

Also, note that
∫
[τ−

n ,τ+
n ]

(τ+
n − x)d(Un − U0)(x) =

∫ τ+
n

τ−
n

(Un − U0)(x) − (Un − U0)(τ
−
n ) dx

= OP (n−4/5)

by Lemmas A.3 and A.6. Hence, the probability of (46) is smaller than or equal to
that of (47), which can be made arbitrarily small by taking c sufficiently large. �

LEMMA A.5. For each M > 0,

sup
t∈[−M,M]

|s̃n(x0 + n−1/5t) − s0(x0) − n−1/5ts′
0(x0)| = OP (n−2/5)

and

sup
t∈[−M,M]

|s̃′
n(x0 + n−1/5t) − s′

0(x0)| = OP (n−1/5).

PROOF. This follows from Lemmas A.4 and A.3 in the same way Lemma 4.4
follows from Lemmas 4.3 and 4.2 in Groeneboom, Jongbloed and Wellner
(2001b). �

PROOF OF LEMMA A.2. Note that the characterization of ŝn in Theorem 2.10
implies that, for all bend points τn of ŝn,

Hn(τn) = Yn(τn) and H ′
n(τn) = Y ′

n(τn) + OP

(
logn

n

)
,(48)

where the derivative of Yn is to be interpreted as a right derivative. Choose τn, the
last bend point of ŝn before x0. First, consider Bn and observe that

Bn = n3/5(
H ′

n(x0) − H ′
n(τn) + Y ′

n(τn) − Y ′
n(x0) + H ′

n(τn) − Y ′
n(τn)

)
= n3/5

(∫ x0

τn

s̃n(u) du − (
U0(x0) − U0(τn)

))

− n3/5(
(Un − U0)(x0) − (Un − U0)(τn)

) + n3/5(
H ′

n(τn) − Y ′
n(τn)

)
.

By (48), the last term is OP (n−2/5 logn). By Lemmas A.6 and A.3, the second
term is OP (1). To see that the first term is OP (1) as well, we use a Taylor expan-
sion of U0(x) = ∫ x

0 s0(y) dy around x0,
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U0(x0) − U0(τn) = (x0 − τn)U
′
0(x0) − 1

2
(x0 − τn)

2U ′′
0 (x0)

+ 1

6
(x0 − τn)

3U ′′′
0 (ξn)

=
∫ x0

τn

(
s0(x0) + (u − x0)s

′
0(x0)

)
du + 1

6
(x0 − τn)

3s′′
0 (ξn)

for ξn ∈ (τn, x0). Inserting this into the first term gives, for n sufficiently large,

n3/5
∣∣∣∣
∫ x0

τn

s̃n(u) du − (
U0(x0) − U0(τn)

)∣∣∣∣
= n3/5

∣∣∣∣
∫ x0

τn

[s̃n(u) − s0(x0) − (u − x0)s
′
0(x0)]du − 1

6
n3/5(x0 − τn)

3s′′
0 (ξn)

∣∣∣∣
≤ n3/5(x0 − τn) sup

u∈[τn,x0]
|s̃n(u) − s0(x0) − (u − x0)s

′
0(x0)|

+ 1

3
n3/5s′′

0 (x0)(x0 − τn)
3

= OP (1)

by Lemmas A.3 and A.5.
Now, for An we get

An = n4/5{
Hn(x0) − Hn(τn) − (x0 − τn)H

′
n(τn)

− (
Yn(x0) − Yn(τn) − (x0 − τn)Y

′
n(τn)

)}
− n4/5{

(x0 − τn)
(
Y ′

n(τn) − H ′
n(τn)

)}
.

By (48) the second term is OP (n−1/5 logn). Note that

Hn(x0) − Hn(τn) − (x0 − τn)H
′
n(τn) =

∫ x0

τn

∫ y

τn

s̃n(u) dudy

and

Yn(x0) − Yn(τn) − (x0 − τn)Y
′
n(τn) =

∫ x0

τn

(
Un(u) − Un(τn)

)
du.

Therefore, the first term can be written as

n4/5
∫ x0

y=τn

(∫ y

u=τn

s̃n(u) du − Un(y) − Un(τn)

)
dy.

Adding and subtracting n4/5 ∫ x0
τn

(U0(y) − U0(τn)) dy = n4/5 ∫ x0
τn

∫ y
τn

s0(u) dudy,
this expression can in turn be written as

n4/5
∫ x0

τn

∫ y

τn

(
s̃n(u) − s0(u)

)
dudy

− n4/5
∫ x0

τn

(
Un(u) − U0(u) − (

Un(τn) − U0(τn)
))

du.
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Using a second-order Taylor expansion of s0 around x0, this expression can be
seen to equal

n4/5
∫ x0

τn

∫ y

τn

(
s̃n(u) − s0(x0) − (u − x0)s

′
0(x0)

)
dudy

− n4/5
∫ x0

τn

(
Un(u) − U0(u) − (

Un(τn) − U0(τn)
))

du

− 1

2
n4/5

∫ x0

τn

∫ y

τn

(u − x0)
2s′′

0 (ξn) dudy = OP (1),

with ξn ∈ (τn, x0), by Lemmas A.3, A.5 and A.6. �

LEMMA A.6. Assume the kernel k satisfies Assumption 2.6. Then

Zn(t) := n3/5(
(Un − U0)(x0 + n−1/5t) − (Un − U0)(x0)

)→
d

√
g0(x0)

k(0)
W(t),

in the space D(−∞,∞) endowed with the topology of uniform convergence on
compacta. Here, W denotes a two-sided standard Wiener process.

PROOF. By equation (14), we can write

Un(x) = Vn(x) − 1

k(0+)
Gn(x) with Vn(x) = x −

∫ x

0
Gn(x − s)�(s) ds.

Define V0 analogously, replacing Gn by G0. It is easy to see that

Zn(t) = Z(1)
n (t) − n3/5

k(0)

∫ x0+n−1/5t

x0

d(Gn − G0)(x),(49)

where

Z(1)
n (t) = n3/5(

(Vn − V0)(x0 + n−1/5t) − (Vn − V0)(x0)
)
.

The last term on the right-hand side of (49) converges to the two-sided Wiener
process as indicated in the statement of the lemma. For the first term, we can write

Z(1)
n (t) = n3/5

(∫ x0+n−1/5t

0

(
G0(y) − Gn(y)

)
�(x0 + n−1/5t − y)dy

−
∫ x0

0

(
G0(y) − Gn(y)

)
�(x0 − y)dy

)

= n3/5
(∫ x0

0

(
G0(y) − Gn(y)

)(
�(x0 + n−1/5t − y) − �(x0 − y)

)
dy

)

+ n3/5
(∫ x0+n−1/5t

x0

(
G0(y) − Gn(y)

)
�(x0 + n−1/5t − y)dy

)
.
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Hence, for any M > 0, we get for n sufficiently large that

sup
|t |≤M

∣∣Z(1)
n (t)

∣∣ ≤ n3/5(‖Gn − G0‖∞CMn−1/5 + 2n−1/5M‖Gn − G0‖∞�(0+)
)

= OP (n−1/10). �
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