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Diffusion tensor imaging (DTI) is a novel modality of magnetic reso-
nance imaging that allows noninvasive mapping of the brain’s white matter.
A particular map derived from DTI measurements is a map of water principal
diffusion directions, which are proxies for neural fiber directions. We con-
sider a study in which diffusion direction maps were acquired for two groups
of subjects. The objective of the analysis is to find regions of the brain in
which the corresponding diffusion directions differ between the groups. This
is attained by first computing a test statistic for the difference in direction at
every brain location using a Watson model for directional data. Interesting
locations are subsequently selected with control of the false discovery rate.
More accurate modeling of the null distribution is obtained using an empiri-
cal null density based on the empirical distribution of the test statistics across
the brain. Further, substantial improvements in power are achieved by local
spatial averaging of the test statistic map. Although the focus is on one par-
ticular study and imaging technology, the proposed inference methods can be
applied to other large scale simultaneous hypothesis testing problems with a
continuous underlying spatial structure.

1. Introduction. A central statistical problem in brain imaging studies is to
find areas of the brain that differ between two groups of subjects, namely, a con-
trol group and another group with a special characteristic of interest. Diffusion
tensor imaging (DTI) is a modality of MRI that allows insight into the brain’s
white matter. As opposed to functional MRI, which shows brain activity, DTI re-
veals anatomical structure. DTI measures the diffusion of water molecules in tissue
[Bammer et al. (2002), Basser and Pierpaoli (1996) and Le Bihan et al. (2001)].
Since the movement of water is affected by the cell structure, the pattern of dif-
fusion is an indicator of the microscopic properties of the tissue. DTI data differ
fundamentally from conventional imaging data in that values at each spatial loca-
tion are not scalars but 3×3 positive definite matrices, also called diffusion tensors
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(DTs). The DT at a location in space can be thought of as the covariance matrix
of a 3D Gaussian distribution that models the local Brownian motion of the wa-
ter molecules in that location. The DTs are measured at discrete volume elements
called voxels arranged in a regular spatial grid. Voxels are typically about 2 mm in
size. A typical DT image of the entire brain may contain a few hundred thousand
voxels.

Because of familiarity with scalar statistics, investigators frequently restrict
their analysis of DTI data to scalar quantities derived from the DT [e.g., Bammer
et al. (2000) and Deutsch et al. (2005)]. The two most important such quantites are
trace and fractional anisotropy (FA), both functions of the DT’s eigenvalues related
respectively to the total amount of diffusion and the degree of anisotropy within a
voxel. The most important nonscalar quantity derived from the DT is the principal
diffusion direction, defined as the eigenvector corresponding to the largest eigen-
value of the DT. It is generally assumed that diffusion is restricted in the direction
perpendicular to the nerve fibers, so the principal diffusion direction provides a
proxy for the fiber direction within the voxel [Le Bihan et al. (2001)]. Thus, in-
ference about the principal diffusion direction is valuable for understanding where
in the brain different neural fibers may be directed to. The other two eigenvectors
are not as easily interpretable. Fortunately, there is a rich literature in directional
statistics that can help with this problem. To the best of our knowledge, the first
attempt to formally analyze principal diffusion direction maps in a multi-subject
study has been reported by the authors [Schwartzman et al. (2005)]. The present
article is an extension of the analysis reported there.

Given two sets of principal diffusion direction maps, the task at hand is to find
regions that differ between the two groups. After appropriate spatial registration
so that all images are aligned in the same coordinate system, the analysis can
be broken down into two main steps: (1) Computation of a statistic that tests the
difference between group mean directions at every voxel; (2) Inference on the
overall test statistic map.

For step one, we use a probability model for the principal diffusion direction
given by the bipolar Watson distribution on the unit sphere [Best and Fisher (1986),
Mardia and Jupp (2000) and Watson (1965)]. We chose this distribution because
it is one of the simplest that possesses the property of being antipodally symmet-
ric, giving to each direction and its negative the same probability. This is crucial
because the DT is invariant under sign changes of the principal eigenvector. This
particular model leads to appropriate definitions of mean direction and dispersion
for a random sample of directions, as well as a test statistic for testing whether two
samples of directions, that is, same voxel across two groups of subjects, have the
same mean. According to this model, the test statistic under the null hypothesis has
an approximate F distribution for fixed sample size, asymptotically as the samples
become more concentrated around their mean. This is useful when the number of
subjects is small, as it is generally the case in imaging studies.
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The second step in the analysis corresponds to solving a multiple testing prob-
lem among a large number of voxels. For this we use the procedure by Storey,
Taylor and Siegmund (2004) that controls the false discovery rate (FDR). FDR
inference has been applied successfully to microarray analysis [e.g., Efron et al.
(2001) and Efron (2004)], but is still a relatively new technique in brain imaging
[Genovese, Lazar and Nichols (2002) and Pacifico et al. (2004)], where, in con-
trast, the usual approach has been control of the family-wise error rate (FWER)
using Gaussian random field theory [Worsley et al. (1996)]. A practical reason for
our choosing FDR over FWER is that the Storey, Taylor and Siegmund (2004)
procedure depends only on the marginal distribution of the test statistics, while
FWER control would require knowledge of the covariance properties of the ran-
dom field defined by the test statistics. This is relevant because the marginal distri-
bution of the Watson statistic is easy to estimate, while the field properties are not.
A methodological reason for using FDR is that sometimes researchers are not so
interested in controlling the error over the entire search region but rather finding
interesting regions that could be further investigated. For this reason it is appropri-
ate to use the convention introduced by Efron (2004) of calling the selected voxels
“interesting.”

The innovative aspects of the statistical analysis are twofold. The first is a new
empirical null for global modeling of the test statistic. Since the number of sub-
jects is small, a parsimonious model (such as the Watson) is needed at each voxel.
On the other hand, the number of voxels is large, so more accurate modeling of the
null distribution of the test statistic can be obtained by considering global parame-
ters common to all voxels. These global parameters are fit based on the empirical
distribution of the test statistic among voxels that may be considered to belong to
the null class. This empirical null concept was originally suggested for z-scores in
a microarray experiment setting [Efron (2004)]. We introduce here a new version
of the empirical null adapted to the F nature of the Watson test statistic.

The second innovative aspect is the increase of power in FDR inference through
spatial smoothing. An important distinction between the multiple testing problems
in brain imaging and microarray analysis is that the former are accompanied by a
spatial structure. We take advantage of this property to increase statistical power by
applying local spatial averaging, which reduces the noise variance. While routinely
used in image processing, the effect of spatial smoothing on FDR inference is only
starting to be studied [Pacifico et al. (2004)]. Here the empirical null helps again
assess the marginal null distribution of the test statistic after smoothing.

The article is organized as follows. Section 2 describes the data. Section 3, to-
gether with the Appendix, summarize the relevant features of the Watson distrib-
ution. Section 4 describes the FDR inference, including the empirical null and the
local averaging. The data analysis is integrated into Sections 3 and 4 and follows
along with the theory. Further evaluation and criticism of the analysis results are
offered in Section 5.
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2. The data. Our particular dataset concerns an observational study of
anatomical differences related to reading ability in children, conducted by a re-
search team at Stanford University that included one of the authors (RFD). The
study was motivated by a previous report of anatomical evidence of dyslexia in
adults [Klinberg et al. (2000)]. Two groups of children were recruited for the
study: a control group consisting of children with normal reading abilities and a
case group of children with a previous diagnosis of dyslexia. The subjects were
physically and mentally healthy, strongly right-handed, 7–13 years of age, had
English as their primary language and intelligence within the average range. There
were no significant group differences in age, gender, parental education or socioe-
conomic status. More details on the study and the image acquisition are given in
Deutsch et al. (2005).

The data set consists of 12 diffusion direction maps, of which 6 belong to the
control group and 6 to the dyslexic group. Each diffusion direction map is a 95 ×
79 × 68 array of voxels representing spatial locations in a rectangular grid with
2 × 2 × 3 mm regular spacings. To every voxel corresponds a unit vector in R

3

that indicates the principal diffusion direction at that voxel. These vectors actually
represent axes in the sense that the vectors x and −x are equivalent.

For the purposes of statistical analysis, all diffusion direction maps are assumed
to be aligned in the same coordinate system so that each voxel corresponds to the
same brain structure across all subjects. Since subjects have different head sizes
and shapes and may lie slightly differently in the scanner, co-registration of the
images was necessary. The common coordinate system used here is a standard
called the MNI template. The vertical z axis corresponds to the inferior-superior
direction for a subject standing up, looking forward. The origin is located at an
anatomical landmark low near the center of the brain called the anterior commis-
sure. In brief, for each subject, both linear and nonlinear transformation parameters
were computed from that subject’s scalar MRI intensity image by minimizing the
square error difference between the transformed image and the template. The DTs
were then interpolated entrywise in the transformed grid and principal diffusion
directions were recomputed from the DTs at the new locations. The principal dif-
fusion directions were then reoriented by applying the linear portion of the trans-
formation and renormalizing to unit length. For more details on this process, see
Schwartzman, Dougherty and Taylor (2005).

Brain investigators often restrict their image analyses to a subset of the brain,
called search region or mask, that is relevant to the particular study. The purpose is
to increase significance by reducing the data volume and the multiple comparisons
problem. A trade-off exists because a search region that is too small will exclude
other regions of the brain where interesting differences may be found. Since DTI
is particularly good at imaging the white matter of the brain, the search region in
this study was defined as voxels that had a high probability of being within the
white matter for all subjects [Schwartzman, Dougherty and Taylor (2005)]. In our
case, the white matter mask contains N = 20931 voxels.
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FIG. 1. Mean diffusion direction map for control group (a) and dyslexic group (b) at transverse
(axial) slice z = 23 mm. Colors indicate coordinate directions: superior-inferior (blue), right-left
(red) and anterior-posterior (green). The figure was constructed by taking the absolute value of the
vector entries of the diffusion direction at each voxel and mapping each (now positive) entry to a
scale in the corresponding color. Mixed colors represent directions that are oblique to the coordinate
axes. The white matter mask is delineated by the colored area. The gray background is a standard
T1-weighted MRI scalar image of the same slice, superimposed for visual reference. Two major
brain structures are visible in this picture: the corona radiata (blue vertical stripes on both sides of
the brain) contains fibers that run superior-inferior and connect brainstem and cerebellar regions at
bottom of the brain with cortical regions at the top of the brain; the corpus callosum (red) connects
the left and right brain hemispheres. Notice the difference in direction in the upper left corner of the
white matter mask (red in the control group, blue in the dyslexic group).

A previous analysis of this dataset [Deutsch et al. (2005)] used scalar FA im-
ages instead of the principal diffusion direction maps, and focused on a small white
matter region (120 voxels). Our analysis searches for differences in principal dif-
fusion direction over a much larger white matter region (20931 voxels) and reveals
differences in gross anatomical structure in other parts of the white matter that are
invisible to statistical analyses of FA.

Examples of diffusion direction maps are shown in Figure 1 (these are not maps
of individual subjects but rather the average maps for each group, as described in
Section 3; the data structure, however, is the same).

3. Statistics for diffusion directions.

3.1. The bipolar Watson distribution. Given the sign ambiguity property of
diffusion directions, it is appropriate to consider probability density functions on
the sphere that are antipodally symmetric. If x is a random unit vector in R

3, we



158 A. SCHWARTZMAN, R. F. DOUGHERTY AND J. E. TAYLOR

require that the density f (x) satisfies f (x) = f (−x). One of the simplest mod-
els with this property is the bipolar Watson distribution [Watson (1965)], whose
density is given by [Mardia and Jupp (2000), page 181]:

f (x;μ,κ) = C(κ) exp(κ(μT x)2).(1)

The parameter μ is a unit vector called mean direction and κ is a positive con-
stant called concentration parameter. The Watson distribution can be thought of
as a symmetrization of the Fisher–Von Mises distribution for unit vectors on the
sphere, whose density is C(κ) exp(κμT x). The squared exponent in (1) ensures the
required antipodal symmetry. The density has maxima at ±μ and becomes more
concentrated around ±μ as κ increases. The density is also rotationally invari-
ant around ±μ. The normalizing constant C(κ) is not needed for the comparison
methods used here. It is nevertheless included in the appendix for completeness.

More complex models exist for axial data. For instance, the Bingham distribu-
tion [Mardia and Jupp (2000), page 181] allows modeling data without assuming
rotational invariance about the mean axis. The benefit of flexibility in such mod-
els is outweighted by the cost in degrees of freedom for the estimation of the
additional parameters. Given the small number of subjects in our data, the sim-
pler Watson model is preferable. More flexible modeling is incorporated instead
through the empirical null (Section 4).

3.2. Mean direction and dispersion. Let x1, . . . ,xn be a sample of unsigned
random unit vectors in R

3. In our data these would be principal diffusion direc-
tions from a single voxel for each of n subjects. Because the data is sign invariant,
the direct average is not well defined. Instead, the sample mean direction x̄ is de-
fined as the principal eigenvector (i.e., the eigenvector corresponding to the largest
eigenvalue) of the scatter matrix

S = 1

n

n∑
i=1

xixT
i .(2)

S may be interpreted as the empirical covariance of the points determined by
x1, . . . ,xn on the sphere. Intuitively, if the points on the sphere have a preferential
direction, then, as a group, they are also further apart in space from their antipodes.
The principal eigenvector of the scatter matrix points in the direction of maximal
variance in space, which is the preferential direction for the points on the sphere.
It can be shown (see the Appendix) that x̄ is the maximum likelihood estimator
of the location parameter μ when x1, . . . ,xn are i.i.d. samples from the Watson
model.

The sample dispersion is defined as s = 1−γ , where γ is the largest eigenvalue
of S. Intuitively, when the sample is concentrated around the mean, the antipodes
are far apart as a group and so the principal variance γ is close to 1, giving a
dispersion s that is close to 0. Conversely, when the sample is uniformly scattered
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on the sphere, the fact that trace(S) = 1 dictates that the three eigenvalues are
equal to 1/3. The dispersion s in that case takes its maximum value of 2/3. It can
be shown (see the Appendix) that s is the maximum likelihood estimate of 1/κ in
the Watson model, asymptotically when κ → ∞. Since κ controls concentration,
this is consistent with s as a measure of dispersion.

A useful interpretation of s in units of angle is obtained by computing the quan-
tity arcsin(

√
s), which we call the angle dispersion of the sample. This definition

is a direct consequence of the fact (see the Appendix) that s is the average sine-
squared of the angles the samples make with the sample mean direction x̄. This
definition results in a maximal angle dispersion of arcsin(

√
2/3) = 54.74◦ in the

case of uniformity.
An example of mean direction maps is shown in Figure 1. This particular slice

was selected via the inference procedure described in Section 4 and it shows large
differences in diffusion direction of up to 46.1◦ in the upper left corner of the white
matter mask. The statistical test described next formalizes this observation.

3.3. A two-sample test for directions. Consider two samples of unsigned unit
vectors of sizes n1 and n2 with mean vectors μ1 and μ2. We wish to test the
null hypothesis H0 : |μ1 − μ2| = 0 against the alternative HA : |μ1 − μ2| > 0. The
following solution is taken from Mardia and Jupp (2000), page 238, which assumes
equal dispersion in the two groups (akin to a standard t-test) and that the samples
are highly concentrated around the means. These assumptions are reconsidered in
Sections 4.2 and 5.

Under the null, the two samples can be viewed as a single sample of size
n = n1 + n2 and corresponding sample dispersion s. Let s1 and s2 denote the
sample dispersions of both samples evaluated separately. Similar to an analysis of
variance, the total dispersion ns is decomposed as

ns = (n1s1 + n2s2) + (ns − n1s1 − n2s2),

where the two terms in parenthesis correspond to the intragroup and intergroup
dispersion, respectively. The test statistic T , which we shall call the Watson sta-
tistic, is defined as the ratio of the intergroup to the intragroup dispersion divided
by the corresponding number of degrees of freedom, 2 for the intergroup term and
2(n − 2) for the intragroup term:

T = (ns − n1s1 − n2s2)/2

(n1s1 + n2s2)/(2(n − 2))
.(3)

If the underlying concentration parameter κ is the same in both samples, then,
asymptotically as κ → ∞, the Watson statistic (3) has an F distribution with 2
and 2(n − 2) degrees of freedom. Because of the asymptotic assumptions, this is
called a high concentration test rather than a large sample test. This means that the
test is valid for small sample sizes as long as the group dispersions are low. The
appendix gives a derivation of the null distribution of the Watson statistic in the
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FIG. 2. Watson statistic map T (r) [after transformation to χ2(2)] (a) and locally averaged map
T5(r) using a 5 × 5 × 5 box smoother (b), shown at slice z = 23 mm.

general case of testing equality of means between a number of samples possibly
greater than two.

A map of the Watson statistics is shown in Figure 2a, at the same slice as Fig-
ure 1. In our case, n = 12 and so the theoretical null distribution is F(2,20). For
reasons that will become clear in Section 4.2, the test statistics have been trans-
formed to a χ2 scale by a one-to-one quantile transformation from F(2,20) to
χ2(2). Notice the local maximum of the test statistic map on the upper left cor-
ner of the white matter mask, indicative of the difference in direction alluded in
Section 3.2. To assess significance, we incorporate the multiple testing problem,
as described next.

4. False discovery rate inference.

4.1. FDR control. The inference problem of finding significant voxels is a
multiple comparisons problem of the type

H0(r) : |μ1(r) − μ2(r)| = 0 vs. HA : |μ1(r) − μ2(r)| > 0,

where the location r ∈ R
3 ranges over the search region. We overcome the multiple

comparisons problem by controlling the false discovery rate (FDR), the expected
proportion of false positives among the voxels where the null hypothesis is re-
jected. As an alternative to the FDR-controlling procedures described in Benjamini
and Hochberg (1995) and Genovese, Lazar and Nichols (2002), which are based
on ordering of the p-values, we use an equivalent interpretation of the procedure
taken from Storey, Taylor and Siegmund (2004), as follows.

Let T be a test statistic that rejects the null hypothesis at voxel r if its value
T (r) is large. In our case, T is the Watson statistic from (3), but the following
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description applies more generally. Let the search region M contain N voxels, so
that N is the number of tests (in our case, N = 20931). The null hypothesis is
true in an unknown subset M0 ⊂ M with N0 voxels, while the alternative is true in
the complement MA = M \ M0. The objective is to detect as much as possible of
MA while controlling the FDR. For any fixed threshold u, let R(u) and V (u) be
respectively the number of rejections and the number of false positives out of N .
That is,

R(u) = ∑
t∈M

1(T (r) ≥ u), V (u) = ∑
t∈M0

1(T (r) ≥ u).

In terms of these empirical processes, the FDR is defined as

FDR(u) = E
[

V (u)

R(u) ∨ 1

]
,

where the effect of the maximum operator ∨ is to set the ratio to 0 when R(u) = 0.
The natural empirical estimator of FDR(u) is the ratio

F̂DR(u) = (N̂0/N) · E[V (u)/N0]
R(u)/N

= p̂0PH0[T (r) ≥ u]
P̂ [T (r) ≥ u] ,(4)

where P̂ denotes a probability computed from the empirical distribution of the test
statistic T across M and PH0 is a probability computed from the exact distribution
of the test statistic according to the null hypothesis H0. The factor p̂0 is an estimate
of the true fraction of null voxels N0/N . Assuming that most voxels are null, p̂0
may be taken to be 1, making the estimate F̂DR(u) slightly larger and thus con-
servative. Expression (4) has a nice graphical interpretation as the ratio of the tail
areas under the null and empirical densities respectively. Notice that this formula
assumes that the null distribution of the test statistic is the same in all voxels.

Voxels in which the alternative hypothesis is true tend to have higher values
of the test statistic than expected according to the null hypothesis. As a result,
F̂DR(u) tends to decrease as u increases. For a given FDR level α, the threshold is
automatically chosen as the lowest u for which F̂DR(u) is smaller or equal to α:

uα = inf{u : F̂DR(u) ≤ α}.
It is shown by Storey, Taylor and Siegmund (2004) that when the truly null N0 test
statistics are independent and identically distributed, this procedure (with p̂0 = 1)
is equivalent to the Benjamini and Hochberg (1995) procedure, and therefore pro-
vides strong control of the FDR. Moreover, it is shown in Storey, Taylor and Sieg-
mund (2004) that the strong control also holds asymptotically for large N under
weak dependence of the test statistics, such as dependence in finite blocks. Weak
dependence may be assumed in brain imaging data because the number of vox-
els is large and dependence is usually local with an effective range that is small
compared to the size of the brain.
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4.2. Empirical null. A histogram of the Watson statistics for all N = 20931
voxels in the white matter mask is shown in Figure 3a, except that the test statis-
tics have been transformed to a χ2 scale by a one-to-one quantile transformation
from F(2,20) to χ2(2). The theoretical null χ2(2) (dashed curve) gives a reason-
able description of the distribution of the test statistics. The empirical null density
(solid curve), however, provides a much better fit to the data. The empirical null
takes advantage of the large number of voxels to globally correct for the lack of
flexibility and possibly short-of-asymptotic behavior of the distribution prescribed
by the theoretical model.

The empirical null concept was originally proposed for z-scores [Efron (2004)],
whose theoretical null is N(0,1). There, t-statistics were handled by transforming
them to z-scores via a one-to-one quantile transformation from the appropriate
t distribution to a N(0,1). The effect of this transformation is to eliminate the
dependence on the number of subjects, which affects the estimation of the variance
in the denominator of the t-statistic. In our case, the transformation from F(2,20)

to χ2(2) has a similar effect. Keeping the numerator degrees of freedom intact

FIG. 3. FDR analysis with no smoothing (left column) and smoothing using b = 5 (right column).
Top row: observed histogram of the T statistic [after transformation to χ2(2)] compared to the theo-
retical null density (dashed curve) and empirical null density (solid curve). Bottom row: Estimates of
FDR as a function of the threshold u according to the theoretical null (dashed curve) and empirical
null (solid curve). No theoretical null is available for the smoothed test statistic (right column).
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preserves interpretation of the dimensionality of the problem. The empirical null
for χ2 statistics is computed as follows [Schwartzman (2006)].

Let f (t) denote the marginal density of the test statistic T over all voxels. From
the setup of Section 4.1, we write it as the mixture

f (t) = p0f0(t) + (1 − p0)fA(t),

where the fraction of voxels p0 = N0/N behave according to the null density
f0(t) and the remainder 1 − p0 behave according to an alternative density fA(t).
To make the problem identifiable, it is assumed that p0 is close to 1 (say, larger
than 0.9), so that the bulk of the histogram N�f̂ (t) (left portion of Figure 3a,
where � = 0.2 is the bin width) is mostly composed of null voxels. The density
fA(t) may itself be a mixture of other components but its form is irrelevant as long
as it has most of its mass away from zero, or equivalently, if its contribution to the
mixture (1 − p0)fA(t) is small for values of t close to zero.

As an adjustment to the theoretical null N(0,1), Efron (2004) proposed an em-
pirical null of the form N(μ,σ 2). Similarly, as an adjustment to a theoretical null
χ2(ν0) with ν0 degrees of freedom, we propose an empirical null of the form
aχ2(ν) with ν degrees of freedom (possibly different from ν0) and scaling fac-
tor a (possibly different from 1), that is,

f0(t) = 1

(2a)ν/2	(ν/2)
e−t/(2a)tν/2−1.(5)

This is essentially a gamma distribution, but the scaled χ2 notation makes inter-
pretation of the results easier. Under the above assumptions, the portion of the
histogram N�f̂ (t) close to t = 0 should resemble the scaled null p0f0(t). Pro-
ceeding as in Efron (2004), we fit model (5) to the histogram N�f̂ (t) via Poisson
regression using the link

log(p0f0(t)) = − t

2a
+

(
ν

2
− 1

)
log t + constant.(6)

This is a linear model with predictors t and log t and observations given by the
histogram counts. The estimated parameters â and ν̂ are solved from the estimated
coefficients of t and log t in the Poisson regression. An estimate of p0 is also
obtained by solving the expression for the constant in the regression.

As in Efron (2004), the fitting interval is arbitrary. In Figure 3a we used an
interval from 0 up to the 90th percentile of the histogram. The fitted parameters
were â = 1.000 and ν̂ = 1.78. Although the scaling is unaffected, the reduced
number of degrees of freedom may be capturing some additional structure not
accounted for by the Watson model, such as correlation or spherical asymmetry.

With the empirical null, the FDR estimate (4) is now replaced by

F̂DR+
(u) = p̂0P̂H0[T (r) ≥ u]

P̂ [T (r) ≥ u] .(7)
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Notice the extra “hat” in the numerator, indicating that the empirical null is being
used instead of the theoretical null.

The FDR analysis is summarized in Figure 3b. The FDR curve corresponding to
the theoretical null (dashed) was computed using (4) with p̂0 = 1. The FDR curve
corresponding to the empirical null curve (solid) was computed using (7) with the
fitted parameters described above. The value of the curve for u = 0 is our empirical
null estimate of p0, equal to 0.974. Notice that the FDR curves have a general
tendency to decrease as the threshold increases. The empirical null gives better
FDR values than the theoretical null, but that is not necessarily true in general
[Efron (2004) provides a counterexample].

The FDR level α = 0.2 intersects the empirical null FDR curve at a threshold
of 15.92, marked in the figure as a vertical dashed segment. As a reference, this
threshold corresponds to an uncorrected p-value of 3.5 × 10−4. The 15.92 thresh-
old resulted in 23 interesting voxels. Although these selected voxels are located in
several areas of the white matter, it is in slices z = 23 mm to z = 25 mm that they
are closer together and have the highest values of the Watson statistic. These three
slices are shown in the top row of Figure 4, with the corresponding subset of 8 vox-
els marked in white. The group difference in this region can also be seen as a local

FIG. 4. Interesting voxels (white) thresholded from unsmoothed test statistics at FDR level 0.2 (top
row) and using kernel size b = 5 at FDR level 0.05 (bottom row). Both analyses are based on the
empirical null. Shown slices are z = 23 mm (left column), 25 mm (middle column) and 27 mm (right
column).
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TABLE 1
Interesting voxels selected at various smoothing sizes b and FDR levels α. Listed are the mask
size N , the estimated empirical null parameters, fitting limit T90, FDR level α, threshold uα ,

number of selected voxels R(uα), number of clusters and size of the largest clusters. The ≤ sign
implies there are other smaller clusters than listed

b N p̂0 â ν̂ T90 α uα R(uα) # clust clust sz

1 20931 0.974 1.000 1.78 4.84 0.2 15.92 23 14 ≤1,2,3
3 20613 0.938 0.203 8.66 3.51 0.2 4.14 1273 53 ≤59,282,478

0.05 5.46 452 25 ≤34,89,192
0.01 6.80 164 13 ≤21,36,57

5 19856 0.928 0.091 20.01 3.03 0.2 3.23 1609 25 ≤90,427,711
0.05 3.90 790 21 ≤42,216,431
0.01 4.60 345 10 ≤33,86,167

7 18720 0.926 0.052 36.10 2.80 0.2 2.90 1606 18 ≤83,509,889
0.05 3.35 829 12 ≤17,256,517
0.01 3.79 442 8 ≤13,108,316

9 17050 0.930 0.035 54.31 2.66 0.2 2.76 1410 12 ≤11,519,852
0.05 3.13 691 6 ≤3,187,494
0.01 3.52 227 6 ≤4,216

maximum in the test statistic map of Figure 2a. A hierarchical clustering analysis
of the selected voxels showed that the 23 voxels can be grouped into 14 clusters,
the largest of which has size 3. These results are also indicated in Table 1.

4.3. Improved power by local averaging. So far, the analysis has been based
on marginal densities and has not taken into account the information available in
the location index r . Neighboring voxels tend to be similar because the anatomical
structures visible in DTI are typically larger than the voxel size. The logical spatial
units are the various brain structures, not the arbitrary sampling grid of voxels,
and therefore, it is desirable to select clusters rather than individual voxels. Spatial
smoothing may reduce noise and may better detect clusters that correspond to
actual anatomical structures.

Consider a simple box smoother hb(r) = 1(r ∈ Bb)/|Bb|, where the box Bb is a
cube of side b voxels and volume |Bb| = b3. Convolution of the test statistic map
T (r) with the box smoother results in the locally averaged test statistic map

Tb(r) = T (r) ∗ hb(r) = 1

|Bb|
∑
v∈Bb

T (r − v).(8)

In the null regions, the smoothed test statistic Tb(r) at every voxel is the average
of b3 χ2(2)-variables. If the test statistics were independent, Tb(r) would be ex-
actly χ2(2b3)/b3. It is known that the sum of identically distributed exponentially
correlated gamma-variables can be well approximated by another gamma-variable
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[Kotz and Adams (1964)]. Instead of theoretically deriving the parameters of the
gamma distribution and estimating the correlation from the data, an easier solution
is given by the empirical null. Exponential correlation being a reasonable model
for spatial data, we take the empirical null to be a scaled χ2 (gamma). We then es-
timate the null parameters a and ν directly from the histogram of Tb(r) following
the same recipe as in Section 4.2.

A slight change from the previous analysis of Section 4.2 is in the size of the
mask. In order to minimize edge effects, the local averaging (8) was applied to the
unmasked images and the mask reapplied for the purposes of statistical analysis.
Edge effects due to some external anatomical features close to our search region
(such as cerebro-spinal fluid) resulted in the exclusion of some voxels, causing a
slight reduction in the size of the mask from the original N = 20931 at b = 1 to
N = 17050 at b = 9 (Table 1).

The locally averaged test statistic map for b = 5 is shown in Figure 2b. The cor-
responding histogram is shown in Figure 3c. Notice the narrowing of the histogram
around the global mean value 2 as a result of the averaging. Figure 3d shows the
corresponding FDR curve. The smoothing has greatly helped differentiate the two
major components of the mixture. This time we can afford to reduce the inference
level substantially with respect to the previous analysis. Setting α = 0.05 results in
1609 interesting voxels out of 19856. Figure 4, bottom row, shows the largest two
out of 21 discovered clusters. These clusters actually extend vertically in the brain
all the way from z = 5 mm to z = 27 mm.

Repeated analyses for b = 3,5,7,9 result in the selection of two large clusters
in about the same location. The effect of b on the number of selected voxels and
cluster size is summarized in Figure 5. The total fraction of selected voxels out of
N increases dramatically even with the least amount of smoothing, but it reaches
a maximum at b = 7. A similar plateau effect is also observed in the size of the
two largest clusters, especially at FDR levels 0.05 and 0.01. Notice that the second
largest cluster disappears at b = 9 and FDR level 0.01. Increasing b beyond 9 is
impractical due to the limited size of the white matter mask.

5. Discussion. We have compared two groups of diffusion direction maps us-
ing a Watson model for directional data. The inference procedure was built upon
voxelwise test statistics and depended only on their marginal distribution. Taking
advantage of the large number of voxels and the spatial structure of the data, we
were able to improve the model fit to the data using global parameters and improve
the statistical power using local averaging.

The choice of the null distribution is crucial for the inference process. Why is
the theoretical null not enough? The F(2,20) theoretical null (Section 3.3) is a
high concentration asymptotic based on a normal approximation to the Watson
density (see the Appendix). The asymptotic density is actually approached quickly
as κ increases (Figure 6). For example, the 0.001-quantile is 8.5 for κ = 5 and 9.4
for κ = 10, compared to 9.9 for the F(2,20) distribution. Since the 25th and 50th
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FIG. 5. Selected voxels as a fraction of total mask size N for FDR levels 0.2 (a), 0.05 (b) and
0.01 (c). Indicated are the total set of selected voxels and the largest two clusters.

percentiles of the distribution of the estimated κ among all 9203 voxels are 5.0 and
9.8, we may say the high concentration assumption is reasonable for many voxels,
yet the minority that is not highly concentrated may have an effect on the overall
mixture.

FIG. 6. Simulated null densities for various values of the concentration parameter κ . The
high-concentration asymptotic F(2,20) is labeled as κ = ∞.
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Although not obvious from Figure 6, the F(2,20) density is heavier tailed than
for finite κ . Notice in the above calculation that the 0.001-quantile 9.9 from the
F(2,20) density is higher than it would be if the true concentration were used
instead. Since the Watson density has a finite domain on the sphere, it is necessarily
lighter tailed than the normal density that approximates it when κ is large. This
effect is stronger in the numerator of the Watson statistic (3), thus making the F

distribution heavier tailed than necessary for the data. The empirical null provides
the lighter tail for finite κ , as needed.

The discrepancy between the theoretical and empirical nulls for low values of T

may be explained by the distribution on the sphere not being spherically symmet-
ric. The numerator degrees of freedom in F(2,20) corresponds to the dimension-
ality of the normal approximation to the Watson density on the tangent plane when
κ is large. The number of degrees of freedom 1.78 in the empirical null, somewhat
smaller than 2, suggests that the proper approximation may not be bivariate normal
with circular contours but rather with elliptical contours. The change in number of
degrees of freedom may also be a consequence of unequal dispersions between
the two groups, akin to the scalar case [Scheffé (1970)]. Again, instead of paying
extra parameters at each voxel, this is captured globally by the empirical null. The
empirical null is also effective because it provides a model for a mixture of distri-
butions from a large number of voxels, adjusting for unknown heteroscedasticity
and correlation between individual voxels.

As additional null validation, an analysis was performed in which half the sub-
jects were swapped between the two groups in order to remove the group effect.
The histogram and fitted empirical null were very similar to the ones obtained for
the original groups. Surprisingly, however, some significant voxels were found at
the same FDR levels as the original group comparison, although substantially less
in number. This may be an indication that the empirical null, while it helps supple-
ment the deficiencies of the theoretical model, may still not be enough to explain
all the null variation in the data.

It should be noted that, in general, there is not necessarily a direct increase
in power associated with the empirical null [Efron (2004) provides counterexam-
ples]. The empirical null only answers a question of model validity. An alternative
option to the empirical null would be to do a permutation test with the same Wat-
son statistic. In our case the permutation test has little power because the lowest
p-value attainable with two groups of 6 subjects is 0.001, which cannot survive
the multiple comparisons problem with 20931 voxels.

Local averaging has a tremendous impact on statistical power because the power
at every single voxel is indeed low. Consider the power at a single voxel with the
observed peak separation of 46.1◦ as the effect size. Simulation of the Watson
statistic under this alternative hypothesis reveals that the power of a single test
of the F(2,20) null at level α = 0.001 is 0.180 for κ = 5 and 0.804 for κ = 10.
A very high concentration is required in order to have sufficient power. Under the
assumption that the signal changes slowly over space, local averaging has the effect
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FIG. 7. Empirical null parameters as a function of kernel size b: p̂0 (a), â (b) and ν̂ (c). Both â

and ν̂ resemble explicit functional forms of b.

of reducing variance, effectively increasing the concentration associated with the
smoothed test statistic and thus increasing power.

The reduction in variance provided by local averaging increases with the size
of the smoothing kernel. Too much smoothing, however, results in a reduction of
the signal. This effect is seen in Figure 5, where the detection rate goes down if
the kernel size b is too large. The shape of the graphs in Figure 5 suggests there
may exist an optimal kernel that maximizes power, although the exact choice of b

might not be critical as long as it is within a certain neighborhood of the optimum.
The choice of kernel size is an interesting question for further research and prompts
questions about the proper definition of power for FDR inference of spatial signals.

Another interesting effect is seen in the behavior of the estimated parameters of
the empirical null as a function of the kernel size b (Figure 7). While p̂0 resembles
Figure 5, close inspection reveals that â and ν̂ are very close to functional forms
of b, respectively 1/

√
b3 and 2

√
b3. These rates are slower than the rates 1/b3

and b3 we would expect if neighboring voxels were independent. The actual rates
might shed light into the correlation structure of the data.

Despite the apparent success of smoothing, there are some caveats. As b in-
creases, so does the dependence between the test statistics, shaking the ground
on which the strong control of FDR relies (Section 4.1). Furthermore, there is a
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problem of interpretation of the results. The inference after smoothing is no longer
about the original set of hypotheses but about a smoothed set of hypotheses. We
might gain significance, but loose spatial localization. Also anatomically, smooth-
ing with a kernel larger than the structures of interest will prevent interpretation of
the results as differences in brain structure.

The choice of smoothing the test statistic map, as opposed to the original data,
was a practical one. To smooth the subjects’ direction maps was problematic be-
cause, even if the Watson model were correct, the mean direction of a Watson
sample is no longer Watson. Smoothing of the test statistic map is a more general
platform that can be studied independently of how the test statistics were gener-
ated.

While significant differences were found between the two groups of principal
diffusion direction images, the results should be taken with some caution, as in
any other observational study. At the core of the voxelwise comparison paradigm
used in this study is the difficulty to tell how much of the effect is anatomical
and how much is due to the image alignment process. Not enough is known yet
about the anatomical basis for dyslexia in order to interpret the results. To gain
insights about dyslexia would require tracking the neural connections between the
deep white matter regions discovered in this study and the peripheral gray matter
regions involved in reading. This is a challenge beyond the scope of this paper.

In summary, we have developed a methodology for comparing two groups of
diffusion direction maps and finding interesting regions of difference between the
two groups. The Watson model was necessary because of the directional nature of
the data. The inference procedure, on the other hand, was built upon voxelwise test
statistics. The key elements in the inference procedure were the empirical null and
smoothing of the test statistic map. The procedure can be applied more generally
to other large scale simultaneous hypothesis testing problems with a continuous
underlying spatial structure. The requirements are an approximate theoretical null
distribution of the test statistics, upon which an empirical null distribution can be
computed, and a spatial structure where spatial smoothing of the test statistics is
well defined.

APPENDIX: COMPUTATIONS FOR THE BIPOLAR
WATSON DISTRIBUTION

The following summary is a reinterpretation of material from Mardia and Jupp
(2000), pages 181, 202, 236–240, Watson (1965) and Best and Fisher (1986). It
includes a new asymptotic approximation for the integration constant and a new
interpretative quantity called angle dispersion.

A.1. Integration constant. Define a spherical coordinate system on the unit
sphere so that the z-axis coincides with the mean vector μ. For a unit vector x, let
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θ be the co-latitude angle between x and the z-axis. Denote the longitude angle
by φ. The Watson density in this coordinate system is given by

f (θ,φ) = C(κ)eκ cos2 θ sin θ dθ dφ, 0 ≤ θ < π/2,0 ≤ φ < 2π.

The restriction of the density to half the sphere accounts for the antipodal symme-
try. This formulation is slightly different from the one in Best and Fisher (1986),
which defines the density on the entire sphere. An expression for C(κ) is obtained
integrating the density with the change of variable u = cos θ , yielding

C(κ) =
[
2π

∫ 1

0
eκu2

du

]−1

.

The definite integral in the above expression is a special case of the Dawson inte-
gral [Abramowitz and Stegun (1972), page 298].

An explicit asymptotic expression can be found in the large concentration case.
When κ is large, most of the probability density is concentrated around μ and x
is close to μ with high probability. Intuitively, the region of the sphere close to μ

looks locally like a two-dimensional plane. A scaled projection of the density onto
this plane is obtained with the change of variable r = √

2κ sin θ , giving

f (r,φ) = 2πC(κ)eκ

2κ
· e−r2/2 r dr dφ

2π

√
1 − r2/2κ

, 0 ≤ r <
√

2κ,0 ≤ φ < 2π.(9)

For large κ the second factor in the density looks like a bivariate Gaussian density
and its integral should converge to 1. Indeed, another change of variable u = r2/2κ

and integrating by parts, the second factor in (9) yields∫ 2π

0

dφ

2π

∫ 1

0

e−κuκ du√
1 − u

= 2κ

(
1 − κ

∫ 1

0
e−κu du

√
1 − u

)
.

The bounds

1 − u

2
− u2

2
≤ √

1 − u ≤ 1 − u

2
, 0 ≤ u ≤ 1,

then lead to

1 + (κ − 1)e−κ ≤
∫ √

2κ

0

e−r2/2 r dr√
1 − r2/2κ

≤ 1 + 2

κ
−

(
3 + 2

κ

)
e−κ .

Replacing in the integral of (9), we obtain

πC(κ)eκ

κ
∼ 1 ⇒ C(κ) ∼ κ

πeκ
, κ → ∞.(10)



172 A. SCHWARTZMAN, R. F. DOUGHERTY AND J. E. TAYLOR

A.2. Maximum likelihood estimates. Let x1, . . . ,xN be a random sample
from the Watson distribution. The log-likelihood is

κ

N∑
i=1

(xT
i μ)2 + N logC(κ) = N{κμT Sμ + logC(κ)},(11)

where S is the scatter matrix 2. For κ > 0, the MLE μ̂ is the maximizer of μT Sμ

constrained to μT μ = 1 and is given by the eigenvector of S that corresponds to
the largest eigenvalue γ . At the maximum,

μ̂T Sμ̂ = μ̂T γ μ̂ = γ.(12)

Differentiation of (11) with respect to κ gives μ̂T Sμ̂ = A(κ̂), where

A(κ) = −C ′(κ)

C(κ)
=

∫ 1
0 t2eκt2

dt∫ 1
0 eκt2

dt
.(13)

Using (12), κ̂ is thus found by solving

A(κ̂) = γ.(14)

The function A(κ) is monotonically increasing in the range [1/3,1) as κ increases
from 0 to ∞. Replacing the asymptotic (10) in (13), we obtain the large concen-
tration approximation

A(κ) ∼ 1 − 1

κ
, κ → ∞.

Setting the dispersion s = 1 − γ in (14) and using the previous approximation for
A(κ), we get that at the point of maximum likelihood s ∼ 1/κ̂ , which justifies the
interpretation of s as a measure of dispersion.

We now obtain an interpretation of s in terms of angle units. Replacing (2) in
(12), we obtain

γ = μ̂T Sμ̂ = 1

N

N∑
i=1

(μ̂T xi )(μ̂
T xi )

T = 1

N

N∑
i=1

cos2 θ̂i ,

and so

s = 1 − γ = 1

N

N∑
i=1

sin2 θ̂i .(15)

In other words, s is the average sine-squared of the angles that the samples make
with the mean direction. An interpretation of s in units of angle is obtained thus
by computing the quantity arcsin(

√
s), which we call angle dispersion.
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A.3. A multi-sample large concentration test. Given q samples of sizes
N1, . . . ,Nq , we wish to test H0 :μ1 = · · · = μq against the alternative that at least
one of the means is different. For simplicity, we assume that all samples have the
same unknown large concentration κ .

Consider first the entire sample of size N = N1 + · · · + Nq with common mean
μ and pooled dispersion s. Using (15), we write the total dispersion as

2κNs =
N∑

i=1

2κ sin2 θ̂i =
N∑

i=1

r̂2
i ,

where r̂i = √
2κ sin θ̂i . When μ is known, the density (9) indicates that each ri

(without the “hat”) is approximately standard bivariate Gaussian when κ is large.
2κNs is thus the sum of N independent approximately χ2

2 random variables. The
estimation of μ reduces two degrees of freedom so

2κNs
�∼

H0
χ2

2(N−1).(16)

For q independent samples of sizes N1, . . . ,Nq and dispersions s1, . . . , sq , 2q pa-
rameters are fitted and we have the intragroup sum of squares

2κ

q∑
j=0

Njsj
�∼

H0
χ2

2(N−q).(17)

In the “analysis of variance” decomposition

2κNs = 2κ

q∑
j=0

Njsj + 2κ

[
Ns −

q∑
j=0

Njsj

]
,

the asymptotics (16) and (17) imply that the second term on the RHS is approx-
imately χ2 with 2(N − 1) − 2(N − q) = 2(q − 1) degrees of freedom and ap-
proximately independent of the first term. The second term represents the inter-
group dispersion. Proceeding as in the analysis of variance for normal variables,
we construct the Watson test statistic as the ratio between the intergroup and the
intragroup terms divided by the appropriate number of degrees of freedom. Corre-
spondingly, the Watson statistic is asymptotically F -distributed as

T = [Ns − ∑q
j=0 Njsj ]/2(q − 1)

[∑q
j=0 Njsj ]/2(N − q)

�∼
H0

F2(q−1),2(N−q).

Notice that the actual value of κ , although assumed large, is not needed in the final
formula of the statistic.
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