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STATISTICS OF EXTREMES BY ORACLE ESTIMATION

BY ION GRAMA AND VLADIMIR SPOKOINY

University of South Brittany and Weierstrass-Institute

We use the fitted Pareto law to construct an accompanying approxima-
tion of the excess distribution function. A selection rule of the location of the
excess distribution function is proposed based on a stagewise lack-of-fit test-
ing procedure. Our main result is an oracle type inequality for the Kullback–
Leibler loss.

1. Background and outline of main results. Let X1, . . . ,Xn, be i.i.d. obser-
vations with continuous d.f. F supported on the interval [x0,∞), x0 ≥ 0. Assume
that d.f. F is “heavy tailed,” that is, that F belongs to the domain of attraction of
the Fréchet law �1/γ (x) = exp(−x−1/γ ), x ≥ 0, with parameter 1/γ. By Fisher–
Trippet–Gnedenko theorem (see Bingham, Goldie and Teugels [2]) this is equiva-
lent to saying that for any x ≥ 1,

Ft (x) → Pγ (x) as t → ∞,(1.1)

where Ft(x) is the excess d.f. over the threshold t > x0 defined by

Ft(x) = 1 − 1 − F(xt)

1 − F(t)
, x ≥ 1,

and Pθ(x) = 1 − x−1/θ , x ≥ 1, is the standard Pareto d.f. with parameter θ > 0.

Relation (1.1) suggests using Pγ (x) with estimated γ as an approximation of Ft(x)

for a given x and large t. However, it can be misleading in cases when the con-
vergence to the limit distribution is too slow. This is easily seen by inspecting the
trajectories of the Hill estimator (1.2) computed from samples drawn from the log-
gamma distribution F(x), see Figure 1. It is sometimes called the Hill horror plot,
because of the important discrepancy between the Hill estimator and the estimated
parameter γ, even for very large sample sizes (see Embrechts, Klüppelberg and
Mikosch [7] or Resnick [20]). The explanation lies in the fact that the Hill estima-
tor merely fits a Pareto distribution to the data thereby providing an approximation
of the excess d.f. Ft rather than for γ itself. Despite these evidences the problem
of estimating the excess d.f. Ft regardless of the limit Pγ is less studied in the
literature.
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FIG. 1. 1—The Hill estimator ĥn,k, k = 1, . . . , n, for log-gamma d.f. with rate parameter 1 and
shape parameter 2. 2—Index of regular variation γ = 1 which is expected to be estimated. 3—The
fitted Pareto parameter θt (F ) computed from the approximation formulas (4.4), (4.8). Left: 1 real-
ization; Right: 100 realizations.

The goal of the present paper is twofold. First of all, we shall consider the
problem of recovering the excess d.f. Ft from the data X1, . . . ,Xn directly, and
second, we shall propose an adaptive procedure of the choice of the location of
the tail t. Motivated by (1.1), we assume that for large values of t ≥ x0 the excess
d.f. Ft can be approximated by a Pareto law Pθt with some index θt > 0 possibly
depending on the location t and generally different from γ. The statistical problem
is that of recovering Ft by constructing a family of estimators θ̂n,t , t ≥ x0, of the
parameters θt , t ≥ x0, and proposing an adaptive rule for choosing the location
threshold t.

Some consequences of the main results of the paper are formulated below. Let
Xn,1 > Xn,2 > · · · > Xn,n be the order statistics pertaining to X1, . . . ,Xn and ĥn,k,

k = 1, . . . , n − 1, be the family of Hill estimators, where

ĥn,k = 1

k

k∑
i=1

log
Xn,i

Xn,k+1
,(1.2)

see Hill [14]. Denote n̂t = ∑n
i=1 1(Xn,i > t) and θ̂n,t = ĥn,n̂t , where θ̂n,t = 0 if

n̂t = 0.

The discrepancy between two equivalent probability laws P and Q is mea-
sured by the Kullback–Leibler divergence K(P,Q) = ∫

log dP
dQ

dP and by the

χ2-divergence χ2(P,Q) = ∫
dP
dQ

dP − 1. For any t ≥ x0 the best approxima-
tion of the excess d.f. Ft is defined by looking for the “closest” element in the
set of Pareto distributions. Let θt (F ) = arg minθ>0 K(Ft ,Pθ ) be the minimum
Kullback–Leibler divergence Pareto parameter, called in the sequel for short fitted
Pareto index. Thereafter PF denotes the probability measure corresponding to the
i.i.d. observations X1, . . . ,Xn with d.f. F.

Instead of (1.1), assume that F admits an accompanying Pareto tail, which
means that χ2(Ft ,Pθt (F )) → 0 as t → ∞. This condition is not very restrictive
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and defines a class of d.f.’s related to those in Hall and Welsh [12] and Drees [6].
Then, according to our Theorem 4.4,

K(Fτn,Pθ̂n,τn
) = OPF

(
logn

n(1 − F(τn))

)
as n → ∞,

for any sequence {τn} obeying

χ2(
Fτn,Pθτn(F )

) = O

(
logn

n(1 − F(τn))

)
→ 0 as n → ∞.(1.3)

The sequence {τn} in the definition of the estimator θ̂n,τn being, generally, un-
known, we give an automatic selection rule k̂n (Section 3) such that the adaptive
estimator θ̂n = ĥn,̂kn

mimics the nonadaptive estimator θ̂n,τn, that is,

K(Fτn,Pθ̂n
) = OPF

(
logn

n(1 − F(τn))

)
as n → ∞,

for any sequence of locations {τn} obeying (1.3), see Theorem 4.10. From the
results in Hall and Welsh [12] and Drees [6] it follows that the estimators θ̂n,τn and
θ̂n attain optimal or suboptimal rate in some classes of functions (see Section 5 for
details).

Many results on the adaptive choice of the number k of upper statistics involved
in the estimation require prior knowledge on the unknown d.f. F. A peculiarity
of the adaptive procedure proposed in the paper is that it applies to an arbitrary
d.f. with Pareto like tail and does not ask additional information on its structure.
In particular, F need not even be regularly varying at infinity, that is, it need not
satisfy (1.1).

The brief outline of paper: In Section 2 we construct the local likelihood esti-
mators. Section 3 introduces the adaptive procedure for selecting the threshold t.

Main results of the paper are presented in Section 4. Examples of computing the
optimal rates of convergence are given in Section 5. In Sections 7 and 8 we prove
exponential type bounds for the likelihood ratio used in the proofs of our main
results and necessary auxiliary statements. We shall illustrate the performance of
our results on some artificial data sets in Section 6.

2. Construction of the estimators. Let F be the set of all d.f. F having sup-
port on the interval [x0,∞) with x0 ≥ 0, and admitting a strictly positive density
fF w.r.t. Lebesgue measure. For any t ≥ x0 define the excess d.f. over the threshold
t as

Ft(x) = 1 − 1 − F(tx)

1 − F(t)
, x ≥ 1.(2.1)

It is easy to see that

Ft(x) = 1 − exp
(
−

∫ tx

t

du

uαF (u)

)
,
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where

αF (u) = 1

uλF (u)
, u > x0,(2.2)

and λF (u) = fF (u)
1−F(u)

, u > x0, is the hazard rate. Ft admits the density

fFt (x) = tfF (tx)

1 − F(t)
= 1

xαF (tx)
exp

(
−

∫ tx

t

du

uαF (u)

)
, x ≥ 1.(2.3)

Note that, according to the von Mises theorem, if there exists a constant α > 0 such
that αF (x) → α as x → ∞, then F is regularly varying with the index of regular
variation α, see Beirlant et al. [1].

Recall that given Xn,k+1 = t the observations Xn,1/t, . . . ,Xn,k/t are the order
statistics of an i.i.d. sequence with common density fFt (see Reiss [19]). Motivated
by this we define the local log-likelihood function

Ln,t (F ) = ∑
i:Xi>t

logfFt (Xi/t).(2.4)

Let K(θ ′, θ) = K(Pθ ′,Pθ ) be the Kullback–Leibler divergence between Pθ

and Pθ ′,

K(θ ′, θ) =
∫

log
dPθ ′

dPθ

dPθ ′ = G

(
θ ′

θ
− 1

)
, θ ′, θ > 0,(2.5)

where G(x) = x − log(1 + x). We extend this definition by setting K(θ ′, θ) = ∞
if at least one of θ ′ = 0 or θ = 0 holds. Lemma 8.1 implies

K(θ1, θ2) �
(

θ1

θ2
− 1

)2

as
θ1

θ2
− 1 → 0.

2.1. Pareto-type tails. Let Ft be the set of functions F ∈ F satisfying
αF (x) = θ, for x ∈ (t,∞), where θ > 0 and t ≥ x0. If F ∈ Ft , then the d.f. Ft

is exactly Pareto d.f. Pθ . Maximization of the local log-likelihood (2.4) over Ft

gives the maximum local quasi-likelihood estimator

θ̂n,t = 1

n̂t

∑
i : Xi∈(t,∞)

log
Xi

t
,(2.6)

where n̂t = ∑n
i=1 1(Xi > t) denotes the number of observations in the interval

(t,∞). Here and in the sequel the indeterminacy 0/0 arising in the definition of
the estimators is understood as 0, that is, for t ≥ Xn,1 the estimator θ̂n,t is defined
to be 0. Although θ̂n,t is not exactly the Hill estimator, it is closely related. In fact,
if t = Xn,k+1, where 1 ≤ k ≤ n − 1, then θ̂n,t = θ̂n,Xn,k+1 coincides with the Hill
estimator ĥn,k, see (1.2).

Let Ln,t (θ
′, θ) = Ln,t (Pθ ′)−Ln,t (Pθ ) be the log of the local likelihood ratio of

Pθ ′ w.r.t. Pθ . By elementary calculation one can see that

Ln,t (θ̂n,t , θ) = n̂tK(θ̂n,t , θ).(2.7)



EXTREMES BY ORACLE ESTIMATION 1623

2.2. Pareto change point-type tails. Let Ft,τ be the set of functions F ∈ F
having the change point structure: αF (x) = θ1, for x ∈ [t, τ ), αF (x) = θ2, for x ∈
[τ,∞), where θ1, θ2 > 0 and 1 ≤ t ≤ τ < ∞. Of course Ft ⊂ Ft,τ . If F ∈ Ft,τ ,

then the d.f. Ft coincides with the Pareto change point d.f.

Pθ1,θ2,τ/t (x) = 1 − exp
(∫ x

1

du

α′(u)u

)
,

where α′(x) = θ1, for x ∈ [1, τ/t), α′(x) = θ2, for x ∈ [τ/t,∞). For given t ≤
Xn,1 and τ ≥ 1 maximization of the local likelihood (2.4) over Ft,τ gives the
maximum likelihood estimator (θ̂n,t,τ , θ̂n,τ ), where

θ̂n,t,τ = n̂t θ̂n,t − n̂τ θ̂n,τ

n̂t,τ

and n̂t,τ = n̂t − n̂τ = ∑n
i=1 1(t < Xi ≤ τ) is the number of observations in the

interval (t, τ ]. As above, θ̂n,t,τ = 0 if t ≥ Xn,1.

Denote by Ln,t (θ1, θ2, τ, θ) = Ln,t (Pθ1,θ2,τ/t ) − Ln,t (Pθ ) the local log-
likelihood ratio corresponding to Pareto change point model Pθ1,θ2,τ/t (x) with
respect to the Pareto model Pθ . By straightforward calculations it is verified that

Ln,t (θ̂n,t,τ , θ̂n,τ , τ, θ) = n̂t,τK(θ̂n,t,τ , θ) + n̂τK(θ̂n,τ , θ).(2.8)

3. Adaptive selection of the location of the tail. Several procedures have
been proposed in the literature for the choice of the number of upper statistics to
be used in the estimation of the index of regular variation. We refer to Beirlant et
al. [1], and to the references therein [3, 5, 8, 11, 13, 15]. However one should note
that most of these procedures require some prior knowledge on the d.f. F.

To illustrate the problem let us recall the main result in Hall and Welsh [12] (see
also Drees [6]). Let F be a d.f. with density

fF (x) = dαx−(α+1)(1 + r(x)
)
, |r(x)| ≤ Ax−αρ, x ≥ 0,(3.1)

where |α − α0| ≤ ε, |d − d0| ≤ ε and α0, d0, ε, ρ,A > 0. It is proved that the
optimal rate of convergence that can be achieved for estimating α = 1/β is
n−ρ/(2ρ+1). This optimal rate is attained for the Hill estimator ĥn,kn with the choice
kn ∼ n2ρ/(2ρ+1) depending on ρ. An adaptive estimator can be constructed by
estimating ρ and implementing this estimate into the optimal kn. This approach
requires us to know in advance the class of distributions F, or generally this in-
formation is not available in practice. It is also too conservative in the sense that
it is oriented to the worst case in the given class but it may happen that particular
distributions have nicer properties.

In this paper we will give a selection procedure which is distribution free and
attains exactly or nearly optimal rates for each particular law F in contrast to
minimax estimation which is oriented to the worst case in a given class of func-
tions. These kinds of results are usually related to the so-called oracle inequalities
(Donoho and Jonstone [4]).
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The selection rule of the location of the tail τ which we propose is based on
the stagewise lack-of-fit testing for the Pareto distribution (see also Grama and
Spokoiny [9]). It can be compared with the adaptive procedures for selecting the
bandwidth in nonparametric pointwise function estimation, see Lepski [16], Lep-
ski and Spokoiny [17]. Drees and Kaufmann [5] give a variant of the latter adapted
to the tail index estimation. A stagewise procedure for testing Pareto d.f. has been
proposed and its performance analyzed in Hall and Welsh [13], where it was shown
that the choice based on the detection of lack-of-fit point introduces a significant
bias. Our procedure differs from these approaches since the point of lack-of-fit
serves just as a pilot for the choice of k.

3.1. The lack-of-fit test. Denote by [a] the integer part of a. Assume that
the sequence of positive integers {Kn} satisfies Kn ≤ n and limn→∞ Kn = ∞.

Consider the uniform grid ri = ri(n) = [in/Kn], i = 1, . . . ,Kn. In particular, if
Kn = n we have ri = i, for i = 1, . . . , n. Let k0 be a positive integer much smaller
than n.

We shall choose the location of the tail of F in the random set {Xn,ri : i =
k0, . . . ,Kn} and therefore the problem reduces to the choice of the natural number
ri . We shall proceed by local change-point detection, which consists in consecutive
testing for the hypothesis H 0

n,rm
that conditionally on Xn,rm+1 = s the observations

Xn,1/s, . . . ,Xn,rm/s are the order statistics of an i.i.d. sample with a Pareto d.f. Pθ

against the alternative H 1
n,rm

that conditionally on Xn,rm+1 = s the observations
Xn,1/s, . . . ,Xn,rm/s are the order statistics of a i.i.d. sample with a Pareto change-
point d.f. Pθ1,θ2,τ/s, for all m = rk0, . . . , rKn.

For testing H 0
n,rm

against H 1
n,rm

we shall make use of the likelihood ratio statistic
Tn(t, τ ) which is defined by

Tn(t, τ ) = sup
F∈Ft,τ

Ln,t (F ) − sup
F∈Ft

Ln,t (F ) = Ln,t (θ̂n,t,τ , θ̂n,τ , τ, θ̂n,t ),(3.2)

for x0 ≤ t ≤ τ. Taking into account (2.8) one gets

Tn(t, τ ) = T (1)
n (t, τ ) + T (2)

n (t, τ ), t < τ,(3.3)

where

T (1)
n (t, τ ) = n̂t,τK(θ̂n,t,τ , θ̂n,t ), T (2)

n (t, τ ) = n̂τK(θ̂n,τ , θ̂n,t ).

For each m and k ≤ m consider the test statistics

Tn,m = max
ρm≤k≤(1−δ)m

Tn,m,k, Tn,m,k = T
(1)
n,m,k + T

(2)
n,m,k,(3.4)

where

T
(i)
n,m,k = T (i)

n (Xn,m,Xn,k), i = 1,2,

and ρ and δ are constants satisfying 0 < ρ, δ ≤ 1
3 . We shall suppose that δ is

so large that (1 − δ)ri ≤ ri−1, for all i = k0, . . . ,Kn. Actually this condition is
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satisfied for any given δ > 0 when n becomes sufficiently large. We shall also
assume that ρrk0 ≥ r1.

The hypothesis H 0
n,rm

will be rejected if Tn,rm > zn, for some critical value
zn = μ logn, where μ is a positive constant.

3.2. The adaptive procedure. At this stage the required parameters are the
number of the points on the grid Kn, the starting point k0, two numbers ρ and
δ which determine the size of the testing window and the critical value zn.

The procedure of the adaptive choice of the value k̂n reads as follows:
Initialize Set i = k0.

Step 1 Compute the test statistic Tn,ri by (3.4).
Step 2 If i ≤ Kn and Tn,ri ≤ zn, increase i by 1 and repeat the procedure from
Step 1. If i ≤ Kn and Tn,ri > zn, define

k̂n = arg max
ρri≤k≤(1−δ)ri

T
(2)
n,ri ,k

(3.5)

and exit the procedure. If i > Kn we define k̂n = n and exit the procedure.
The described procedure is equivalent to defining the adaptive value

k̂n = arg max
ρm̂n≤k≤(1−δ)m̂n

T
(2)
n,m̂n,k,(3.6)

where

m̂n = min{ri :Tn,ri > zn, i = k0, . . . ,Kn},(3.7)

with the convention min ∅ = rKn . The adaptive location of the tail τ is then defined
by τ̂n = Xn,̂kn

and the adaptive estimator is set to

θ̂n = ĥn,̂kn
≡ θ̂n,τ̂n .

REMARK 3.1. In the case of Pareto observations the test statistics (3.3) and
(3.4) do not depend on the parameter of the Pareto law. This suggests to compute
the critical values zn by Monte Carlo simulations from the homogeneous model
with i.i.d. standard Pareto observations. Our simulations show that the proposed
adaptive procedure is sensitive to some extent to ρ, while being less sensitive to δ,
k0 and Kn. The choice of these parameters is discussed in Section 6. The reason of
introducing the parameter Kn is to speed up numerical execution of the adaptive
choice. In order to simplify the formulations and the proofs of the results, in the
sequel we shall consider only the case Kn = n, which means that τ will be chosen
among all order statistics Xn,1, . . . ,Xn,n.



1626 I. GRAMA AND V. SPOKOINY

4. Main results. Recall that n̂t is the number of observations in the interval
(t,∞). Let nt = n(1 − F(t)) be the expected number of observations in the same
interval. Note that θ̂n,t = ĥn,n̂t , t ≥ x0, by (1.2) and (2.6).

Thereafter PF and EF denote the probability and the expectation pertaining to
the i.i.d. observations X1, . . . ,Xn with common d.f. F. For any equivalent prob-
ability measures P and Q we denoted by K(P,Q) = EP log dP

dQ
the Kullback–

Leibler divergence and by χ2(P,D) = ∫
dP
dQ

dP − 1 the χ2-divergence. A simple

application of Jensen’s inequality shows that 0 ≤ K(P,Q) ≤ log(1 + χ2(P,Q)).

We shall measure the discrepancy between two possible values θ1 > 0 and
θ2 > 0 of the Pareto index in terms of the Kullback–Leibler divergence K(θ1, θ2)

between two Pareto measures, see (2.5).

4.1. Rates of convergence of nonadaptive estimators. We say that the d.f. F

admits an accompanying Pareto tail with tail index function θt , t ≥ x0, if for any
t ≥ x0 there exists an index θt > 0 such that θt is a continuous function of t and

lim
t→∞χ2(Ft ,Pθt ) = 0.(4.1)

This definition can be viewed as an extension of the regular variation condition
(1.1). Instead of requiring the existence of the limit Pγ it stipulates that Ft admits
an accompanying Pareto law Pθt with a parameter θt > 0 possibly changing with
t. The class of d.f. satisfying (4.1) is very large. For instance the d.f.’s satisfying
the Hall condition (3.1), log-gamma d.f. and Pareto d.f. with logarithmic-type per-
turbations are of this type. We refer to Section 5, where θt is explicitly computed
for these examples. The class of distributions defined by (4.1) includes d.f.’s which
are not regularly varying. Examples are normal and exponential d.f.’s with some
θt → 0 as t → ∞.

It is easy to see that if the d.f. F admits an accompanying Pareto tail with tail
index function θt , t ≥ x0, then there exists a sequence {τn} such that

χ2(Fτn,Pθτn
) = O

(
logn

n(1 − F(τn))

)
→ 0 as n → ∞.(4.2)

For the sake of brevity, a sequence of locations {τn} satisfying (4.2) is said to be
admissible.

THEOREM 4.1. Assume that the d.f. F admits an accompanying Pareto tail
with tail index function θt , t ≥ x0. Then, for any admissible sequence of locations
{τn},

K(θ̂n,τn, θτn) = OPF

(
logn

n(1 − F(τn))

)
as n → ∞.

Here and in the sequel the constant in OPF
depends only on the constant in O in

(4.2). This theorem is an immediate consequence of the more general Theorem 4.5
formulated below.



EXTREMES BY ORACLE ESTIMATION 1627

COROLLARY 4.2. Assume that F admits an accompanying Pareto tail with a
constant tail index function θt = γ, t ≥ x0. Then by Theorem 4.1,

K(θ̂n,τn, γ ) = OPF

(
logn

n(1 − F(τn))

)
as n → ∞,(4.3)

with τn satisfying (4.2).

For any t ≥ x0 we “project” Ft on the set P by choosing the closest element to
Ft in the set of Pareto d.f.’s P = {Pθ : θ > 0}, say Pθt (F ), where

θt (F ) = arg min
θ>0

K(Ft ,Pθ ).

The parameter θt (F ) will be called in the sequel fitted Pareto index. It can be easily
computed and has the following explicit expression (see Figure 2 for a graphical
representation):

θt (F ) =
∫ ∞

1
logxFt(dx) =

∫ ∞
t

log
x

t

F (dx)

1 − F(t)
, t ≥ x0.(4.4)

In cases when (4.1) holds and F is regularly varying at ∞ with index of regular
variation γ, it is easy to verify that θt (F ) → γ as t → ∞.

FIG. 2. Fitted Pareto index θt (F ): 1—Pareto d.f.; 2—log-perturbed Pareto d.f. (5.3); 3—log-gamma
d.f.; 4—Cauchy d.f.; 5, 6, 7—Hall model (5.4).
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COROLLARY 4.3. Assume that F admits an accompanying Pareto tail with
tail index function θt = θt (F ), t ≥ x0. Then according to Theorem 4.1

K(θ̂n,τn, θτn(F )) = OPF

(
logn

n(1 − F(τn))

)
as n → ∞,(4.5)

where τn satisfies (4.2).

Corollaries 4.2 and 4.3 can be compared with the consistency results for the Hill
estimator established by Mason [18] (see also Hall [10]). Recall the main result of
[18]. If F is regularly varying with index of regular variation γ and kn satisfies
kn → ∞ and kn/n → 0 as n → ∞, then

ĥn,kn

PF→ γ as n → ∞.(4.6)

Our Corollary 4.3 improves upon this result by stating that if F admits an accom-
panying Pareto tail with tail index function θt = θt (F ), t ≥ x0, then for any τn

satisfying (4.2),

ĥn,n̂τn
− θτn(F ) = θ̂n,τn − θτn(F )

PF→ 0 as n → ∞.(4.7)

A comparison of the precision of the approximations (4.6) and (4.7) is given in
Figure 1, where the realizations of the estimator ĥn,k are plotted as processes in k

along with the fitted Pareto index θt (F ), for t = Xn,1, . . . ,Xn,n. The underlying
d.f. F(x) is the log-gamma one. From these graphs it is seen that for finite sample
sizes the Hill estimator ĥn,k provides a satisfactory approximation of the quantity
θXn,k

(F ) while staying far away from the solid straight line corresponding to the
parameter of regular variation γ = 1, except the cases when the fitted Pareto index
itself is close to γ. These conclusions are confirmed also by simulation results
reported in Figure 3.

Note that the fitted Pareto index θt (F ) coincides with the mean value of the
function αF [see (2.2)] on the interval [t,∞) w.r.t. Ft :

θt (F ) =
∫ ∞

1
αF (tx)Ft (dx) =

∫ ∞
t

αF (x)
F (dx)

1 − F(t)
.

For numerical computations of the value θt (F ) one can use the following approx-
imation formula:

θXn,k
(F ) ≈ 1

k

k∑
i=1

αF (Xn,i).(4.8)

Now we shall present an application of the bound (4.5) to the estimation of the
excess d.f. Fτn .
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FIG. 3. 1—100 realizations of the Hill estimator ĥn,k, k = 1, . . . , n, for Cauchy d.f. (top left),
Pareto change-point d.f. (top right), Hall model (5.4) (bottom left α = 1, β = 3, c = 1.8; bottom
right α = 1, β = 1.2, c = 1.8); 2—Index of regular variation γ = 1 which is expected to be estimated.
3—The fitted Pareto index θt (F ) computed from (4.4), (4.8).

THEOREM 4.4. Assume that the d.f. F admits an accompanying Pareto tail
with tail index function θt = θt (F ), t ≥ x0. Then, for any admissible sequence of
locations {τn},

K(Fτn,Pθ̂n,τn
) = OPF

(
logn

n(1 − F(τn))

)
as n → ∞.

PROOF. For any θ > 0 and any s > x0,

K(Fs,Pθ ) = K
(
Fs,Pθs(F )

) + K(θs(F ), θ).(4.9)

The identity (4.9) follows immediately from the decomposition

K(Fs,Pθ ) = K
(
Fs,Pθs(F )

) +
∫ ∞

1
log

dPθs(F )

dPθ

dFs

and from ∫ ∞
1

log
dPθs(F )

dPθ

dFs = K(θs(F ), θ).
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Using (4.9), one gets

K(Fτn,Pθ̂n,τn
) = K

(
Fτn,Pθτn(F )

) + K(θτn(F ), θ̂n,τn).

Since by Lemma 8.1, K(θ1, θ2) ≤ 9
4K(θ2, θ1), the assertion follows from the con-

vergence result (4.5) and from the inequality

K
(
Fτn,Pθτn(F )

) ≤ log
(
1 + χ2(

Fτn,Pθτn(F )

)) = O

(
logn

n(1 − F(τn))

)

as n → ∞. �

The previous results are based on the following more general bound which is
a simple application of an exponential bound for the maximum of the likelihood
ratio.

THEOREM 4.5. Assume that {τn} is a sequence such that τn ≥ x0 and
limn→∞ n(1 − F(τn)) = ∞. Then for any sequence {θn} of positive numbers it
holds

K(θ̂n,τn, θn) = OPF

(
logn

n(1 − F(τn))
+ χ2(Fτn,Pθn)

)
as n → ∞,

with an absolute constant in OPF
.

PROOF. Letting t = s = τn, θ = θn, y = 4 logn+nτnχ
2(Fτn,Pθn), by the first

inequality of Proposition 7.3 one gets

K(θ̂n,τn, θn) = OPF

(
logn

n̂τn

+ nτn

n̂τn

χ2(Fτn,Pθn)

)
as n → ∞.

To finish the proof we use the fact that by Lemma 8.3 it holds n̂τn

PF� nτn as n → ∞,

whenever limn→∞ nτn = ∞. �

The rate of convergence logn
n(1−F(τn))

involved in the previous theorems depends
on the unknown d.f. F and on the unknown location τn. The best possible rate
of convergence for a given F is obtained by choosing τn from the balance equa-
tion (4.2). Explicit calculation of the resulting rates of convergence for some d.f.’s
F are given in Section 5.

4.2. Stability property of the test statistic. In the sequel it is assumed that
zn = μ logn, where μ > 0 is a constant. We say that the location t is accepted by
the testing procedure if Xn,r ≥ t implies Tn,r ≤ zn. Set {t is accepted} ≡ n,t =⋂

Xn,r≥t {Tn,r ≤ zn}.
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THEOREM 4.6. Assume that the d.f. F admits an accompanying Pareto tail
with tail index function θt , t ≥ x0, and {τn} is an admissible sequence of locations.
Then there exists a finite positive constant μ such that

PF (τn is accepted) ≡ PF (n,τn) → 1 as n → ∞.

PROOF. First note that by Proposition 7.5

PF

(
sup

τn≤s≤τ
Tn(t, τ ) > z

)
≤ 2n7 exp(−y/2) + 1

n
≤ 3

n
,

where y = 16 logn and z = 2y + 2nτnχ
2(Fτn,Pθτn

). On the other hand, by (4.2)
z ≤ zn, for some constant μ and n sufficiently large. Consequently c

n,τn
⊆

{supτn≤t≤τ Tn(t, τ ) > z}. This implies limn→∞ PF (c
n,τn

) = 0. �

REMARK 4.7. From the preceding proof it can be easily seen that the constant
μ in the definition of the critical value zn depends only on the constant involved
in the definition of O in (4.2), say λ. A simple tracking of constants shows that a
crude upper bound for μ is 32 + 2λeλ.

4.3. Rates of convergence of the adaptive estimator. First we compare the per-
formance of the adaptive estimator θ̂n with that of the nonadaptive estimator θ̂n,τn .

THEOREM 4.8. Assume that the d.f. F admits an accompanying Pareto tail
with tail index function θt , t ≥ x0, and {τn} is an admissible sequence of locations.
Then there exists a constant μ > 0 such that

K(θ̂n, θ̂n,τn) = OPF

(
logn

n(1 − F(τn))

)
as n → ∞.

PROOF. Let ∗
n,τn

= n,τn ∩ {Tn,k0 ≤ zn}. Since by Theorem 4.6
PF (n,τn) → 1 as n → ∞ and by Lemma 8.4 PF (Xn,k0 ≥ τn) → 1 as n → ∞, it
holds

PF (∗
n,τn

) ≥ PF (n,τn ∩ {Xn,k0 ≥ τn}) → 1 as n → ∞.(4.10)

Denote m̃n = m̂n − 1. By the definition of m̂n on the set ∗
n,τn

it holds m̃n ≥ ñτn

(see Section 3.2). We split the further proof into two parts.
First we shall compare ĥn,m̃n and ĥn,n̂τn

. To this end define the sequence of
natural numbers mi, i = 0,1, . . . , i∗, such that m0 = m̃n and mi is the smallest
natural number exceeding mi−1/2 for i = 1,2, . . . , i∗, where i∗ such that ρmi∗ ≤
n̂τn ≤ (1 − δ)mi∗ . Let mi∗+1 = n̂τn . Since, on the set ∗

n,τn
,

Tn,k ≤ zn ≡ μ logn for k ∈ Rn, k ≤ m̃n,(4.11)

by (3.3), with s = Xn,mi−1 ≤ τ = Xn,mi
, one gets

miK(ĥn,mi−1, ĥn,mi
) ≤ Tn,mi−1,mi

≤ μ logn, i = 1, . . . , i∗ + 1,
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which in turn implies

i∗∑
i=1

√
K(ĥn,mi−1, ĥn,mi

) ≤ μ1/2 log1/2 n

i∗∑
i=1

m
−1/2
i .

Taking into account that mi ≥ mi−1/2, for i = 1, . . . , i∗, we obtain

i∗∑
i=1

m
−1/2
i ≤ m

−1/2
i∗

i∗∑
i=1

2−(i∗−i)/2 ≤ 3.5m
−1/2
i∗ .

Since n̂τn ≤ mi∗, by Lemma 8.2, on the set ∗
n,τn

it holds

√
K(ĥn,m̃n, ĥn,n̂τn

) ≤ 3

2

i∗+1∑
i=1

√
K(ĥn,mi−1, ĥn,mi

)

(4.12)

≤ 3 · 4.5

2
μ1/2 log1/2 n

ñ
1/2
τn

.

Now we shall compare ĥn,m̃n and ĥn,̂kn
. Recall that by the definition k̂n is a

natural number satisfying ρm̂n ≤ k̂n ≤ (1− δ)m̂n ≤ m̃n (see Section 3.2). Then, on
the set ∗

n,τn
, (4.11) implies Tn,m̃n,̂kn

≤ zn. Since on the same set it holds m̃n ≥ n̂τn,

we get √
K(ĥn,̂kn

, ĥn,m̃n) ≤ μ1/2 log1/2 n

m̃
1/2
n

≤ μ1/2 log1/2 n

n̂
1/2
τn

.(4.13)

Summing (4.12) and (4.13), by Lemma 8.2 it follows that on the set ∗
n,τn

,

√
K(ĥn,̂kn

, ĥn,n̂τn
) ≤ (cμ)1/2 log1/2 n

n̂
1/2
τn

,(4.14)

where c is an absolute constant. Taking into account (4.10),

PF

(
K(θ̂n, θ̂n,τn) ≤ cμ

logn

n̂τn

)
→ 1 as n → ∞.

To get the requested assertion it suffices to replace the random rate of convergence
n̂τn with the deterministic rate nτn = n(1 − F(τn)) by Lemma 8.3. �

Combining Theorem 4.8 with Theorem 4.1 one gets the following assertion:

THEOREM 4.9. Assume that the d.f. F admits an accompanying Pareto tail
with tail index function θt , t ≥ x0, and {τn} is an admissible sequence of locations.
Then there exists a constant μ > 0 such that

K(θ̂n, θτn) = OPF

(
logn

n(1 − F(τn))

)
as n → ∞.
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In particular if condition (4.1) is fulfilled with θt = θt (F ) one gets

K(θ̂n, θτn(F )) = OPF

(
logn

n(1 − F(τn))

)
as n → ∞.(4.15)

Another case of interest is when F is regularly varying with index of regular
variation γ > 0. Assume that condition (4.1) is satisfied with θt = γ, t ≥ x0. Then

K(θ̂n, γ ) = OPF

(
logn

n(1 − F(τn))

)
as n → ∞.(4.16)

Now we are in position to formulate the result concerning the approximation of
the excess d.f. Fτn.

THEOREM 4.10. Assume that the d.f. F admits an accompanying Pareto tail
with tail index function θt = θt (F ), t ≥ x0, and {τn} is an admissible sequence of
locations. Then there exists a constant μ > 0 such that

K(Fτn,Pθ̂n
) = OPF

(
logn

n(1 − F(τn))

)
as n → ∞.

PROOF. The proof is similar to that of Theorem 4.4. The only changes are that
θ̂n replaces θ̂n,τn and that one uses (4.15) instead of (4.5). �

5. Computation of the rates of convergence. In this section we shall com-
pute explicitly optimal rates of convergence in two particular cases.

Introduce the distance ρ∗(x, y) = max{| log x
y
|, | 1

x
− 1

y
|}, x, y > 0. From Propo-

sition 8.6 it follows that the sequence {τn} is admissible if there exists a function
t → θt such that

ρ2
τn

≡ sup
x≥τn

ρ∗(αF (x), θτn)
2 = O

(
logn

n(1 − F(τn))

)
→ 0 as n → ∞,(5.1)

sup
m≥n

∫ ∞
1

(1 + logx)2xr0Fτm(dx) = O(1) as n → ∞.(5.2)

In turn this implies that the conclusions of Section 4 hold true. The optimal rate
corresponds to minimal location τn satisfying (5.1).

5.1. Perturbed Pareto model. Assume that F has the form

F(x) = 1 − cβx−1/β logx, x ≥ x0 ≥ e,(5.3)

where β ≥ β0 > 0, x0 and cβ are chosen such that F(x) is strictly monotone and
F(x0) = 0. By straightforward calculations θt (F ) = β(1 + β

log t
) and αF (x) =

β(1 − β
logx

)−1. Since ρτn ≤ β
log τn

and 1 − F(t) = cβt−1/β log t, for determining
nearly optimal location τn we get the balance condition

β2

log2 τn

= O

(
logn

ncβτ
−1/β
n log τn

)
.
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With the optimal choice τn � nβ

logβ n
, one gets logn

n(1−F(τn))
= O(log−2 n) as n →

∞. On the other hand condition (5.2) is satisfied since, by (2.3), fFτn
(x) ≤

1
β
x−(1−ε)/β−1, for some ε ∈ (0,1). Then according to the results in Section 4,

K(θτn(F ), θ̂n,τn) and K(θτn(F ), θ̂n) are OPF
(log−2 n) as n → ∞. Taking θt = β,

in the same way one shows that K(β, θ̂n,τn) and K(β, θ̂n) are OPF
(log−2 n) as

n → ∞. According to the results in Drees [6], Theorem 2.1, the best achievable
rate for estimating β in L2 norm is 1

logn
, in a certain class of d.f.’s which includes

the d.f. F satisfying (5.3) (we refer to Drees [6] for details). Our estimators θ̂n,τn

and θ̂n attain the same rate.
For the log-gamma d.f. we obtain the same rate of convergence since it has

essentially the same behavior as the d.f. F defined by (5.3).

5.2. Hall model. Assume that F is of the form

F(x) = 1 − cβx−1/β − cγ x−1/γ , x ≥ x0,(5.4)

where β = γ + α ≥ β0 > 0, α,β, γ > 0 and x0, cβ and cγ are such that
F(x) is increasing on [x0,∞). Also, though it is not exactly the model pro-
posed by Hall, we shall call it the Hall model. By straightforward calculations

θt (F ) = βcβ t−1/β+γ cγ t−1/γ

cβ t−1/β+cγ t−1/γ and αF (x) = cβx−1/β+cγ x−1/γ

β−1cβx−1/β+γ −1cγ x−1/γ . It is easy to check

that ρτn = O(τ
−1/γ+1/β
n ) as n → ∞. Since 1 − F(t) = cβt−1/β + cγ t−1/γ , for

determining the nearly optimal location τn we get the balance condition

τ−2/γ+2/β
n = O

(
logn

n(cβτ
−1/β
n + cγ τ

−1/γ
n )

)
.

The optimal choice τn � ( n
logn

)βγ /(2β−γ ), implies logn
n(1−F(τn))

= O((
logn

n
)2α/(β+α))

as n → ∞. As in the previous example one can show that (5.2) is satisfied. Then
according to the results in Section 4, K(θτn(F ), θ̂n,τn) and K(θτn(F ), θ̂n) are
OPF

((
logn

n
)2α/(β+α)) as n → ∞. Taking θt = β we have that K(β, θ̂n,τn) and

K(β, θ̂n) are OPF
((

logn
n

)2α/(β+α)) as n → ∞. By the results in Hall and Welsh
[12] (see also Drees [6], Theorem 2.1, for a more general result), the optimal rate of
convergence that can be achieved for estimating α = 1/β in L2 norm is nρ/(2ρ+1),

in the class of d.f. F having the density (3.1). The d.f. F defined by (5.4) satisfies
this condition with γ = β(1 + ρ)−1. Since α

β+α
= 2β−2γ

2β−γ
= ρ

2ρ+1 , the estimators

θ̂n,τn and θ̂n attain this rate for β up to an additional logα/(β+α) n factor.

6. Numerical results.

6.1. Choice of the parameters of the adaptive procedure. An important pa-
rameter in the proposed adaptive procedure is the sequence of critical values zn.
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According to Remark 3.1 the test statistic does not depend on the parameter of
the Pareto law if the observations follow a Pareto model. Therefore we propose to
compute the critical values zn by Monte Carlo simulations from the homogeneous
model with i.i.d. standard Pareto observations Xi, i = 1, . . . , n.

We simulated 2000 realizations with three different sample sizes n = 200, 500,
1000 and with the grid length Kn set to 200. The size of testing windows in Tn,m

is determined by ρ = 1/4 and δ = 1/20. The empirical d.f. of the statistic Tn =
maxm=r1,...,rKk

Tn,m has been computed and it was found that in all simulations
the critical value zn = 10 corresponds to a 99% confidence level. The same critical
value zn = 10, corresponding to a 99% confidence level, has been found from 2000
realizations with n = 1000, ρ = 1/4, δ = 1/20 and with different grid lengths
Kn = 100, 200, 300. Additional simulations show that finite sample properties of
the test statistic Tn do depend very little on the parameters k0 and δ. The value
zn = 10 which approximately corresponds to a 99% confidence level in all cases
and the grid length Kn = 200 have been retained.

Further simulations show that the finite sample performance of the adaptive
estimator depends mainly on the parameter ρ which plays the same role as the
bandwidth in the nonparametric kernel density estimation. The choice of ρ, in
turn, depends on the class of functions in hands. In the simulations below we fix
the following values δ = 1/20, k0 = n/20, Kn = 200, zn = 10. As to the value
of ρ it will be fixed to 1/4. This choice is motivated by the desire to minimize
the relative mean squared error for some given heavy-tailed laws. In the simula-
tions below we shall consider the following distributions: (1) The positive part of
Cauchy d.f. F(x) = 2

π
arctanx, x ≥ 0. (2) Log-gamma d.f. F(x) = G1,2(logx),

x ≥ 1, where Gλ,α(x), x ≥ 0, is gamma d.f. with parameters λ,α > 0. (3) Log
perturbed Pareto d.f. F(x) = 1 − x−1 logx, x ≥ x0 = e. (4) Hall’s model F(x) =
1 − 2x−1 + x−2.5, x ≥ x0 > 0, where x0 satisfies 2x−1

0 − x−2.5
0 = 1. (5) GPD

F(x) = 1 − (1 + x)−1, x ≥ 0.

6.2. Estimation of extreme quantiles. We shall demonstrate the performance
of the adaptive estimator θ̂n = ĥn,̂kn

by presenting the results of a simulation study
for estimating extreme quantiles. We consider two opposite cases: observations
from d.f.’s whose tails are close to a Pareto model in the range of big order statistics
(such as Cauchy d.f., GPD, some of the Hall models) and observations from d.f.’s
whose tails are not well approximated by a Pareto model in the range of the large
order statistics at least for samples of reasonable size (such as log-gamma d.f. and
log perturbed Pareto d.f.). For many d.f.’s our simulations show a behavior in-
between the latter two types. We performed 2000 Monte Carlo simulations of n =
1000 observations. The quantiles of F are estimated by solving for x ≥ τn in the
following approximation formula:

1 − Pθ̂n

(
x

τn

)
=

(
x

τn

)−1/θ̂n

≈ 1 − Fτn

(
x

τn

)
= 1 − F(x)

1 − F(τn)
= 1 − p

1 − F(τn)
.
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If x < τn we determine x from the equality p = F(x). The unknown location
parameter τn has to be replaced with the adaptive value τ̂n = Xn,̂kn

and F with the
empirical d.f. F̂n, which leads to the following adaptive estimate of the quantiles
of F :

q̂n,p = q̂n,̂kn,p =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Xn,[n(1−p)], if p < 1 − k̂n

n
,

Xn,̂kn

(
k̂n

n(1 − p)

)θ̂n

, otherwise,
p ∈ (0,1).(6.1)

Here and in the sequel q̂n,k,p denotes the quantile estimator

q̂n,k,p =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Xn,[n(1−p)], if p < 1 − k

n
,

Xn,k

(
k

n(1 − p)

)ĥn,k

, otherwise,
p ∈ (0,1), k = 2, . . . , n,

(6.2)
which combines the sample quantile estimator for low quantiles and the estimator
introduced by Weissman [21] for high quantiles.

6.2.1. The performance of the adaptive estimator. For any estimator α̂ of α let

σ 2(α̂, α) = 1

n

n∑
i=1

log2 α̂

α

be the relative mean squared error (RelMSE) of α̂. We compare σ(q̂n,p, qp) with
σ(q̂n,k,p, qp). Figures 4 and 5 plot these quantities for p = 1 − 1/n = 0.999 and
p = 0.9999999 as a function of k. It is useful to compare RelMSE σ(q̂n,p, qp)

with minimal RelMSE mink σ (q̂n,k,p, qp) as a function of p (see Figure 6). The
ratio rn,p = σ(q̂n,p, qp)/mink σ (q̂n,k,p, qp) regarded as a function of p is plotted
in Figure 7 (see also Table 1 for a more precise evaluation). These simulations
show that the proposed adaptive procedure captures nearly the best choice in k

which depends on the unknown d.f. F. The procedure gives reasonable results
in both cases, for d.f. with Pareto like tails as well as with d.f. which exhibits
large perturbations from these tails. Table 1 hints that the increase of RelMSE
introduced by the adaptive procedure for estimating high quantiles qp with p ∈
[0.9,0.9999999999] does not exceed 7%. For log-perturbed Pareto d.f. the results
are very similar to those of log-gamma d.f. and therefore will not be presented
here.

We would like to point out that for GPD the ratio rn,p is even less than 1, which
means that the adaptive quantile estimator q̂n,p improves the performance of indi-
vidual quantile estimators q̂n,k,p, k = 2, . . . , n. This improvement can be observed
for other d.f. with an appropriate choice of the parameter ρ. The corresponding
plots of the ratio rn,p for log-gamma d.f. with ρ = 1/10 and for Hall model with
ρ = 1/2 are given in Figure 8.
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FIG. 4. Qh = σ(q̂n,k,p, qp) for k = 1, . . . , n and Qad = σ(q̂n,p, qp); R = rn,p. Top: Cauchy
observations; Bottom: log-gamma observations.

The high variability for extreme quantiles qp, p > 1 − 0.1/n (see Figure 6) is
mainly explained by the bias introduced by the Pareto model and less by the vari-

TABLE 1
Values of rn,p

p 0.9 0.99 0.999 0.9999 0.99999

Cauchy 1.017966 1.023952 1.041944 1.049905 1.054291
log-gamma 1.042706 1.002527 1.002542 1.013393 1.021253
Hall model 0.996002 1.009698 1.023196 1.030144 1.034276
GPD 1.094321 0.998349 0.989391 0.985767 0.984071

p 0.999999 0.9999999 0.99999999 0.999999999 0.9999999999

Cauchy 1.057159 1.059174 1.060642 1.061758 1.062635
log-gamma 1.026952 1.031355 1.03472 1.037275 1.039637
Hall model 1.036994 1.038913 1.040339 1.041438 1.042312
GPD 0.983118 0.982513 0.982184 0.981981 0.981829
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FIG. 5. Qh = σ(q̂n,k,p, qp) for k = 1, . . . , n and Qad = σ(q̂n,p, qp); R = rn,p. Top: Observa-
tions from Hall’s model; Bottom: GPD observations.

ability introduced by the adaptive procedure. The bias reducing techniques can be
applied under some additional assumptions on the underlying d.f. F. Our adaptive
values k̂n and θ̂n can be applied with these types of bias reduced estimators to con-
struct new adaptive quantile estimators, however this issue will not be discussed

FIG. 6. mink σ (q̂n,k,p, qp) (points) and σ(q̂n,p, qp) (solid line) as functions of p.
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FIG. 7. The ratio rn,p as a function of p.

here. For further details on this subject we refer to Danielsson et al. [3], Gomes
and Oliveira [8]; see also Chapter 4.7 in Beirlant et al. [1].

6.2.2. Comparison with sample quantiles. For any k = 1, . . . , n the sample
quantile Xn,k is considered as an estimate of the true quantile F−1(pn,k), where
pn,k = 1 − k/n. We shall compare the RelMSE of adaptive quantiles q̂n,pn,k

,

with those of sample quantiles Xn,k, for k = 1, . . . ,500 by computing the ratio
r0
n,k = σ(Xn,k, qpn,k

)/σ (q̂n,pn,k
, qpn,k

). The results of the simulations are reported
in Table 2 and Figure 9. They show that there is a substantial gain in variance if
we use (6.1) for estimating large quantiles.

Figures reported in Tables 1 and 2 can be used to compare the performance of
the adaptive estimator θ̂n with other adaptive estimators.

6.3. Estimation of the index of regular variation. According to (4.16) the
adaptive estimator θ̂n converges to the index of regular variation γ. The perfor-
mance of an estimator θ̃n w.r.t. γ will be measured using the root mean squared
error (RMSE) σ(θ̃n) = E1/2(θ̃n − γ )2. The corresponding simulations of the
RMSE’s σ(θ̂n) and σ(ĥn,k) (as a function of k) are presented in Figure 10. In case
of Cauchy d.f. the minimal value of RMSE of the Hill estimator is mink σ (ĥn,k) =
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FIG. 8. The ratio rn,p as a function of p. Adaptive procedure is performed with ρ = 1/2 (left) and
ρ = 1/10 (right).

0.07385, while the RMSE of the adaptive estimator is σ(θ̂n) = 0.07899, which
gives the ratio r

γ
n = σ(θ̂n)/mink σ (ĥn,k) = 1.06966. For log-gamma d.f. the min-

imal value of RMSE of the Hill estimator is mink σ (ĥn,k) = 0.23112, while
the RMSE of the adaptive estimator is σ(θ̂n) = 0.24804, which gives the ratio
r
γ
n = σ(θ̂n)/mink σ (ĥn,k) = 1.07321. Thus for Cauchy and log-gamma the adap-

tive estimator increases the minimal variance in the family of Hill estimators by
7.4%.

7. Proofs of the exponential bounds. Let t ≥ x0. The local log-likelihood
ratio Ln,t (H,G) = Ln,t (H) − Ln,t (G) admits the representation

Ln,t (H,G) = ∑
i:Xi>t

log
αG(Xi)

αH (Xi)
+

∫
(t,Xi ]

(
1

αG(u)
− 1

αH (u)

)
du

u
.

TABLE 2
Values of r0

n,k

k 1 2 3 4 5 10 20

Cauchy 3.5360 2.4100 2.0294 1.8671 1.7200 1.4226 1.2621
log-gamma 2.7270 1.9417 1.7306 1.5924 1.4971 1.3010 1.2453
Hall model 4.1240 2.7809 2.3237 2.1246 1.9466 1.5772 1.3605
GPD 1.3117 1.2108 2.9563 2.0609 1.7629 1.6422 1.5288

k 30 40 50 60 70 80 90

Cauchy 1.2081 1.1852 1.1849 1.1755 1.1928 1.1860 1.1745
log-gamma 1.1982 1.1724 1.1611 1.1696 1.1642 1.1622 1.1748
Hall model 1.2758 1.2324 1.2183 1.2001 1.2141 1.2088 1.2040
GPD 1.1813 1.1683 1.1675 1.1509 1.1557 1.1327 1.1033
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FIG. 9. Left: σ(Xn,k, qpn,k ) (points) and σ(q̂n,pn,k , qpn,k ) (solid line) as functions of k; Right:

r0
n,k = σ(Xn,k, qpn,k )/σ (q̂n,pn,k , qpn,k ) as function of k; Top: Hall model; Bottom: log-gamma d.f.

Recall the following notations: nt = n(1 −F(t)), n̂t = ∑n
i=1 1(Xi > t) and n̂t,τ =∑n

i=1 1(t < Xi ≤ τ) for t ≥ x0.

We start with a bound for the log of the local likelihood ratio.

PROPOSITION 7.1. Let s ≥ x0. For any F,G,H ∈ F any y > 0 it holds,

PF

(
Ln,s(H,G) > y

) ≤ exp
(
−y

2
+ ns

2
ds

)
,(7.1)

where ds = χ2(Fs,Gs).

PROOF. By exponential Chebyshev’s inequality,

PF

(
Ln,s(H,G) > y

) ≤ exp
(−y/2 + log EF

(
exp

(
Ln,s(H,G)/2

)))
.

Since the r.v.’s X1, . . . ,Xn are i.i.d., one gets

log EF

(
exp

(
1

2
Ln,s(H,G)

))
= n log EF

(
exp

(1Ai,s

2
log

dHs

dGs

(
Xi

s

)))
,
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FIG. 10. Estimation of the index of regular variation γ : Qh = σ(ĥn,k)—plot of the estimated
RMSE of the Hill estimator ĥn,k, for k = 1, . . . , n; Qad = σ(θ̂n)—RMSE of the adaptive estimator
θ̂n w.r.t. γ.

where Ai,s = {Xi > s}. Since EF exp(1Ai,s
log dHs

dFs
(Xi

s
)) = 1, by Hölder’s inequal-

ity

EF exp
(1Ai,s

2
log

dHs

dGs

(
Xi

s

))
≤ E1/2

F exp
(

1Ai,s
log

dFs

dGs

(
Xi

s

))
.

Using

EF exp
(

1Ai,s
log

dFs

dGs

(
Xi

s

))
= F(s) + (

1 − F(s)
)
(ds + 1),

one gets

PF

(
Ln,s(H,G) > y

) ≤ exp
(
−y

2
+ n

2
log

{
1 + (

1 − F(s)
)
ds

})

≤ exp
(
−y

2
+ ns

2
ds

)
. �

Denote for brevity Ln,t,τ (θ
′, θ) = Ln,t (θ

′, θ, τ, θ).
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COROLLARY 7.2. For any τ ≥ t ≥ s ≥ x0 and θ ′, θ > 0,

PF

(
Ln,t (θ

′, θ) > y
) ≤ exp

(
−y

2
+ ns

2
ds

)
,(7.2)

PF

(
Ln,t,τ (θ

′, θ) > y
) ≤ exp

(
−y

2
+ ns

2
ds

)
,(7.3)

where ds = χ2(Fs,Pθ ).

PROOF. The first assertion follows from (7.1) when applied with H and G

such that αH (x) = αG(x) = θ for x ∈ [x0, t) and αH (x) = θ ′, αG(x) = θ for x ∈
[t,∞). The second one is obtained with αH (x) = αG(x) = θ for x ∈ [x0, t) ∪
[τ,∞) and αH (x) = θ ′, αG(x) = θ for x ∈ [t, τ ). �

PROPOSITION 7.3. For any F ∈ F , θ > 0, y > 0, τ ≥ t ≥ s ≥ x0 it holds

PF

(
n̂tK(θ̂n,t , θ) > y

) ≤ 2n exp
(
−y

2
+ ns

2
ds

)
,

PF

(
n̂t,τK(θ̂n,t,τ , θ) > y

) ≤ 2n exp
(
−y

2
+ ns

2
ds

)
,

where ds = χ2(Fs,Pθ ).

PROOF. We shall prove only the second inequality the first one being proved
in the same way.

First note that n̂t,τK(θ̂n,t , θ) = Ln,t,τ (θ̂n,t,τ , θ). For the sake of brevity let
lk(α) = (y/k − log θ

α
)/( 1

θ
− 1

α
), α > θ. Since the function lk(α) is continuous

in α for α > θ and limα→θ lk(α) = ∞, limα→∞ lk(α) = ∞, there exists a finite
point α∗

k > θ which realize α∗
k = arg minα>θ lk(α). Note that α∗

k is a function only
on k, y, θ. With these notation, on the event Ak = {θ̂n,t,τ > θ, n̂t,τ = k}, we have
that the inequality

Ln,t,τ (θ̂n,t,τ , θ) = n̂t,τ

(
log

θ

θ̂n,t,τ

− (1/θ̂n,t,τ − 1/θ)θ̂n,t,τ

)
> y

is equivalent to θ̂n,t,τ ≥ lk(θ̂n,t,τ ) and the inequality θ̂n,t,τ ≥ lk(α
∗
k ) is equivalent

to Ln,t,τ (α
∗
k , θ) > y. Then

{Ln,t,τ (θ̂n,t,τ , θ) > y} ∩ Ak = {θ̂n,t,τ ≥ lk(θ̂n,t,τ )} ∩ Ak

⊆ {θ̂n,t,τ ≥ lk(α
∗
k )} ∩ Ak

⊆ {Ln,t,τ (α
∗
k , θ) > y}.

In the same way

{Ln,t,τ (θ̂n,t,τ , θ) > y} ∩ Bk ⊆ {Ln,t,τ (α
∗∗
k , θ) > y},
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where Bk = {θ̂n,t,τ ≤ θ, n̂t,τ = k} and α∗∗
k = arg max0<α≤θ lk(α) is a function only

on k, y, θ. The latter implies

PF

(
Ln,t,τ (θ̂n,t,τ , θ) > y, n̂t,τ = k

)
≤ PF

(
Ln,t,τ (α

∗
k , θ) > y

) + PF

(
Ln,t,τ (α

∗∗
k , θ) > y

)
.

Since by Corollary 7.2,

PF

(
Ln,t,τ (θ

′, θ) > x
) ≤ exp

(
−y

2
+ ns

2
ds

)
,

with θ ′ = α∗
k , α∗∗

k , one gets

PF

(
Ln,t,τ (θ̂n,t,τ , θ) > x

) =
n∑

k=1

PF

(
Ln,t,τ (θ̂n,t,τ , θ) > x, n̂t,τ = k

)

≤ 2n exp
(
−y

2
+ ns

2
ds

)
,

which completes the proof. �

PROPOSITION 7.4. For any F ∈ F and s ≥ x0, θ > 0, y > 0 it holds

PF

(
sup
s≤t

n̂tK(θ̂n,t , θ) > y

)
≤ 2n4 exp

(
−y

2
+ ns

2
ds

)
+ 1

n
,

PF

(
sup

s≤t≤τ
n̂t,τK(θ̂n,t,τ , θ) > y

)
≤ n7 exp

(
−y

2
+ ns

2
ds

)
+ 1

n
,

where ds = χ2(Fs,Pθ ).

PROOF. We shall give a proof only for the second inequality, the first one
being proved in the same way.

Let N = n3 and J = {s0, . . . , sN } be the set of numbers satisfying si−1 < si,

F ([si−1, si)) = 1/N and
⋃N

i=1[si−1, si) = [x0,∞). If we denote by An the event
that Xn,1, . . . ,Xn,n will fall into disjoint intervals, then, for Kn > 2,

PF (An) =
n∏

i=1

(
1 − i − 1

N

)
≥ 1 −

n∑
i=1

log
(

1 − i − 1

N

)

≥ 1 − 3
2

n∑
i=2

i − 1

N
= 1 − 3n(n − 1)

4n3 ≥ 1 − 1

n
.

On the event An it holds

sup
s≤t≤τ

n̂t,τK(θ̂n,t,τ , θ) = max
s≤t≤τ, t,τ∈J

n̂t,τK(θ̂n,t,τ , θ).
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Then

PF

(
sup

s≤t≤τ
n̂t,τK(θ̂n,t,τ , θ) > y

)
(7.4)

≤ ∑
s≤t≤τ, t,τ∈J

PF

(
n̂t,τK(θ̂n,t,τ , θ) > y

) + 1 − PF (An).

According to Proposition 7.3

PF

(
Ln,t,τ (θ̂n,t,τ , θ) ≥ y

) ≤ 2n exp(−ys),

where ys = y
2 − n

2 (1 − F(s))ds. Since
∑

s≤t≤τ, t,τ∈J ≤ n6/2, from (7.4) one gets

PF

(
sup

s≤t≤τ
n̂t,τK(θ̂n,t,τ , θ) > y

)
≤ n7 exp(−ys) + 1

n
. �

We end this section with an exponential bound for the statistic Tn(t, τ ).

PROPOSITION 7.5. For any F ∈ F and s ≥ x0, θ > 0, y > 0 it holds

PF

(
sup

s≤t≤τ
Tn(t, τ ) > 2y

)
≤ 2n7 exp

(
−y

2
+ ns

2
ds

)
+ 2

n
,

where ds = χ2(Fs,Pθ ).

PROOF. Let θ > 0. Using (3.2) and the inequality supF∈Ft
Ln,t (F ) ≥ Ln,t (θ),

one gets Tn(t, τ ) ≤ Ln,s(θ̂n,t,τ , θ̂n,τ , τ ) − Ln,t (θ) = Ln,t (θ̂n,t,τ , θ̂n,τ , τ, θ). The
representation (2.8) implies Tn(t, τ ) ≤ n̂t,τK(θ̂n,t,τ , θ) + n̂τK(θ̂n,τ , θ). The as-
sertion of the lemma follows from Proposition 7.4. �

8. Auxiliary statements.

LEMMA 8.1. For any θ1, θ2 > 0 such that K(θ1, θ2) ≤ 1
2 it holds

1

3
log2 θ1

θ2
≤ K(θ1, θ2)(8.1)

and for any θ1, θ2 > 0 such that log2 θ1
θ2

≤ 2
3 , it holds

K(θ1, θ2) ≤ 3

4
log2 θ1

θ2
.(8.2)

In particular, for any θ1, θ2 > 0 such that K(θ1, θ2) ≤ 1
2 it holds

K(θ1, θ2) ≤ 9
4K(θ2, θ1).
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PROOF. Note that 1
3 log2(x + 1) ≤ G(x) for any x satisfying G(x) ≤ 1/2 and

G(x) ≤ 3
4 log2(x + 1) for any x satisfying log2(x + 1) ≤ 2

3 . The assertion of the
lemma follows directly from these inequalities. �

LEMMA 8.2. For any sequence of positive numbers θ1, . . . , θM such that

M−1∑
i=1

√
K(θi, θi+1) ≤ 1

3

it holds

√
K(θ1, θn) ≤ 3

2

M−1∑
i=1

√
K(θi, θi+1).(8.3)

PROOF. To prove (8.3) note that by (8.1),

∣∣∣∣log
θ1

θn

∣∣∣∣ ≤
M−1∑
i=1

∣∣∣∣log
θi

θi+1

∣∣∣∣ ≤ √
3

M−1∑
i=1

√
K(θi, θi+1) ≤ 1√

3
.

Then using (8.2),

√
K(θ1, θn) ≤

√
3

2

∣∣∣∣log
θ1

θn

∣∣∣∣,
which in conjunction with (8.1) proves (8.3). �

LEMMA 8.3. If the sequence τn ≥ x0, n = 1,2, . . . , is such that nτn → ∞ as

n → ∞, then n̂τn

PF� nτn as n → ∞.

PROOF. By Chebyshev’s exponential inequality, for any u > 0 and ε ∈ (0,1),

PF (n̂τn/nτn < 1 − ε) ≤ exp
(
u(1 − ε)nτn + nτn(e

−u − 1)
)

≤ exp(−uεnτn + u2nτn).

In the same way PF (n̂τn/nτn > 1 + ε) ≤ exp(−uεnτn +u2nτn). Choosing u = ε/2
one gets

PF

(∣∣∣∣ n̂τn

nτn

− 1
∣∣∣∣ > ε

)
≤ 2 exp

(
−ε2

4
nτn

)
.

Since nτn → ∞ one gets the first assertion. �

LEMMA 8.4. For any sequence τn, n = 1,2, . . . , satisfying nτn → ∞ as n →
∞, it holds limn→∞ PF (Xn,k > τn) = 1, for any given natural number k.
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PROOF. By Lemma 8.3 PF (n̂τn > k) → 1 as n → ∞. Since PF (Xn,k > τn) =
PF (n̂τn > k) we obtain the assertion of the lemma. �

LEMMA 8.5. Assume that P ∼ Q. Then

χ2(P,Q) ≤ EP

(
log2 dQ

dP
exp

(∣∣∣∣log
dQ

dP

∣∣∣∣
))

.

PROOF. It is easy to see that χ2(P,Q) = ∫
g(dQ

dP
) dP, where g(x) = (x−1)2

x
.

Since (x − 1)2 ≤ e2 logx log2 x, for x > 1 and (x − 1)2 ≤ log2 x, for x ∈ (0,1), we
get g(x) ≤ log2 x exp(| logx|), for x > 0. �

PROPOSITION 8.6. Assume that d.f.’s F and G are such that it holds
ρt = supx≥t ρ∗(αF (x),αG(x)) ≤ ε0 and

∫ ∞
1 (1 + logx)2xε0Ft(dx) ≤ ε1. Then

χ2(Ft ,Gt) ≤ C(ε0, ε1)ρ
2
t , where C(ε0, ε1) = ε1e

ε0 .

PROOF. Since

log
dFt(x)

dGt(x)
= log

αG(xt)

αF (xt)
+

∫ xt

t

(
1

αG(u)
− 1

αF (u)

)
du

u
, x ≥ 1,

it holds | log dFt (x)
dGt (x)

| ≤ ρt (1 + logx). Using Lemma 8.5, with P = Gt and Q = Gt

one gets χ2(Ft ,Gt) ≤ ρ2
t eρt

∫ ∞
1 (1 + logx)2xρt Ft (dx). This implies the assertion

of the proposition. �
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