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THE LAW OF THE SUPREMUM OF A STABLE LÉVY PROCESS
WITH NO NEGATIVE JUMPS
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Ecole Polytechnique Fédérale, Lausanne, Ecole Polytechnique Fédérale,
Lausanne and University of Manchester

Let X = (Xt )t≥0 be a stable Lévy process of index α ∈ (1,2) with no
negative jumps and let St = sup0≤s≤t Xs denote its running supremum for
t > 0. We show that the density function ft of St can be characterized as the
unique solution to a weakly singular Volterra integral equation of the first kind
or, equivalently, as the unique solution to a first-order Riemann–Liouville
fractional differential equation satisfying a boundary condition at zero. This
yields an explicit series representation for ft . Recalling the familiar relation
between St and the first entry time τx of X into [x,∞), this further translates
into an explicit series representation for the density function of τx .

1. Introduction. In our study [3] of optimal prediction for a stable Lévy
process X = (Xt)t≥0, we encountered the question of computing the distribution
function of St = sup0≤s≤t Xs for t > 0. In the existing literature, such expressions
seem to be available only when X has no positive jumps and the purpose of the
present paper is to seek similar expressions when X has no negative jumps. We
note that the latter problem dates back to [5], page 282.

Our main result (Theorem 1) characterizes the density function f of S1 as the
unique solution to a weakly singular Volterra integral equation of the first kind or,
equivalently, as the unique solution to a first order Riemann–Liouville fractional
differential equation satisfying a boundary condition at zero. This characterization
yields an explicit series representation for f (which, in the case of a Brownian
motion, coincides with the well-known expression arising from the reflection prin-
ciple).

Using the scaling property of X, the result extends to St for t �= 1. Recalling
the familiar relation between St and the first entry time τx of X into [x,∞), this
further translates into an explicit series representation for the density function of
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τx for x > 0. Moreover, using the Laplace inversion formula, we derive an integral
representation for f (Corollary 2). Finally, we note (Corollary 3) that the proof
yields exact constants in the known asymptotic expressions for f at zero and in-
finity. The knowledge of these constants plays a key role in our treatment of the
optimal prediction problem [3].

2. The result and proof. 1. Let X = (Xt)t≥0 be a stable Lévy process of
index α ∈ (1,2) whose characteristic function is given by

EeiλXt = exp
(
t

∫ ∞
0

(eiλx − 1 − iλx)
dx

�(−α)x1+α

)
= et(−iλ)α(2.1)

for λ ∈ R and t ≥ 0. It follows that the Laplace transform of X is given by

Ee−λXt = etλα

(2.2)

for λ ≥ 0 and t ≥ 0 (the left-hand side being +∞ for λ < 0). From (2.1) and (2.2),
we see that the characteristic exponent of X equals �(λ) = (−iλ)α , the Laplace
exponent of X equals ψ(λ) = λα for λ ≥ 0 and ϕ(p) := ψ−1(p) = p1/α for p ≥ 0.

2. The following properties of X are readily deduced from (2.1) and (2.2) us-
ing standard means (see, e.g., [4] and [13]): the law of (Xct )t≥0 is the same as
the law of (c1/αXt)t≥0 for each c > 0 given and fixed (scaling property); X is a
martingale with EXt = 0 for all t ≥ 0; X jumps upward (only) and creeps down-
ward [in the sense that P(Xρx = x) = 1 for x < 0, where ρx = inf{t ≥ 0 :Xt < x}
is the first entry time of X into (−∞, x)]; X has sample paths of unbounded vari-
ation; X oscillates from −∞ to +∞ (in the sense that lim inft→∞ Xt = −∞ and
lim supt→∞ Xt = +∞, both a.s.); the starting point 0 of X is regular [for both
(−∞,0) and (0,+∞)]. Note that the constant c = 1/�(−α) in the Lévy measure
ν(dx) = (c/x1+α) dx of X is chosen/fixed for convenience so that X converges in
law to

√
2B as α ↑ 2, where B is a standard Brownian motion, and all the facts

below can be extended to the general constant c > 0 depending on α if needed (see
Remark 2 below).

3. Let St = sup0≤s≤t Xs denote the running supremum of X for t ≥ 0 and let
τx = inf{t ≥ 0 :Xt ≥ x} be the first entry time of X into [x,∞) for x > 0. Since
Xs ≥ Xs− for all s ∈ [0, t] and X is right-continuous, one sees that P(St ≥ x) =
P(τx ≤ t), so the law of St follows from the law of τx (and vice versa). If X is a
Lévy process with no positive jumps, then it is known that the two measures

tP(τx ∈ dt) dx = xP(Xt ∈ dx)dt(2.3)

coincide on the Borel σ -algebra of R+ ×R+ (see, e.g., [4], page 190, or [7] and the
references therein). This implies that the law of Xt yields the law of τx . It follows,
in particular, that the known series representations for the density function of Xt

(see, e.g., [17], pages 87–89) lead to series representations for the density function
of St . If X has no negative jumps, however, then the identity (2.3) breaks down
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and no series representation for the density function of St seems to be available in
the literature. We mention, however, that there is a literature on the distribution of
Sσ when σ is an independent and exponentially distributed random variable, the
process X has arbitrary negative jumps, and its positive jumps form a compound
Poisson process with the jump-size distribution of the so-called “phase type” (see,
e.g., [14] and [2]).

4. Our main result can be stated as follows. Note that St
law= t1/αS1 by the scaling

property of X so that there is no restriction in assuming that t = 1 in the sequel. Re-
call, also, that D

α−1 denotes the Riemann–Liouville fractional derivative of order
α − 1 given by

D
α−1f (x) = 1

�(2 − α)

d

dx

∫ x

0

f (y)

(x − y)α−1 dy(2.4)

for x > 0 and any (admissible) function f : R+ → R (for more details, see, e.g.,
[16], pages 449–452, and [15], Chapter 2).

THEOREM 1. Let X = (Xt)t≥0 be a stable Lévy process of index α ∈ (1,2)

satisfying (2.1) and (2.2), and let S1 = sup0≤t≤1 Xt denote its supremum over the
time interval [0,1]. Then the density function f of S1 can be characterized as the
unique solution to the weakly singular Volterra integral equation of the first kind∫ x

0

(
y + α

�(2 − α)

1

(x − y)α−1

)
f (y) dy = α

�(1/α)
(2.5)

or, equivalently, as the unique solution to the fractional differential equation

xf (x) + αD
α−1f (x) = 0(2.6)

satisfying the boundary condition

lim
x↓0

x2−αf (x) = 1

�(α − 1)�(1/α)
,(2.7)

where D
α−1 denotes the Riemann–Liouville fractional derivative given by (2.4)

above. This yields the series representation

f (x) =
∞∑

n=1

1

�(αn − 1)�(−n + 1 + 1/α)
xαn−2(2.8)

for x > 0.

PROOF. To connect the present result with the existing theory, we will begin
by recalling a number of known facts about Lévy processes with no positive jumps
(for further details, see, e.g., [4], Chapter VII, and [13], Chapter 8).

Let X̃ = (X̃t )t≥0 be a Lévy process with no positive jumps starting at zero, let
�̃ denote its characteristic exponent, let ψ̃ denote the Laplace exponent of −X̃ and
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let ϕ̃ := ψ̃(−1) denote the (right) inverse of ψ̃ . Thus, the characteristic function of
X̃ is given by

EeiλX̃t = et�̃(λ)(2.9)

for λ ∈ R and the Laplace transform of −X̃ is given by

EeλX̃t = etψ̃(λ)(2.10)

for λ ≥ 0 and t ≥ 0. Let

S̃t = sup
0≤s≤t

X̃s and Ĩt = inf
0≤s≤t

X̃s(2.11)

for t ≥ 0 and set

τ̃x = inf{t ≥ 0 : X̃t > x}(2.12)

for x ≥ 0, on assuming that the infimum is finite a.s.
From the fact that (eϕ̃(p)X̃t−pt )t≥0 is a martingale (and that X̃ creeps upward),

one finds, using the optional sampling theorem, that the Laplace transform of τ̃x

equals

Ee−pτ̃x = e−xϕ̃(p)(2.13)

for p ≥ 0 and x ≥ 0. Moreover, if σp is an exponentially distributed random vari-
able with parameter p > 0, meaning that P(σp ∈ dt) = pe−pt dt for t > 0, which,
moreover, is independent of X̃, then (2.13) implies that

P(S̃σp > x) = P(τ̃x ≤ σp) = Ee−pτ̃x = e−xϕ̃(p)(2.14)

for p > 0 and x ≥ 0. This shows that S̃σp is exponentially distributed with para-
meter ϕ̃(p). Hence, one finds that

EeλS̃σp = ϕ̃(p)

ϕ̃(p) − λ
(2.15)

for p > 0 and λ ∈ C with �(λ) < ϕ̃(p).
Invoking the Wiener–Hopf factorization (see, e.g., [4], page 165, or [13], Theo-

rem 6.16)

EeiλX̃σp = EeiλS̃σp EeiλĨσp = p

p − �̃(λ)
,(2.16)

it follows, using (2.15), that

EeλĨσp = p(ϕ̃(p) − λ)

ϕ̃(p)(p − ψ̃(λ))
(2.17)

for λ ≥ 0 and p > 0, on recalling that �̃(−iλ) = ψ̃(λ) for λ ≥ 0. The iden-
tity (2.17) is well known (see, e.g., [4], page 192, or [13], page 213).
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Clearly, X has no negative jumps if and only if X̃ := −X has no positive jumps,
so, by focusing on the left-hand side of (2.17), one finds

EeλĨσp = p

∫ ∞
0

E(eλĨt )e−pt dt = p

∫ ∞
0

E(e−λSt )e−pt dt

= p

∫ ∞
0

[
1 − λ

∫ ∞
0

e−λxP(St > x)dx

]
e−pt dt(2.18)

= 1 − pλ

∫ ∞
0

e−pt dt

∫ ∞
0

e−λxP(St > x)dx

for λ ≥ 0 and p > 0. Combining (2.17) and (2.18) and noticing/recalling that
ψ̃(λ) = ψ(λ) = λα and ϕ̃(p) = ϕ(p) = p1/α , one finds that the (joint) time–space
Laplace transform of (t, x) �→ P(St > x) equals∫ ∞

0
e−λx dx

∫ ∞
0

e−ptP(St > x)dt = 1

p − λα

(
1

p1/α
− λα−1

p

)
(2.19)

for λ > 0 and p > 0.
Note that this formula can also be obtained by taking the Laplace transform with

respect to the space variable x on both sides of the expression∫ ∞
0

e−ptP(St > x)dt =
∫ ∞

0
e−ptP(τx ≤ t) dt = 1

p
Ee−pτx

(2.20)

=
∞∑

n=0

pn−1xαn

�(1 + αn)
−

∞∑
n=1

pn−1−1/αxαn−1

�(αn)
,

where the final identity follows from (8.6) in [13], page 214, combined with (ii) and
(iii) in [13], page 233. This remark is relevant since the customary approach lead-
ing to the closed-form expression (2.20) via the so-called scale function (cf. [13],
pages 214–215) corresponds to Laplace inversion (at least formally) with respect
to the space parameter. The derivation given below takes a different route by firstly
performing Laplace inversion with respect to the time parameter and then dealing
with the resulting expression using techniques of linear integral equations (frac-
tional calculus).

After these introductory remarks, we are now ready to move to the first step
of the proof, taking (2.19) as the initial point. Below, we will let L

−1
p denote the

inverse Laplace transform with respect to the time parameter p and L
−1
λ denote

the inverse Laplace transform with respect to the space parameter λ.
1. Considering p > λα with λ > 0 fixed, by (3) in [9], page 238, we find

L
−1
p

[
1

(p − λα)p1/α

]
(t) = 1

�(1/α)

eλαt

λ
γ (1/α,λαt)(2.21)

for t ≥ 0, where (a, x) �→ γ (a, x) denotes the incomplete gamma function

γ (a, x) =
∫ x

0
ya−1e−y dy(2.22)
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for a > 0 and x ≥ 0. Likewise, by (5) in [9], page 229, we find

L
−1
p

[
λα−1

(p − λα)p

]
(t) = 1

λ
(eλαt − 1)(2.23)

for t ≥ 0. Combining (2.21) and (2.23), we get

L
−1
p

[
1

p − λα

(
1

p1/α
− λα−1

p

)]
(t) = 1

λ
− eλαt

λ

�(1/α,λαt)

�(1/α)
(2.24)

for t ≥ 0, where (a, x) �→ �(a, x) denotes the incomplete gamma function

�(a, x) =
∫ ∞
x

ya−1e−y dy = �(a) − γ (a, x)(2.25)

for a > 0 and x ≥ 0. Since the right-hand side of (2.24) defines a bounded function
of t ≥ 0 and the argument of L

−1
p on the left-hand side is a Laplace transform

defined for all p > 0 [recall (2.19) above], we see that the identity (2.24) holds
globally for t ≥ 0 and λ > 0.

2. Note that

eλαt

λ

�(1/α,λαt)

�(1/α)
= 1

�(1/α)

eλαt

λ

∫ ∞
λαt

x−1+1/αe−x dx

(2.26)

= α

�(1/α)

1

λ
etλα

∫ ∞
t1/αλ

e−zα

dz

for λ > 0 and t ≥ 0, on substituting x = zα to obtain the second equality. The final
expression in (2.26) reveals a connection with the standard normal distribution cor-
responding to α = 2. Indeed, by the scaling property, it is no restriction to assume
that t = 1 so that the final expression in (2.26) with α = 2 reads

2√
π

1

λ
eλ2

∫ ∞
λ

e−z2
dz = eλ2

λ
erfc(λ)(2.27)

for λ > 0. By (1) in [9], page 265, one knows that

L
−1
λ [eλ2

erfc(λ)](x) = 1√
π

e−x2/4(2.28)

and hence it follows that

L
−1
λ

[
eλ2

λ
erfc(λ)

]
(x) = 1√

π

∫ x

0
e−y2/4 dy(2.29)

for x ≥ 0. The density function f of S1 obtained on the right-hand side of (2.28)
and the distribution function F of S1 given on the right-hand side of (2.29)
coincide with the expressions obtained from the reflection principle M1 :=
max0≤t≤1 Bt =law |B1|, which yields S1 =law

√
2M1 =law

√
2|B1| =law |B2|,

where B = (Bt )t≥0 is a standard Brownian motion.
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3. By the scaling property, it is no restriction to assume that t = 1 in the sequel.
Let F denote the distribution function of S1 and let f denote the density function
of S1. Note that the form of the Laplace transform on the right-hand side of (2.24)
being combined with (2.26) implies that the density function exists (see the proof
of Corollary 2 below for further detail). Combining (2.19), (2.24) and (2.26), on
using that L

−1
λ [ 1

λ
L[f ](λ)](x) = F(x) since F(x) = ∫ x

0 f (y) dy for x ≥ 0, it fol-
lows that

f (x) = α

�(1/α)
L

−1
λ

[
eλα

∫ ∞
λ

e−zα

dz

]
(x)(2.30)

for x ≥ 0.
To simplify the notation, consider the equation

g(x) = L
−1
λ [G(λ)](x)(2.31)

for x > 0, where we set

G(λ) = eλα
∫ ∞
λ

e−zα

dz(2.32)

for λ > 0. From (2.32), we see that G′(λ) = αλα−1G(λ) − 1 so that

G′(λ)

λ
− α

λ2−α
G(λ) + 1

λ
= 0(2.33)

for λ > 0. Since L
−1
λ [G′(λ)](x) = −xg(x), it follows that L

−1
λ [G′(λ)/λ](x) =

− ∫ x
0 yg(y)dy for x > 0. Moreover, using (1) in [9], page 137, we see that

L
−1
λ [1/λ2−α](x) = 1/(�(2 − α)xα−1) so that L

−1
λ [G(λ)/λ2−α](x) = (1/�(2 −

α))
∫ x

0 (g(y)/(x − y)α−1) dy for x > 0. Finally, we have L
−1
λ [1/λ](x) = 1 for

x > 0. Hence, taking L
−1
λ in (2.33), we find that

−
∫ x

0
yg(y) dy − α

�(2 − α)

∫ x

0

g(y)

(x − y)α−1 dy + 1 = 0(2.34)

for x > 0. Noting that g(x) = (�(1/α)/α)f (x) for x > 0, we see that (2.34) reads∫ x

0
yf (y) dy + α

�(2 − α)

∫ x

0

f (y)

(x − y)α−1 dy = α

�(1/α)
(2.35)

for x > 0 and this is exactly equation (2.5).
4. We will seek a solution to (2.35) of the form

f (x) =
∞∑

n=0

anx
βn+γ ,(2.36)

where β and γ are constants to be determined. First, note that∫ x

0
yf (y) dy =

∞∑
n=0

an

∫ x

0
yβn+γ+1 dy =

∞∑
n=0

an

βn + γ + 2
xβn+γ+2(2.37)
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for x > 0. Second, by (3.191) in [10], page 333, and (6.2.2) in [1], page 258, we
have ∫ x

0
yμ−1(x − y)ν−1 dy = xμ+ν−1B(μ,ν) = xμ+ν−1 �(μ)�(ν)

�(μ + ν)
(2.38)

for μ > 0, ν > 0 and x > 0. It follows that

α

�(2 − α)

∫ x

0

f (y)

(x − y)α−1 dy = α

�(2 − α)

∞∑
n=0

an

∫ x

0

yβn+γ

(x − y)α−1 dy

(2.39)

=
∞∑

n=0

an

α�(βn + γ + 1)

�(βn + γ − α + 3)
xβn+γ−α+2

for x > 0. Combining (2.35), (2.37) and (2.39), we find that β = α and γ = α − 2.
Inserting (2.37) and (2.39) into (2.35) with these β and γ , we get

∞∑
n=0

(anAn + an+1Bn+1)x
α(n+1) + a0B0 = α

�(1/α)
,(2.40)

where the constants An and Bn are defined by

An = 1

α(n + 1)
and Bn = α

�(α(n + 1) − 1)

�(αn + 1)
(2.41)

for n ≥ 0. From (2.40) and (2.41), we find, by induction, that

an = (−1)n
An−1An−2 · · ·A1A0

BnBn−1 · · ·B2B1
a0(2.42)

for n ≥ 1, where a0 = 1/(�(1/α)�(α−1)). Inserting (2.42) into (2.36) with β = α

and γ = α − 2, and making use of (2.41), we obtain the series representation

f (x) = 1

�(1/α)

×
∞∑

n=0

(−1)n

α2nn!
�(nα + 1)�((n − 1)α + 1) · · ·�(α + 1)�(1)

�((n + 1)α − 1)�(nα − 1) · · ·�(2α − 1)�(α − 1)
(2.43)

× xα(n+1)−2

for x > 0. Using Stirling’s formula �(ax + b) ∼ √
2πe−ax(ax)ax+b−1/2 as

x → ∞, where a > 0 and b ∈ R (cf. (6.1.39) in [1], page 257), it is readily ver-
ified that |an+1/an| = O(n1−α) as n → ∞, whence the ratio test implies that
the series in (2.43) converges absolutely for every x > 0 and that f defined
by (2.43) is a continuous function on (0,∞). Note, also, that only the leading
term (1/(�(α − 1)�(1/α))xα−2 of the series is singular at zero, so we can inte-
grate in (2.43) term by term over any finite interval in [0,∞). Finally, by induction
over n ≥ 0, using the fact that �(x + 1) = x�(x) for x ∈ R \ {0,−1,−2, . . .}, it
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is easily verified that the series representation (2.43) can be simplified to the form
given in (2.8) above.

5. We now show that f from (2.8) is a unique solution to the integral equa-
tion (2.5). For this, let us first note that since f satisfies (2.43) and hence
solves (2.35), it follows that g = (�(1/α)/α)f solves (2.34). Assuming that g has
a Laplace transform and taking the Laplace transform L on both sides of (2.34),
we see that G = L[g] solves (2.33). The general solution to (2.33) is given by
G(λ) = ceλα + eλα ∫ ∞

λ e−zα
dz for λ > 0, where c is a constant. In order to com-

pute the Laplace transform of f defined in (2.43), we could attempt to interchange
L and the sum and use the fact that L[xρ](λ) = �(ρ + 1)/λρ+1 for ρ > −1 and
λ > 0. Using the ratio test, however, it is possible to verify that the resulting series
diverges and therefore is not equal to L[f ]. We note, however, that if we could
show that

∫ ∞
0 e−λxf (x) dx → 0 as λ → ∞, then we would have c = 0 and (2.30)

would imply that f from (2.43) is indeed the density function of S1, as claimed.
Given this difficulty, we shall take a different tack and establish uniqueness

of the solution to (2.35) in the class of functions that are locally integrable on
[0,∞) and bounded on compact subsets of (0,∞) [these conditions are natural
requirements so that the left-hand side of (2.35) makes sense]. Multiplying both
sides of (2.35) by (z − x)α−2 and integrating the resulting identity with respect to
x from 0 to z, we can use Fubini’s theorem and (2.38) to obtain

1

α − 1

∫ z

0
y(z − y)α−1f (y) dy + α�(α − 1)

∫ z

0
f (y) dy

(2.44)
= α

(α − 1)�(1/α)
zα−1

for z > 0. Note that the interchange of the order of integration above is justified
whenever f is locally integrable on [0,∞) and bounded on compact subsets of
(0,∞). Differentiating this identity with respect to z and substituting x for z, we
get

1

α�(α − 1)

∫ x

0

y

(x − y)2−α
f (y) dy + f (x) = 1

�(1/α)�(α − 1)

1

x2−α
(2.45)

for x > 0. This is a weakly singular Volterra integral equation of the second
kind. Previous considerations show that both the function from (2.43) and the
density function from (2.30) solve the equation (2.45). We note in passing that
when f is the density function, we see from (2.45) that f (x) ≤ [1/(�(α −
1)�(1/α))](1/x2−α) for all x > 0 so that f is bounded on compact subsets of
(0,∞).

Denote by φ the difference between the two solutions to (2.45). Then

a

∫ x

0

y

(x − y)2−α
φ(y) dy + φ(x) = 0(2.46)

for x > 0, where we set a = 1/(α�(α − 1)). It follows from [12], Theorem 7,
page 35, that φ = 0 if φ is locally square-integrable, but since the latter could not
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be the case (around zero), we give a direct proof of the former fact. For this, fix
x1 > 0 arbitrarily large and set ξ = |φ|. Letting

Tξ(x) =
∫ x

0

ξ(y)

(x − y)2−α
dy,(2.47)

we find, by induction using (2.46), that

ξ(x) ≤ bnTnξ(x)(2.48)

for x ∈ (0, x1] and n ≥ 1, where b = ax1. An iterative calculation using Fubini’s
theorem and (2.38) shows that

Tnξ(x) ≤ cn

∫ x

0

ξ(y)

(x − y)1−n(α−1)
dy(2.49)

for x ∈ (0, x1] and n ≥ 1 with some constant cn > 0. Choosing n ≥ 1 large enough
so that 1 − n(α − 1) < 0, combining (2.48) with (2.49) and applying a simple
iteration procedure to the resulting inequality, we find that

ξ(x) ≤ cmxm−1

(m − 1)!
∫ x

0
ξ(y) dy(2.50)

for x ∈ (0, x1] and m ≥ 1 with some constant c > 0. Since the right-hand side
converges to zero as m → ∞, it follows that ξ(x) = 0 for x ∈ (0, x1] and thus
φ(x) = 0 for all x > 0. This shows that the two solutions to (2.45) coincide on
(0,∞). Hence, we can conclude that f from (2.8) is a unique solution to (2.5)
in the class of functions which are locally integrable on [0,∞) and bounded on
compact subsets of (0,∞).

6. Note that the fractional differential equation (2.6) follows from (2.5) by
differentiation so that (2.8) defines its solution satisfying the boundary condi-
tion (2.7). Now, suppose that f solves (2.6) and satisfies (2.7). Then (2.5) follows
from (2.6) by integration [on using (2.38) with μ = α − 1], so f solves (2.35).
Then proceeding as above, we find that f must be equal to the density function,
as long as f is locally integrable on [0,∞) and bounded on compact subsets of
(0,∞). This establishes the existence and uniqueness claim about (2.6) and (2.7)
in the latter class of functions. The proof of the theorem is complete. �

REMARK 1. The integral equation (2.5) is closely related to the (generalized)
Abel equation of the first kind∫ x

0

(
a + 1

(x − y)β

)
f (y) dy = R(x) (0 < β < 1),(2.51)

which admits a closed-form solution expressed in terms of the Riemann–Liouville
fractional derivative of R (of order 1 − β). For more details, see [16] and the
references therein. Note that the integral equation (2.5) is of the form∫ x

0

(
ay + 1

(x − y)β

)
f (y) dy = R(x) (0 < β < 1),(2.52)
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which may be viewed as being of the first order if the Abel equation (2.51) is
viewed as being of the zeroth order. Note also that the equation (2.45) is the “sec-
ond kind” analog of the equation (2.5).

REMARK 2. The results of Theorem 1 extend to the case when the Lévy mea-
sure equals

ν(dx) = c

x1+α
dx,(2.53)

where c > 0 is a general constant. This can be derived using the scaling property
of X. Letting, in this case, ft denote the density function of St = sup0≤s≤t Xs , we
note for future reference that (2.8) extends as follows:

ft (x) =
∞∑

n=1

1

(c�(−α)t)n−1/α�(αn − 1)�(−n + 1 + 1/α)
xαn−2(2.54)

for x > 0 and t > 0. Similarly, from (2.30), it is readily verified that

Ee−λSt =
∫ ∞

0
e−λxft (x) dx = α

�(1/α)
eκtλα

∫ ∞
(κt)1/αλ

e−zα

dz(2.55)

for λ > 0 and t > 0, where we set κ = c�(−α). Note, in particular, that (2.55)
yields ESt = (α/�(1/α))(κt)1/α for t > 0.

7. Further to the series representation given in (2.8) above, the next corollary
presents an integral representation for the density function f of S1. Since this
representation extends to t �= 1 and c �= 1/�(−α) by the scaling property of X,
we will only focus on the case when t = 1 and c = 1/�(−α) in (2.53). We refer
to [11], Theorem 1, page 422, and [6], Theorem 3, page 74, for more general
integral representations in this context (with no obvious connection to the one
given below).

COROLLARY 2. Let X = (Xt)t≥0 be a stable Lévy process of index α ∈ (1,2)

satisfying (2.1) and (2.2), and let S1 = sup0≤t≤1 Xt denote its supremum over the
time interval [0,1]. Then the density function f of S1 is given by

f (x) = 1

π

∫ ∞
0

[
etα cos(απ/2) cos

(
tα sin(απ/2) + tx

)

+ 1

�(1/α)

∫ tα

0

ey cos(απ/2)

(tα − y)1−1/α
(2.56)

× sin
(
y sin(απ/2) + tx

)
dy

]
dt

for x > 0.
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PROOF. Setting in the first equality and noting in the second equality that

H(λ) =
∫ ∞
λ

e−yα

dy = �(1/α)

α
−

∫ λ

0
e−yα

dy(2.57)

for λ > 0, it follows from (2.30) that

f (x) = α

�(1/α)
L

−1
λ [eλα

H(λ)](x)(2.58)

for x > 0. From the second equality in (2.57), one sees that H can be analytically
continued to the entire complex plane. The same fact is therefore true for λ �→
eλα

H(λ) so that the Laplace inversion formula is applicable in (2.58) yielding

f (x) = α

�(1/α)

1

2πi

∫ +i∞
−i∞

ezα
(

�(1/α)

α
−

∫ z

0
e−yα

dy

)
exz dz

(2.59)

= α

�(1/α)

1

2π

∫ +∞
−∞

e(it)α
(

�(1/α)

α
− it

∫ 1

0
e−(ity)α dy

)
eitx dt

for x > 0. In the case t > 0, we have exp((it)α) = exp(tα(cos(απ/2) +
i sin(απ/2))) and exp(−(ity)α) = exp(−(ty)α(cos(απ/2) + i sin(απ/2))). In
the case t < 0, we have exp((it)α) = exp((−t)α(cos(απ/2) − i sin(απ/2))) and
exp(−(ity)α) = exp(−(−ty)α(cos(απ/2)− i sin(απ/2))). Inserting these expres-
sions into (2.59), one can verify that the integral from −∞ to +∞ equals twice the
integral from 0 to +∞, which, in turn, can be reduced to the form given in (2.56)
above. As this verification is somewhat lengthy, but still straightforward, further
details will be omitted. This completes the proof. �

8. The next corollary describes asymptotic behavior of the law of S1 at zero and
infinity. Recall that f (x) ∼ g(x) as x → x0 means that limx→x0 f (x)/g(x) = 1
for x0 ∈ [−∞,+∞].

COROLLARY 3. Let X = (Xt)t≥0 be a stable Lévy process of index α ∈ (1,2)

whose characteristic function is given by

EeiλXt = exp
(
t

∫ ∞
0

(eiλx − 1 − iλx)
c dx

x1+α

)
(2.60)

for λ ∈ R and t ≥ 0, where c > 0 is a given and fixed constant. Let S1 =
sup0≤t≤1 Xt and let f denote the density function of S1. Then

f (x) ∼ 1

(c�(−α))1−1/α�(α − 1)�(1/α)
xα−2 as x ↓ 0,(2.61)

f (x) ∼ cx−α−1 as x ↑ ∞.(2.62)

PROOF. The relation (2.61) follows directly from the explicit series repre-
sentation (2.54). The relation (2.62) can be derived from the integral represen-
tation (2.56), as shown in [8]. �
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