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ON THE BEHRENS–FISHER PROBLEM: A GLOBALLY
CONVERGENT ALGORITHM AND A FINITE-SAMPLE STUDY OF

THE WALD, LR AND LM TESTS
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In this paper we provide a provably convergent algorithm for the multi-
variate Gaussian Maximum Likelihood version of the Behrens–Fisher Prob-
lem. Our work builds upon a formulation of the log-likelihood function
proposed by Buot and Richards [5]. Instead of focusing on the first order op-
timality conditions, the algorithm aims directly for the maximization of the
log-likelihood function itself to achieve a global solution. Convergence proof
and complexity estimates are provided for the algorithm. Computational ex-
periments illustrate the applicability of such methods to high-dimensional
data. We also discuss how to extend the proposed methodology to a broader
class of problems.

We establish a systematic algebraic relation between the Wald, Likelihood
Ratio and Lagrangian Multiplier Test (W ≥ LR ≥ LM) in the context of the
Behrens–Fisher Problem. Moreover, we use our algorithm to computationally
investigate the finite-sample size and power of the Wald, Likelihood Ratio and
Lagrange Multiplier Tests, which previously were only available through as-
ymptotic results. The methods developed here are applicable to much higher
dimensional settings than the ones available in the literature. This allows us
to better capture the role of high dimensionality on the actual size and power
of the tests for finite samples.

1. Introduction. The so-called Behrens–Fisher Problem may be straightfor-
wardly stated as follows.

Given two independent random samples X1, . . . ,XN1 and Y1, . . . , YN2 , test whether
their respective population means μ1 and μ2 coincide in the case where their covari-
ances �1 and �2 are unknown.

Despite the deceiving simplicity of its form, this problem has motivated a wealth
of literature that began with the original works of Behrens [1] and Fisher [9, 10],
and includes Welch [34, 35], Scheffé [26, 27], Yao [37], Robbins, Simons and
Starr [23], Subrahmanian and Subrahmanian [33] and Cox [8], to name a few. For
a review of the solutions for the BFP, see, for instance, Stuart and Ord [32] and Kim
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and Cohen [15]. The proposed solutions involve a myriad of different approaches,
ranging from fiducial inference to Bayesian techniques.

In this paper we are interested in the classical multivariate version of the
Behrens–Fisher Problem under Normality. In other words, Xi , Yj above should
be interpreted as d-dimensional Gaussian random vectors with (vector) means μ1
and μ2, and �1, �2 as their respective d ×d covariance matrices, where the sample
sizes are greater than d . The sample covariance matrices are then positive definite
(and thus invertible) with probability one if the true covariance matrices �1 and
�2 are positive definite. Several applied problems can be formulated as Behrens–
Fisher Problems (in particular, for high dimension) in diverse areas such as Speech
Recognition (e.g., Chien [6]), Quality Control (e.g., Murphy [21]), Development
Economics (e.g., Schramm, Renn and Biles [28]) and others.

In this context, the Likelihood Ratio Test is a natural choice in face of the well-
known asymptotic behavior of the test statistic. It turns out, though, that the max-
imization of the log-likelihood function without restrictive assumptions on the
covariances (e.g., �1 = �2) is a nontrivial matter. In general, explicit solutions
to the maximization procedure do not exist, and due to nonconcavities in the ob-
jective function, the solution to the system of first order likelihood equations can
lead to local optima, as shown in Buot and Richards [5]. Numerical algorithms are
available in the literature (see, e.g., Mardia, Kent and Bibby [20] and Buot and
Richards [5]), but their convergence properties are unknown.

The purpose of this paper is two-fold. First, to propose a provably convergent al-
gorithm, called Cutting Lines Algorithm (CLA), for the Gaussian Maximum Like-
lihood Behrens–Fisher Problem (BFP, for short). Second, to use the algorithm to
investigate the finite sample properties—size and power—of the Likelihood Ra-
tio Test and of the asymptotically equivalent Wald and Lagrange Multiplier Tests
in the context of the BFP. Such properties are generally unknown, especially in
high-dimensional contexts.

The CLA avoids the trap of local maxima, which haunts most approaches in the
literature, by aiming directly for the maximization of the log-likelihood function
itself. For this purpose, we make use of the expression for the log-likelihood func-
tion recently proposed by Buot and Richards [5], which is particularly suitable for
numerical methods.

The general maximization strategy may be schematically characterized as fol-
lows:

(i) Lift the log-likelihood maximization problem into a higher-dimensional
setting by adding artificial variables and constraints. This new problem, the Lifted
BFP, has the same solution as the original BFP;

(ii) Create a family of convex modifications (subproblems) of the Lifted BFP
which we call Ellipsoidal Mean Estimation Problems (EMEP);

(iii) Solve a sequence of EMEP whose solutions (estimators of the mean) con-
verge to the global solution of the Lifted BFP, that is, the proper maximum likeli-
hood estimator of the mean.
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Step (i) is a common procedure in Continuous Optimization when one wishes to
find a simpler (but equivalent) description for the problem in a higher-dimensional
setting.

Step (ii) generates a family of convex problems which is computationally tracta-
ble (in particular, first order conditions are not only necessary but also sufficient).
In fact, due to the particular structure of the EMEP, we are able to propose a spe-
cialized method which solves each problem in this family very efficiently both
theoretically and in (computational) practice.

Step (iii) plays the crucial role of avoiding local maxima to ensure the global
optimality. To achieve that, the algorithm relies on the particular geometry of the
nonconvexities associated with the problem. Such geometry allows for the con-
struction of a sequence of approximations (based on supporting lines) to the log-
likelihood function itself which can be efficiently optimized. We prove that the
proposed method converges to a global solution. Furthermore, a simulation study
provides strong numerical evidence of the suitability of the CLA for solving high-
dimensional problems. Problems with dimension up to 1000 were solved in a cou-
ple of minutes.

We are particularly interested in the finite-sample properties of the Wald, Like-
lihood Ratio and Lagrange Multiplier Tests. We show that their respective test
statistics satisfy systematic algebraic inequalities in the context of the BFP (such
a result is known for classical linear models; see Savin [25], Berndt and Savin [2],
and Breusch [4]). However, the CLA makes it possible to go one step further and
provide a Monte Carlo study of the actual size and the power of such tests. Our
results illustrate that the Wald Test is the most sensitive among the three to the im-
pact of dimensionality, followed by the Likelihood Ratio Test. Especially when the
sample size is (relatively) small with respect to the dimension, the Wald and the
Likelihood Ratio Tests tend to over-reject the null hypothesis when we use the χ2

quantiles given by Wilks’ Theorem. In contrast, the observed size of the Lagrange
Multiplier Test seems to be rather robust with respect to dimensionality, with a
slight tendency to under-reject the null hypothesis. Perhaps not surprisingly, these
properties carry over to the power of the tests: for fixed sample sizes, the Wald
Test displays higher power than the Likelihood Ratio Test, which in turn displays
higher power than the Lagrange Multiplier Test. However, the similar shapes of
the observed power curves of the three tests seem to suggest that, with appropriate
test size adjustment, the three tests may end up showing similar power properties.
We also applied the Bartlett correction to the Likelihood Ratio Test as proposed
by Yanagihara and Yuan [36]. The corrected test tends to under-reject the null-
hypothesis, especially for high-dimensional data. Accordingly, it usually displays
lower power than the Lagrange Multiplier Test.

In recent years, interesting applied problems have been found which can be
formulated, in a generic sense, in the framework of the Behrens–Fisher Problem
under high dimension and low sample size (see, e.g., Srivastava [31]). However,
in this case no tests invariant under nonsingular linear transformations exist (see
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Srivastava [30] and references therein). Thus, the classical Maximum Likelihood
formulation of the Behrens–Fisher Problem does not seem appropriate. The case of
high dimension and low sample size should probably be handled by different tech-
niques (or through a nontrivial transformation to a new Behrens–Fisher Problem),
and is a topic for future research.

The paper is organized as follows. Section 2 recasts the log-likelihood max-
imization problem as a nonconvex programming problem, and introduces the
EMEP. Section 3 studies the geometry of the nonconvexities associated with the
log-likelihood function. Section 4 presents the CLA and its convergence analy-
sis. Section 5 studies the finite-sample properties of the Wald, Likelihood Ratio,
Lagrange Multiplier and the Bartlett-corrected Likelihood Ratio Tests. It also con-
tains a computational investigation of the properties of the CLA in comparison to
some widely used heuristic methods. Section 6 conveys an extension of the analy-
sis to general BFP-like problems. The Appendix contains the following: the per-
tinent Convex Analysis definitions; an explanation of the relation between the
EMEP and the BFP; a special-purpose algorithm for solving the EMEP; and an
alternative convergent algorithm, called Discretization Algorithm, for solving the
BFP.

2. Lifting and the EMEP. Recall that our goal is to maximize the log-
likelihood function of two independent random samples {Xi}N1

i=1 and {Yi}N2
i=1,

where Xi ∼ N(μ,�1) and Yj ∼ N(μ,�2) are d-dimensional (random) vectors.
From now on we assume that the sample covariance matrices S1 and S2 are in-
vertible. The maximization problem means that we should find μ, �1 and �2 that
maximize

l(μ,�1,�2) = −1

2

N1∑
i=1

(Xi − μ)′�−1
1 (Xi − μ) − N1

2
log det�1

(1)

− 1

2

N2∑
i=1

(Yi − μ)′�−1
2 (Yi − μ) − N2

2
log det�2,

which is a highly nonlinear function of μ, �1 and �2.
Recently, a more (computationally) tractable reformulation of (1) was proposed

by Buot and Richards [5]. We restate it here as a lemma.

LEMMA 2.1 (Buot and Richards [5]). Denote the vector sample means by

X̄ = 1

N1

N1∑
i=1

Xi and Ȳ = 1

N2

N2∑
i=1

Yi,(2)

and the sample covariance matrices by

S1 = 1

N1

N1∑
i=1

(Xi − X̄)(Xi − X̄)′ and S2 = 1

N2

N2∑
i=1

(Yi − Ȳ )(Yi − Ȳ )′.(3)
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Assume S1 and S2 are invertible, and let μ̂ be some possible value, or estimator,
of μ. The original problem of maximizing the likelihood function in μ, �1 and �2
can be reduced to the minimization in μ̂ of(

1 + (X̄ − μ̂)′S−1
1 (X̄ − μ̂)

)N1/2(
1 + (Ȳ − μ̂)′S−1

2 (Ȳ − μ̂)
)N2/2

.(4)

Expression (4) is already much more tractable than the original likelihood since
it depends only on μ. However, the likelihood maximization problem can become
substantially more amenable to analysis if it is reformulated as a suitable mathe-
matical programming problem. We can do that by lifting it to a higher-dimensional
setting, that is, by including additional variables and constraints, and recasting it
in the following way.

DEFINITION 2.1. The Lifted Gaussian Maximum Likelihood Behrens–Fisher
Problem is to solve

min
μ,u1,u2

f (u1, u2) = N1

2
log(u1) + N2

2
log(u2),

u1 ≥ 1 + (X̄ − μ)S−1
1 (X̄ − μ),(5)

u2 ≥ 1 + (Ȳ − μ)S−1
2 (Ȳ − μ).

Since the solutions for the Lifted Gaussian Maximum Likelihood Behrens–
Fisher Problem and the original Gaussian Maximum Likelihood Behrens–Fisher
Problem must coincide, we will use the acronym BFP to refer to the former from
now on.

The advantage to the lifting procedure is to confine the nonconvexity of the
problem to just two variables, u1 and u2. Nevertheless, the objective function f

in (5) still poses a computational challenge since it is nonconvex. This means that
we can still expect the existence of local solutions as suggested in [5], and further
analysis is called for.

One may note, though, that f is increasing in u1 and u2. Moreover, if one of
the variables, say, u1, is fixed, then the problem becomes fairly simple: for each
value of u1, we can obtain a solution u∗

2(u1). The same can be done with u∗
1 as

a function of u2. Therefore, associated with (5), we could think of a family of
tractable “subproblems” (parameterized by u1, e.g.). Next we will show how to
relate the solutions to this family of subproblems to the solution of the original
problem.

Let us focus on the constraints in (5). For a given μ̂ (a “solution”), consider the
squared Mahalanobis distance functions

MX̄(μ̂) = (X̄ − μ̂)′S−1
1 (X̄ − μ̂) and MȲ (μ̂) = (Ȳ − μ̂)′S−1

2 (Ȳ − μ̂).(6)

Note the resemblance between such functions and the generalized distance func-
tion G as defined in Kim [16]. They all give ellipsoids in μ̂, but our use of the
functions is different.
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DEFINITION 2.2. The Ellipsoidal Mean Estimation Problem with respect to
X at level v1 is to solve

hX(v1) := min
μ

{MȲ (μ) :MX̄(μ) ≤ v1}(7)

(analogously for Y ).

In words, the EMEP with respect to X at level v1 is to find the estimate μ̂EMEP
of μ that minimizes the squared distance MȲ under the constraint that the squared
distance MX̄ is bounded by v1. The use of the word “estimate” can be justified in
at least two ways. First, Gaussian maximum likelihood estimation is based upon
finding a vector estimate μ̂EMEP that minimizes a similar quadratic form. Second,
the procedure above enjoys the reasonable property that if X̄ and Ȳ are close (in
particular, equal), the solution μ̂EMEP will also be close to Ȳ (in particular, equal).

Even though the EMEP is simpler than the BFP, there is no closed-form solution
for the former (for given v1). Nonetheless, EMEP is, in fact, a convex problem and
can be solved efficiently by a variety of available methods like gradient descent,
interior-point methods, cutting-planes, and so on. Although all these methods are
convergent and a few have good complexity properties (see [3, 13, 22]), in the
Appendix we propose a specific algorithm which explores the particular structure
of the problem. Not surprisingly, it enjoys better complexity guarantees and better
practical performance than the aforementioned methods.

The BFP and the EMEP are, in fact, closely related. The BFP consists of achiev-
ing the optimal balance between the EMEP for X and Y simultaneously. This
happens because the BFP is based upon the minimization of a function that is
monotone in both distance functions. A precise characterization of the relation
between the BFP and the EMEP is given in the following theorem.

THEOREM 2.1. Let (μ̂, û1, û2) be a solution to the BFP. Then, μ̂ is a so-
lution to the EMEP with respect to X (with respect to Y ) at v̂1 = MX̄(μ̂) [at
v̂2 = MȲ (μ̂)].

PROOF. Without loss of generality, we will develop the argument only for the
EMEP with respect to X.

Let μ̂EMEP be a solution to the EMEP with respect to X at some positive v1. By
the monotonicity of log, this means that the expression

N1

2
log(1 + v1) + N2

2
log

(
1 + MȲ (μ)

)
(8)

is minimized at μ̂EMEP.
Now, let (μ̂, û1, û2) be a solution to the BFP problem. This means that the

expression

N1

2
log

(
1 + MX̄(μ)

) + N2

2
log

(
1 + MȲ (μ)

)
(9)
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is minimized at μ̂ and we have û1 = 1 + MX̄(μ̂). Since expression (9) is an upper
bound for expression (8) when we set v1 := MX̄(μ̂), μ̂ is also a solution to the
EMEP with respect to X at v1. �

REMARK 2.1. Since S1 and S2 are positive definite matrices (not only semi-
definite), for each level of v1 the EMEP has a unique solution. However, this does
not guarantee that the BFP also has a unique solution, since it could achieve the
optimum at two different levels of the distance function.

3. The underlying geometry of the lifted Behrens–Fisher Problem. In this
section we study the nature of the nonconvexities in (5), and we show how the
feasible set is related to the EMEP. In particular, we obtain a convenient represen-
tation of the border of the feasible set that will be used in the algorithm developed
in Section 4.

We start by considering the projection of the set of feasible points in (5) into the
two-dimensional space of u = (u1, u2):

K =
{

(u1, u2) ∈ R
2 :∃μ such that

u1 ≥ 1 + MX̄(μ)

u2 ≥ 1 + MȲ (μ)

}
.(10)

Figure 1 illustrates the geometry of K . Since M is a convex function, K is a
convex set. Also, K is unbounded, since (u1, u2) ∈ K implies that (u1 + γ1, u2 +
γ2) ∈ K as well for arbitrarily values of γ1, γ2 > 0. Clearly, u ∈ K implies that
u1 ≥ 1 and u2 ≥ 1.

Since the objective function of (5), f (u) = f (u1, u2) = N1
2 log(u1) +

N2
2 log(u2), depends only on the variables u, the optimal value of (5) equals

min{f (u) :u ∈ K},(11)

FIG. 1. The convex set K consists of every point on and above the curve.



2384 A. BELLONI AND G. DIDIER

which still is a nonconvex minimization and potentially has many local minima.
However, the representation (11) has two desirable features. First, it completely

separates the (nonconvex) minimization problem in two variables from the high
dimensionality of μ. This will be key to avoid the curse of dimensionality. Second,
we can write out a compact region that contains the solution for (11). Define the
following problem dependent constants:

L̄1 = min
μ

{1 + MX̄(μ)} = 1,

Ū2 = min
u2

{u2 : (L̄1, u2) ∈ K} = 1 + MȲ (X̄),

(12)
L̄2 = min

μ
{1 + MȲ (μ)} = 1,

Ū1 = min
u1

{u1 : (u1, L̄2) ∈ K} = 1 + MX̄(Ȳ ).

These quantities define a right triangle

{(L̄1, L̄2), (L̄1, Ū2), (Ū1, L̄2)},(13)

which contains the optimal solution u∗ = (u∗
1, u

∗
2) for (11). In fact, observe that,

by monotonicity, all points in K above or to the right of the hypotenuse of the
triangle have a larger objective value than a point on the hypotenuse. Moreover,
the remaining points of K are contained in the triangle. Therefore, the coordinates
of the triangle vertices in (13) are lower and upper bounds on the optimal solution
(u∗

1, u
∗
2), that is,

L̄1 ≤ u∗
1 ≤ Ū1, L̄2 ≤ u∗

2 ≤ Ū2.

In particular, if X̄ = Ȳ , the triangle degenerates into a single point (as pointed out
in [5], the solution is trivial in this case).

Nevertheless, there is a representation cost associated with (11), in the sense
that there is no closed-form representation for K involving only the variables u.

For this reason, we will make use of an additional function g that gives infor-
mation about (part of) the border of K (which is where the global optimum is
expected to be found, given the quasi-concavity of f ). The function g is defined
as

g(u1) := min{u2 : (u1, u2) ∈ K}.(14)

By construction, a point (u1, u2) is in K if and only if u2 ≥ g(u1). It is easy to
show that the function g is convex (its epigraph is exactly the convex set K) and
decreasing in u1.

Note that the function g is directly related to the EMEP with respect to X and
the function hX , since

g(u1) = 1 + minMȲ (μ) = 1 + hX(u1 − 1),
(15)

u1 − 1 ≥ MX̄(μ).

In other words, evaluating g at u1 involves solving an EMEP with respect to X.
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4. An algorithm for the Behrens–Fisher Problem. In this section we pro-
pose an algorithm, called the Cutting Lines Algorithm (CLA), that generates an
ε-solution for the BFP. This means that the algorithm reports a feasible solution
at which the objective function value lie within at most ε from the value of the
objective function at the optimal solution. Since the feasible solution is given for
arbitrary ε > 0, convergence to an optimal solution holds.

The CLA builds upon a polyhedral approximation to the set K . The method
optimizes the objective function f over K̂k at each iteration. The minimizer point
(u1, u2) ∈ K̂k is used to improve the polyhedral approximation for the next itera-
tion.

As mentioned in the introduction, it is possible to propose an algorithm based
upon the discretization of the range of values of u1 where we need to evaluate
g(u1). Such an algorithm, which we call a Discretization Algorithm (DA), can be
proved to have better worst-case complexity guarantees than the ones obtained for
the CLA. However, Section 5 shows that the practical performance of the CLA
strongly dominates that of the DA, since the latter requires evaluating the func-
tion g—that is, solving an EMEP [see expression (15)]—at every point of the
discretization. Thus, we focus on the CLA and defer the details of the DA to Ap-
pendix C.

4.1. The cutting lines algorithm. A good way to develop an algorithm for the
BFP is to think of constructing sets that (i) approximate K and (ii) have a simple
description involving u. Given the convexity of K , polyhedral approximations to
the set K are a natural candidate. Moreover, such approximations are rather con-
venient because it is simple to minimize the objective function f over polyhedral
sets in two dimensions (see Lemma 4.1 below).

4.1.1. Building polyhedral approximations to K . Our sequence of polyhedral
approximations will be based upon the function g. Given the results for the EMEP,
relation (15) implies that, for any fixed value of u1, not only can g(u1) be effi-
ciently evaluated, but also a subgradient s ∈ ∂g(u1) (see Lemma B.1 for details)
can be easily obtained. Suppose we choose a set of points {ui

1}ki=1 and gather the
triples

{ui
1, g(ui

1), s
i}, si ∈ ∂g(ui

1), i = 1, . . . , k.

By the definition of subgradient, we have that

g(u1) ≥ g(ui
1) + si(u1 − ui

1) for all i = 1, . . . , k and u1 ∈ R.

Therefore, we can build a minorant polyhedral approximation ĝk for g as follows:

ĝk(u1) = max
1≤i≤k

{g(ui
1) + si(u1 − ui

1)}.(16)
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FIG. 2. The convex set K and its outer polyhedral approximation K̂k . The extreme points of K̂k

are the kinks of the graph of the piecewise linear function ĝk .

In turn, such a function can be used to build a polyhedral approximation for K
defined as

K̂k = {(u1, u2) ∈ R
2 :u2 ≥ ĝk(u1)}.

Figure 2 illustrates these relations.1

The advantage of working with the polyhedral approximation K̂k instead of
K is two-fold. First, K̂k has a much nicer representation (via linear inequalities
or extreme points) than K itself. This is particularly interesting for developing
algorithms, which is our goal here. Second, as we anticipated, the minimization
of the desired objective function f (u1, u2) = N1

2 log(u1) + N2
2 log(u2) on K̂k is

rather tractable, as we show in the following lemma.

LEMMA 4.1. Let K̂k ⊂ R
2++ be a (convex) polyhedral set. Then the function

f (u1, u2) = N1

2
log(u1) + N2

2
log(u2)

is minimized at an extreme point of K̂k .

PROOF. First, note that since K̂k ⊂ R
2+, and because the nonnegative orthant

is a pointed cone, K̂k must have at least one extreme point. Second, the optimal
solution cannot be an interior point of K̂k (otherwise, we can strictly decrease

1Such approximation for convex sets can be traced back to the Cutting Planes Algorithm in the
Optimization literature [3, 13, 14].
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both components simultaneously). Third, we recall that f is a differentiable quasi-
concave function. Therefore, its gradient is a supporting hyperplane for its upper
level sets, which are convex.

Next, suppose that the minimum is achieved at a nonextreme point of K̂k , say,
x∗ = αz + (1 − α)y, for α ∈ (0,1) and extreme points z, y. By the first order
conditions, the gradient of f induces a supporting line for K at x∗ on which both z

and y lie. By the (strict) convexity of the upper level sets of f , min{f (z), f (y)} <

f (x∗), a contradiction. �

Since K̂k is an outer approximation to K , minimizing f over K̂k yields a lower
bound on the optimal value of (5) for every k. Figure 3 illustrates the minorant
approximation of f (u1, g(u1)) induced by f (u1, ĝk(u1)).

4.1.2. The algorithm. The CLA draws upon the minimization of the objec-
tive function over the polyhedral approximation K̂k to K , which, as shown in
Lemma 4.1, needs to be carried out only over the extreme points of K̂k . A brief
description of the algorithm follows. At iteration k, one has a set f i , i = 1, . . . , k,
of values of the objective function at points (ui

1, u
i
2), i = 1, . . . , k, respectively.

The values f i are then compared to f̂ k := f (ûk
1, û

k
2), where (ûk

1, û
k
2) is the so-

lution to the minimization of f over K̂k . If the distance min0≤i≤k(f
i − f̂ k)

is small enough (note that f i ≥ f̂ k), the algorithm stops. Otherwise, it takes
a new point uk+1

1 , slightly to the right of ûk
1, and generates its corresponding

uk+1
2 := g(uk+1

1 ) by solving an EMEP. The evaluation of the objective function
f at the pair (uk+1

1 , uk+1
2 ) gives a new f k+1, and the algorithm starts over.

FIG. 3. The outer polyhedral approximation for K leads to a minorant approximation for f . There-
fore, lower bounds on the optimal value of (5) are derived if we minimize the minorant approxima-
tion f̂ . The right figure is a zoom in on the dashed square area of the left figure.
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Cutting Lines Algorithm (CLA)

Input: Tolerance ε > 0, u1
1 = min{Ū1, (1 + ε/N1)L̄1}, ĝ0 = 1, k = 1.

Step 1. Evaluate uk
2 = g(uk

1) and sk ∈ ∂g(uk
1).

Compute f k = N1
2 log(uk

1) + N2
2 log(uk

2).

Step 2. Define ĝk(u1) = max0≤i≤k{ui
2 + si(u1 − ui

1)}.
Step 3. Compute f̂k = min{f (u1, u2) :u2 ≥ ĝk(u1), u1 ≥ L̄1} and the

corresponding point ûk = (ûk
1, û

k
2).

Step 4. If min0≤i≤k(f
i − f̂ k) ≤ ε, report min0≤i≤k f i and correspondent

pair (ui∗
1 , ui∗

2 ).

Step 5. Else set uk+1
1 ← min{Ū1, ûk

1(1 + ε/N1)}, k ← k + 1, and
goto Step 1.

Note that each time a new iteration (say, k + 1) starts, an updated polyhedral
approximation K̂k+1 is constructed through the introduction of a new cut, based
on the subgradient ∂g(uk+1

1 ). A new cut removes one extreme point and creates
at most two new extreme points. Therefore, the computational effort of minimiz-
ing f over K̂k grows only linearly with k (in fact, by keeping track of previous
evaluations, re-optimization can be done even faster).

The next theorem shows that the CLA needs only a finite number of iterations
to compute a ε-solution.

THEOREM 4.1. The CLA reports an ε-solution to the original problem in at

most � (Ū1Ū2)(N1N2)

2ε2 � loops.

PROOF. For k ≥ 1, note that uk+1
1 ≤ ûk

1(1 + ε/N1), and suppose first that
uk+1

2 ≤ ûk
2(1 + ε/N2). In this case, we have

f (uk+1
1 , uk+1

2 ) = N1

2
log(uk+1

1 ) + N2

2
log(uk+1

2 )

≤ ε + N1

2
log(ûk

1) + N2

2
log(ûk

2)

= ε + f̂ k ≤ ε + f ∗,

and we have a ε-solution, since (uk+1
1 , uk+1

2 ) is feasible.
Alternatively, if uk+1

2 > ûk
2(1 + ε/N2), we have uk+1

2 > 1, which implies that
uk+1

1 < Ū1. Therefore, uk+1
1 = ûk

1(1 + ε/N1) and the next Cutting Lines approx-

imation removes at least a rectangle of area ε2

N1N2
ûk

2û
k
1 between the difference of

K̂k and K . Since the area difference between these sets was bounded by Ū1Ū2/2
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at the very first iteration, the algorithm performs at most⌈
(Ū1Ū2)(N1N2)

2ε2

⌉
loops. �

This computational complexity result immediately yields the following conver-
gence results.

COROLLARY 4.1. For εk ↓ 0, let (uk
1, u

k
2) be the εk-solutions to (11) and let

the vectors (μk,uk
1, u

k
2) be their induced εk-solutions to the (Lifted) BFP. Then,

every accumulation point of the sequence {(μk,uk
1, u

k
2)}k∈N is a solution to the

BFP.

COROLLARY 4.2. The CLA can be used to generate a sequence of points that
converge to a global solution to the (Lifted) Behrens–Fisher Problem.

4.2. Computational experiments with CLA and DA. Our complexity bound
for the CLA is worse than that for the DA. However, the DA solves the EMEP
for every point of the discretized domain of u1. In contrast, the CLA seeks to
produce a certificate of ε-optimality at each iteration by comparing the best current
solution and the solution to the minimization on K̂k . In computational practice,
this drastically reduces the number of necessary iterations to find an ε-solution,
as can be seen in Table 1 (this table was generated in the same way as the Monte
Carlo study of the tests sizes, as described in Section 5.2 below). Each entry of
running times and iterations in Table 1 is an average over ten instances.

Table 1 reflects the expected computational behavior of the methods. As the
dimension increases, more effort is needed but the CLA is order of magnitudes
faster than the DA, since the latter requires the complete discretization of the inter-
val [L1,U1]. Such requirement of evaluating the function g on O(1/ε) different
points (remember that the complexity analysis is exact in the case of the DA) seems
to be a naive approach, indeed.

The polyhedral approximation used in the CLA provides a way of focusing
the search on a promising region, a concept well exploited in the Optimization
literature. Table 1 also illustrates the number of loops required by each algorithm
in the test problems.

The number of loops performed by the Discretization Algorithm depends only
on the precision ε, and on the problem dependent values of L̄1 and Ū1. On the
other hand, these problem dependent quantities do not seem to affect the CLA.
This points to the question of whether there exists a (better) complexity analysis
for the CLA which might be independent of these quantities.
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TABLE 1
Computational times (in seconds) and total number of iterations (which equal the number of EMEP

problems solved) of the computational experiments with relative tolerance ε = 10−3

Medium size instances Average running times (in seconds) Average iterations

d N1 N2 Initialization DA CLA DA CLA

20 100 200 0.01 4.45 0.006 6853.2 15.4
30 150 300 0.02 12.41 0.007 10859.6 17.5
40 200 400 0.03 12.92 0.009 9256.8 17.4
50 250 500 0.05 13.46 0.010 8414.6 18.5
60 300 600 0.08 23.71 0.012 10495 17.7
70 350 700 0.13 24.15 0.014 8502.1 17.6
80 400 800 0.18 42.40 0.020 9912.7 18.7
90 450 900 0.24 64.46 0.025 11796.4 18.3

100 500 1000 0.32 67.46 0.036 9859.5 19.0

Large size instances Average running times (in seconds) Average iterations

d N1 N2 Initialization DA CLA DA CLA

200 1000 2000 2.07 — 0.23 — 20.8
300 1500 3000 6.64 — 0.66 — 19.8
400 2000 4000 16.08 — 1.66 — 20.1
500 2500 5000 43.35 — 3.13 — 21.2
600 3000 6000 56.62 — 5.71 — 21.5
700 3500 7000 87.88 — 6.88 — 22.0
800 4000 8000 142.05 — 12.71 — 20.9
900 4500 9000 455.23 — 23.59 — 22.1

1000 5000 10000 671.80 — 28.25 — 22.3

The implementation of the algorithms is a simple task in any programming
package where matrix inversion and spectral decomposition subroutines for posi-
tive definite matrices are available (e.g., R, Matlab, etc.). The remaining algorith-
mic operations (binary search, computation of extreme points, stopping criterion,
etc.) follow a relatively simple logic and do not involve potential numerical insta-
bilities. We do not claim to have the most efficient implementation of the methods
proposed here. Nevertheless, our numerical results show that the CLA is compu-
tationally efficient and scales quite nicely as the data dimension d increases. The
underlying reason is the certificate of optimality that the method is constructing
on each iteration. The value f̂min provides a lower bound for the optimal solution
which is used to construct a stopping criterion. For a problem whose dimension
is greater than one thousand, numerical approximations on the computation of the
spectral decomposition are a potential limitation of the method to solve the EMEP
proposed in Appendix B. An alternative approach is to compute an inverse matrix
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at each iteration of the EMEP, which will lead to a more robust implementation at
the cost of additional running time (see [7] for details).

In our experiments we use medium and large size instances where the data di-
mension d varies from 20 to 1000. The results were generated using a relative
precision of ε = 10−3. We report the average over ten different instances. The DA
has proved to be too cumbersome for large instances.

5. Finite sample properties of the Wald, Likelihood Ratio and Lagrange
Multiplier tests through the CLA. Three commonly used multivariate tests
based upon the maximization of the log-likelihood function are the Wald (W ),
Likelihood Ratio (LR), and the Lagrange Multiplier (LM) Tests. Define θ =
(μ1,μ2,�1,�2). For a certain hypothesized restriction on the parameter space
of means

H0 : c(μ1,μ2) = q,

let θ̂ denote the unrestricted MLE of θ , and let θ̂r denote the MLE under the
restriction H0, that is, the solution to the problem

max
θ

l(θ)

subject to c(μ1,μ2) = q.

The test statistics of interest are defined as

W = [c(μ̂1, μ̂2) − q]′(Var
(
c(μ̂1, μ̂2) − q

))−1[c(μ̂1, μ̂2) − q],
LR = −2

(
l(θ̂r ) − l(θ̂ )

)
and

LM = eT Ĝr [ĜT
r Ĝr ]−1ĜT

r e,

where

Ĝr = [ĝx
1,r , . . . , ĝ

x
N1,r

, ĝ
y
1,r , . . . , ĝ

y
N2,r

]T ,
(17)

ĝx
i,r = ∇θ̂r

logf (xi, θ̂r ) and ĝ
y
i,r = ∇θ̂r

logf (yi, θ̂r ),

(f is the multivariate density function in question) and e is a vector of ones. In the
context of the BFP, the restriction can be written as μ1 − μ2 = 0 and the W test
statistic has the explicit form

W = (X̄ − Ȳ )′(S1/N1 + S2/N2)
−1(X̄ − Ȳ ).

The W Test—which is a pure significance test—bears the computational advantage
of not requiring the solution to the problem of finding the restricted MLE estimator
(however, see Section 5.2 below).
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The W , LR and LM Tests are asymptotically equivalent under the null hypoth-
esis. However, their behavior can be rather different in small samples, and their
finite sample properties are usually unknown, except for a few particular cases
(see, e.g., Greene [12] and Godfrey [11]). In this section we use the CLA to inves-
tigate and compare the finite sample properties—size and power—of these tests.
In particular, we are interested in the sensitivity of the tests to dimensionality.

We emphasize that the CLA allows for the study of the properties of the
tests in high-dimensional contexts. In contrast, the literature on the BFP typically
overlooks the issue and reports results for small dimensional problems, typically
smaller than d = 6 and in general no greater than d = 10.

5.1. Conflict among criteria. It is well known that the W , LR and LM statistics
for testing linear restrictions in the context of classical linear models satisfy the
inequalities W ≥ LR ≥ LM (see Savin [25], Berndt and Savin [2], Breusch [4] and
Godfrey [11]). Before turning to simulations, we show that such inequalities also
hold in the case of the BFP.

THEOREM 5.1. For the BFP,

W ≥ LR ≥ LM.(18)

PROOF. To show the first inequality, note that, using since log(1 + δ) ≤ δ, we
have

LR ≤ c0 = min
μ

N1(X̄ − μ)S−1
1 (X̄ − μ) + N2(Ȳ − μ)S−1

2 (Ȳ − μ).

The optimal solution of the right-hand side is achieved at μ̂0 = (N1S
−1
1 +

N2S
−1
2 )−1(N1S

−1
1 X̄ + N2S

−1
2 Ȳ ). Using μ̂0, and the matrix identities

(A + B)−1 = A−1 − A−1(A−1 + B−1)−1A−1 = A−1(A−1 + B−1)−1B−1,

we prove that c0 = (X̄ − Ȳ )′(S1/N1 + S2/N2)
−1(X̄ − Ȳ ) = W .

Let μ̂ be a solution for the BFP. After simplifications, the LM statistic can be
written as

LM = N1(X̄ − μ̂)′�̂−1
1 (X̄ − μ̂) + N2(Ȳ − μ̂)′�̂−1

2 (Ȳ − μ̂).

Next note that

(X̄ − μ̂)′�̂−1
1 (X̄ − μ̂) = (X̄ − μ̂)′S−1

1 (X̄ − μ̂) − [(X̄ − μ̂)′S−1
1 (X̄ − μ̂)]2

1 + (X̄ − μ̂)′S−1
1 (X̄ − μ̂)

by using a rank-one update formula2 for �̂−1
1 . The result follows by considering

the term for Y as well and noting that log(1 + δ) ≥ δ − δ2

1+δ
. �

2For invertible M and a vector v, the inverse of the rank-one update of M by vv′ can be written as

(M + vv′)−1 = M−1 − M−1vv′M−1

1+v′M−1v
.
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5.2. Monte Carlo study of the size of the test. Inequalities (18) imply that the
rejection rate of the W Test is greater than or equal to that of the LR Test, which in
turn is greater than or equal to that of the LM Test. A more accurate understanding
of the extent to which this influences the size and the power of such tests can be
obtained through simulations.

We performed a Monte Carlo study of the finite-sample properties of the W ,
LR and LM tests at sizes α = 0.01,0.05,0.10. The rejection regions were defined
based upon Wilks’ Theorem on the asymptotic χ2

d distribution of the test statistic.
The study also includes the Likelihood Ratio statistic with the Bartlett correction

B :=
(

1 − ĉ1

N − 2

)
LR,

where

ĉ1 = ψ̂1 − ψ̂2

d
,

ψ̂1 = N2
2 (N − 2)

N2(N1 − 1)
{tr(S1S

−1
)}2 + N2

1 (N − 2)

N2(N2 − 1)
{tr(S2S

−1
)}2,

ψ̂2 = N2
2 (N − 2)

N2(N1 − 1)
{tr(S1S

−1
S1S

−1
)} + N2

1 (N − 2)

N2(N2 − 1)
{tr(S2S

−1
S2S

−1
)},

and S = N2
N

S1 + N1
N

S2.
The Bartlett correction as defined above provides an O(N−2) approximation to

the mean of the χ2
d distribution (more details can be found in Yanagihara and Yuan

[36]). We will refer to the LR Test under the Bartlett correction as the B Test.
To facilitate comparison with other works on the multivariate BFP (e.g., Yao

[37], Subrahmaniam and Subrahmaniam [33], Kim [16] and Krishnamoorthy and
Yu [18]), we performed tests for the low dimensional cases of d = 2,5 and 10, but
we also included the higher-dimensional cases of d = 25,50,75, 100 and 200. For
each d , the sample sizes used were N1 = 5d,10d,20d , and N2 = 2N1. For a given
dimension size d , each covariance matrix �i , i = 1,2, was constructed by creating
an initial matrix Mi with N(0,1) entries, and then setting �i = MiM

′
i .

The results can be seen in Figure 4 (the actual numerical output can be found
in Table 4 in the Appendix D). Each entry was generated using 10,000 runs. The
W and the LR tests tend to over-reject the null hypothesis, while the LM Test
tends to slightly under-reject it. We kept constant the ratio between the number
of observations and the dimension so that we can observe how the quality of the
approximation behaves as the dimensionality of the problem grows. One may no-
tice how sensitive the W and the LR Tests are to increases in the dimension. Only
for the (relatively) large sample case N1 = 20d does the LR Test have actual size
fairly close to α. On the other hand, the W Test appears to demand even (relatively)
larger samples. For instance, when d = 100 and α = 0.10, even when N1 = 20d ,
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FIG. 4. The behavior of the size of the tests when the dimension increases and the ratio between
the number of observations and dimension is fixed.
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the W test is off by 3.8 percentage points. The ease of computation of the W test
statistic appears to come at a considerable price in terms of the accuracy of the
test.

In contrast with the W and the LR Tests, the LM shows remarkable robustness
with respect to dimensionality. For all α, there does not appear to be any clear
(say, monotonic) pattern of change on the actual test size with respect to increases
in dimensionality, or maybe even sample size N1.

For all values of α and different sample sizes, the B Test is roughly as accu-
rate as the LM Test for low dimensional settings (roughly, d ≤ 20). For d > 20,
though, it grossly over-compensates the over-rejection rates of the W Test, with
the possible exception of the comparatively large sample sizes N1 = 20d .

Figure 4 illustrates the above comments. Accordingly, the W Test usually
shows the steepest curve of dimension versus actual test size for different N1,
while the LM Test displays approximately horizontal curves, especially for higher-
dimensional settings.

5.3. Monte Carlo study of the power of the test. We performed computational
experiments on the power of the W , LR, LM and B Tests for the cases of dimension
d = 10,50,100, and sample sizes N1 = 5d , 10d and 20d , with N2 = 2N1.

The analysis of the power for multivariate tests is naturally more difficult due
to the multi-dimensionality of the parameter space. For this reason, we chose to
investigate and compare the power of the W , LR, LM and B Tests over a standard-
ized parameter space in the following sense. For each simulation run, covariance
matrices �1 and �2 were (randomly) generated through the same procedure as the
one for the evaluation of the sizes of the test. The mean of X, μ1, was set to zero
by default. The choice of the mean(s) of Y , μ2(�), was made as solution(s) to the
squared Mahalanobis distance equation(s)(

μ1 − μ2(�)
)′
(�1 + �2)

−1(
μ1 − μ2(�)

) = �2,

where � represents a family of appropriately selected constants. For convenience,
such solutions μ2(�) were always taken on some canonical axis, and the specific
axis chosen changed across simulation runs. The use of randomly standardized
Mahalonobis distances is justified by the fact that the BFP is defined without in-
formation on the population covariances.

The results are depicted in Figure 5, which contains plots for dimensions d =
10, 50 and 100. Colors represent tests, while geometric figures represent sample
sizes (e.g., a triangle symbolizes N1 = 5d).

Perhaps the most striking feature of all four plots (d = 10, 50 and 100) is the fact
that, for a given sample size N1, the shapes of the power curves for the four tests
look alike. More specifically, given N1, the curve for the W Test looks like an up-
shifted version of the curve for the LR Test, which in turn looks like an up-shifted
version of the curve for the LM Test. The same is true for the curve for the B Test,
which lies mostly below the curve for the latter. The observed “order” of the curves
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FIG. 5. Monte Carlo study of the power of the W , LR, LM and B Tests for the size α = 0.05 with
different sample sizes and dimensions equal to 10, 50 and 100.
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should not come as a surprise. First, regarding the W , LR and LM Tests, because of
the theoretical inequalities in Theorem 5.1. Second, because the simulation results
for the test sizes show that the W and LR Tests tend to over-reject the null hypoth-
esis (the former, substantially more than the latter), while the LM Test has size
close to α and the B Test tends to under-reject the null hypothesis. In other words,
we are essentially comparing tests of different sizes (see also the conclusions in
Breusch [4] for the case of linear regression). The shape of the curves suggests the
possibility that, if test size adjustment is made for the W and LR Tests, the power
curves of the three tests may get rather close to each other. Such adjustment would
imply, of course, going beyond Wilks’ Theorem and developing exact quantiles,
especially for the W and the LR Tests.

The plot for the low-dimensional case of d = 10 displays a “well-behaved” pat-
tern, in the sense that the curves for different tests and for the same sample size
tend to be grouped together. In particular, the curves for sample size N1 = 40d are
almost super-imposed, which means that, power-wise, the tests are nearly equiva-
lent in this situation. Note that the curves for sample size N1 = 10d (triangle) lie
above the remaining ones close to the origin, that is, in the case where the Ma-
halanobis distance between μ1 and μ2 is small. Again, this should not come as a
surprise, since the simulation results for the test sizes (i.e., zero Mahalanobis dis-
tance between μ1 and μ2) show that relatively small sample sizes imply a tendency
for over-rejection in the case of the W and LR Tests.

The effect of higher dimensionality can be seen in the two remaining plots (d =
50 and 100). The main impact seems to be greater vertical distances among the
curves for the four tests, particularly for the cases of smaller sample sizes. Even
for the higher-dimensional case d = 100, though, the larger sample size N1 = 20d

brings the curves a lot closer to each other. As one might expect, larger sample
sizes compensate for high dimension and point to the asymptotic equivalence of
the W , LR, LM and B Tests.

5.4. Performance of local methods/heuristics. Up to the present, the numer-
ical procedures applied to the multivariate Behrens–Fisher Problem have been
heuristics or locally convergent methods. Since the CLA is a provably convergent
method that constructs a certificate of global optimality, it provides a benchmark
for the previous approaches. So, we are now able to address via Monte Carlo ex-
periments the statistically important question of the performance of the LR Tests
based on some widely used heuristics vis-a-vis the LR Test based on the CLA.
Also, we are interested in the partially related issue the computational performance
of these heuristics vis-a-vis the CLA.

There is a variety of different heuristics and it is usually hard (if not impossible)
to make any general statement about them. However, in the case of the Behrens–
Fisher Problem, we do have a “natural” initial point for these algorithms, that is,
μ̂0 := (N1S

−1
1 + N2S

−1
2 )−1(N1S

−1
1 X̄ + N2S

−1
2 Ȳ ). In fact, μ̂0 is at the same time:

(i) from the algorithmic perspective, the solution to the first-order conditions of the
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objective function (the log-likelihood) with respect (only) to μ, after we substitute
Si for �i , i = 1,2; (ii) from the statistical perspective, the estimator of the mean
μ associated with the W statistic. Also, by the proof of Theorem 5.1, we have

W ≥ LR0 ≥ LR,(19)

where LR0 is the log-likelihood ratio evaluated at μ̂0. Denote by LRh the (po-
tentially suboptimal) Likelihood Ratio test statistic based upon a given heuristic
method and with μ̂0 as its initial point. We can assume (through an ad-hoc modi-
fication of the heuristic, if necessary) that

LR0 ≥ LRh.(20)

Thus, by (19), (20) and the fact that LRh ≥ LR, the statistic LRh also asymptotically
follows a χ2

d distribution. Nonetheless, the gap between the W and the LR statistics
can be quite large in finite-samples (see Section 5).

Note that a LRh Test can only disagree with the LR Test if the LR0 Test rejects
H0 and the latter accepts H0. We can perform Monte Carlo experiments (in the
same way as in Section 5.2 for the tests sizes) to estimate how often the LR0 and
LR Tests disagree. By (20), this provides a guarantee (i.e., an upper-bound) on the
“discrepancy rate” between a LRh Test (i.e., based on any heuristic) and the LR
Test. The results in Table 2 show that this worst-case-scenario discrepancy rate
is surprisingly small. The discrepancy rate for the W Test with respect to the LR
Test—substantially higher—was also included for the sake of comparison.

Next we study the computational performance of three commonly used meth-
ods: Simulated Annealing (SA), Iterative Update (ItUp) and Newton’s Method
with Line Search (NM). (See, resp., [17, 19], [5] and [7] for discussions and im-
plementation details of these methods.)

Table 3 reports the average performance of the heuristics with respect to running
times, iterations and discrepancy rate based on their respective LRh Tests. As ex-
pected, the discrepancy rate is smaller than in Table 2, since the heuristics usually
provide a solution superior to μ̂0. Not only that, the experiments suggest that both
ItUp and NM are robust in terms of discrepancy rate (with μ̂0 as the initial point)

TABLE 2
Monte Carlo study of the discrepancy rates for LR0 and W Tests with respect to the LR Test for
different dimensions d (for each entry, simulations were run until 50 “successes” were obtained)

d 2 5 10 20 30 40
LR0 0.00176 0.00113 0.000932 0.000978 0.000825 0.00135
W 0.0299 0.0325 0.0261 0.0468 0.0342 0.0513

d 50 60 70 80 90 100
LR0 0.0009 0.0012 0.0012 0.0013 0.0017 0.0012
W 0.0426 0.0702 0.0641 0.0796 0.0809 0.0935
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TABLE 3
The average performance of heuristics averaged over 5000 runs: time (seconds), iterations and

discrepancy rate

Algorithms

SA ItUp NM

d Time Iter Discrep Time Iter Discrep Time Iter Discrep

2 0.02462 1000 0.001 0.00062 4.2 0 0.00118 2.3 0
5 0.02547 1000 0.001 0.00081 4.5 0 0.00135 2.6 0

10 0.02680 1000 0.001 0.00121 4.7 0 0.00166 2.6 0
20 0.03120 1000 0.001 0.00273 5.0 0 0.00310 2.7 0
30 0.04078 1000 0.001 0.00799 5.1 0 0.00662 2.9 0
40 0.04948 1000 0.001 0.00879 5.4 0 0.00787 3.1 0
50 0.06037 1000 0.001 0.01339 5.3 0 0.01179 3.0 0
60 0.07422 1000 0.001 0.01998 5.3 0 0.01726 3.0 0
70 0.09325 1000 0.001 0.03057 5.3 0 0.02537 3.0 0
80 0.11258 1000 0.003 0.04069 5.5 0 0.03408 3.1 0
90 0.13279 1000 0.001 0.05461 5.5 0 0.04414 3.0 0

100 0.16051 1000 0.001 0.07260 5.9 0 0.05852 3.5 0

even though they can be trapped in local minima. Moreover, their good (local)
convergence properties are illustrated by the notably small number of iterations.
On the other hand, SA seems to have trouble achieving local convergence, and its
good performance with respect to errors appears to be a by-product of the chosen
initial point. Not surprisingly, the convergence of the CLA turned out to be slower
(i.e., larger number of iterations) than the local methods ItUp and NM. In fact, one
should keep in mind that the CLA aims not only to find a good solution, but also to
construct a certificate of global optimality, which is a much harder task. Regarding
running time, the main computational cost of CLA is the spectral decomposition
at initialization (see Table 1). The running time of the CLA after initialization is
actually faster than SA, ItUp and NM at higher dimensions (cf. Tables 1 and 3).

We now make a few quick remarks regarding the implementation of the meth-
ods. First, all methods do require a matrix inversion routine: SA and CLA, only
on the first iteration; ItUp and NW, on every iteration. Second, in contrast to CLA,
ItUp and NW, the calibration of additional parameters is needed for the SA. Third,
the implementation of SA and ItUp is very simple, while the Line Search for NM
is slightly more difficult. Fourth, unlike the other methods, the CLA involves the
additional implementation costs associated with the optimality certificate based
on K̂k , and with the spectral decomposition of a positive definite matrix (see also
Section 4.2).

6. Extension to Behrens–Fisher-like Problems. It should be noted that the
methodology proposed in this paper can be applied to a much broader class of
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problems. Strictly speaking, all we need is to be able to replicate the strategy of
constructing lifted problems whose solution lie on extreme points of a two dimen-
sional convex domain,3 and to evaluate the subproblems which define the convex
domain. A sufficient condition for this is the quasi-concavity of the objective func-
tion of the lifted problem and the convexity of the subproblems.

To set up a broader framework, assume we have two random samples {Xi}N1
i=1

and {Yi}N2
i=1 whose log-likelihood functions are denoted by l1(X;μ,α) and

l2(Y ;μ,β), respectively. The generalized M-estimation problem of interest is de-
fined as

max
μ,α,β

l1(X;μ,α) + l2(Y ;μ,β).

A generalization of the subproblem can be cast in terms of the log-likelihood
functions directly. Assume there exist two monotone (decreasing) transformations
TX,TY : R → R such that TX(l1(X; ·, ·)) and TY (l2(Y ; ·, ·)) are convex functions.
The subproblems, analogous to the EMEP, are

hX(u1) = min
μ,α,β

{TY (l2(Y ;μ,β)) :TX(l1(X;μ,α)) ≤ u1}.
The geometric results in Section 3 still hold with minor modifications. Moreover,
under the above convexity assumption, the evaluation of hX(u1) can be efficiently
performed through standard convex programming techniques. Therefore, the con-
vergence results of Section 4 are still valid.

The above framework encompasses the BFP by taking TX(z) = exp( 2
N1

z) − 1

and TY (z) = exp( 2
N2

z) − 1.
We now give a simple example of the application of the methodology described

above to a Behrens–Fisher-like Problem.

EXAMPLE 6.1. Assume X ∼ N(μ,�) but, differently from the BFP, Y fol-
lows a multivariate Laplacian distribution, that is,

fY (y) = cL exp(−‖y − μ‖),
where cL is the normalization constant and ‖ · ‖ is the Euclidean norm. The related
lifted problem can be cast as

min
μ,u1,u2

f (u1, u2) = N1

2
log(u1) + u2,

u1 ≥ 1 + MX̄(μ),(21)

u2 ≥
N2∑
i=1

‖Yi − μ‖.

3Higher-dimensional convex domains would impose an additional burden in terms of computa-
tional complexity.
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Here, the problem objective function is concave (u1, u2), and therefore the solution
must lie on the border of the convex domain of these variables. Such a domain can
be written as

K =
⎧⎪⎨⎪⎩ (u1, u2) ∈ R

2 :∃μ such that

u1 ≥ 1 + MX̄(μ)

u2 ≥ 1 +
N2∑
i=1

‖Yi − μ‖

⎫⎪⎬⎪⎭ .(22)

Moreover, the associated subproblems, using TX(z) = exp( 2
N1

z)−1 and TY (z) = z,
are convex programming problems and have the form

hX(u1) = min
μ

{
N2∑
i=1

‖Yi − μ‖ :MX̄(μ) ≤ u1

}

and

hY (u2) = min
μ

{
MX̄(μ) :

N2∑
i=1

‖Yi − μ‖ ≤ u2

}
.

Both these problems can be solved via convex quadratic programming, which can
be done quite efficiently even in high-dimensional cases.

APPENDIX A: NOTATION OF CONVEX ANALYSIS

Herein we gather the definitions of relevant concepts in Convex Analysis for
this work. We refer to [24] for an analytic exposition of Convex Analysis and to
[13] for a more geometric one.

A set S is convex if, for any x, y ∈ S, α ∈ [0,1], αx + (1−α)y ∈ S. An extreme
point of a convex set is a point that cannot be written as a strictly (α < 1) convex
combination of any other distinct points in the set. A set P is said to be polyhedral
if P = {x ∈ R

n :Ax ≤ b}, where A is a matrix, and b, a vector. It follows that
polyhedral sets are convex and their extreme points are its corners. The recession
cone CS of a convex set S is the set of directions that go to infinity in S, formally,
CS = {d :d + S ⊂ S}.

A function g : Rn → R is said to be convex if, for any x, y ∈ R
n, and α ∈ [0,1],

g(αx + (1−α)y) ≤ αg(x)+ (1−α)g(y). A function f : Rn → R is quasi-concave
if, for any x, y ∈ R

n, and α ∈ [0,1], f (αx + (1 − α)y) ≥ min{f (x), f (y)}, or
equivalently, the upper level sets of f are convex sets.

Given a convex function g : Rn → R, we can define its subdifferential at x as
∂g(x) = {s ∈ R

n :g(y) ≥ g(x) + 〈s, y − x〉, for all y ∈ R
n}. The elements of the

subdifferential, also called subgradients, play the role of the gradient in case g is
nondifferentiable. Note that ∂g(x) is always nonempty.
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APPENDIX B: SOLVING THE EMEP

Consider the convex problem in (7). There are a variety of “general purpose”
convergent algorithms that can solve it. Here, we propose a specific algorithm
tailored for the particular structure of the EMEP.

Let λ be the (nonnegative) Lagrange multiplier associated with the inequality
constraint. The first order conditions are necessary and sufficient, and are given by

2S−1
2 (Ȳ − μ) + 2λS−1

1 (X̄ − μ) = 0

and

λ
(
MX̄(μ) − v1

) = 0.

Assuming that λ > 0 (otherwise, the solution is just μ̂ = Ȳ ), the optimal μ̂ is a
function only of λ:

μ̂(λ) = (S−1
2 + λS−1

1 )−1(S−1
2 Ȳ + λS−1

1 X̄).(23)

Therefore, in order to solve the EMEP, it suffices to compute a root λ∗ of the
nonlinear univariate function

m(λ) = MX̄(μ̂(λ)) − v1.(24)

The algorithm we propose here is based upon the algorithm in Ye [38], who in
turn built upon earlier work by Smale [29].

Our algorithm is made up of two main parts. The first part consists of a binary
search over intervals of increasing length to find which interval Ii∗ contains what
Smale [29] calls an approximate root.

DEFINITION B.1. A point λ0 is said to be an approximate root of an analytic
real function m : R → R if

|λk+1 − λk| ≤ (1/2)2k−1−1|λ1 − λ0|.
In the second part of the algorithm, Newton’s method is used over the interval

Ii∗ to find the approximate root λ∗. For the sake of exposition, we focus on the
case of m : R → R (the results in [38] hold in much greater generality, though).
Recall that the Newton iterate for a function m from a current point λk is

λk+1 = λk − m(λk)

m′(λk+1)
.

Newton’s Method (NM) converges quadratically from the very first iteration. In
[29], Smale gives sufficient conditions under which a particular point is an approx-
imate root. Although it is hard to verify Smale’s condition in general, Ye provided
a constructive method to find such a point for a particular class of functions. Ye’s
results in [38] apply in our case. We now write out Ye’s algorithm and prove a
complexity result for it in the context of the BFP.



BEHRENS–FISHER PROBLEM 2403

Binary Search and Newton Method

Input: Upper and lower bounds on the value of the root [a, b], b ≥ a ≥ δ,
tolerance δ > 0.

Step 1. Define a partition of [a,b] through intervals of the form

Ii = [a(1 + 1/12)i, a(1 + 1/12)i+1).
Step 2. Perform binary search on these intervals to find Ii∗

that contains the true root λ∗.

Step 3. Let λ0 = a(1 + 1/12)i , k = 0.

Step 4. Perform Newton’s method from λk: λk+1 ← λk − m(λk)

m′(λk)
.

Step 5. Stop if k > 1 + log2(1 + max{0, log2(b/δ)}) steps.

Step 6. Else set k ← k + 1, and goto Step 4.

THEOREM B.1. After the computation of a spectral decomposition of the ma-
trix S

1/2
1 S−1

2 S
1/2
1 , and given a desired precision δ > 0 and an upper bound b for

the solution, the algorithm finds a δ-approximate solution λ̂ such that |λ∗ − λ̂| < δ

in at most

O

(
d log log

b

δ

)
arithmetic operations.

PROOF. Making the following change of variables/notation

w := S
−1/2
1 (μ − X), M := S

1/2
1 S−1

2 S
1/2
1 = PDPT ,

v = 2S−1
2 S

1/2
1 (Ȳ − X̄) and s = P T v,

problem (15) is equivalent to

h(v1) = minwT Mw − vT w,

‖w‖2 ≤ v1

up to a constant value (which does not matter for the optimization).
Under the new notation, we can rewrite the function m as

m(λ) = sT (D + λI)−2s − v1 =
d∑

i=1

s2
i

(Di + λ)2 − v1.

The function m(λ) is analytic and its derivatives can be easily computed as

m(k)(λ) = (−1)k(k + 1)!
d∑

i=1

s2
i

(Di + λ)k+2 .
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Note that m′ < 0 and m′′ > 0 (i.e., m is decreasing and convex). Thus, we can
evaluate m and m′ in O(d) operations. This implies that each Newton step can be
implemented in O(d) arithmetic operations.

Let λ0 = a(1 + 1/12)i
∗

be the left endpoint of the interval selected by binary
search. From Ye [38], it follows that λ0 satisfies Smale’s sufficient condition to be
an approximate root. Therefore, NM converges quadratically from the very first it-
eration (i.e., from λ0). From the convexity of m, the convergence is monotone, that
is, 0 < λ0 < λk < λk+1 < λ∗ ≤ b for every k (in particular, we have |λ1 − λ0| < b).
This implies that we need at most

k = 1 + log2
(
1 + max{0, log2(b/δ)})

Newton steps to achieve |λk − λ∗| < δ. Moreover, the total number of subin-
tervals is 1

log(1+1/12)
log(b/a). The binary search can thus be implemented in

O(log log(b/a)). The result follows by noting that we can take a ≥ δ. �

REMARK B.1. Even when we need to solve the EMEP for many differ-
ent levels of the Mahalanobis distance function, the spectral decomposition of
S

1/2
1 S−1

2 S
1/2
1 needs to be performed only once. This feature of the algorithm makes

it a good auxiliary method for the CLA.

The following lemma illustrates how to obtain subgradients for the function hX

with no additional computational effort, which is of interest for the CLA.

LEMMA B.1. Let λ∗ be a root of the function m as defined in (24). Then −λ∗
is a subgradient of hX at v1.

PROOF. Recall m(λ∗) = 0 implies that μ(λ∗) minimizes MȲ (μ)+λ∗MX̄(μ).
For any v, we have

hX(v1) = MȲ (μ̂(λ∗)) = MȲ (μ̂(λ∗)) + λ
(
MX̄(μ̂(λ∗)) − v1

)
= MȲ (μ̂(λ∗)) + λ∗(

MX̄(μ̂(λ∗)) − v
) + λ∗(v − v1)

≤ hX(v) + λ∗(v − v1).

Here, we used weak duality (min max ≥ max min) as follows:

hX(v) = min
μ

max
λ≥0

MȲ (μ) + λ
(
MX̄(μ) − v

)
≥ max

λ≥0
min

μ
MȲ (μ) + λ

(
MX̄(μ) − v

)
≥ MȲ (μ̂(λ∗)) + λ∗(

MX̄(μ̂(λ)) − v
)
.
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Therefore, for every v, we have

hX(v1) − λ∗(v − v1) ≤ hX(v),

which implies that −λ∗ ∈ ∂hX(v1). �

APPENDIX C: THE DISCRETIZATION ALGORITHM (DA)

Consider the problem (5) for a fixed value of u1 = ū1. In this case, the compu-
tational problem reduces exactly to solving the EMEP with respect to X at a fixed
squared distance level ū1 −1. As shown in Section 2, such a problem can be solved
directly with the algorithm proposed in Appendix B.

Therefore, given the desired precision, one can discretize the range of the vari-
able u1, [L̄1, Ū1], and solve the EMEP for each one of these values. Such a scheme
yields the following algorithm.

Discretization Algorithm

Input: Relative tolerance ε > 0, u1
1 = (1 + 2ε/N1)L̄1, k = 1.

Step 1. Evaluate uk
2 = g(uk

1) and compute f k = N1
2 log(uk

1) + N2
2 log(uk

2).

Step 2. If (1 + 2ε/N1)u
k
1 > Ū1, compute f k+1 = Ū1L̄2, goto Step 4.

Step 3. Else set uk+1
1 ← (1 + 2ε/N1)u

k
1, k ← k + 1, goto Step 1.

Step 4. Report min1≤i≤k f i and the correspondent pair (ûi∗
1 , ûi∗

2 ).

The following complexity result holds for the Discretization Algorithm.

THEOREM C.1. The Discretization Algorithm reports an ε-solution for the
original problem after exactly �log(Ū1/L̄1)/ log(1 + 2ε/N1)� loops.

PROOF. Let u∗ = (u∗
1, u

∗
2) be a optimal solution. There exists a k such that

uk
1 < u∗

1 < (1 + 2ε/N1)u
k
1. We consider f k+1 as our candidate. We have

f ∗ = N1

2
log(u∗

1) + N2

2
log(u∗

2)

≤ f k+1 = N1

2
log(1 + 2ε/N1) + N1

2
log(uk

1) + N2

2
log(uk+1

2 )(25)

≤ ε + N1

2
log(uk

1) + N2

2
log(uk+1

2 ) = ε + f ∗,

where we also used that uk+1
2 ≤ u∗

2, since g in (14) is decreasing.
The claim on the number of loops follows by noting that we have uk

1 = L̄1(1 +
2ε/N1)

k ≤ Ū1 and by taking logs to bound k. �
By choosing a sequence εk → 0, we obtain a sequence of εk-solutions that con-

verge to the optimal solution of the BFP. One drawback to this method is that it
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requires solving the EMEP at every point of the discretization. In practice, such
requirement may be cumbersome.

APPENDIX D: MONTE CARLO STUDY OF SIZE

TABLE 4
Monte Carlo study of size for the W , LR, LM and B Tests (runs per entry = 10,000)

Small size
instances

Size of the Test α

α = 0.10 α = 0.05 α = 0.01

d N1 N2 W LR LM B W LR LM B W LR LM B

2 10 20 0.160 0.133 0.102 0.092 0.106 0.077 0.046 0.046 0.039 0.020 0.005 0.009
2 20 40 0.138 0.122 0.106 0.103 0.081 0.067 0.050 0.051 0.023 0.013 0.007 0.009
2 40 80 0.120 0.114 0.110 0.107 0.069 0.061 0.055 0.054 0.017 0.014 0.011 0.011
5 25 50 0.171 0.133 0.098 0.090 0.101 0.073 0.047 0.046 0.035 0.019 0.005 0.008
5 50 100 0.124 0.110 0.094 0.090 0.068 0.055 0.041 0.041 0.017 0.011 0.007 0.008
5 100 200 0.113 0.106 0.098 0.096 0.063 0.057 0.053 0.052 0.015 0.013 0.010 0.010

10 50 100 0.175 0.131 0.094 0.084 0.102 0.072 0.044 0.041 0.035 0.018 0.008 0.008
10 100 200 0.137 0.118 0.099 0.093 0.074 0.062 0.047 0.047 0.019 0.012 0.009 0.009
10 200 400 0.116 0.107 0.100 0.098 0.062 0.056 0.051 0.051 0.014 0.011 0.009 0.009

Medium size
instances

Size of the Test α

α = 0.10 α = 0.05 α = 0.01

d N1 N2 W LR LM B W LR LM B W LR LM B

25 125 250 0.196 0.141 0.096 0.077 0.118 0.079 0.043 0.034 0.035 0.018 0.007 0.007
25 250 500 0.137 0.109 0.088 0.078 0.071 0.056 0.039 0.036 0.019 0.014 0.008 0.007
25 500 1000 0.120 0.110 0.099 0.091 0.064 0.055 0.049 0.046 0.015 0.011 0.009 0.008
50 250 500 0.232 0.158 0.096 0.065 0.144 0.089 0.040 0.027 0.041 0.018 0.005 0.005
50 500 1000 0.147 0.117 0.091 0.079 0.083 0.061 0.044 0.038 0.021 0.013 0.008 0.007
50 1000 2000 0.126 0.111 0.100 0.092 0.070 0.062 0.053 0.049 0.016 0.012 0.011 0.010
75 375 750 0.262 0.170 0.098 0.064 0.167 0.098 0.048 0.029 0.059 0.025 0.008 0.004
75 750 1500 0.166 0.131 0.097 0.084 0.098 0.072 0.048 0.038 0.025 0.016 0.009 0.007
75 1500 3000 0.133 0.119 0.102 0.092 0.073 0.064 0.053 0.049 0.018 0.014 0.010 0.009

100 500 1000 0.284 0.175 0.090 0.054 0.179 0.097 0.043 0.025 0.060 0.025 0.007 0.004
100 1000 2000 0.175 0.134 0.101 0.076 0.104 0.071 0.047 0.036 0.026 0.016 0.008 0.006
100 2000 4000 0.139 0.117 0.099 0.087 0.073 0.061 0.050 0.042 0.017 0.013 0.009 0.007

Large size
instances

Size of the Test α

α = 0.10 α = 0.05 α = 0.01

d N1 N2 W LR LM B W LR LM B W LR LM B

200 1000 2000 0.373 0.213 0.095 0.040 0.251 0.123 0.043 0.015 0.101 0.030 0.007 0.002
200 2000 4000 0.203 0.136 0.085 0.060 0.112 0.073 0.042 0.029 0.032 0.016 0.009 0.005
200 4000 8000 0.153 0.128 0.099 0.085 0.084 0.064 0.049 0.039 0.019 0.014 0.010 0.007
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