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When using the bootstrap in the presence of measurement error, we must
first estimate the target distribution function; we cannot directly resample,
since we do not have a sample from the target. These and other considerations
motivate the development of estimators of distributions, and of related quan-
tities such as moments and quantiles, in errors-in-variables settings. We show
that such estimators have curious and unexpected properties. For example,
if the distributions of the variable of interest, W , say, and of the observation
error are both centered at zero, then the rate of convergence of an estimator
of the distribution function of W can be slower at the origin than away from
the origin. This is an intrinsic characteristic of the problem, not a quirk of
particular estimators; the property holds true for optimal estimators.

1. Introduction. The problem of nonparametrically estimating a probability
density, when the data are observed with error, has attracted a great deal of in-
terest. However, in a range of circumstances the practical implementation of such
estimators can be unattractive, since convergence rates are slow. Moreover, it is
the distribution function, and not the density, that is needed in a wide variety of
settings. For example, while in conventional applications of the bootstrap we pro-
ceed by resampling, and do not need to compute an empirical distribution function,
this approach is infeasible when measurement errors are present; instead, we must
generate data via a distribution-function estimate.

Therefore, in measurement-error problems, explicit distribution-function esti-
mation assumes a substantial degree of importance which it does not necessarily
enjoy in other settings. However, distribution-function estimators enjoy properties
very different from those of their density counterparts. In particular, root-n consis-
tent estimation of a distribution function is possible if the error distribution is not
too smooth. We shall give a necessary and sufficient condition for there to exist
distribution-function estimators that converge at rate n−1/2, and we shall explore,
both theoretically and numerically, their intriguing properties. For example, we
shall show that faster convergence rates can be achieved away from the origin than
close to the origin.
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It would be misleading to treat this problem in isolation; the unusual proper-
ties of distribution estimators are reflected in estimators of smooth functionals of
distributions, for example, in quantile and moment estimators. However, while es-
timators in both these settings can be root-n consistent, unusual features make the
problems intrinsically interesting. In particular, while any polynomial moment can
be estimated root-n consistently, where n denotes sample size, this is not true of
fractional moments. In such cases, root-n consistency is feasible if and only if the
error distribution is not smoother than a certain amount, where the latter condi-
tion becomes less stringent as the exponent of the moment increases. When root-n
consistency is possible, it can be achieved without any statistical smoothing. In
other cases, however, smoothing is necessary in order to achieve minimax-optimal
convergence rates.

To give a little background to the problem of distribution estimation, we mention
that, toward the end of his seminal paper on deconvolution density estimation, Fan
(1991a) explored the distribution-estimation problem. He noted that upper bounds,
for his particular estimator, and minimax lower bounds for arbitrary estimators,
could be obtained, but found that they were of different orders of magnitude. He
conjectured that his upper bound gave the optimal rate, and that the lower-bound
rate could be increased to that of the upper bound. He suggested that the reason for
the gap might be that the problem is more complex than his two-alternative analy-
sis allowed, and that a highly composite-alternative approach could be necessary,
as used by Stone (1982) in a different problem.

In fact, the problem is both simpler and more complex than this. It is simpler in
the sense that a composite-alternative approach is not necessary in order to derive
optimal rates, but more complex from the viewpoint that, apparently unsuspected
by previous workers, the distribution-function estimator converges in an uneven
fashion. Specifically, if the distributions of the variable of interest, W , say, and
of the observation error are both centered at zero, then the rate of convergence
of an estimator of the distribution function of W can be relatively slow near the
origin, with the result that the rate of convergence uniformly on the real line is an
order of magnitude slower than the rate in the region {x : |x| > x0}, for each fixed
x0 > 0. This remark applies both to the upper bound, for a particular estimator
based on integrating a density estimator, and the lower bound, for arbitrary esti-
mators. Therefore, uneven convergence rates are intrinsic to the problem, and are
not artifacts of either our methodology or our mathematical arguments for deriving
upper bounds.

Fan’s (1991a) rates are in a slightly different context from ours; he measures
smoothness in terms of derivatives, whereas we frame it through tail behavior of
characteristic functions. The latter approach is arguably more natural in the present
setting, because popular estimators are based on Fourier inversion. However, the
two approaches can be reconciled closely. To the extent that this is possible, and
in the context described in the previous paragraph, Fan’s lower bound gives the
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optimal rate at the origin, although not at other places, while his upper bound is a
little larger.

The context of density estimation has received greatest attention in the liter-
ature. Early contributions to this topic, suggesting estimators and discussing ac-
curacy, include those of Carroll and Hall (1988), Devroye (1989), Stefanski and
Carroll (1990), Zhang (1990) and Fan (1991a, 1991b, 1993). Hesse (1999) and
Delaigle and Gijbels (2004a, 2004b) proposed methods for smoothing-parameter
choice, Koo (1999) introduced a logspline-based deconvolution density estimator,
Delaigle and Gijbels (2002) and Hesse and Meister (2004) discussed methods for
estimating density derivatives, and van Es, Spreij and van Zanten (2003) treated
volatility density estimation.

Recent contributions to optimality theory, in the context of density estimation,
include those of Butucea (2004), who gave minimax convergence rates in cases
where the unknown density belongs to a class of supersmooth functions, and the
error distribution is ordinary-smooth; and Butucea and Tsybakov (2008), who pro-
vided sharp optimality results in settings where the unknown density and unknown
error distribution are both supersmooth. Although practitioners have demonstrated
a marked preference for kernel methods, wavelet-based deconvolution density es-
timators have been shown to enjoy excellent adaptivity properties. Note, for exam-
ple, the contributions of Pensky and Vidakovic (1999), Fan and Koo (2002) and
Pensky (2002), who derived convergence rates.

Groeneboom and Jongbloed (2003) discussed density estimators based on non-
parametric maximum likelihood estimation when the error has a uniform distribu-
tion; see also Groeneboom and Wellner (1992). In terms of convergence rates, our
work is more nearly related to these contributions than to most others in the setting
of density estimation.

More closely related still are the papers of Booth and Hall (1993), who treated
interval estimation in errors-in-variables models; Hesse (1995), who gave up-
per bounds to convergence rates of deconvolution distribution estimators; van de
Geer (1995), who addressed estimation of a linear integral functional in a mix-
ture model; Cordy and Thomas (1997), who discussed nonparametric estimation
of a distribution function when it can be modeled as a mixture; Jongbloed (1998),
who studied isotonic estimation of a distribution function; Ioannides and Papanas-
tassiou (2001), who treated distribution estimation in the case of dependent data;
and Qin and Feng (2003) and Cui (2005), who developed asymptotic properties of
estimators of known functions of the mean of the target distribution.

2. Methodology.

2.1. Estimators f̂W and F̂W . Assume we observe Xj = Wj +δj for 1 ≤ j ≤ n,
where the Wj ’s and δj ’s are independent. If the density fδ of δ is not known, then
the density fW of W is not identifiable from the Xj ’s alone. Therefore, it is very
common (see, e.g., the literature cited in Section 1) to assume a form for fδ . Only
in cases where, for instance, additional data are available directly on δ [Diggle and
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Hall (1993) and Neumann (1997)], or replicated data are available on X, would
this assumption be unnecessary.

A conventional estimator of the density fW of W is given by

f̂W (x) = f̂W (x | h) = 1

nh
�

n∑
j=1

L

(
x − Xj

h

)
,(2.1)

where � denotes real part,

L(u) = 1

2π

∫ ∞
−∞

e−itu KFt(t)

f Ft
δ (t/h)

dt,(2.2)

K is a kernel function (in particular, a function that integrates to 1), KFt(t) =∫
eitxK(x) dx is its Fourier transform, and h > 0 is a smoothing parameter. Note

that f̂W is well defined even if fW does not exist. Here and below we use the no-
tation f Ft

δ and f Ft
W , for the characteristic functions of the distributions Fδ and FW ,

without necessarily requiring the existence of the respective densities fδ or fW .
Under the common assumption that KFt is compactly supported and f Ft

δ does
not vanish on the real line, the integral at (2.2) is well defined and finite. There is no
loss of generality in assuming K is symmetric, and seldom any loss in supposing
the same for fδ . We shall make these simplifying assumptions below; they are
almost invariably satisfied in practice. Then, L is real-valued, and so the symbol �
may be dropped from (2.1).

The estimator F̂W is defined as simply the integral of f̂W over (−∞, x], even in
cases where fW does not exist. Details concerning its computation and interpreta-
tion, especially in the case h = 0, will be given in Appendix A.1.

2.2. Moment estimators. If we wished to estimate a moment of W , say,
μr = E(Wr), where r ≥ 1 was an integer, a naive approach would be to base the
estimator directly on empirical moments of X and the known theoretical moments
of δ. Since symmetry of Fδ implies E(δ) = 0, then

μr = E(Xr) −
r∑

j=2

(
r

j

)
E(δj )μr−j .(2.3)

[Of course, E(δj ) vanishes for odd j .] Given estimators μ̃j of μj for 1 ≤ j ≤
r − 2, substitution into (2.3) suggests an estimator of μr , for r ≥ 1:

μ̃r = 1

n

n∑
j=1

Xr
j −

r∑
j=2

(
r

j

)
E(δj )μ̃r−j .(2.4)

In particular, μ̃1 = X̄ = n−1 ∑
j Xi and μ̃2 = n−1 ∑

j X2
j − E(δ2).

Exactly the same estimators are obtained using the empirical distribution func-
tion F̂W (· | 0). That is, if we define

μ̂r = lim
h→0

∫ ∞
−∞

uq dF̂W (u | h),(2.5)
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then μ̂r = μ̃r for r ≥ 1.
Provided E(W 2r )+E(δ2r ) < ∞, the estimator μ̃r , and hence also μ̂r , is root-n

consistent for μr . However, root-n consistency is generally not possible for esti-
mators of absolute moments, such as νq = E|W |q , when q > 0 is not equal to a
positive integer. There is no simple analogue of the estimator at (2.4) in this case,
although μ̂r , at (2.5), is readily generalized to

ν̂q(h) =
∫ ∞
−∞

|u|r dF̂W (u | h).

We shall argue in Section 3.4 that, if q is not an even integer, then ν̂q is root-n
consistent for νq if and only if Fδ is sufficiently “rough,” expressed, for example,
in terms of the rate of convergence of f Ft

δ to zero in its tails. This condition is
unnecessary when q is an even integer.

2.3. Quantile estimators. To estimate the uth quantile, say, ξu = F−1
W (u),

where 0 < u < 1, we first render F̂W monotone by defining

F̂ mon
W (x) = F̂ mon

W (x | h) = sup{F̂W (y | h) :y ≤ x},
and then we put

ξ̂u = ξ̂u(h) = (F̂ mon
W )−1(u) = sup{y : F̂ mon

W (y) ≤ u} = sup{y : F̂W (y) ≤ u}.
Then, ξ̂u is our estimator of ξu.

The monotonization step serves only to ensure that, with probability 1, ξ̂u is
well defined. For the choices of bandwidth, and values of u, that we use when
establishing properties of ξ̂u, the probability that the monotonization step makes
no difference to the value of ξ̂u, and, in particular, that ξ̂u is well defined without
it, converges to 1 as n increases. In general, the mean-square convergence rate of
ξ̂u is strictly slower than n−1, and depends on choice of h.

3. Theory related to optimality.

3.1. Function classes. Classes of functions indicated by Fj will be sets of
distributions, Fδ , say, of the error random variable δ, while classes denoted by
Gj will be sets of distributions, FW , of W . The positive numbers α and β will
represent bounds to the degrees of the polynomial rates at which f Ft

δ (t)−1 and
f Ft

W (t)−1 diverge as |t | increases. They are generally upper bounds in the case
of α, and lower bounds in that of β .

Given C > 0, write F1(C) for the class of all distributions Fδ for which f Ft
δ is

real-valued and positive everywhere, and∫ ∞
0

t−2{f Ft
δ (t)−1 − 1}2 dt ≤ C.(3.1)

The integral above is clearly finite on any compact set [0, t0], with t0 > 0, and so
(3.1) amounts to a condition on the rate at which the tails of f Ft

δ approach zero
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as |t | increases. In particular, (3.1) can be viewed as holding if and only if f Ft
δ (t)

does not converge to zero too quickly as |t | increases, or equivalently, if and only
if Fδ is not too smooth.

For example, Fδ ∈ F1(C) for sufficiently large C > 0, if the characteristic func-
tion satisfies

f Ft
δ (t) ≥ B(1 + |t |)−α(3.2)

for some 0 < α < 1
2 and sufficiently large B > 0. Condition (3.2) is close to assert-

ing that Fδ has at most α bounded derivatives. A symmetrized Gamma distribution,
with density

φα(x) =
∫
|y|<∞

ψα(x + y)ψα(y) dy

for − ∞ < x < ∞, where ψα(x)
(3.3)

= 
(α/2)−1x(α/2)−1e−x

for 0 < x < ∞ and α > 0,

satisfies both (3.1) and (3.2) provided α < 1
2 .

Write F2(C) for the class of all Fδ ∈ F1(C) for which E|δ| ≤ C. The function
classes F3(α,C), F4(C, q), F5(α,C) and F6(α,C) will be defined concisely in
Appendix A.2. In heuristic terms, F3(α,C) is the class of distributions Fδ that
satisfy (3.2), have a bounded density and bounded first absolute moment; and
F4(C, q) is a class of Fδ having sufficiently many finite moments and for which
(3.1) holds but with the integral taken over [1,∞) and t−2 replaced by t−2(q+1).
The latter constraint increases the permitted smoothness of Fδ , since it allows the
tails of f Ft

δ to decrease relatively quickly.
The function class F5(α,C) is the set of distributions in F3(α,C) that have suf-

ficiently many finite moments. And F6(α,C) is the subset of F5(α,C) for which
the smoothness conditions on f Ft

δ are imposed not just on that function but, in an
analogous way, on its first two derivatives as well.

For C > 0, let G1(C) be the class of distributions FW that have densities fW sat-
isfying supw fW(w) ≤ C. Write G2(C) for the class of FW for which E|W | ≤ C.
Note that there are distributions in the class G2(C) for which fW does not exist.

The function classes G3(β,C), G4(β,C), G5(C, k), G6(β,C), G7(β,C,u, g)

and G8(β,C,u, g) will be detailed in Appendix A.3. Heuristically, the class
G3(β,C) is close to the set of all FW that have at least β uniformly bounded
derivatives, and enjoy finite first absolute moment; and G4(β,C) is identical, ex-
cept for an analogous smoothness condition on (f Ft

W )′ rather than on f Ft
W . The class

G5(C, k) is a set of FW ’s that have a bounded density and bounded moments of or-
der 4(k + 1), and G6(β,C) is a set of FW ’s satisfying this moment assumption and
for which the j th derivative of f Ft

W (t) decreases at least as fast as (1 + |t |)−β−j ,
where 0 ≤ j ≤ 2k + 2.
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In the setting of quantile estimation, a small amount of smoothness in the vicin-
ity of the true quantile seems necessary in order to perform the distribution inver-
sion. The function classes G7 and G8 ensure this, together with, in the case of G8,
constraining the true quantile not to be close to the origin. This is necessary in
order to tease out the fact that, for quantile estimators as well as distribution es-
timators, convergence rates tend to be faster away from the origin than they are
close to the origin.

3.2. Upper bounds to convergence rates for F̂W . First we treat the case where
Fδ is particularly “rough,” in the sense that its characteristic function converges
so slowly to zero in the tails that we may use the estimator F̂W with h arbitrarily
small; see Appendix A.1. Results (3.4) and (3.5), below, show that in this setting
root-n consistency is possible. A converse to (3.5) will be given in Theorem 3.4.

THEOREM 3.1. Assume
∫ |K| < ∞ and

∫
K = 1. Then, for each C1,C2 > 0,

sup
Fδ∈F1(C1)

sup
FW ∈G1(C2)

sup
n≥1

sup
−∞<x<∞

nE{F̂W (x | 0) − FW(x)}2 ≤ 4C1C2/π,(3.4)

sup
Fδ∈F2(C1)

sup
FW ∈G2(C2)

sup
n≥1

n

∫ ∞
−∞

E{F̂W (x | 0) − FW(x)}2 dx ≤ 4(C1 + C2).(3.5)

Next we treat cases where, in general, choosing a strictly positive value of h

can be advantageous. For definiteness, we choose K so that KFt is a compactly
supported piece of a polynomial:

KFt(t) = (1 − t r )s1(|t | ≤ 1),
(3.6)

where r ≥ 2 is an even integer, and s ≥ 1is an integer.

Such kernels are widely used in practice, where they have good numerical and
theoretical performance; see Delaigle and Hall (2006). They satisfy the conditions
imposed on K in Theorem 3.1. More general kernels may be used, but they gener-
ally require stronger conditions defining the function classes.

Define �h = 1 + | logh| if α = 1
2 , and �h = 1 otherwise. In Theorem 3.2 below,

(3.7) and (3.8) give convergence rates uniformly in all x, and in x not close to the
origin, respectively. These rates are shown in Theorem 3.5 to be optimal in the
respective cases, if α 	= 1

2 . Result (3.9) gives the L2 convergence rate.

THEOREM 3.2. Assume K satisfies (3.6) with r > β + 1
2 . Then, for each

C1,C2 > 0, 0 ≤ h ≤ 1 and n ≥ 1,

sup
Fδ∈F3(α,C1)

sup
FW ∈G3(β,C2)

sup
−∞<x<∞

E{F̂W (x | h) − FW(x)}2

(3.7)
≤ B

{
h2β + n−1(

1 + h−(2α−1)�h

)}
,
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sup
Fδ∈F3(α,C1)

sup
FW ∈G4(β,C2)

sup
|x|>x0

E{F̂W (x | h) − FW(x)}2

(3.8)
≤ B

{
x−2

0 h2β+2 + n−1(
1 + h−(2α−1)�h

)}
,

sup
Fδ∈F3(α,C1)

sup
FW ∈G3(β,C2)

∫ ∞
−∞

E{F̂W (x | h) − FW(x)}2 dx

(3.9)
≤ B

{
h2β+1 + n−1(

1 + h−(2α−1)�h

)}
,

where, in each case, B > 0 depends only on C1, C2, r , s, α and β .

Result (3.7), when 0 < α < 1
2 and β = 0, is close to (3.4), although without an

explicit formula for B on the right-hand side. Note that when 0 < α < 1
2 we may

take h = 0 in (3.7).
To exhibit convergence rates, define � = logn if α = 1

2 , and � = 1 if α > 1
2 ; put

h1 = h2 = h3 = 0 if 0 < α < 1
2 , and hj = C(�/n)1/(2α+2β+j−2) if α ≥ 1

2 , where
C > 0; define ρj = n−1 if 0 < α < 1

2 ; and put ρj = (�/n)(2β+j−1)/(2α+2β+j−2) if
α ≥ 1

2 . The rates in (3.10), (3.11) and (3.12) below are obtained on taking h = h1,
h3 and h2 in (3.7), (3.8) and (3.9), respectively.

COROLLARY 3.3. If K satisfies (3.6) with r > β + 1
2 , and if h1, h2, h3 are

chosen as suggested above, then

sup
Fδ∈F3(α,C1)

sup
FW ∈G3(β,C2)

sup
−∞<x<∞

E{F̂W (x | h1) − FW(x)}2 = O(ρ1),(3.10)

sup
Fδ∈F3(α,C1)

sup
FW ∈G4(β,C2)

sup
|x|>x0

E{F̂W (x | h3) − FW(x)}2 = O(ρ3),(3.11)

sup
Fδ∈F3(α,C1)

sup
FW ∈G3(β,C2)

∫ ∞
−∞

E{F̂W (x | h2) − FW(x)}2 dx = O(ρ2).(3.12)

The rates ρ1, ρ2 and ρ3 are in the order ρ3 < ρ2 < ρ1. That is, mean-square
convergence away from the origin is fastest, followed by convergence of mean
integrated squared error, followed by mean-square convergence across the whole
real line. The reason, as we shall show more explicitly in Theorem 3.5 and in
Section 3.3 below, is that the estimator F̂W has difficulty in the neighborhood of the
origin, and performs better outside that region. In approximate terms, its squared
bias is of order h2β within radius O(h) of the origin, and of order h2(β+1) a further
distance away. Therefore, the squared-bias contribution to mean integrated squared
error is of order h(hβ)2 = h2β+1.

Note, however, that this discussion is predicated on the assumption that the dis-
tribution of δ is symmetric, and the distribution of W is in both G3(β,C2) and
G4(β,C2). If, for example, f Ft

W = eitB1t (1+B2|t |)−β , for real B1 and B2 > 0, then
FW ∈ G3(β,C2) for sufficiently large C2, but FW does not lie in G4(β,C2) for
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any C2 unless B1 = 0. Therefore, a degree of centering at zero is being assumed.
Of course, if we shift the center of the distribution of W to B1, then the results
described in the previous paragraph continue to hold if we replace “the origin” by
“B1” throughout. This should be born in mind when interpreting discussion below.

These sizes of squared bias are reflected directly by the first terms on right-hand
sides of (3.7)–(3.9). Moreover, as is suggested by the second terms there, and will
be confirmed by the more detailed analysis in Section 3.5, error-about-the-mean
properties of F̂W are very similar near the origin and away from the origin; their
orders of magnitude do not alter.

3.3. Lower bounds to convergence rates for F̂W . If E|δ| < ∞, then (3.1) is
equivalent to ∫ ∞

1
t−2f Ft

δ (t)−2 dt < ∞.(3.13)

We know from (3.5) in Theorem 3.1 that, provided E|δ| < ∞, (3.13) is sufficient
for root-n consistency of F̂W , in the mean integrated squared error sense, uni-
formly over FW ∈ G2(C) for each fixed C > 0. Our next result shows that, under a
mild additional assumption, (3.13) is also necessary for root-n consistency.

THEOREM 3.4. Let F̂ denote any measurable functional of the data. If fδ is
of bounded variation and f Ft

δ (t) is nonvanishing and eventually, for sufficiently
large, positive t , monotone decreasing in t , and if, for some C > 0,

sup
FW ∈G2(C)

∫ ∞
−∞

E{F̂ (x) − FW(x)}2 dx = O(n−1),(3.14)

then (3.13) holds.

Next we show that, despite the difficulty that F̂W can experience in a neighbor-
hood of the origin, it converges there at the minimax-optimal rate. Likewise, it has
optimal performance away from the origin. In particular, the convergence rates at
(3.10) and (3.11) are both optimal. In view of what we have already learned, it
is unsurprising that the rate of convergence of mean integrated squared error, in
(3.12), is not optimal. Faster convergence rates can be achieved by using variable-
bandwidth methods, where the bandwidth close to the origin is an order of magni-
tude smaller than that away from the origin.

Recall the definitions ρ1 = n−2β/(2α+2β−1) and ρ3 = n−(2β+2)/(2α+2β+1), ap-
propriate for α > 1

2 . Let E denote the class of measurable functionals of the data
X1, . . . ,Xn. Theorem 3.5, below, demonstrates optimality of the convergence rates
given in (3.7) and (3.8) of Theorem 3.2.

THEOREM 3.5. Let Fδ be a distribution for which f Ft
δ is real-valued and pos-

itive everywhere, and |(f Ft
δ )(j)(t)| ≤ C1(1 + |t |)−α−j for all t and for j = 0,1,2,
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where C1 > 0. Then, provided α > 1
2 , x1 	= 0, and C2 > 0 is sufficiently large, there

exists C3 > 0 such that

inf
F̂∈E

sup
FW ∈G3(β,C2)

E{F̂ (0) − FW(0)}2 ≥ C3ρ1,

inf
F̂∈E

sup
FW ∈G4(β,C2)

E{F̂ (x1) − FW(x1)}2 ≥ C3ρ3.

3.4. Convergence rates of moment and quantile estimators. Let k ≥ 0 be an
integer, and q ∈ (2k,2k + 2). Define �hq = 1 + | logh| if α = q + 1

2 , and �qh = 1
otherwise; and put ρ4 = n−(2β+2q)/(2α+2β−1). Result (3.16) below gives a conver-
gence rate which, when α > q + 1

2 and h = const. n−1/(2α+2β−1), becomes identi-
cal to O(ρ4); and (3.17) shows that this rate is optimal. In that result we interpret
ν̄q as a functional of F̂ ∈ E .

Theorem 3.6, below, is an analogue of Theorems 3.1 and 3.2 in the context of
estimating the absolute moment νq . It shows that root-n consistency is possible,
provided the distribution of δ is sufficiently rough; and it gives upper bounds to
convergence rates in other cases.

THEOREM 3.6. Let k ≥ 0 be an integer, and let 2k < q < 2k + 2. Assume K

is given by (3.6), with, in the case of (3.15) below, r > 2k + 2, and, for (3.16),
r > max(β + q,2k + 2). Then, for each C1,C2 > 0 and for 0 ≤ h ≤ 1,

sup
Fδ∈F4(C1,q)

sup
FW ∈G5(C2,k)

E(ν̂q − νq)2 ≤ Cn−1,(3.15)

sup
Fδ∈F5(α,C1)

sup
FW ∈G6(β,C2)

E(ν̂q − νq)2

(3.16)
≤ C

{
h2β+2q + n−1(

1 + h−(2α−2q−1)�hq

)}
,

where C > 0 depends only on C1,C2 and q . Furthermore, if Fδ ∈ F5(α,C1) and
α > q + 1

2 , then

inf
F̂∈E

sup
FW ∈G6(β,C2)

E(ν̄q − νq)2 ≥ C3ρ4.(3.17)

Theorem 3.4 has an analogue in this setting, asserting that if E(ν̂q − νq)2 =
O(n−1) and Fδ satisfies mild additional assumptions, then the integrals at (A.7)
(see Appendix A.2) converge.

To address the case of quantile estimation, recall from Section 2.3 the definitions
of ξu and ξ̂u, where 0 < u < 1. Let h1, h3, ρ1 and ρ3 be as given immediately prior
to Corollary 3.3, and let the function g satisfy the conditions in the definition of
G∗

u(C,g) in Section 3.1.
Results (3.18) and (3.19) below give upper bounds to rates of convergence for

our quantile estimators when the quantile can lie anywhere, or is bounded away
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from the quantile for which ξu = 0, respectively. Results (3.20) and (3.21) give
lower bounds, complementary to (3.18) and (3.19) respectively, in the case of gen-
eral estimators.

THEOREM 3.7. Assume that α > 1
2 , with in addition α + 2β > 2 and β ≥ 1

in the case of (3.18) and (3.20), respectively; and suppose that K is given by (3.6)
with r > β + 1

2 . Then, for each C1,C2 > 0,

lim
λ→∞ lim sup

n→∞
sup

Fδ∈F6(α,C1)

sup
FW ∈G7(β,C2,u,g)

P {|ξ̂u(h1) − ξu| > ρ
1/2
1 λ} = 0,(3.18)

lim
λ→∞ lim sup

n→∞
sup

Fδ∈F6(α,C1)

sup
FW ∈G8(β,C2,u,g)

P {|ξ̂u(h3) − ξu| > ρ
1/2
3 λ} = 0,(3.19)

lim inf
λ↓0

lim inf
n→∞ inf

F̂∈E
sup

Fδ∈F6(α,C1)

sup
FW ∈G7(β,C2,u,g)

P (|ξ̂u − ξu| > ρ
1/2
1 λ) > 0,(3.20)

lim inf
λ↓0

lim inf
n→∞ inf

F̂∈E
sup

Fδ∈F6(α,C1)

sup
FW ∈G8(β,C2,u,g)

P (|ξ̂u − ξu| > ρ
1/2
3 λ) > 0.(3.21)

3.5. Limiting distributions. Under conditions more restrictive than those im-
posed in Section 3.1, it is possible to obtain central limit theorems for F̂W , ex-
hibiting the convergence rates discussed in Section 3.2 and having explicitly-given
biases and variances. The main features of these results are as follows: (a) The
asymptotic variance equals a constant multiple of n−1h1−2α , where the constant,
V (x), say, depends on x; (b) When x = 0, the asymptotic bias is a constant mul-
tiple, B1, say, of hβ ; and (c) When x 	= 0 the bias is asymptotic to B2(h, x)hβ+1,
where B2(h, x) is uniformly bounded as h ↓ 0, and exceeds, in absolute value and
for arbitrarily small h, a fixed constant as h decreases. Formulae for V (x), B1 and
B2(h, x) are given at (3.22) and (3.23).

To appreciate the relevance of these results, we interpret them in the context of
(3.7) and (3.8). Excepting the case α = 1

2 , there is a term of size n−1h1−2α on the
right-hand sides of both those formulae. This term represents the main effect of
variance, and is as indicated in (a) above. In (3.8), which is for the case of values
x that are bounded away from zero, there is a term of size h2β+2 on the right-hand
side. This represents the main effect of squared bias, and (c) above notes that its
order of magnitude cannot be reduced. In (3.7), which includes the case x = 0,
there is a term of size h2β on the right-hand side, and as (b) above observes, this
too cannot be reduced.

Next we outline regularity conditions that give rise to these explicit expansions.
Recall that most of the classes of distributions Fδ ask that f Ft

δ decrease no faster
than t−α as t increases. On the present occasion our main requirements are that
f Ft

δ , and its first derivative, have an explicit expansion in inverses of polynomials
up to a degree which strictly exceeds 2α, and that f Ft

W (t) behave to first order like a
constant multiple of t−β , with a remainder that is small enough to permit inversion
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of the characteristic function uniformly in |x| > x0. These properties are captured
by regularity conditions (A.8) and (A.9), given in Appendix A.4.

THEOREM 3.8. Assume (A.8) and (A.9), that fX is bounded and continuous
at x, and that the bandwidth satisfies h = h(n) → 0 and nh2α−1 → ∞. Then,
F̂W (x) − FW(x) is asymptotically normally distributed with mean B1h

β + o(hβ)

or B2(h, x)hβ+1 + o(hβ+1), according as x = 0 or x 	= 0 respectively, where

B1 = − b

2π

s∑
j=1

( s ) j
(−1)j

rj − β
or

(3.22)

B2(h, x) = −a cos(x/h) + b sin(x/h)

2πx
;

and with variance n−1h1−2αV (x), where

V (x) = π−2z2fX(x)

∫ ∞
0

{∫ 1

0

sin t u

t
(1 − t r )s tα dt

}2
du.(3.23)

In (3.22) and (3.23), the integers r and s are as at (3.6).

4. Numerical properties.

4.1. Finite-sample performance of the distribution function, absolute moment
and quantile estimators. In this section we report the results of a simulation
study illustrating the theoretical results and finite-sample behavior of the es-
timators of population features considered in Sections 2 and 3. We consider
three distributions for W : (1) W ∼ N(0,1), (2) W ∼ 1

2N(−3,1) + 1
2N(2,1) and

(3) W ∼ Gamma(2,1). Distributions (1), (2) and a variant of (3) were considered
by Delaigle and Gijbels (2004a); see their #1, #3 and #2, respectively. Note that
(1) gives a unimodal, symmetric (about 0) density, (2) a bimodal and two-sided
density, and (3) a unimodal, one-sided density. Furthermore, the tails of the char-
acteristic functions of (1) and (2) decay exponentially fast, while those of (3) decay
at a polynomial rate.

For the error distribution, we consider the symmetrized Gamma (α,1) distribu-
tions [cf. (3.3)] with α = 2 or α = 6. For each combination of the target and error
distributions, we consider two different sample sizes, n = 100 and n = 800, and a
range of values of the smoothing parameter h, specifically {0.2,0.4, . . . ,2.0}. In
the simulation study for this section we choose the kernel K at (3.6), with r = 4
and s = 2. The number of simulation runs used in each case is 500.

The set of x values is {−0.8,0,1.5} for model (1), {−3.0,−0.5,1.5} for (2)
and x ∈ {0.8,1.5,3.0} for (3). Note that x = 0 is a common point of symmetry
for W and δ under model (1), while x = −3.0 and x = −0.5 are respectively one
of the modes of W and the mean (or median) of W under model (2). The other
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x-values are chosen such that each set addresses both sides of the median of W .
The optimal value of h depends on the level, u, of the quantile, although the degree
of sensitivity varies from one model to another. For all three models considered in
our numerical work, the optimal h lies in the interval [0.4,0.8] for the coarser error
distribution with α = 2, and in the interval [1.0,1.4] when α = 6, reflecting the
fact that a larger value of h is more appropriate for error variables with a smoother
distribution.

Figures 1 and 2 give the mean squared errors (MSEs) of the distribution function
estimator F̂W (x|h) as a function of h for different values of the argument x, under

FIG. 1. MSEs of the distribution function estimator F̂W (x|h) under model (1), as a function of
h ∈ {0.2,0.4, . . . ,2.0}, for x ∈ {−0.8,0.0,1.5}. In each panel, the MSE curves are marked with
circles for x = −0.8, with squares for x = 0.0 and with triangles for x = 1.5. The error distribution
is given by (3.3) with α ∈ {2,6}. The results are based on 500 simulation runs.



DECONVOLUTION 2123

FIG. 2. MSEs of the distribution function estimator F̂W (x|h) under model (2), as a function of
h ∈ {0.2,0.4, . . . ,2.0}, for x ∈ {−3.0,−0.5,1.5}. In each panel the MSE curves are marked with
circles for x = −3.0, with squares for x = −0.5 and with triangles for x = 1.5. The error distribution
is given by (3.3) with α ∈ {2,6}. The results are based on 500 simulation runs.

models (1) and (2) respectively. The graphs in the case of model (3) are close to
those for model (1), provided x = −0.8, 0 and 1.5 are replaced by x = 0.8, 1.5
and 3.0, respectively.

The shape of the target distribution (i.e., unimodality versus bimodality) also
seems to have an effect on the MSE curve, and hence, on the optimal value of
the smoothing parameter, h. Interestingly, for α = 6, the value h = 1.0 is the best
choice, among those considered, for all the x’s and n’s under models (1) and (3),
and also for x = −0.5 and both the n’s under model (2).

Next, we consider the absolute moment estimator ν̂q(h) of Section 2.2, and the
quantile estimator ξ̂u(h) of Section 2.3. Figures 3 and 4 give the MSE functions
of ν̂q(h) for q ∈ {0.5,1,1.5}, and of ξ̂u(h) for u ∈ {0.4,0.5,0.7} under model (1).
To save space, we omit results for the other two models. The range of h values is
the same as before, except in the case of the absolute moment estimators where
h is restricted to a subset of {0.2,0.4, . . . ,1.4}. For h ∈ {1.6,1.8,2.0}, the MSE’s
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FIG. 3. MSEs of the absolute moment estimator ν̂q (h) under model (1), as a function of h, for
q ∈ {0.5,1.0,1.5}. In each panel the MSE curves are marked with circles for q = 0.5, with squares
for q = 1.0 and with triangles for q = 1.5. The error distribution is given by (3.3) with α ∈ {2,6}.
The results are based on 500 simulation runs.

of ν̂q(h) become too large (in 100s to 1000s, depending on the value of q), and
hence, are omitted from the plot.

Note that the MSE functions for estimating the absolute moments are also
nicely curved, in all cases attaining their minima, among the values of h con-
sidered, at h = 1.0. However, the moment estimator ν̂q(h) seems to be very
sensitive to oversmoothing, that is, to choice of too-high values of h. In com-
parison, the MSE functions of the quantile estimator ξ̂u(h) are much more
stable for under- and over-smoothing. Further, unlike the cases of moment
and distribution function estimation, estimation of the two lower quantiles,
u = 0.4 and 0.5, seems to be less sensitive to smoothness of the error law;
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FIG. 4. MSEs of the quantile estimator ξ̂u(h) under model (1), as a function of
h ∈ {0.2,0.4, . . . ,2.0}, for u ∈ {0.4,0.5,0.7}. In each panel the MSE curves are marked with cir-
cles for u = 0.4, with squares for u = 0.5 and with triangles for u = 0.8. The error distribution is
given by (3.3) with α ∈ {2,6}. The results are based on 500 simulation runs.

here the best performance is achieved when the values of h are small. For
the higher quantile, u = 0.7, the optimal h shows dependence on the smooth-
ness level of the error distribution, with larger h-values giving better perfor-
mance.

We next consider the effects of the argument on accuracy of distribution
function and quantile estimation (cf. Theorems 3.2 and 3.7). Recall that under
model (1), and under our choice of the symmetric error distribution, Theorem 3.2
asserts that the estimator F̂W (x) has a faster optimal rate of convergence at a
nonzero x compared to that at x = 0. Similar behavior is predicted by Theorem 3.7
for the quantile estimator ξ̂u(h) at u 	= 0.5 and at u = 0.5. Figure 5 gives box-
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FIG. 5. Box-plots of the deviations of the distribution function estimates and quantile estimates
from their target values under model (1). In each of the top two panels the three box-plots correspond
to the difference F̂W (x|h)−FW (x) for x ∈ {−0.8,0.0,1.5}, respectively, and in the lower two panels,
to ξ̂u(h) − ξu for u ∈ {0.4,0.5,0.8}, respectively. Here, the h-values are set at the respective optimal
levels given in Figures 1 and 4. The results are based on 500 simulation runs.

plots of the differences F̂W (x) − FW(x) at x = −0.8,0,1.5 and ξ̂u(h) − ξu at
u = 0.4,0.5,0.7 under model (1) and α = 2. The smoothing parameter for each
value of the argument in F̂W (x) and ξ̂u(h) is chosen to be the corresponding opti-
mal value from Figures 1 and 4, respectively.

It is evident from Figure 5 that in the case of estimating the distribution function,
the case x = 0 shows maximum variability around the target value at both sample
sizes n = 100 and n = 800. The lower panels of Figure 5 show a similar pattern for
the median estimator, u = 0.5, compared to the quantile estimators with u = 0.4
and 0.7. The pronounced negative bias in the case of the median estimator reflects
the difficulty of estimating the distribution function at the median [in the case
of model (1)], and of estimating the median itself, relative to estimation at other
places. See Theorem 3.7. However, the extent of the bias is greater than we had
anticipated.
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4.2. Empirical choice of bandwidth. We shall modify the “normal reference”
approach, suggested by Delaigle and Gijbels (2004a) in the setting of density,
rather than distribution, estimation. In particular, we shall temporarily take fW to
be a normal N(0, σ 2

W) density, with σ 2
W = var(W) = var(X)−var(δ); and compute

an estimator σ̂ 2
W of σ 2

W as the variance of the data Xi , minus the known variance
of δ. (The optimal bandwidth is invariant under changes to the location of FW .)

To implement this approach, we shall use the following account of mean inte-
grated squared error of the estimator F̂W (· | h); see Appendix A.4 for regularity
conditions.

THEOREM 4.1. If (A.10) and (A.11) hold, then, as n → ∞ and h → 0,∫ ∞
−∞

E{F̂W (x | h) − FW(x)}2 dx

(4.1)
= n−1I (h) + BWh4 + o(n−1h1−2α + h4),

where

2πI (h) =
∫

t−2{1 − KFt(ht)/f Ft
δ (t)}2 dt, BW = 1

4κ2
2

∫
(f ′

W)2

and κ2 = ∫
x2K(x)dx, and α denotes the exponent of decay of f Ft

δ (t).

We may compute I (h) by numerical integration. Alternatively, it can be approx-
imated as I (h) ∼ Aδh

1−2α , where Aδ = C2κ/π , κ = ∫
t>0 t2α−2KFt(t)2 dt , and the

constants C and π are as in the asymptotic relation, f Ft
δ (t) ∼ Ct−α as t → ∞.

Bandwidth choice involves replacing I (h) by its known value, for a particular
h (or using the approximation noted just above); replacing BW by its estimator,
B̂W = 1

4κ2
2 (4π1/2σ̂ 3

W)−1; and selecting h by minimizing the resulting approxima-
tion to the sum of the first two terms on the right-hand side of (4.1). Note that,
in the normal case, RW ≡ ∫

(f ′
W)2 = (4π1/2σ 3

W)−1 and so can be approximated
by R̂W ≡ (4π1/2σ̂ 3

W)−1. In the results discussed below we used the exact value
of I (h).

We now report the results of a simulation study designed to investigate finite
sample properties of this empirical bandwidth-selection procedure. We consider
three distributions for W as described above, namely, (1) W ∼ N(0,1), (2) W ∼
1
2N(−3,1) + 1

2N(2,1), (3) W ∼ Gamma(2,1), and symmetrized Gamma (α, 1)
distributions [cf. (3.3)] with α = 1 and α = 5 for the error distribution. Table 1
gives the theoretically optimal bandwidths obtained by minimizing the MISE
in (4.1). Models (1) and (3) are seen to require almost identical amounts of smooth-
ing, with model (2) needing a little more.

Following Delaigle and Gijbels (2004a), we used a one-step iteration method
to compute R̂W ; the optimal bandwidth estimator (ĥ, say) minimized the resulting
estimated MISE function. Table 2 gives the bias and mean squared error of ĥ,
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TABLE 1
Theoretically optimal bandwidths for distribution function deconvolution

(α,n) = (1,100) (1,800) (5,100) (5,800)

Model (1) 0.18 0.12 0.36 0.31
Model (2) 0.21 0.14 0.38 0.33
Model (3) 0.17 0.11 0.35 0.30

based on 500 simulation runs. Numerical results not given here, for the sake of
brevity, show that for all six combinations of the error and target distributions,
the MSE of ĥ decreased with sample size. Moreover, estimation is most accurate
for distribution (1). This is likely due to use of the “normal reference” in the first
step of the iteration. As expected, the performance of the method is better for the
rougher error distribution (α = 1), for all target distributions.

Next we consider the performance of the distribution-function estimators, using
integrated squared error (ISE):

∫ {F̂W (x|ĥ) − FW(x)}2 dx. Table 3 gives values of
the bias and the mean squared error of the ISE. Box-plots of scaled ISE values are
given in Figure 6. In each case the scaling factor is the (theoretical) minimum of
the MISE function. The distributions of the scaled ISE values behave as predicted
by the theory for variations in sample size and in the smoothness of the error dis-
tribution. Further, from the box-plots it appears that, out of the three distributions
considered here, the bimodal case (2) is the most difficult to recover.

APPENDIX

A.1. Definition of estimator ̂F(x | h). The integral of L, the latter defined
at (2.2), is given by

∫
v≤u L(v) dv = L1(hu), where, provided K and fδ are both

symmetric functions,

L1(u) = L1(u | h) = 1

2
+ 1

2π

∫ ∞
−∞

sin t u

t

KFt(ht)

f Ft
δ (t)

dt.(A.1)

TABLE 2
The bias and the mean squared error (mse) of the estimated optimal bandwidths ĥ based on 500

simulation runs. Here (x)e(d) stands for x × 10d

(α,n) = (1,100) (1,800) (5,100) (5,800)

bias mse bias mse bias mse bias mse

Model (1) 2.5e-2 1.1e-3 1.8e-2 3.8e-4 6.2e-2 2.8e-2 9.5e-3 6.6e-4
Model (2) 1.2e-1 1.5e-2 5.1e-2 2.7e-3 9.2e-2 9.0e-3 7.0e-2 5.1e-3
Model (3) 7.1e-2 5.4e-3 4.0e-2 1.6e-3 6.8e-2 1.3e-2 4.9e-2 2.5e-3
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TABLE 3
The bias and the mean squared error (mse) of the ISE of deconvolution distribution function

estimators based on 500 simulation runs. Here (x)e(d) stands for x × 10d

(α,n) = (1,100) (1,800) (5,100) (5,800)

bias mse bias mse bias mse bias mse

Model (1) 4.4e-3 1.1e-4 5.3e-4 1.8e-06 1.4e-1 1.5e-1 2.0e-2 1.5e-3
Model (2) 1.6e-2 5.1e-4 1.8e-3 7.1e-06 3.4e-2 2.0e-3 7.1e-3 1.1e-4
Model (3) 5.9e-3 1.4e-4 7.5e-4 2.5e-06 5.1e-2 1.0e-2 3.5e-3 1.8e-4

FIG. 6. Box-plots of the scaled ISEs of the deconvolution distribution function estimators (scaled by
the respective minimum MISEs). In each panel the three box-plots correspond to models (1), (2) and
(3), respectively. The number of simulations was 500 in each case. Percentage of outliers falling
outside the prescribed ranges of the boxplots are .05% for model (2) in the “top, left” panel, 5%
for model (1) in the “top, right,” none for the “bottom, left” and .05% for model (1) in the “bottom,
right” panel, respectively.
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Thus, by integrating f̂W , even if fW is not well defined, we obtain an estimator,
F̂W , of the distribution function, FW , of W :

F̂W (x) = F̂W (x | h) =
∫ x

−∞
f̂W (u)du = 1

n

n∑
j=1

L1(x − Xj).(A.2)

If KFt is compactly supported, and f Ft
δ does not vanish on the real line, then the

integral at (A.1) is well defined and finite, provided h 	= 0. However, in view of
Theorems 3.1 and 3.4, the case h = 0 is of particular interest. Since

∫
K = 1 then

KFt(0) = 1, and so it follows from (A.1) that

L1(u | 0) = 1

2
+ 1

2π

∫ ∞
−∞

sin t u

t

1

f Ft
δ (t)

dt,(A.3)

assuming that the integral on the right-hand side exists in the Riemann sense. An
integration by parts argument shows that, for the integral in (A.3) to be Riemann
convergent for each u 	= 0, it is sufficient that

f Ft
δ (t) is differentiable and (d/dt){tf Ft

δ (t)} is integrable.(A.4)

Reflecting (A.3), we take L1(u | 0) = 1
2 when u = 0.

The models for fδ that are commonly used in practice are of Laplace type, and
there

|f Ft
δ (t)| and |t (d/dt){tf Ft

δ (t)}| are both bounded, both above and below,
(A.5)

by constant multiples of |t |−α, as |t | increases,

where α > 0 is a parameter of the model. In this setting, (A.4) holds if and only
if α < 1, and then (A.3) also prevails. When (A.5) is true, the constraint α < 1 is
less constrictive than (3.1), which characterizes root-n consistency of F̂W (· | 0) for
FW ; see Theorems 3.1 and 3.4. Indeed, if (A.5) holds, then (3.1) is true if and only
if α < 1

2 .
Therefore, for the sort of distribution of δ for which one might practically be

interested in taking h = 0 in F̂ (x | h), one can expect the estimator

F̂W (x | 0) = 1

n

n∑
j=1

L1(x − Xj | 0)

to be well defined and finite for each x. More generally, however, provided (3.1)
obtains, the quantities

E{F̂W (x | 0) − FW(x)}2 and
∫ ∞
−∞

{F̂W (x | 0) − FW(x)}2 dx(A.6)

are well defined and finite, either in their own right or as limits of their counter-
parts when h > 0, without considering models for which (A.4) holds. Existence
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in their own right follows from the fact that, assuming (3.1), (A.3) implicitly de-
fines almost-everywhere a function L1(u | 0) − 1

2 , which, by Parseval’s theorem,
is square-integrable. There are several ways of formally defining this function,
for example, as an almost-everywhere limit of a subsequence of a sequence of
Fourier inverses of compactly-supported approximations to the Fourier transform
of L1(u | 0)− 1

2 , or as an almost-everywhere limit along a subsequence, as h → ∞,
of L1(u | h) − 1

2 .
Hence, it is appropriate to discuss the value of, and rate of convergence to zero

of, both of the quantities at (A.6), without imposing conditions such as (A.5). Re-
flecting this point, in the formulation of Theorem 3.1 we do not require such as-
sumptions.

A.2. Classes of potential distributions of δ. Note particularly that all the
function classes Fj include constraints which prevent f Ft

δ from ever vanishing if
the corresponding distribution lies in that class. Given α,C > 0, write F3(α,C) for
the class of continuous distributions Fδ for which f Ft

δ is real-valued and positive,
supfδ ≤ C, E|δ| ≤ C and Cf Ft

δ (t) ≥ (1 + |t |)−α . (See the end of Appendix A.3
for interpretation of conditions on boundedness of densities.)

Given an integer k ≥ 0, and q ∈ (2k,2k + 2), let F4(C, q) denote the class of
Fδ for which E(δ4(k+1)) ≤ C and f Ft

δ is real-valued and positive and satisfies∫ 1

0
t−2(q+1)

{
f Ft

δ (t) −
k∑

j=0

(−1)j t2j

(2j)! E(δ2j )

}2

dt

(A.7)
+

∫ ∞
1

t−2(q+1)f Ft
δ (t)−2 dt ≤ C.

[The first part of (A.7) is essentially a moment condition.] Write F5(α,C) for the
class of all Fδ ∈ F3(α,C) for which E(δ4(k+1)) ≤ C. Let F6(α,C) be the set of all
Fδ ∈ F3(α,C) for which |(f Ft

δ )(j)(t)| ≤ C(1+|t |)−α−j for j = 0,1,2. [Therefore,
if Fδ ∈ F6(α,C), then |f Ft

δ | is bounded above and below by constant multiples of
(1 + |t |)−α .]

A.3. Classes of potential distributions of W . For β ≥ 0 and C > 0, let
G3(β,C) be the class of FW for which |f Ft

W (t)| ≤ C(1 + |t |)−β and E|W | ≤ C,
and let G4(β,C) be the class of FW ∈ G3(β,C) such that

sup
u>0

(1 + u)β−k sup
|x|>x0

∣∣∣∣∫ u

0
eitxtkf Ft

W (t) dt

∣∣∣∣ ≤ Ck

(kβ − β)|x0|
for each x0 > 0 and each integer k > β , where kβ is the least such integer. (See
two paragraphs below for interpretation of this constraint.) Given an integer k ≥ 0,
let G5(C, k) be the class of FW for which supfW ≤ C and E(W 4(k+1)) ≤ C; and
write G6(β,C) for the class of FW such that |(f Ft

W )(j)(t)| ≤ C(1 + |t |)−β−j for
0 ≤ j ≤ 2k + 2, and E(W 4(k+1)) ≤ C.
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Let 0 < u < 1, let g : [0,1] → [0,∞) be such that g(x) → 0 as x ↓ 0, and
denote by G∗

u(C,g) the class of FW such that (a) fW exists and is strictly positive
in Iu(C) = [ξu −C−1, ξu +C−1], (b) fW(ξu)+ fW(ξu)

−1 ≤ C, and (c) |fW(x)−
fW(y)| ≤ g(η) for all η ∈ [0,1] and all x, y ∈ Iu(C) with |x − y| ≤ η. Write
G7(β,C,u, g) for the class of all FW ∈ G3(β,C) ∩ G∗

u(C,g), and G8(β,C,u, g)

for the class of all FW ∈ G4(β,C) ∩ G∗
u(C,g) for which |ξu| > C−1.

Next we elucidate some of these function classes. If C > 0 is sufficiently large
then G3(β,C) contains φβ , defined at (3.3). To appreciate the sorts of distributions
that are in G4(β,C), note that in many instances where FW is centered at the origin
and FW ∈ G3(β,C1), it holds true that, for some C2 > 0, |(f Ft

W )′(t)| ≤ C2(1 +
|t |)−β−1. Consider, for example, the case where f Ft

W (t) = (1+B|t |)−β with B > 0.
In such cases, an integration-by-parts argument shows that, for u > 0,∣∣∣∣x ∫ u

0
eitxtkf Ft

W (t) dt

∣∣∣∣ =
∣∣∣∣eiuxukf Ft

W (u) −
∫ u

0
eitxtk−1{kf Ft

W (t) + t (f Ft
W )′(t)}dt

∣∣∣∣
≤ {C1 + (kβ − β)−1(C1k + C2)}(1 + u)k−β.

Therefore, FW ∈ G4(β,C) if C ≥ 2C1 + C2.
In the definitions of function classes Fj and Gj , the conditions (a) fδ ≤ C or

(b) fW ≤ C are imposed only to ensure that (c) supfX ≤ C. Property (c) holds
if either (a) or (b) does, and so it is possible to switch the condition supfδ ≤ C,
in the definition of a function class Fj , to supfW ≤ C, in the definition of Gk ,
whenever both fδ ∈ Fj and fW ∈ Gk are assumed. This feature allows variants of
several of our theorems to be formulated easily; those variants will not be discussed
explicitly.

A.4. Regularity conditions for Theorems 3.8 and 4.1. For Theorem 3.8 we
take the kernel to be given by (3.6), with integers r and s as in that formula, and
assume that

the distribution of δ is symmetric about the origin, and for all t ≥ 0,

f Ft
δ (t) = z−1(1 + t)−α + z1(1 + t)−α1 + · · · + zp(1 + t)−αp + A(t),

(A.8)
where 1

2 < α < α1 < · · · < αp+1, αp+1 > 2α, z, z1, . . . , zp are nonzero

real numbers, and |A(j)(t)| ≤ const.(1 + t)−αp+1−j for j = 0,1;

as t → ∞, f Ft
W (t) = (a + ib)t−β + o(t−β), where a, b are real numbers,

β > 0 and, for each x0 > 0 and for 0 ≤ k ≤ rs − 1,
(A.9)

(1 + u)β−k sup
|x|>x0

∣∣∣∣∫ u

0
eitxtk{f Ft

W (t) − (a + ib)(1 + t)−β}dt

∣∣∣∣ → 0

as u → ∞.
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In Theorem 4.1 we assume that

K is symmetric and satisfies
∫

K = 1 and κ2 ≡
∫

x2K(x)dx 	= 0, and
(A.10)

KFt is compactly supported;

E|δ| < ∞; for all t, f Ft
δ (t) 	= 0; for some α > 1

2 and C > 0,

f Ft
δ (t) ∼ Ct−α as t → ∞; and for some β > 3

2 and C1 > 0,(A.11)

FW ∈ G3(β,C1).

The condition β > 3
2 in (A.11) implies that

∫
(f ′

W)2 < ∞.
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