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LIMIT THEOREMS FOR WEIGHTED SAMPLES WITH
APPLICATIONS TO SEQUENTIAL MONTE CARLO METHODS

BY RANDAL DOUC AND ERIC MOULINES
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In the last decade, sequential Monte Carlo methods (SMC) emerged as a
key tool in computational statistics [see, e.g., Sequential Monte Carlo Meth-
ods in Practice (2001) Springer, New York, Monte Carlo Strategies in Sci-
entific Computing (2001) Springer, New York, Complex Stochastic Systems
(2001) 109–173]. These algorithms approximate a sequence of distributions
by a sequence of weighted empirical measures associated to a weighted pop-
ulation of particles, which are generated recursively.

Despite many theoretical advances [see, e.g., J. Roy. Statist. Soc. Ser. B 63
(2001) 127–146, Ann. Statist. 33 (2005) 1983–2021, Feynman–Kac Formu-
lae. Genealogical and Interacting Particle Systems with Applications (2004)
Springer, Ann. Statist. 32 (2004) 2385–2411], the large-sample theory of
these approximations remains a question of central interest. In this paper we
establish a law of large numbers and a central limit theorem as the number
of particles gets large. We introduce the concepts of weighted sample con-
sistency and asymptotic normality, and derive conditions under which the
transformations of the weighted sample used in the SMC algorithm preserve
these properties. To illustrate our findings, we analyze SMC algorithms to ap-
proximate the filtering distribution in state-space models. We show how our
techniques allow to relax restrictive technical conditions used in previously
reported works and provide grounds to analyze more sophisticated sequential
sampling strategies, including branching, resampling at randomly selected
times, and so on.

1. Introduction. Sequential Monte Carlo (SMC) refer to a class of methods
designed to approximate a sequence of probability distributions over a sequence
of probability space by a set of points, termed particles that each have an assigned
non-negative weight and are updated recursively in time. SMC methods can be
seen as a combination of the sequential importance sampling introduced method
in [8] and the sampling importance resampling algorithm proposed in [9]. In the
importance sampling step, the particles are propagated forward in time using pro-
posal kernels and their importance weights are updated taking into account the
targeted distribution. In the resampling or the branching step, particles multiply or
die depending on their importance weights. Many algorithms have been proposed
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since, which differ in the way the particles and the importance weights evolve and
adapt.

SMC methods have a long history in molecular simulations, where they have
been found to be one of the most powerful means for the simulation and opti-
mization of chain polymers (see, e.g., [10]). SMC methods have more recently
emerged as a key tool to solve on-line prediction/filtering/smoothing problems in
a dynamic system. Simple yet flexible SMC methods have been shown to over-
come the numerical difficulties and pitfalls typically encountered with traditional
methods based on approximate nonlinear filtering (such as the extended Kalman
filter or Gaussian-sum filters); see, for instance, [1, 2, 11, 12] and the references
therein. More recently, SMC methods have been shown to be a promising alterna-
tive to Markov chain Monte Carlo techniques for sampling complex distributions
over large dimensional spaces; see, for instance, [4] and [13].

In this paper we study the large sample properties of weighted particle approx-
imations as the number of particles tend to infinity. Because the particles interact
during the resampling/branching steps, they are not independent, which make the
analysis of particle approximation a challenging area of research. This topic has
attracted in recent years a great deal of efforts, making it a daunting task to give
credit to every contributor. The first rigorous convergence result was obtained in
[14], who established the almost-sure convergence of an elementary SMC algo-
rithm (the so-called bootstrap filter). A central limit theorem for this algorithm
was derived in [15] and later refined in [16]. The proof of the CLT was later sim-
plified and extended to more general SMC algorithms by [5] and [7]. Bounds on
the fluctuations of the particle approximations for different norms were reported
in [16], [17] and [18]. [6] provides an up-to-date and thorough coverage of recent
theoretical developments in this area.

With few exceptions (see [7] and, to a lesser extent, [5] and [18]), these results
apply under simplifying assumptions on the way importance sampling and resam-
pling/branching is performed, which restrict the scope of applicability of the results
only to the most elementary SMC implementations. In particular, all these results
assume that resampling/branching is performed at each iteration, which implies
that the weights are not propagated. This is clearly an annoying limitation since it
has been noticed by many practitioners that resampling the particle system at each
time step is most often not a clever choice.

The main purpose of this paper is to derive an asymptotic theory of weighted
system of particles. To the best of our knowledge, limit theorems for such weighted
approximations were only considered in [11], who mostly sketched consistency
proofs. In this paper we establish both the law of large numbers and central limit
theorems, under assumptions that are presumably closed from being minimal.
These results apply not only to the many different implementations of the SMC
algorithms, including rather sophisticated schemes such as the resample and move
algorithm [19] or the auxiliary particle filter by [20], but they also cover resampling
schedules (when to resample) that can be either deterministic or dynamic, that is,
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based on the distribution of the importance weights at the current iteration. They
also cover sampling schemes that can be either simple random sampling (with
weights) or also residual sampling [11] or auxiliary sampling [20]. We do not im-
pose a specific structure on the sequence of the target probability measure; there-
fore, our results apply not only to sequential filtering or smoothing of state-space
contexts, but also to recent algorithms developed for a population Monte-Carlo or
for molecular simulation.

The paper is organized as follows. In Section 2 we introduce the definitions of
weighted sample consistency and asymptotic normality; we then discuss the con-
ditions upon which consistency or/and asymptotic normality of a weighted sample
is preserved by the importance sampling, resampling and branching steps. In Sec-
tion 3.2 we apply the result to the estimation of the joint smoothing distribution
for a state-space model. In particular, we establish a central limit theorem for a
SMC method involving a dynamic resampling scheme. These results are based on
new results on conditional limit theorems for a triangular array of dependent data
which are established in Appendix A.

2. Notation and main results.

2.1. Notation. All the random variables are defined on a common probability
space (�,F ,P). A state space X is said to be general if it is equipped with a
countably generated σ -field B(X). For a general state space X, we denote by P (X)

the set of probability measures on (X,B(X)) and B(X) [resp. B
+(X)] the set of

all B(X)/B(R)-measurable (resp. nonnegative) functions from X to R equipped
with the Borel σ -field B(R). A subset C ⊆ X is said to be proper if the following
conditions are satisfied: (i) C is a linear space: for any f and g in C and reals α

and β , αf +βg ∈ C; (ii) if g ∈ C and f is measurable with |f | ≤ |g|, then |f | ∈ C;
(iii) for all c, the constant function f ≡ c belongs to C.

For any μ ∈ P (X) and f ∈ B(X) satisfying
∫

X μ(dx)|f (x)| < ∞, μ(f ) denotes∫
X f (x)μ(dx). Let X and Y be two general state spaces. A kernel V from (X,B(X))

to (Y,B(Y)) is a map from X × B(Y) into [0,1] such that, for each A ∈ B(Y),
x �→ V (x,A) is a nonnegative bounded measurable function on X and, for each
x ∈ X, A �→ V (x,A) is a measure on B(Y). We say that V is finite if V (x,Y) < ∞
for any x ∈ X; it is Markovian if V (x,X) ≡ 1 for any x ∈ X. For any function
f ∈ B(X × Y) such that

∫
Y V (x, dy)|f (x, y)| < ∞, we denote by V (·, f ) or Vf (·)

the function x �→ V (x,f )
def= ∫

Y V (x, dy)f (x, y). For ν a measure on (X,B(X)),
we denote by νV the measure on (Y,B(Y)) defined for any A ∈ B(Y) by νV (A) =∫

X ν(dx)V (x,A).
Throughout the paper, we denote by �, μ a probability measure on (�,B(�)),

{MN }N≥0 a sequence integer-valued random variable, C a proper subset of �.
We approximate the probability measure μ by points ξN,i ∈ �, i = 1, . . . ,MN

associated to nonnegative weights ωN,i ≥ 0.
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DEFINITION 1. A weighted sample {(ξN,i,ωN,i)}MN

i=1 on � is said to be con-
sistent for the probability measure μ and the (proper) set C if, for any f ∈ C, as

N → ∞, �−1
N

∑MN

i=1 ωN,if (ξN,i)
P−→ μ(f ) and �−1

N maxMN

i=1 ωN,i
P−→ 0, where

�N = ∑MN

i=1 ωN,i .

This definition of weighted sample consistency is similar to the notion of prop-
erly weighted sample introduced in [11]. The difference stems from the smallness
condition which states that the contribution of each individual term in the sum
vanishes in the limit as N → ∞.

We denote by γ a finite measure on (�,B(�)), with A and W proper sets of �,
and σ a real nonnegative function on A, and {aN } a nondecreasing real sequence
diverging to infinity.

DEFINITION 2. A weighted sample {(ξN,i,ωN,i)}MN

i=1 on � is said to be as-
ymptotically normal for (μ,A,W, σ, γ, {aN }) if

aN�−1
N

MN∑
i=1

ωN,i{f (ξN,i) − μ(f )} D−→ N{0, σ 2(f )} for any f ∈ A,(1)

a2
N�−2

N

MN∑
i=1

ω2
N,if (ξN,i)

P−→ γ (f ) for any f ∈ W,(2)

aN�−1
N max

1≤i≤MN

ωN,i
P−→ 0.(3)

Note that these definitions implicitly imply that the sets C, A and W are proper.
To analyze the sequential Monte Carlo methods discussed in the Introduction,

we now need to study how the importance sampling and the resampling steps affect
the consistent or/and asymptotically normal weighted sample.

2.2. Importance sampling. We will show that the importance sampling step
transforms a weighted sample consistent (or asymptotically normal) for a distri-
bution ν on a general state space (�,B(�)) into a weighted sample consistent
(or asymptotically normal) for a distribution μ on (�̃,B(�̃)). Let L be a Markov
kernel from (�,B(�)) to (�̃,B(�̃)) such that, for any f ∈ B(�̃),

μ = νLf

νL(�̃)
.(4)

We wish to transform a weighted sample {(ξN,i,ωN,i)}MN

i=1 targeting the distrib-

ution ν on (�,B(�)) into a weighted sample {(ξ̃N,i, ω̃N,i)}M̃N

i=1 targeting μ on
(�̃,B(�̃)), where M̃N = αMN (α denoting the number of offsprings of each par-
ticle). The use of multiple offsprings has been suggested by [9]: when the impor-
tance sampling step is followed by a resampling step, an increase in the number of
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distinct particles will increase the number of distinct particles after the resampling
step. In the sequential context, this operation is a practical mean for contending
particle impoverishment. These offsprings are proposed using a Markov kernel
denoted R from (�,B(�)) to (�̃,B(�̃)). We assume that, for any ξ ∈ �, the
probability measure L(ξ, ·) on (�̃,B(�̃)) is absolutely continuous with respect
to R, which we denote L(ξ, ·) 
 R(ξ, ·) and define

W(ξ, ξ̃ )
def= dL(ξ, ·)

dR(ξ, ·)(ξ̃ ).(5)

The new weighted sample {(ξ̃N,i, ω̃N,i)}M̃N

i=1 is constructed as follows. We draw

new particle positions {ξ̃N,j }M̃N

j=1 conditionally independent, given

FN,0
def= σ(MN, {(ξN,i,ωN,i)}MN

i=1),(6)

with distribution given for i = 1, . . . ,MN , k = 1, . . . , α and A ∈ B(�̃) by

P
(
ξ̃N,α(i−1)+k ∈ A|FN,0

) = R(ξN,i,A),(7)

and associate to each new particle positions the importance weight

ω̃N,α(i−1)+k = ωN,iW
(
ξN,i, ξ̃N,α(i−1)+k

)
,(8)

for i = 1, . . . ,MN and k = 1, . . . , α. The importance sampling step is unbiased in
the sense that, for any f ∈ B(�̃) and i = 1, . . . ,MN ,

αi∑
j=α(i−1)+1

E[ω̃N,jf (ξ̃N,j )|FN,j−1] = αωN,iL(ξN,i, f ),(9)

where for j = 1, . . . , M̃N , FN,j
def= FN,0 ∨ σ({ξ̃N,l}1≤l≤j ). The following theo-

rems state conditions under which the importance sampling step described above
preserves the weighted sample consistency. Denote by

C̃
def= {f ∈ L1(�̃,μ),L(·, |f |) ∈ C}.(10)

THEOREM 1. Assume that the weighted sample {(ξN,i,ωN,i)}MN

i=1 is consistent
for (ν,C) and that L(·, �̃) belongs to C. Then, the set C̃ defined in (10) is a proper

set and the weighted sample {(ξ̃N,i , ω̃N,i)}M̃N

i=1 defined by (7) and (8) is consistent
for (μ, C̃).

We now turn to prove the asymptotic normality. Define

Ã
def= {f :L(·, |f |) ∈ A,R(·,W 2f 2) ∈ W},

(11)
W̃

def= {f :R(·,W 2|f |) ∈ W}.
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THEOREM 2. Suppose that the assumptions of Theorem 1 hold. Assume in
addition, that the weighted sample {(ξN,i,ωN,i)}MN

i=1 is asymptotically normal for
(ν, A, W, σ, γ, {aN }), and that the function R(·,W 2) belongs to W.

Then, the sets Ã and W̃ defined in (11) are proper and the weighted sample

{(ξ̃N,i , ω̃N,i)}M̃N

i=1 is asymptotically normal for (μ, Ã, W̃, σ̃ , γ̃ , {aN }) with γ̃ (f )
def=

α−1γR(W 2f )/(νL(�̃))2 and

σ̃ 2(f )
def= σ 2{L[f − μ(f )]}/(νL(�̃))2

+ α−1γR
{[

W [f − μ(f )] − R
(·,W [f − μ(f )])]2}

/(νL(�̃))2.

2.3. Resampling. Resampling converts a weighted sample {(ξN,i,ωN,i)}MN

i=1

targeting a distribution ν(�,B(�)) into an equally weighted sample {(ξ̃N,i,1)}M̃N

i=1
targeting the same distribution ν. The resampling step is an essential ingredient in
the sequential context because it removes particles with small weights and pro-
duces multiple copies of particles with large weights. Denote by GN,i the number
of times the ith particle is replicated. The number of particles after resampling
M̃N = ∑MN

i=1 GN,i is supposed to be an FN,0-measurable integer-valued random
variable, where FN,0 is given in (6); it might differ from the initial number of par-
ticles MN , but will generally be a (deterministic) function of it. There are many
different resampling procedures described in the literature. The simplest is the
multinomial resampling, in which the distribution of (GN,1, . . . ,GN,MN

) condi-
tionally to FN,0 is multinomial:

(GN,1, . . . ,GN,MN
)|FN,0 ∼ Mult(M̃N, {�−1

N ωN,i}MN

i=1).(12)

Another possible solution is the deterministic-plus-residual multinomial resam-
pling, introduced in [21]. Denote by x� the integer part of x and by 〈x〉 denote

the fractional part of x, 〈x〉 def= x − x�. This scheme consists in retaining at
least �−1

N M̃NωN,i�, i = 1, . . . ,MN , copies of the particles and then reallocat-
ing the remaining particles by applying the multinomial resampling procedure
with the residual importance weights defined as 〈M̃N�−1

N ωN,i〉, that is, GN,i =
�−1

N M̃NωN,i� + HN,i , where

(HN,1, . . . ,HN,MN
)|FN,0

(13)

∼ Mult

(
MN∑
i=1

〈�−1
N M̃NωN,i〉,

{ 〈�−1
N M̃NωN,i〉∑MN

i=1〈�−1
N M̃NωN,i〉

}MN

i=1

)
.

If the weighted sample {(ξN,i,ωN,i)}MN

i=1 is consistent for (ν,C), where C is a
proper subset of B(X), it is a natural question to ask whether the uniformly

weighted sample {(ξ̃N,i,1)}M̃N

i=1 is consistent for ν and, if so, what an appropri-
ately defined class of functions on � might be. It happens that a fairly general
result can be obtained in this case.
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THEOREM 3. Assume that the weighted sample {(ξN,i, ωN,i)}MN

i=1 is consis-

tent for (ν,C). Then, the uniformly weighted sample {(ξ̃N,i , 1)}M̃N

i=1 obtained using
either (12) or (13) is consistent for (ν,C).

It is also sensible to strengthen the requirement of consistency into asymptotic
normality, and prove that the resampling procedures (12) and (13) transform an as-
ymptotically normal weighted sample for ν into an asymptotically normal sample
for ν. We consider first the multinomial sampling algorithm. We define

Ã
def= {f ∈ A, f 2 ∈ C},(14)

THEOREM 4. Assume the following:

(i) {(ξN,i,ωN,i)}MN

i=1 is consistent for (ν,C) and asymptotically normal for (ν,

A, W, σ, γ, {aN }); in addition, a−2
N MN

P−→ β−1 for some β ∈ [0,∞).

(ii) M̃N is FN,0-measurable, where FN,0 is defined in (6), and M̃N/MN
P−→ 


where 
 ∈ [0,∞].
Then Ã is a proper set and the equally weighted particle system {(ξ̃N,i ,1)}M̃N

i=1 ob-
tained using (12) is asymptotically normal for (ν, Ã,C, σ̃ , γ̃ , {aN }) with σ̃ 2(f ) =
β
−1 Varν(f ) + σ 2(f ) and γ̃ = β
−1ν.

The analysis of the deterministic-plus-multinomial residual sampling is more
involved. To carry out the analysis, it is required to consider situations where the
importance weights are a function of the particle position, that is, ωN,i = �(ξN,i),
where � ∈ B

+(�). This condition is fulfilled in most applications of sequential
Monte Carlo methods and should therefore not be considered as a stringent lim-
itation. For 
 ∈ R

+, and ν a probability measure on �, define ν
,� the measure

ν
,�(f ) = ν(
〈
ν(�−1)�〉

ν(�−1)�

f ) for f ∈ B
+(�).

THEOREM 5. Assume the following:

(i) {(ξN,i,�(ξN,i))}MN

i=1 is consistent for (ν,C) and asymptotically normal for

(ν, A, W, σ, γ, {aN }); in addition, a−2
N MN

P−→ β−1 for some β ∈ [0,∞).

(ii) M̃N is FN,0-measurable, where FN,0 is defined in (6), and M̃N/MN
P−→ 


where 
 ∈ [0,∞].
(iii) �−1 ∈ C, and ν(
ν(�−1)� ∈ N ∪ {∞}) = 0.

Then, the uniformly weighted sample {(ξ̃N,i,1)}M̃N

i=1 obtained using (13) is asymp-

totically normal for (ν, Ã,C, σ̃ , γ̃ , {aN }), where Ã is given by (14), γ̃
def= β
−1ν,

and

σ̃ 2(f )
def= β
−1ν
,�

{(
f − ν
,�(f )/ν
,�(1)

)2} + σ 2(f ) for f ∈ Ã.
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REMARK 1. Because 〈
ν(�−1)�〉/
ν(�−1)� ≤ 1, for any f ∈ Ã,

ν
,�

{(
f − ν
,�(f )/ν
,�(1)

)2} = inf
c∈R

ν
,�{(f − c)2}

≤ inf
c∈R

ν{(f − c)2} = Varν(f ),

showing that the variance of the residual-plus-deterministic sampling is always
lower than that of the multinomial sampling. These results extend [7], Theorem 2
to derive an expression of the variance of the residual sampling in a specific case.
Note, however, the assumption Theorem 5(iii) is missing in the statement of [7],
Theorem 2. This assumption cannot be relaxed, as shown in Appendix D.

2.4. Branching. Branching procedures have been considered as an alterna-
tive to resampling procedure (see [16, 22, 23] and [6], Chapter 11); these proce-
dures are easier to implement than resampling and are popular among practition-
ers. In the branching procedures, the number of times each particle is replicated
(GN,1, . . . ,GN,MN

) are independent conditionally to FN,0 and are distributed in
such a way that E[GN,i |FN,0] = m̃N�−1

N ωN,i , i = 1, . . . ,MN , where m̃N is the
targeted number of particles, assumed to be a FN,0 random variable. Most often,
m̃N is chosen to be a deterministic function of the current number of particles
MN , for example, m̃N = MN or m̃N = N (in which case we target a “determin-
istic” number of particles). Contrary to the resampling procedures, the number
of particles M̃N after branching is no longer FN,0-measurable, that is, the actual
number of particles M̃N is different from the targeted number m̃N and cannot be
predicted before the branching numbers {GN,i}MN

i=1 are drawn. There are of course
many different ways to select the branching numbers. In the Poisson branching,
the branching numbers {GN,i}MN

i=0 are conditionally independent given FN,0 with

Poisson distribution with parameters {m̃N�−1
N ωN,i}MN

i=1,

{GN,i}MN

i=1|FN,0 ∼
MN⊗
i=1

Pois(m̃N�−1
N ωN,i),(15)

where ⊗ denotes the tensor product of measures. Similarly, in the binomial branch-
ing, the branching numbers {GN,i}MN

i=0 are conditionally independent given FN,0

with binomial distribution of parameters {(m̃N ,�−1
N ωN,i)}MN

i=1,

{GN,i}MN

i=1|FN,0 ∼
MN⊗
i=1

Bin(m̃N ,�−1
N ωN,i),(16)

The third branching algorithm, referred to as the Bernoulli branching algorithm,
shares similarities with the deterministic-plus-residual multinomial sampling. In
this case, for each ith, m̃N�−1

N ωN,i� are retained; to correct for the truncation,
an additional particle is eventually added, that is, GN,i = m̃N�−1

N ωN,i� + HN,i ,
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where {HN,i}MN

i=1 are conditionally independent given FN,0 with Bernoulli distrib-

ution of parameter {〈m̃N�−1
N ωN,i〉}MN

i=1,

GN,i = m̃N�−1
N ωN,i� + HN,i,

(17)

{HN,i}MN

i=1|FN,0 ∼
MN⊗
i=1

Ber(〈m̃N�−1
N ωN,i〉).

As above, it may be shown that these branching algorithms preserve consistency.

THEOREM 6. Assume that the weighted sample {(ξN,i, ωN,i)}MN

i=1 is consistent

for (ν,C). Then, M̃N/m̃N
P−→ 1 and the uniformly weighted sample {(ξ̃N,i , 1)}M̃N

i=1
obtained using either (15), (16) and (17) is consistent for (ν,C).

We may also strengthen the conditions to establish the asymptotic normality.
For the Poisson and the binomial branching, the asymptotic normality is satisfied
under almost the same conditions as for the multinomial sampling (see Theorem
4); in addition, the asymptotic variance of these procedures are equal.

THEOREM 7. Assume the following:

(i) {(ξN,i,ωN,i)}MN

i=1 is consistent for (ν,C) and asymptotically normal for (ν,

A, W, σ, γ, {aN }); in addition, a−2
N MN

P−→ β−1 for some β ∈ [0,∞).

(ii) m̃N is FN,0-measurable, where FN,0 is defined in (6), and M−1
N m̃N

P−→ 


where 
 ∈ [0,∞].
Then the equally weighted particle system {(ξ̃N,i,1)}M̃N

i=1 obtained using either (15)

or (16) is asymptotically normal for (ν, Ã, C, σ̃ , γ̃ , {aN }), with Ã
def= {f,f 2 ∈

C ∩ W}, σ̃ 2(f ) = β
−1 Varν(f ) + σ 2(f ), and γ̃ = β
−1ν.

We now consider the case of the Bernoulli branching. As for the deterministic-
plus-residual sampling, it is here required to assume that the weights are a function
of the particle positions, that is, ωN,i = �(ξN,i).

THEOREM 8. Assume the following:

(i) {(ξN,i,�(ξN,i))}MN

i=1 is consistent for (ν,C) and asymptotically normal for

(ν, A, W, σ, γ, {aN }); in addition, a−2
N MN

P−→ β−1 for some β ∈ [0,∞).

(ii) m̃N is FN,0-measurable, where FN,0 is defined in (6), and m̃N/MN
P−→ 


where 
 ∈ [0,∞],
(iii) �−1 ∈ C, and ν(
ν(�−1)� ∈ N ∪ {∞}) = 0.
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Then, the uniformly weighted sample {(ξ̃N,i ,1)}M̃N

i=1 defined by (17) is asymptoti-

cally normal for (ν, Ã,C, σ̃ , γ̃ , {aN }), where Ã
def= {f ∈ A, (1 + �)f 2 ∈ C}, γ̃ def=

β
−1ν, and

σ̃ 2(f )
def= β
−1ν

(〈
ν(�−1)�〉(1 − 〈
ν(�−1)�〉)

ν(�−1)�

(f − νf )2
)

+ σ 2(f ),

f ∈ Ã.

REMARK 2. Since 〈
ν(�−1)�〉(1−〈
ν(�−1)�〉)

ν(�−1)�

≤ 1, the asymptotic variance of
the Bernoulli branching is always lower than the asymptotic variance of the
multinomial resampling. Compared with the deterministic-plus-residual sampling,
the two quantities are not ordered uniformly w.r.t. f .

3. Applications.

3.1. Fractional reweighting. It has been advocated (see, e.g., [24]) that it
could be advantageous when resampling to keep a fraction of the weight. The
success of this approach has been mainly motivated on heuristic grounds. The
results developed above allow to easily obtain an expression of the asymptotic
variance of this scheme. The procedure goes as follows. Let ν be a distribution on
(�,B(�)) and assume that the weighted sample {(ξN,i,�(ξN,i))}MN

i=1 targets ν.
Let κ ∈ [0,1]. In a first step, we modify the weight pattern, that is, we consider the
weighted sample {(ξN,i,�

1−κ(ξN,i))}MN

i=1. This weighted sample targets the distri-

bution νκ(·) def= ν(�−κ ·)/ν(�−κ). In a second step, we resample the weighted sam-
ple {(ξN,i,�

1−κ(ξN,i))}MN

i=1. Resampling produces an equally weighted sample de-

noted {(ξ̃N,i,1)}MN

i=1, also targeting νκ . To state the results, we consider multino-
mial resampling, but similar results can be obtained for other forms of resampling
and branching. In a third step, we affect to the resampled particles the weights
�κ(ξ̃N,i), that is, we consider the weighted sample {(ξ̃N,i ,�

κ(ξ̃N,i))}MN

i=1, which
obviously targets ν.

Provided that {(ξN,i,�(ξN,i))}MN

i=1 is asymptotically normal for ν, the following

result shows that {(ξ̃N,i,�
κ(ξ̃N,i))}MN

i=1 is also asymptotically normal and provides
an explicit expression for the asymptotic variance.

THEOREM 9. Assume that {(ξN,i,�(ξN,i))}MN

i=1 is consistent for (ν,C) and
asymptotically normal for (ν,A,W, σ, γ, {aN }). Assume, in addition, that a−2

N ×
MN

P−→ β and that �κ,�−κ ∈ C, �−2κ ∈ W. Then, {(ξ̃N,i ,�
κ(ξ̃N,i))}MN

i=1 is con-
sistent for (ν,C) and asymptotically normal for (ν,Aκ,Wκ, σκ, γκ, {aN }), where

Aκ
def= {f ∈ A, f 2 ∈ W, f 2�κ ∈ C}, Wκ

def= {f :�κf ∈ C}, γκ(·) def= βν(�−κ)ν(�κ ·)
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and

σ 2
κ (f )

def= βν(�−κ)ν
[
�κ(

f − ν(f )
)2] + σ 2[f − ν(f )].

PROOF. The proof follows by applying Theorems 1 and 2 [with R(ξ, dξ̃ ) =
δξ (dξ̃ ), L(ξ, dξ̃ ) = �−κ(ξ)δξ (dξ̃ ) and α = 1] to show the consistency and as-
ymptotic normality of the weighted sample {(ξN,i,�

1−κ(ξN,i))}MN

i=1, then Theo-
rems 3 and 4 to prove the consistency and asymptotic normality of the equally
weighted sample {(ξ̃N,i,1)}MN

i=1 and again Theorems 1 and 2 [this time with
R(ξ, dξ̃ ) = δξ (dξ̃ ), L(ξ, dξ̃ ) = �κ(ξ)δξ (dξ̃ ) and α = 1] to prove the asymptotic
normality of {(ξ̃N,i,�

κ(ξ̃N,i))}MN

i=1. �

The asymptotic variance of the weighted sample {(ξ̃N,i ,�
κ(ξ̃N,i))}MN

i=1 after
“weighted” resampling is higher than the variance σ 2 of the “original” weighted
sample {(ξN,i,�(ξN,i))}MN

i=1. There is no obvious “optimal” choice for the expo-
nent κ , and it is easy to find functions f for which “unweighted” resampling per-
forms better. For example, assume that {ξN,i}1≤i≤MN

is an i.i.d. sample from a
distribution with density f (x) ∝ exp(−x2/2 − |x|) and take �(x) = exp |x|; ν is
the Gaussian distribution N (0,1). Take fa,b = 1{a ≤ |X| ≤ a + b} for a, b > 0.
Then, ν(fa,b) = 0 and by straightforward calculation,

dσ 2
κ (fa,b)

dκ

∣∣∣∣
κ=0

= βν(1{a ≤ |X| ≤ a + b})
(
−ν(|X|) + ν(|X|1{a ≤ |X| ≤ a + b})

ν(1{a ≤ |X| ≤ a + b})
)
,

which can thus be negative or positive depending on the values of a and b.

3.2. State-space models. In this section we apply the results to state-space
models (see, e.g., [2], Chapters 3, 4 and [3] for an introduction to that field). The
state process {Xk}k≥1 is a Markov chain on a general state space X with initial
distribution χ and kernel Q. The observations {Yk}k≥1 take values in Y that are
independent conditionally on the state sequence {Xk}k≥1; in addition, there ex-
ists a measure λ on (Y,B(Y)), and a transition density function x �→ g(x, y), re-
ferred to as the likelihood, such that P(Yk ∈ A|Xk = x) = ∫

A g(x, y)λ(dy), for all
A ∈ Y. The kernel Q and the likelihood functions x �→ g(x, y) are assumed to be
known. These quantities could be time-dependent. The (joint) smoothing distribu-
tion φχ,k(y1:k, ·) is defined as

φχ,k(y1:k, f )
def= E[f (X1:k)|Y1:k = y1:k], f ∈ B(Xk),(18)

where for any sequence {ai}1≤i≤k , a1:k def= (a1, . . . , ak). We shall consider the case
in which the observations have an arbitrary but fixed value y1:k and denote gk(x) =
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g(x, yk). In the Monte Carlo framework, we approximate the posterior distribution
φχ,k using a weighted sample {(ξ (k)

N,i,ω
(k)
N,i)}1≤k≤MN

, where ξ
(k)
N,i ∈ Xk . ξ

(k)
N,i are

referred to as path particles in the literature; see [6].
We will apply the results presented in Section 2. It is first required to de-

fine a transition kernel Lk−1 satisfying (4) with ν = φχ,k−1, (�,B(�)) =
(Xk−1,B(Xk−1)), μ = φχ,k and (�̃,B(�̃)) = (Xk,B(Xk)), that is, for any f ∈
B

+(Xk),

φχ,k(f ) =
∫ · · · ∫ φχ,k−1(dx1:k−1)Lk−1(x1:k−1, dx̃1:k)f (x̃1:k)∫ · · · ∫ φχ,k−1(dx1:k−1)Lk−1(dx1:k−1,Xk)

.(19)

In the second step, we must choose a proposal kernel Rk−1 satisfying

Lk−1(x1:k−1, ·) 
 Rk−1(x1:k−1, ·) for any x1:k−1 ∈ Xk−1.(20)

We proceed from the weighted sample {(ξ (k−1)
N,i ,ω

(k−1)
N,i )}MN

i=1 targeting φχ,k−1 to

{(ξ (k)
N,i ,ω

(k)
N,i)}MN

i=1 targeting φχ,k as follows. To keep the discussion simple, it is
assumed that each particle gives birth to a single offspring. In the proposal step,
we draw {ξ̃ (k)

N,i}MN

i=1 conditionally independent given F (k−1)
N with distribution given,

for any f ∈ B
+(Xk), by

E
[
f

(
ξ̃

(k)
N,i

)|F (k−1)
N

] = R(k−1)

(
ξk−1
N,i , f

)
(21)

=
∫

· · ·
∫

Rk−1
(
ξ

(k−1)
N,i , dx1:k

)
f (x1:k),

where i = 1, . . . ,MN . Next we assign to the particle ξ̃
(k)
N,i , i = 1, . . . ,MN , the

importance weight ω̃
(k)
N,i = ω

(k−1)
N,i Wk−1(ξ

(k−1)
N,i , ξ̃

(k)
N,i) with

Wk−1(x1:k−1, x̃1:k) = dLk−1(x1:k−1, ·)
dRk−1(x1:k−1, ·)(x̃1:k).(22)

Instead of resampling at each iteration (which is the assumption upon which most
of the asymptotic analysis have been carried out so far), we rejuvenate the particle
system only when the importance weights are too skewed. As discussed in [25],
Section 4 a sensible approach is to control the coefficient of variations of weights,
defined by

[
CV(k)

N

]2 def= 1

MN

MN∑
i=1

(
MNω̃

(k)
N,i/�̃

(k)
N − 1

)2
.

The coefficient of variation is minimal when the normalized importance weights
ω̃

(k)
N,i/�̃

(k)
N , i = 1, . . . ,MN , are all equal to 1/MN , in which case CV(k)

N = 0. The

maximal value of CV(k)
N is

√
MN − 1, which corresponds to one of the normalized

weights being one and all others being null. Therefore, the coefficient of variation
is often interpreted as a measure of the number of ineffective particles.



2356 R. DOUC AND E. MOULINES

When the coefficient of variation CV(k)
N ≥ κ falls below a threshold κ , that

is, we draw I
N,1
k , . . . , I

N,MN

k conditionally independent given F̃ (k)
N = F (k−1)

N ∨
σ({ξ̃ (k)

N,i , ω̃
(k)
N,i}MN

i=1), with distribution

P
(
I

N,i
k = j |F̃ (k)

N

) = ω̃
(k)
N,i/�̃

(k)
N , i = 1, . . . ,MN, j = 1, . . . ,MN(23)

and we set ξ̄
(k)
N,i = ξ̃

(k)

N,I
N,i
k

and ω̃
(k)
N,i = 1 for i = 1, . . . ,MN . If CV(k)

N < κ , we copy

the path particles: for i = 1, . . . ,MN ,(
ξ

(k)
N,i,ω

(k)
N,i

) = (
ξ̃

(k)
N,i , ω̃

(k)
N,i

)
1
{
CV(k)

N ≤ κ
} + (

ξ̄
(k)
N,i ,1

)
1
{
CV(k)

N > κ
}
.(24)

In both cases, we set F̃ (k)
N = F (k)

N ∨ σ({(ξ (k)
N,i ,ω

(k)
N,i)}MN

i=1. We consider here only
multinomial resampling, but the deterministic-plus-residual sampling or branching
alternatives can be applied as well.

THEOREM 10. For any k > 0, let Lk and Rk be transition kernels from
(Xk,B(Xk)) to (Xk+1,B(Xk+1)) satisfying (19) and (20), respectively. Assume
that the equally weighted sample {(ξ (1)

N,i ,1)}MN

i=1 is consistent for {φχ,1,L1(X,

φχ,1)} and asymptotically normal for (φχ,1,A1,W1, σ1, φχ,1, {M1/2
N }), where A1

and W1 are proper sets, and define recursively (Ak) and (Wk) by

Ak
def= {f ∈ L2(Xk, φχ,k), Lk−1(·, f ) ∈ Ak−1,Rk−1(·,W 2

k−1f
2) ∈ Wk−1},

Wk
def= {f ∈ L1(Xk, φχ,k), Rk−1(·,W 2

k−1|f |) ∈ Wk−1}.
Assume, in addition, that, for any k ≥ 1, Rk(·,W 2

k ) ∈ Wk . Then for any k ≥ 1, (Ak)

and (Wk) are proper sets and {(ξk
N,i ,ω

k
N,i)}MN

i=1 is consistent for {φχ,k,L1(X, φχ,k)}
and asymptotically normal for (φχ,k,Ak,Wk, σk, γk, {M1/2

N }), where the functions
σk and the measure γk are given by

σ 2
k (f ) = εk Varφχ,k

(f )

+ σ 2
k−1(Lk−1fχ,k) + γk−1Rk−1[{Wk−1fχ,k − Rk−1(·,Wk−1fχ,k)}2]

{φχ,k−1Lk−1(Xk)}2

γk(f ) = εkφχ,k + (1 − εk)
γk−1Rk−1(W

2
k−1f )

[φχ,k−1Lk−1(Xk)]2 ,

where fχ,k
def= f − φχ,k(f ),Wk is defined in (22), and

εk
def= 1{[φχ,k−1Lk−1(X

k)]−2γk−1Rk−1(W
2
k−1) ≥ 1 + κ2}.

PROOF. The proof follows by induction. Assume that for some k > 1, the
weighted sample {(ξ (k−1)

N,i ,ω
(k−1)
N,i )}MN

i=1 is consistent for {φχ,k−1,L1(X, φχ,k−1)}
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and asymptotically normal for (φχ,k−1,Ak−1,Wk−1, σk−1, γk−1, {M1/2
N }). By The-

orems 1 and 2, (ξ̃
(k)
N,i, ω̃

(k)
N,i)

MN

i=1 is consistent for {φχ,k,L1(X, φχ,k)} and as-

ymptotically normal for (φχ,k, Ãk, W̃k, σ̃k, γ̃k, {M1/2
N }), where Ãk, W̃k, σ̃k, γ̃k , are

defined from Ak,Wk, σk, γk , using Theorem 2. And by Theorems 3 and 4,
(ξ̄

(k)
N,i,1)

MN

i=1 is consistent for {φχ,k,L1(X, φχ,k)} and asymptotically normal for

(φχ,k, Āk, W̄k, σ̄k, γ̄k, {M1/2
N }), where Āk, W̄k, σ̄k, γ̄k , are defined from Ãk, W̃k, σ̃k,

γ̃k , using Theorem 4. The asymptotic normality of (ξ̃
(k)
N,i , ω̃

(k)
N,i)

MN

i=1 and (ξ̄
(k)
N,i ,1)

MN

i=1,
combined with

[
CV(k)

N

]2 = MN

MN∑
i=1

(
ω̃k

N,i

�̃k
N

)2

− 1
P−→ γ̃k(1) − 1 and εk = 1{γ̃k(1) − 1 > κ2},

complete the proof. �

APPENDIX A: CONDITIONAL LIMITS THEOREMS FOR TRIANGULAR
ARRAY OF DEPENDENT RANDOM VARIABLES

In this section we derive limit theorems for triangular arrays of dependent
random variables with a random number of terms. Let (�,F ,P) be a prob-
ability space, let X be a random variable, and let G be a sub-σ field of F .

Define X+ def= max(X,0) and X− def= −min(X,0). Following [26], Section II.7,
if min(E[X+|G],E[X−|G]) < ∞,P -a.s., the generalized conditional expectation
of X given G is defined by E[X|G] = E[X+|G] − E[X−|G], where, on the P-
null-set of sample points for which E[X+|G] = E[X−|G] = ∞, the difference
E[X+|G] − E[X−|G] is given an arbitrary value, for instance, zero. Let {MN }N≥0

be a sequence of random positive integers, {UN,i}MN

i=1 be a triangular array of ran-
dom variables, and {FN,i}0≤i≤MN

be a triangular array of sub-sigma-fields of F .
Throughout this section, it is assumed that (i) MN is FN,0-measurable, and (ii)
FN,i−1 ⊆ FN,i and for each N and i = 1, . . . ,MN , UN,i is FN,i -measurable.

THEOREM A.1. Assume that E[|UN,j ||FN,j−1] < ∞ P-a.s. for any N and
any j = 1, . . . ,MN , and

sup
N

P

(
MN∑
j=1

E[|UN,j ||FN,j−1] ≥ λ

)
→ 0 as λ → ∞(25)

MN∑
j=1

E[|UN,j |1{|UN,j | ≥ ε}|FN,j−1] P−→ 0 for any positive ε.(26)

Then, max1≤i≤MN
|∑i

j=1 UN,j − ∑i
j=1 E[UN,j |FN,j−1]| P−→ 0.
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PROOF. Assume first that for each N and each i = 1, . . . ,MN , UN,i ≥ 0, P-
a.s. By [27], Lemma 3.5, we have that, for any constants ε and η > 0,

P
[

max
1≤i≤MN

UN,i ≥ ε

]
≤ η + P

[
MN∑
i=1

P(UN,i ≥ ε|FN,i−1) ≥ η

]
.

From the conditional version of the Chebyshev identity,

P
[

max
1≤i≤MN

UN,i ≥ ε

]
≤ η + P

[
MN∑
i=1

E[UN,i1{UN,i ≥ ε}|FN,i−1] ≥ ηε

]
.(27)

Let ε and λ > 0 and define ŪN,i
def= UN,i1{UN,i < ε}1{∑i

j=1 E[UN,j |FN,j−1] <

λ}. For any δ > 0,

P

(
max

1≤i≤MN

∣∣∣∣∣
i∑

j=1

UN,j −
i∑

j=1

E[UN,j |FN,j−1]
∣∣∣∣∣ ≥ 2δ

)

≤ P

(
max

1≤i≤MN

∣∣∣∣∣
i∑

j=1

ŪN,j −
i∑

j=1

E[ŪN,j |FN,j−1]
∣∣∣∣∣ ≥ δ

)

+ P

(
max

1≤i≤MN

∣∣∣∣∣
i∑

j=1

UN,j − ŪN,j −
i∑

j=1

E[UN,j − ŪN,j |FN,j−1]
∣∣∣∣∣ ≥ δ

)
.

The second term in the RHS is bounded by

P
(

max
1≤i≤MN

UN,i ≥ ε

)
+ P

(
MN∑
j=1

E[UN,j |FN,j−1] ≥ λ

)

+ P

(
MN∑
j=1

E[UN,j 1{UN,j ≥ ε}|FN,j−1] ≥ δ

)
.

Equations (26) and (27) imply that the first and last terms in the last expression
converge to zero for any ε > 0 and (25) implies that the second term may be ar-
bitrarily small by choosing for λ sufficiently large. Now, by the Doob maximal
inequality,

P

(
max

1≤i≤MN

∣∣∣∣∣
i∑

j=1

ŪN,j − E[ŪN,j |FN,j−1]
∣∣∣∣∣ ≥ δ

)

≤ δ−2 E

[
MN∑
j=1

E
[
(ŪN,j − E[ŪN,j |FN,j−1])2|FN,0

]]
.
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This last term does not exceed

δ−2 E

[
MN∑
i=1

E[Ū2
N,j |FN,0]

]
≤ δ−2ε E

[
MN∑
j=1

E[ŪN,j |FN,0]
]

≤ δ−2ε E

[
MN∑
j=1

E[ŪN,j |FN,j−1]
]

≤ δ−2ελ.

Since ε is arbitrary, the proof follows for UN,j ≥ 0, P-a.s., for each N and

j = 1, . . . ,MN . The proof extends to an arbitrary triangular array {UN,j }MN

i=1 by

applying the preceding result to {U+
N,j }MN

i=1 and {U−
N,j }1≤j≤MN

. �

LEMMA A.2. Assume that for all N ,
∑MN

i=1 E[U2
N,i |FN,i−1] = 1, for i =

1, . . . ,MN , E[UN,i |FN,i−1] = 0 and for all ε > 0,

MN∑
i=1

E[U2
N,i1{|UN,i | ≥ ε}|FN,0] P−→ 0.(28)

Then, for any real u, E[exp(iu
∑MN

j=1 UN,j )|FN,0] − exp(−u2/2)
P−→ 0.

PROOF. Denote σ 2
N,i

def= E[U2
N,i |FN,i−1]. Write the following decomposition

(with the convention
∑b

j=a = 0 if a > b):

e
iu

∑MN
j=1 UN,j − e

−(u2/2)
∑MN

j=1 σ 2
N,j

=
MN∑
l=1

e
iu

∑l−1
j=1 UN,j

(
eiuUN,l − e

−(u2/2)σ 2
N,l

)
e
−(u2/2)

∑MN
j=l+1 σ 2

N,j .

Since
∑l−1

j=1 UN,j and
∑MN

j=l+1 σ 2
N,j = 1 − ∑l

j=1 σ 2
N,j are FN,l−1-measurable,∣∣∣∣∣E

[
exp

(
iu

MN∑
j=1

UN,j

)
− exp

(
−(u2/2)

MN∑
j=1

σ 2
N,j

)∣∣∣∣FN,0

]∣∣∣∣∣
(29)

≤
MN∑
l=1

E
[∣∣E[exp(iuUN,l)|FN,l−1] − exp(−u2σ 2

N,l/2)
∣∣|FN,0

]
.

For any ε > 0, it is easily shown that

E

[
MN∑
l=1

∣∣E[
exp(iuUN,l) − 1 + 1

2u2σ 2
N,l |FN,l−1

]∣∣|FN,0

]
(30)

≤ 1
6ε|u|3 + u2

MN∑
l=1

E[U2
N,l1{|UN,l | ≥ ε}|FN,0].
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Since ε > 0 is arbitrary, it follows from (28) that the RHS tends in probability to 0
as N → ∞. Finally, for all ε > 0,

E

[
MN∑
l=1

∣∣∣∣∣E
[
exp(−u2σ 2

N,l/2) − 1 + 1

2
u2σ 2

N,l |FN,l−1

]∣∣∣∣∣∣∣∣FN,0

]

≤ u4

8

MN∑
l=1

E[σ 4
N,l|FN,0] ≤ u4

8

(
ε2 +

MN∑
j=1

E[U2
N,j 1{|UN,j | ≥ ε}|FN,0]

)
.

(28) shows that the RHS of the previous equation tends in probability to 0 as
N → ∞. The proof follows. �

THEOREM A.3. Assume that for each N and i = 1, . . . ,MN , E[U2
N,i |

FN,i−1] < ∞ and
MN∑
i=1

{E[U2
N,i |FN,i−1] − (E[UN,i |FN,i−1])2} P−→ σ 2 for some σ 2 > 0,(31)

MN∑
i=1

E
[
U2

N,i1{|UN,i |≥ε}|FN,i−1
] P−→ 0 for any ε > 0.(32)

Then, for any real u,

E

[
exp

(
iu

MN∑
i=1

{UN,i − E[UN,i |FN,i−1]}
)∣∣∣FN,0

]
P−→ exp(−(u2/2)σ 2).(33)

PROOF. We first assume that E[UN,i |FN,i−1] = 0 for all i = 1, . . . ,MN , and

σ 2 = 1. Define the stopping time τN
def= max{1 ≤ k ≤ MN :

∑k
j=1 σ 2

N,j ≤ 1}, with

the convention max ∅ = 0. Put ŪN,k = UN,k for k ≤ τN , ŪN,k = 0 for τN < k ≤
MN and ŪN,MN+1 = (1−∑τN

j=1 σ 2
N,j )

1/2YN , where {YN } are N (0,1) independent
and independent of FN,MN

. Put
MN∑
j=1

UN,j =
MN+1∑
j=1

ŪN,j − ŪN,MN+1 +
MN∑

j=τN+1

UN,j .(34)

We will prove that (a) {ŪN,j }1≤j≤MN+1 satisfies the assumptions of Lemma A.2,

(b) ŪN,MN+1
P−→ 0, and (c)

∑MN

j=τN+1 UN,j
P−→ 0. If τN < MN , then for any

ε > 0,

0 ≤ 1 −
τN∑
j=1

σ 2
N,j ≤ σ 2

N,τN+1

≤ max
1≤j≤MN

σ 2
N,j ≤ ε2 +

MN∑
j=1

E[U2
N,j 1{|UN,j | ≥ ε}|FN,j−1].
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Since ε > 0 is arbitrary, it follows from (32) that 1 − ∑τN

j=1 σ 2
N,j

P−→ 0, which

implies that E[Ū2
N,MN+1|FN,0] P−→ 0, showing (a) and (b). It remains to prove (c).

We have
MN∑

j=τN+1

σ 2
N,j =

MN∑
j=1

σ 2
N,j − 1 +

(
1 −

τN∑
j=1

σ 2
N,j

)
P−→ 0.(35)

For any λ > 0,

E

(
MN∑

j=τN+1

UN,j 1

{ j∑
i=τN+1

σ 2
N,i ≤ λ

})2

= E

(
MN∑

j=τN+1

σ 2
N,j 1

{ j∑
i=τN+1

σ 2
N,i ≤ λ

})
.

The term between braces converges to 0 in probability by (35) and its value

is bounded by λ, which shows that
∑MN

j=τN+1 UN,j 1{∑j
i=τN+1 σ 2

N,i ≤ λ} P−→ 0.
Moreover,

P

(
MN∑

j=τN+1

UN,j 1

{ j∑
i=τN+1

σ 2
N,i > λ

}
�= 0

)
≤ P

(
MN∑

i=τN+1

σ 2
N,i > λ

)
,

which converges to 0 by (35). The proof is completed when E[UN,i |FN,i−1] = 0.
To deal with the general case, it suffices to set ŪN,i = UN,i − E[UN,i |FN,i−1] and
to use the following technical lemma. �

LEMMA A.4. Let G be a σ -field and X a random variable such that
E[X2|G] < ∞. Then, for any ε > 0,

4 E[|X|21{|X| ≥ ε}|G] ≥ E
[|X − E[X|G]|21{|X − E[X|G]| ≥ 2ε}|G]

.

PROOF. Let Y = X − E[X|G]. We have E[Y |G] = 0. It is equivalent to show
that, for any G-measurable random variable Z,

E[Y 21{|Y | ≥ 2ε}|G] ≤ 4 E[|Y + Z|21{|Y + Z| ≥ ε}|G].
On the set {|Z| < ε},

E[Y 21{|Y | ≥ 2ε}|G] ≤ 2 E
[(

(Y + Z)2 + Z2)
1{|Y + Z| ≥ ε}|G]

≤ 2(1 + Z2/ε2)E[(Y + Z)21{|Y + Z| ≥ ε}|G]
≤ 4 E[(Y + Z)21{|Y + Z| ≥ ε}|G].

Moreover, on the set {|Z| ≥ ε}, using that E[ZY |G] = Z E[Y |G] = 0,

E[Y 21{|Y | ≥ 2ε}|G] ≤ E[Y 2 + Z2 − ε2|G]
≤ E[(Y + Z)2 − ε2|G] ≤ E[(Y + Z)21{|Y + Z| ≥ ε}|G].

The proof is completed. �
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APPENDIX B: PROOF OF THEOREMS 1 AND 2

PROOF OF THEOREM 1. For j = 1, . . . , M̃N , we set FN,j = FN,0 ∨σ({ξ̃N,k}1≤k≤j ),
where FN,0 is given in (6). Checking that C̃ is proper is straightforward, so we turn
to the consistency. We show first that, for any f ∈ C̃,

1

α�N

M̃N∑
j=1

ω̃N,jf (ξ̃N,j )
P−→ νL(f ),(36)

where ξ̃N,j and ω̃N,j are defined in (7) and (8), respectively. The unbiasedness
condition (9) implies

(α�N)−1
M̃N∑
j=1

E[ω̃N,jf (ξ̃N,j )|FN,j−1] = �−1
N

MN∑
i=1

ωN,iL(ξN,i, f ).

Because the weighted sample {(ξN,i,ωN,i)}MN

i=1 is consistent for (ν,C) and for f ∈
C̃, the function L(·, f ) ∈ C, �−1

N

∑MN

i=1 ωN,iL(ξN,i, f )
P−→ νL(f ), it suffices to

show that

(α�N)−1
M̃N∑
j=1

{ω̃N,jf (ξ̃N,j ) − E[ω̃N,jf (ξ̃N,j )|FN,j−1]} P−→ 0.(37)

Put UN,j = (α�N)−1ω̃N,jf (ξ̃N,j ) for j = 1, . . . , M̃N and appeal to Theorem A.1.
Just as above,

M̃N∑
j=1

E[|UN,j ||FN,j−1] = �−1
N

MN∑
i=1

ωN,iL(ξN,i, |f |) P−→ νL(|f |),

showing that the sequence {∑M̃N

j=1 E[|UN,j ||FN,j−1]}N≥0 is tight [Theorem A.1,

equation (25)]. For any ε > 0, put AN
def= ∑M̃N

j=1 E[|UN,j |1{|UN,j | ≥ ε}|FN,j−1].
We need to show that AN

P−→ 0 [Theorem A.1, equation (26)]. For any positive
C, ξ ∈ �,R(ξ,W |f |1{W |f | ≥ C}) ≤ R(ξ,W |f |) = L(ξ, |f |). Because the func-
tion L(·, |f |) belongs to the proper set C, the function R(·,W |f |1{W |f | ≥ C})
belongs to C. Hence, for all C, ε > 0,

AN1
{
(α�N)−1 max

1≤i≤MN

ωN,i ≤ ε/C

}

≤ �−1
N

MN∑
i=1

ωN,i

[
α−1

α∑
k=1

R(ξN,i,W |f |1{W |f | ≥ C})
]

P−→ νR(W |f |1{W |f | ≥ C}).
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By dominated convergence, the RHS can be made arbitrarily small by letting

C → ∞. Combining with �−1
N max1≤i≤MN

ωN,i
P−→ 0, this shows that AN tends

to zero in probability, showing (26). Thus, Theorem A.1 applies and (36) holds.
Under the stated assumptions, the function L(·, �̃) belongs to C, implying that

the constant function g ≡ 1 satisfies (36); therefore, (α�N)−1 ∑M̃N

j=1 ω̃N,j
P−→

νL(�̃). Combined with (36), this shows that, for any f ∈ C̃,

�̃−1
N

M̃N∑
j=1

ω̃N,jf (ξ̃N,j )
P−→ μ(f ).

To complete the proof, it remains to prove that �̃−1
N max1≤j≤M̃N

ω̃N,j
P−→ 0.

Since (α�N)−1�̃N
P−→ νL(�̃), it suffices to show that (α�N)−1 ×

maxj ω̃N,j
P−→ 0. For any C > 0,

(α�N)−1 max
1≤j≤M̃N

ω̃N,j 1{W(ξ̃N,j )≤C} ≤ C(α�N)−1 max
1≤i≤MN

ωN,i
P−→ 0,

(α�N)−1 max
1≤j≤M̃N

ω̃N,j 1{W(ξ̃N,j )>C} ≤ (α�N)−1
M̃N∑
j=1

ω̃N,j 1{W(ξ̃N,j )>C}

P−→ νL({W > C}).
The term in the RHS of the last equation goes to zero as C → ∞, which concludes
the proof. �

PROOF OF THEOREM 2. Pick f ∈ Ã and assume, without loss of generality,

that μ(f ) = 0. Write �̃−1
N

∑M̃N

i=1 ω̃N,if (ξ̃N,i) = (α�N/�̃N)(AN + BN), with

AN = (α�N)−1
M̃N∑
j=1

E[ω̃N,jf (ξ̃N,j )|FN,j−1] = �−1
N

MN∑
i=1

ωN,iL(ξN,i, f ),

BN = (α�N)−1
M̃N∑
j=1

{ω̃N,j f (ξ̃N,j ) − E[ω̃N,jf (ξ̃N,j )|FN,j−1]}.

Because α�N/�̃N
P−→ 1 (see Theorem 1), the conclusion of the theorem follows

from Slutsky’s theorem if we prove that aN(AN +BN)
D−→ N(0, σ 2(Lf )+η2(f )),

where

η2(f )
def= α−1γR{[Wf − R(·,Wf )]2},(38)
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with W given in (5). The function L(·, f ) belongs to A and νL(f ) = μ(f ) ×
νL(�̃) = 0. Because {(ξN,i,ωN,i)}MN

i=1 is asymptotically normal for (ν,A,W, σ, γ,

{aN }), aNAN
D−→ N(0, σ 2(Lf )). Next we prove that, for any real u,

E[exp(iuaNBN)|FN,0] P−→ exp(−(u2/2)η2(f )),

where η2(f ) is defined in (38). For that purpose, we use Theorem A.3, and we
thus need to check (31)–(32) with

UN,j
def= (α�N)−1 aNω̃N,jf (ξ̃N,j ), j = 1, . . . , M̃N .

Under the stated assumptions, for f ∈ A, the function R(·,W 2f 2) belongs
to W. Because the W is proper and the function R(·,W 2f 2) ∈ W, the relation
{L(·, f )}2 = {R(ξ,Wf )}2 ≤ R(·,W 2f 2) implies that the function {L(·, f )}2 also
belongs to W. Because {(ξN,i,ωN,i)}MN

i=1 is asymptotically normal for (ν, A, W, σ,

γ, {aN }), (2) implies

M̃N∑
j=1

E[U2
N,j |FN,j−1] = α−1 a2

N

�2
N

MN∑
i=1

ω2
N,iR(ξN,i,W

2f 2)
P−→ α−1γ R(W 2f 2),

M̃N∑
j=1

(E[UN,j |FN,j−1])2 = α−1 a2
N

�2
N

MN∑
i=1

ω2
N,i{L(ξN,i, f )}2 P−→ α−1γ {R(Wf )}2.

These displays imply that (31) holds. It remains to check (32). For ε > 0, denote

CN
def= (

∑M̃N

j=1 E[U2
N,j 1{|UN,j |≥ε}|FN,j−1]). For all C > 0, it is easily shown that

CN ≤ a2
N

α�2
N

MN∑
i=1

ω2
N,iR(ξN,i,W

2f 21{|Wf | ≥ C})

+ 1
{

aN max1≤i≤MN
ωN,i

α�N

≥ ε

C

} M̃N∑
j=1

E[U2
N,j |FN,j−1].

Since aN�−1
N max1≤i≤MN

ωN,i
P−→ 0 and the function R(·,W 2f 2) ∈ W, the RHS

of the previous display converges in probability to γR(W 2f 21{|Wf | ≥ C}), which
can be made arbitrarily small by taking C sufficiently large. Therefore, condi-

tion (32) is satisfied and Theorem A.3 applies, showing that aN(AN + BN)
D−→

N(0, σ 2(Lf ) + η2(f )).

Consider now (2). Recalling that �̃N/(α�N)
P−→ νL(�̃), it is sufficient to

show that, for f ∈ W̃,

a2
N

(α�N)2

M̃N∑
j=1

ω̃2
N,jf (ξ̃N,j )

P−→ α−1γR(h),(39)
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where h
def= W 2f . Define UN,j = (α�N)−2a2

Nω̃2
N,jf (ξ̃N,j ). Under the stated as-

sumptions, for any f ∈ W̃, the functions R(·, |h|) and R(·, h) belong to W. Because
{(ξN,i,ωN,i)}MN

i=1 is asymptotically normal for (ν,A,W, σ, γ, {aN }),
M̃N∑
j=1

E[|UN,j ||FN,j−1] = a2
N

α�2
N

MN∑
i=1

ω2
N,iR(ξN,i, |h|) P−→ α−1γR(|h|),(40)

M̃N∑
j=1

E[UN,j |FN,j−1] = a2
N

α�2
N

MN∑
i=1

ω2
N,iR(ξN,i, h)

P−→ α−1γR(h).(41)

We appeal to Theorem A.1. Equation (40) shows the tightness condition (25). For

ε > 0, set CN = ∑M̃N

j=1 E[|UN,j |1{|UN,j |≥ε}|FN,j−1]. Since R(·, |h|) belongs to W,
the function R(·, |h|1{|h| ≥ C}) belongs to W. For all C > 0,

CN ≤ a2
N

�2
N

MN∑
i=1

ω2
N,iR(ξN,i, |h|1{|h| ≥ C})

+ 1
{

max
i

MNω2
N,i

(α�N)2 ≥ ε

C

}
a2
N

�2
N

MN∑
i=1

ω2
N,iR(ξN,i, |h|).

Proceeding as above, CN
P−→ 0. Thus, Theorem A.1 applies and condition (2)

is proved. Consider finally (3). Combining with �̃N/(α�N)
P−→ νL(�̃) (see

proof of Theorem 1) and M̃N = αMN , it is actually sufficient to show that

CN
def= (α�N)−2a2

N max1≤j≤M̃N
ω̃2

N,j

P−→ 0. For any C > 0,

CN ≤ C2a2
N

max1≤i≤MN
ω2

N,i

α2�2
N

+ a2
N

α2�2
N

M̃N∑
j=1

ω̃2
N,j 1{W(ξN,j/α�+1,ξ̃N,j )≥C}.

Applying (39) with f ≡ 1, the RHS of the previous display converges in probabil-
ity to γR(W 21{W ≥ C}). The proof follows since C is arbitrary. �

APPENDIX C: PROOF OF THEOREM 3 AND 4

PROOF OF THEOREM 3. As above, we set for j = 1, . . . , M̃N , FN,j = FN,0 ∨
σ({ξ̃N,k}1≤k≤j ), where FN,0 is given in (6). It is easily shown that the resampling
procedures (12) and (13) satisfy, for any f ∈ B(�),

M̃−1
N

M̃N∑
i=1

E[f (ξ̃N,i)|FN,i−1] = �−1
N

MN∑
i=1

ωN,if (ξN,i),



2366 R. DOUC AND E. MOULINES

whatever the choice of the labels of the particles are (and that in both cases, these
quantities are independent conditionally to FN,0).

Pick f in C. Since C is proper, |f |1{|f | ≥ C} ∈ C for any C ≥ 0. Because
{(ξN,i, ωN,i)}MN

i=1 is consistent for (ν,C), and C is a proper set of functions,

M̃−1
N

M̃N∑
i=1

E
[|f (ξ̃N,i)|1{|f (ξ̃N,i )|≥C}|FN,i−1

]
(42)

= �−1
N

MN∑
i=1

ωN,i |f (ξN,i)|1{|f (ξN,i )|≥C}
P−→ ν

(|f |1{|f |≥C}
)
.

We now check (25)–(26) of Theorem A.1. For any i = 1, . . . ,MN , put UN,i
def=

M̃−1
N f (ξ̃N,i) . Taking C = 0 in (42),

M̃N∑
i=1

E[|UN,i ||FN,i−1] = M̃−1
N

M̃N∑
i=1

E[|f (ξ̃N,i)||FN,i−1] P−→ ν(|f |) < ∞,

whence the sequence {∑M̃N

i=1 E[|UN,i ||FN,i−1]}N≥0 is tight. Next, for any positive
ε and C, we have for sufficiently large N

M̃N∑
i=1

E
[|UN,i |1{|UN,i |≥ε}|FN,i−1

]

= 1

M̃N

M̃N∑
i=1

E
[|f (ξ̃N,i)|1{|f |(ξ̃N,i )≥εM̃N }|FN,i−1

]

≤ M̃−1
N

M̃N∑
i=1

E
[|f (ξ̃N,i)|1{|f |(ξ̃N,i )≥C}|FN,i−1

] P−→ μ
(|f |1{|f |≥C}

)
.

By dominated convergence, the RHS of this display tends to zero as C → ∞.
Thus, the LHS of the display converges to zero in probability, showing (26). �

PROOF OF THEOREM 4. Let f ∈ Ã and rewrite the sum M̃−1
N

∑M̃N

i=1 f (ξ̃N,i)−
ν(f ) = AN + BN , where AN = �−1

N

∑MN

i=1 ωN,i{f (ξN,i) − ν(f )} and BN =
M̃−1

N

∑M̃N

i=1{f (ξ̃N,i) − E[f (ξ̃N,i)|FN,i−1]}. We first prove that

E[exp(iuaNBN)|FN,0] P−→ exp(−(u2/2)β Varν(f )).(43)

We will appeal to Theorem A.3 and, hence, need to check (31)–(32) with UN,i
def=

aNM̃−1
N f (ξ̃N,i). First, because {(ξN,i,ωN,i)}MN

i=1 is consistent for (ν,C) and since
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for f ∈ Ã, f 2 ∈ C,

M̃N∑
j=1

{E[U2
N,j |FN,j−1] − (E[UN,j |FN,j−1])2}

= aNM̃−1
N

(
�−1

N

MN∑
i=1

ωN,if
2(ξN,i) −

{
�−1

N

MN∑
i=1

ωN,if (ξN,i)

}2)
P−→ β

(
ν(f 2) − {ν(f )}2)

,

showing (31). Pick ε > 0. For any C > 0, there exists NC sufficiently large such
that, for all N ≥ NC ,

M̃N∑
j=1

E
[
U2

N,j 1{|UN,j |≥ε}|FN,j−1
]

≤ a2
NM̃−2

N

M̃N∑
i=1

E[f 2(ξ̃N,j )1{|f (ξ̃N,j )| ≥ C}|FN,j−1]

= a2
NM̃−1

N �−1
N

MN∑
i=1

ωN,if
2(ξN,i)1{|f (ξN,i)| ≥ C}.

Since f 2 belongs to the proper set C, the function f 21{|f | ≥ C} also belongs to
C and the RHS of the above display converges in probability to ν(f 21{|f | ≥ C}).
(32) follows because C is arbitrary. Condition (1) follows by combining (43) with

aNAN
D−→ N(0, σ 2(f )). Conditions (2) and (3) are trivially satisfied. �

APPENDIX D: PROOF OF THEOREM 5

PROOF OF THEOREM 5. Pick f ∈ Ã. To apply Theorem A.3, we just have

to check (31) and (32) where UN,i = aNM̃−1
N f (ξ̃N,i). Set AN

def= ∑M̃N

i=1{E[U2
N,i |

FN,i−1] − (E[UN,i |FN,i−1])2}. Note that

AN = a2
N

M̃2
N

(
MN∑
i=1

〈M̃N�−1
N ωN,i〉

)

×
{

MN∑
i=1

ω̃N,if
2(ξN,i) −

(
MN∑
i=1

ω̃N,if (ξN,i)

)2}
,
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where the weights ω̃N,i are given by ω̃N,i = 〈M̃N�−1
N ωN,i〉∑MN

i=1 〈M̃N�−1
N ωN,i〉

. With this notation,

AN may be rewritten as

AN = a2
N

M̃2
N

MN∑
i=1

〈M̃N�−1
N ωN,i〉f 2(ξN,i)

− a2
N

M̃N

(M̃−1
N

∑MN

i=1〈M̃N�−1
N ωN,i〉f (ξN,i))

2

M̃−1
N

∑MN

i=1〈M̃N�−1
N ωN,i〉

,

and Lemma A.5 shows that AN
P−→ β̃
−1ν
,�{(f − ν
,�(f )/ν
,�(1))2}, since

f 2 ∈ C. Conditions (2) and (3) are trivially satisfied and the theorem follows. �

LEMMA A.5. Under the assumptions of Theorem 5, for any f ∈ C,

1

M̃N

MN∑
i=1

〈M̃N�−1
N ωN,i〉f (ξN,i)

P−→ ν

(
f

〈
ν(�−1)�〉

ν(�−1)�

)
.(44)

PROOF. For any K ≥ 1, denote

BK
def= [K,∞] ∪

K⋃
j=0

[j − 1/K, j + 1/K].(45)

Because the weighted sample {(ξN,i,�(ξN,i)}MN

i=1 is consistent for (ν,C) and
M̃N�−1

N ωN,i� ≤ M̃N�−1
N ωN,i , we have, for any f ∈ C,

M̃−1
N

MN∑
i=1

M̃N�−1
N ωN,i�|f (ξN,i)|1{
ν(�−1)ωN,i ∈ BK}

≤ 1

�N

MN∑
i=1

ωN,i |f (ξN,i)|1{
ν(�−1)�(ξN,i) ∈ BK}

P−→ ν
(|f |1{
ν(�−1)� ∈ BK}).

The RHS of the previous display can be made arbitrarily small by taking K suffi-
ciently large because

∫
f (ξ)1{
ν(�−1)�(ξ) ∈ {∞}∪ N}ν(dξ) = 0. For any given

K > 0, since �−1 belongs to C and {ξN,i,ωN,i}MN

i=1 is consistent for (ν,C),

M̃N�−1
N = M̃N

MN

(
�−1

N

MN∑
i=1

ωN,i�
−1(ξN,i)

)
P−→ 
ν(�−1).

Because � is a proper set, for any f ∈ C and K ≥ 0, the function

gK
def= 
ν(�−1)�(·)�


ν(�−1)�(·) f (·)1{
ν(�−1)�(·) ∈ Bc
K}
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also belongs to C and the consistency of the weighted sample {ξN,i,ωN,i}MN

i=1 there-
fore implies

M̃−1
N

MN∑
i=1


ν(�−1)�(ξN,i)�f (ξN,i)1{
ν(�−1)�(ξN,i) ∈ Bc
K}

=
(


ν(�−1)

M̃N�−1
N

)
�−1

N

MN∑
i=1

ωN,igK(ξN,i)
P−→ ν(gK).

For any K ≥ 1, it can be easily checked that if b ∈ Bc
K and c ∈ [1 − 1/K2,1 +

1/K2], then b� = bc�. By applying this relation for each i ∈ {1, . . . ,MN },
with b

def= 
ν(�−1)�(ξN,i) and c
def= M̃N�−1

N /
ν(�−1) and using that M̃N�−1
N /


ν(�−1)
P−→ 1, we therefore obtain

M̃−1
N

MN∑
i=1

M̃N�−1
N �(ξN,i)�f (ξN,i)1{
ν(�−1)�(ξN,i) ∈ Bc

K} P−→ ν(gK).

The proof of (44) follows by letting K → ∞. �

The condition ν{
ν(�−1)� ∈ N ∪ {∞}} = 0 in Proposition 5 and Lemma A.5
is crucial. Assume that {ξN,i}1≤i≤N is an i.i.d. μ-distributed sample where μ is
the distribution on the set {1/2,2} given by μ({1/2}) = 2/3 and μ({2}) = 1/3.
Let ν be the distribution on {1/2,2} given by ν({1/2}) = 1/3 and ν({2}) = 2/3.
The weighted sample {(ξN,i, ξN,i)}1≤i≤N [i.e., where we have set �(ξ) = ξ ] is

a consistent sample for ν: for any function f ∈ B({1/2,2}) def= {f : {1/2,2} → R,
|f (1/2)| < ∞ and |f (2)| < ∞},∑MN

i=1 ξN,if (ξN,i)∑MN

i=1 ξN,i

P−→ (1/2)f (1/2)μ(1/2) + 2f (2)μ(2)

(1/2)μ(1/2) + 2μ(2)

= (1/2)f (1/2) + 1/3f (2) = ν(f ).

In this example, 
 = 1 and obviously ν(�−1) = 1. Moreover,

ν
{
� ∈ {∞} ∪ N

} = ν
{{1/2,2} ∩ N

} = ν({2}) = 2/3 �= 0.

We will show that the convergence in Lemma A.5 fails. More precisely, setting
f (ξ) = ξ , we will show that

1

MN

MN∑
i=1

⌊
MN

ωN,i

�N

⌋
f (ξN,i) = 1

MN

MN∑
i=1

⌊
MN

ξN,i∑MN

j=1 ξN,j

⌋
f (ξN,i)

(46)
D−→ 4/3 − (2Z)/3,
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where Z is a Bernoulli variable with parameter 1/2. This would imply that
M−1

N

∑MN

i=1MN
ωN,i

�N
�f (ξN,i) does not converge in probability to a constant. The

LLN and CLT for i.i.d. random variables imply that

M−1
N �N = M−1

N

MN∑
i=1

ξN,i
P−→ 1,

[
1{MN�−1

N < 1}
1{MN�−1

N ≥ 1}
]

=
[

1{(MN)1/2(M−1
N �N − 1) > 0}

1{(MN)1/2(M−1
N �N − 1) ≤ 0}

]
D−→

[
Z

1 − Z

]
,

where Z is a Bernoulli random variable with parameter 1/2. Since ωN,i =
�(ξN,i) = ξN,i ∈ {1/2,2} and f (ξ) = ξ ,

1
{

1

2
< �−1

N MN <
3

2

}
1

MN

MN∑
i=1

MN�−1
N ωN,i�f (ξN,i)

= 1
{

1

2
< �−1

N MN <
3

2

}
2

MN

MN∑
i=1

2�−1
N MN�1{ξN,i = 2}

= 1
{

1

2
<

MN

�N

< 1
}

2

MN

MN∑
i=1

1
{
ξN,i = 2

}

+ 1
{

1 ≤ MN

�N

<
3

2

}
4

MN

MN∑
i=1

1{ξN,i = 2}

D−→ (2Z)/3 + 4(1 − Z)/3 = 4/3 − (2Z)/3.

The proof of (46) is concluded by noting that MN�−1
N

P−→ 1.

APPENDIX E: PROOF OF THEOREMS 6, 7 AND 8

PROOF OF THEOREM 6. Let f ∈ C. We set for j = 1, . . . ,MN , FN,j
def=

FN,0 ∨σ({GN,i}ji=1), where FN,0 is defined in (6), and Un,j
def= m̃−1

N GN,jf (ξN,j ).
Note that

MN∑
i=1

E[|UN,i ||FN,i−1] = m̃−1
N

MN∑
i=1

E[GN,i |FN,i−1]|f (ξN,i)|

= �−1
N

MN∑
i=1

ωN,i |f (ξN,i)| P−→ ν(|f |) < ∞,

showing that the sequence {∑MN

i=1 E[|UN,i ||FN,i−1]} is tight. For any ε > 0 and
C > 0, using that {m̃−1

N GN,i |f (ξN,i)| ≥ ε} ⊆ {m̃−1
N GN,i ≥ ε/C} ∪ {|f (ξN,i)| ≥
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C}, we obtain
∑MN

i=1 E[|UN,i |1{|UN,i | ≥ ε}|FN,i−1] ≤ AN(ε,C) + BN(C), where

AN(ε,C)
def= m̃−1

N

MN∑
i=1

|f (ξN,i)|E[GN,i1{m̃−1
N GN,i ≥ ε/C}|FN,i−1]

BN(C)
def= m̃−1

N

MN∑
i=1

E[GN,i |FN,i−1]|f (ξN,i)|1{|f (ξN,i)| ≥ C}.

Note that E[GN,i1{m̃−1
N GN,i ≥ ε/C}|FN,i−1] ≤ (C/ε)m̃−1

N E[G2
N,i |FN,i−1]. In

addition, it can easily be checked that for the Poisson, binomial and Bernoulli
branching,

m̃−1
N E[G2

N,i |FN,i−1] ≤ �−1
N ωN,i + m̃N(�−1

N ωN,i)
2

≤ �−1
N ωN,i

(
1 + m̃N�−1

N sup
1≤i≤MN

ωN,i

)
,

which implies, using that {(ξN,i,ωN,i)}MN

i=1 is consistent for (ν,C),

AN(ε,C) ≤ (C/ε)

(
m̃−1

N + �−1
N sup

1≤i≤MN

ωN,i

) MN∑
i=1

�−1
N ωN,i |f (ξN,i)| P−→ 0.

On the other hand, since BN(C) = �−1
N

∑MN

i=1 ωN,i |f (ξN,i)|1{|f (ξN,i)| ≥ C},
the consistency of the weighted sample {(ξN,i,ωN,i)}MN

i=1 implies BN(C)
P−→

ν(|f |1{|f | ≥ C}. Since C can be chosen arbitrarily large, the two previous re-

lations show the negligibility,
∑MN

i=1 E[|UN,i |1{|UN,i | ≥ ε}|FN,i−1] P−→ 0. Theo-

rem A.1 therefore shows that, for any f ∈ C, m̃−1
N

∑MN

i=1 GN,if (ξN,i)
P−→ ν(f ).

Applying this relation to f ≡ 1 shows that M̃N/m̃N
P−→ 1. �

PROOF OF THEOREM 7. We appeal to Theorem A.3 and, hence, need to check
(31) and (32). Set UN,i = aNm̃−1

N GN,if (ξN,i). Let f ∈ Ã such that ν(f ) = 0.
Therefore,

MN∑
i=1

{E[U2
N,i |FN,i−1] − (E[UN,i |FN,i−1])2}

= a2
Nm̃−2

N

MN∑
i=1

f 2(ξN,i)Var[GN,i |FN,i−1].

The conditional variance is given by Var[GN,i |FN,i−1] = m̃N�−1
N ωN,i for the

Poisson branching and Var[GN,i |FN,i−1] = m̃N�−1
N ωN,i(1−�−1

N ωN,i) for the bi-

nomial branching. Note that a2
Nm̃−1

N

∑MN

i=1 f 2(ξN,i)�
−1
N ωN,i

P−→ β
−1ν(f 2) and,
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for p ≥ 2, using that �−1
N sup1≤i≤MN

ωN,i
P−→ 0. Therefore, in both cases,

a2
Nm̃−2

N

MN∑
i=1

f 2(ξN,i)Var[GN,i |FN,i−1] P−→ β
−1 Varν(f ).

We now check the tightness condition (32). For any ε > 0 and C > 0, using that
{aNm̃−1

N GN,i |f (ξN,i)| ≥ ε} ⊆ {aNm̃−1
N GN,i ≥ ε/C} ∪ {|f (ξN,i)| ≥ C}, we obtain∑MN

i=1 E[|UN,i |21{|UN,i | ≥ ε}|FN,i−1] ≤ AN(ε,C) + BN(C), where

AN(ε,C)
def= a2

Nm̃−2
N

MN∑
i=1

|f (ξN,i)|2 E[G2
N,i1{aNm̃−1

N GN,i ≥ ε/C}|FN,i−1],

BN(C)
def= a2

Nm̃−2
N

MN∑
i=1

E[G2
N,i |FN,i−1]|f (ξN,i)|21{|f (ξN,i)| ≥ C}.

We first prove that for any ε > 0 and C > 0, AN(ε,C)
P−→ 0. If G is either a

Poisson or a binomial variable, then E[G3] ≤ E[G] + 3(E[G])2 + (E[G])3. Thus,

AN(ε,C) ≤ a3
Nm̃−3

N (C/ε)

MN∑
i=1

E[G3
N,i |FN,i−1]f 2(ξN,i)

≤ a3
Nm̃−3

N (C/ε)

MN∑
i=1

[m̃N�−1
N ωN,i

+ 3(m̃N�−1
N ωN,i)

2 + (m̃N�−1
N ωN,i)

3]f 2(ξN,i)

≤ a3
Nm̃−2

N (C/ε)�−1
N

MN∑
i=1

ωN,if
2(ξN,i)

+
(

3aNm̃−1
N + aN�−1

N max
1≤i≤MN

ωN,i

)
(C/ε)a2

N�−2
N

×
MN∑
i=1

ω2
N,if

2(ξN,i),

and the proof of AN(ε,C)
P−→ 0 follows upon noting that a3

Nm̃−2
N = OP(a−1

N ),
aNm̃−1

N = OP(a−1
N ), aN�−1

N max1≤i≤MN
ωN,i = oP(1) and

�−1
N

MN∑
i=1

ωN,if
2(ξN,i)

P−→ ν(f 2) and a2
N�−2

N

MN∑
i=1

ω2
N,if

2(ξN,i)
P−→ γ (f 2).
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We finally consider BN(C). As above, if G is either a Poisson or a binomial vari-
able, then E[G2] ≤ E[G] + (E[G])2. Therefore,

BN(C) ≤ a2
Nm̃−1

N �−1
N

MN∑
i=1

ωN,if
2(ξN,i)1{|f (ξN,i)| ≥ C}

+ a2
N�−2

N

MN∑
i=1

ω2
N,if

2(ξN,i)1{|f (ξN,i)| ≥ C}.

Since a2
Nm̃−1

N = OP(1), �−1
N

∑MN

i=1 ωN,if
2(ξN,i)1{|f (ξN,i)| ≥ C} P−→

ν(f 21{|f | ≥ C}) and a2
N�−2

N

∑MN

i=1 ω2
N,if

2(ξN,i)1{|f (ξN,i)| ≥ C} P−→
γ (f 21{|f | ≥ C}), the RHS can be made arbitrarily small by taking C sufficiently
large. �

PROOF OF THEOREM 8. Let f in Ã such that ν(f ) = 0. Note that

anM̃
−1
N

M̃N∑
i=1

f (ξ̃N,i) = (m̃NM̃−1
N )anm̃

−1
N

MN∑
i=1

GN,if (ξN,i),

where GN,i is defined by (17) with ωN,i = �(ξN,i). We have that M̃N/m̃N
P−→ 1

by Theorem 6. To apply Theorem A.3, we just have to check (31) and (32), where
UN,i = anm̃

−1
N GN,if (ξN,i) and {FN,k} defined by FN,0 = σ {(ξN,i)

MN

i=1} and for
all 1 ≤ k ≤ MN , FN,k = FN,0 ∨ σ {(UN,i)1≤i≤k}. Lemma A.6 shows that

AN =
MN∑
i=1

{E[U2
N,i |FN,i−1] − (E[UN,i |FN,i−1])2}

= a2
Nm̃−2

N

{
MN∑
i=1

(〈m̃N�−1
N ωN,i〉 − 〈m̃N�−1

N ωN,i〉2)f 2(ξN,i)

}
(47)

P−→ β
−1ν

(〈
ν(�−1)�〉(1 − 〈
ν(�−1)�〉)

ν(�−1)�

(f − νf )2
)
.

It remains to check (2) and (3). By Theorem 3, the weighted sample {(ξ̃N,i,1)}M̃N

i=1
is consistent for (ν,C), which implies

a2
NM̃−2

N

M̃N∑
i=1

f (ξ̃N,i)
P−→ βν(f ),

and, thus, (2) is satisfied. (3) is trivially satisfied. �
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LEMMA A.6. Under the assumptions of Theorem 8, for any function f such
that �f ∈ C,

�−2
N a2

N

MN∑
i=1

ω2
N,if (ξN,i)

P−→ βν(�−1)ν(�f ),(48)

m̃−2
N a2

N

MN∑
i=1

〈m̃N�−1
N ωN,i〉qf (ξN,i)

P−→ β
−1ν

(
f

〈
ν(�−1)�〉q

ν(�−1)�

)
,

(49)
q = 1,2.

PROOF. We first consider (48). Note that

�−2
N a2

N

MN∑
i=1

ω2
N,if (ξN,i)

= (MN�−1
N )(a2

NM−1
N )�−1

N

MN∑
i=1

ωN,i�(ξN,i)f (ξN,i),

and the proof follows since MN�−1
N

P−→ ν(�−1), a2
NM−1

N

P−→ β , and

�−1
N

MN∑
i=1

ωN,i�(ξN,i)f (ξN,i)
P−→ ν(�f ).

The proof of (49) with q = 1 can be done along the same lines as in Lemma A.5.
To prove (49) with q = 2, some adaptations are required. We define by W the set
of functions f such that �f ∈ C and, for f ∈ W, we set γ (f ) = βν(�−1)ν(�f ).
Since 〈m̃N�−1

N ωN,i〉 ≤ m̃N�−1
N ωN,i , (48) shows that, for any f ∈ W,

a2
Nm̃−2

N

MN∑
i=1

〈m̃N�−1
N ωN,i〉2|f (ξN,i)|1{
ν(�−1)ωN,i ∈ BK}

≤ a2
N�−2

N

MN∑
i=1

ω2
N,i |f (ξN,i)|1{
ν(�−1)�(ξN,i) ∈ BK}

P−→ γ
(|f |1{
ν(�−1)� ∈ BK}),

where BK is defined in (45). We will now prove that, for any f ∈ W,

a2
Nm̃−2

N

MN∑
i=1

〈m̃N�−1
N ωN,i〉2gK(ξN,i)

(50)
P−→ γ

( 〈
ν(�−1)�〉2

(
ν(�−1)�)2 gK

)
,
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where gK
def= f 1{
ν(�−1)� ∈ Bc

K}. For that purpose, we establish that, for p =
0,1,2 and f ∈ W,

AN
def= a2

Nm̃−2
N

MN∑
i=1

(m̃N�−1
N ωN,i)

pm̃N�−1
N ωN,i�2−pgK(ξN,i)

P−→ γ

(
ν(�−1)��2−p

(
ν(�−1)�)2−p
gK

)
.

We may write

AN = (m̃−1
N �N
ν(�−1))2−pa2

N�−2
N

MN∑
i=1

(m̃N�−1
N �(ξN,i)�


ν(�−1)�(ξN,i)

)2−p

ω2
N,igK(ξN,i).

Since W is a proper set, for any f ∈ W, (

ν(�−1)��

ν(�−1)�

)2−pgK ∈ W,

a2
N�−2

N

MN∑
i=1

(
ν(�−1)�(ξN,i)�

ν(�−1)�(ξN,i)

)2−p

ω2
N,igK(ξN,i)

P−→ γ

(
ν(�−1)��2−p

(
ν(�−1)�)2−p
gK

)
.

The proof of (49) follows since m̃−1
N �N
ν(�−1)

P−→ 1 and m̃N�−1
N ωN,i� =


ν(�−1)ωN,i� on the event {|m̃N�−1
N /
ν(�−1) − 1| ≤ 1/K2, 
ν(�−1)ωN,i ∈

Bc
K}. �
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