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A substantial focus of research in molecular biology are gene regula-
tory networks: the set of transcription factors and target genes which control
the involvement of different biological processes in living cells. Previous sta-
tistical approaches for identifying gene regulatory networks have used gene
expression data, ChIP binding data or promoter sequence data, but each of
these resources provides only partial information. We present a Bayesian hi-
erarchical model that integrates all three data types in a principled variable se-
lection framework. The gene expression data are modeled as a function of the
unknown gene regulatory network which has an informed prior distribution
based upon both ChIP binding and promoter sequence data. We also present
a variable weighting methodology for the principled balancing of multiple
sources of prior information. We apply our procedure to the discovery of
gene regulatory relationships in Saccharomyces cerevisiae (Yeast) for which
we can use several external sources of information to validate our results.
Our inferred relationships show greater biological relevance on the external
validation measures than previous data integration methods. Our model also
estimates synergistic and antagonistic interactions between transcription fac-
tors, many of which are validated by previous studies. We also evaluate the
results from our procedure for the weighting for multiple sources of prior
information. Finally, we discuss our methodology in the context of previous
approaches to data integration and Bayesian variable selection.

1. Introduction and motivation. The development and function of living
cells is, to a large extent, dictated by a carefully choreographed system of gene
expression. Gene expression is controlled in part by transcription factors (TFs),
a class of proteins which bind to DNA leading to an increase or decrease in tran-
scription of target genes. The collection of transcription factors and their targets
(genes that they control) is called a regulatory network. In this work, we develop
a model for understanding the transcriptional regulatory networks that specify and
maintain cellular function.
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The computational approaches that are used to identify regulatory networks
have typically used information from three different sources:

1. Gene expression data. Microarray chips are used to measure the levels of
mRNA produced for each gene in a cell, which is usually referred to as the
amount of gene expression. Since mRNA is a precursor to the protein product
of each gene, expression levels are used as proxy for the amount of protein pro-
duced. Genes which show similar levels of expression in different conditions
are believed to be co-regulated.

2. ChIP binding data. Chromatin Immunoprecipitation technology uses antibod-
ies to isolate sequences that are directly bound by a specific transcription factor.
Microarray chips are then used to chart these sequences within the genome in
order to determine potential locations for binding of that particular transcription
factor.

3. Promoter sequence data. The different binding sites (located near different tar-
get genes) of the same transcription factor show a significant sequence con-
servation, but substantial variability is also present. The conserved appearance
of the transcription factor binding sites is summarized by a position-specific
weight matrix (PWM) which can be used to search near to potential target genes
for the predicted binding sites of a transcription factor. The strength of the sig-
nal in these PWMs varies substantially between transcription factors.

Although each of these resources are extremely useful, their power is inherently
limited by the fact that each type of data provides only partial information: ex-
pression data provide only indirect evidence of regulation, promoter sequence data
provide only potential binding sites which may not be bound by TFs and ChIP
binding data provide only physical binding locations which may not be functional
in terms of controlling gene expression. We develop a Bayesian hierarchical model
for combining our three available sources of information: gene expression data,
ChIP binding data and promoter sequence data. This is accomplished by extend-
ing previous linear models for gene expression data [Bussemaker, Li and Siggia
(2001), Gao, Foat and Bussemaker (2004)] into a variable selection framework.
There has been substantial research into Bayesian approaches to variable selec-
tion, though as mentioned by George (2000), most previous methods have focused
on minimization of prior dependence. In contrast, our approach takes advantage of
two additional data sources, ChIP binding and promoter element data, to generate
informed prior distributions for our variable selection model. We also develop a
variable weighting methodology for balancing these two sources of prior informa-
tion.

There has also been substantial previous research into the integration of bi-
ological data sources for the discovery of regulatory networks. Bussemaker, Li
and Siggia (2001) developed a linear model to reflect the correlation between ex-
pression patterns and cis-regulatory motif abundance, with the inherent drawback
that any synergistic effects from transcription factor interaction were not taken
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into account. Tadesse, Vannucci and Lio (2004) posited a similar linear model be-
tween expression patterns and cis-regulatory motif abundance, but used Bayesian
variable selection instead of the stepwise regression procedure of Bussemaker, Li
and Siggia (2001). Gao, Foat and Bussemaker (2004) presented an integrated lin-
ear model, MA-Networker, for combining expression and ChIP binding data, but
their procedure required a stringent binding p-value threshold. Banerjee and Zhang
(2003) used thresholded ChIP binding data and gene expression data to identify co-
operativity among TFs. Our model also allows us to estimate synergistic and antag-
onistic interactions between transcription factors. Xing and Laan (2005) developed
a multiple linear regression model selected by a loss-based V-fold cross-validation
selector, but the method relies on knowledge of known TF sites and the number
of TFs with known consensus binding sites is small and their functional coverage
is somewhat limited. Based on the assumption that the expression levels of regu-
lated genes depend on the expression levels of regulators, Segal (2001, 2003) con-
structed a probabilistic model which used binding motif features and expression
data to identify modules of co-regulated genes and their regulators. This proba-
bilistic model reflected nonlinear properties, but required prior clustering of the
expression data. The GRAM algorithm combining ChIP binding and expression
data was developed by Bar-Joseph et al. (2003) to discover regulatory networks in
Saccharomyces cerevisiae, but their technique is heuristic with arbitrary parame-
ter thresholds and little systematic modeling. Another threshold-based approach is
taken by Lemmens et al. (2006) in their ReMoDiscovery method.

Our full probabilistic model does not rely on pre-clustering of expression data
and reduces dependence on arbitrary parameter cutoffs. As mentioned by Kloster,
Tang and Wingreen (2005), many current methods rely on the basic assumption
that each gene can only belong to a single cluster. Our framework permits genes to
belong to multiple regulatory clusters, which allows us to model multiple biologi-
cal pathways simultaneously. Other recent efforts [Liao et al. (2003), Yang (2005),
Boulesteix and Strimmer (2005)] have used a “network component analysis” ap-
proach to find regulatory modules using expression data. In these investigations,
ChIP binding data are used to form a connectivity network between genes and TFs,
which is assumed to be known without error. In contrast, our model allows for the
inherent uncertainty in ChIP experiments, which allows for a more direct integra-
tion of ChIP binding and gene expression, but uses TF gene expression as our
measure of TF activity. Sabatti (2005) also use the “network component analysis”
approach to model gene expression using a prior distribution based on promotor
binding sites, which did allow for some uncertainty in the sequence information,
but did not include any ChIP binding data. We will revisit the distinction between
our approach and “network component analysis” in our discussion.

In Section 2 we outline our Bayesian variable selection model for integrating
multiple data sources and discuss implementation using a Gibbs sampling algo-
rithm [Geman (1984)]. In Section 3 we describe an application of our method-
ology to Saccharomyces cerevisiae (Yeast) where gene expression, ChIP binding
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data and promoter sequence data are available for many transcription factors. We
validate our results in yeast using external information from the biological litera-
ture and compare to several alternative methods. In a related paper [Chen, Jensen
and Stoeckert (2007)] we present a reduced application of our model to Yeast, as
well as applications in the higher organism Mus musculus (mouse). We explore
several interesting model consequences and sensitivities in Section 4. Finally, in
Section 5 we discuss our model in the context of previous methods for regulatory
network elucidation, as well as previous approaches to variable selection.

2. Bayesian model and implementation. The primary goal of our statisti-
cal model is to infer probable gene–TF relationships through the integration of
available biological data. Mathematically, we formulate these relationships as un-
known indicator variables Cij = 1 if gene i is regulated by TF j or 0 otherwise.
Our inference for these regulation indicators Cij is a variable selection process that
determines which subset of the many possible gene–TF relationships are biolog-
ically important and allows us to construct an inferred regulatory network. This
network can be visually represented as a graph where nodes are genes and TFs,
and each Cij variable determines whether or not there should be a directed edge
connecting the node for TF j with the node for gene i. Collectively, the matrix C
of these indicator variables also gives us regulatory clusters (also called regulatory
modules) for each TF, since all genes i where Cij = 1 are estimated to be in a
cluster together regulated by TF j . An important aspect of our flexible framework
is that we are explicitly allowing genes to belong to multiple clusters controlled
by different transcription factors (i.e., Cij = 1 and Cij ′ = 1 for j �= j ′). In order to
infer likely values for our indicator variables C, our model incorporates up to three
general classes of biological information: gene expression data, ChIP binding data
and sequence-level promoter data.

We denote our gene expression data as git , the expression of gene i (i =
1, . . . ,N ) in experiment t (t = 1, . . . , T ). The set of T experiments can be from
different tissues, time-course experiments, different gene-knockout experiments,
or any combination thereof. Within these expression data, we give special fo-
cus to the expression of genes that produce known transcription factor proteins.
For our J known transcription factors, we denote fjt as the expression of TF j

(j = 1, . . . , J ) in experiment t . The TF expression levels fjt are derived from our
gene expression data by simply identifying the gene that encodes each transcrip-
tion factor j , and using the expression level of that gene as our TF expression
levels. We will use the expression fjt for the gene that produces TF j as a proxy
for the amount of activity of TF j . In addition to expression data, we have avail-
able Chromatin Immunoprecipitation (ChIP) experiments which give information
on the physical binding location of specific transcription factors. We use bij to
denote the probability that transcription factor j physically binds in close proxim-
ity to gene i, from a ChIP binding experiment for transcription factor j . Finally,
we have available sequence-level information in the form of known or putative
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promoter binding sites for specific transcription factors located in the upstream re-
gions of target genes. We denote mij as the probability that transcription factor j

has a promoter binding site in the regulatory region of gene i. These binding sites
could be experimentally verified or predicted by scanning upstream sequences for
similarity to an established position-specific weight matrix (PWM) for a particular
transcription factor. We outline our model in the most general case where all three
of these data types are present, but we will also discuss the ramifications on our
procedure when only subsets of these data types are available. Our different data
sources are summarized in Table 1.

The first level of our probabilistic model incorporates our gene expression data
by specifying the observed gene expression git as a linear function of TF expres-
sion, fjt ,

git = αi +
J∑

j=1

βjCijfjt + εit , εit ∼ Normal(0, σ 2).(1)

In equation (1) we see that our regulation indicators Cij act as variable selection
parameters: only TFs j where Cij = 1 are allowed to influence the expression of
gene i. The parameter βj is the linear effect of TF j on gene expression, whereas
αi can be interpreted as the baseline expression for gene i in absence of regula-
tion by known transcription factors (i.e., Cij = 0 for all TFs j ). Bussemaker, Li
and Siggia (2001) also used a linear model for expression data, except that their
approach did not use TF expression fjt as a proxy for TF activity, but rather used
sequence elements as their proxy for TF activity. We prefer the use of TF expres-
sion as our proxy for TF activity since our TF expression levels fjt are specific
to each experiment t in the same way as our gene expression levels git . Sequence
information is not experiment or condition-specific and so is less useful as a proxy
for TF activity. However, we do make use of sequence elements in our prior distri-
bution (3) for the global regulation indicators Cij .

Our simple linear model, as stated in (1), is limited by not allowing for com-
binatorial relationships between TFs. Each TF j has a single effect (βj ) on the
expression of gene i, which does not take into account the biological reality that
expression is often the result of synergistic or antagonistic action of multiple TFs

TABLE 1
Notation for available data sources

Notation Data type

git = expression of gene i in experiment t Gene expression
fjt = expression of TF j in experiment t TF expression
bij = probability that TF j binds near to gene i ChIP binding
mij = probability that gene i has promoter element for TF j Promoter sequence
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binding simultaneously. We acknowledge these combinatorial relationships by ex-
panding our linear model to include interaction terms:

git = αi +
J∑

j=1

βjCijfjt + ∑
j �=k

γjkCijCikfjtfkt + εit ,(2)

εit ∼ Normal(0, σ 2),

where we now have additional coefficients γjk that can be interpreted as the syn-
ergistic (or antagonistic) effect of both TFs j and k binding together to the same
upstream region (in addition to the effects of TF j or k binding in isolation). Note
that our regulation indicators Cij again act as variable selectors for both the lin-
ear and interaction terms in equation (2). Of course, higher-order interactions or
nonlinear functions could also be considered in our framework. However, this ad-
ditional model complexity would increase the parameter space and computation
burden of the model dramatically. We believe that our extended model with TF
interactions (2) achieves an appropriate balance between the computational cost of
model fitting and the flexibility to adequately model TF-gene expression relation-
ships.

Despite the intuitive appeal of positing linear models [Bussemaker, Li and Sig-
gia (2001), Tadesse, Vannucci and Lio (2004), Gao, Foat and Bussemaker (2004)]
as a variable selection problem, the implementation of our variable selection model
is quite complex in practice, with a large number of both genes i (e.g., 6026 in our
yeast application) and TFs j (e.g., 39 in our yeast application). We address this
complexity by using our additional data types to construct informed prior distri-
butions for each regulation indicator Cij . We have bij , the probability that TF j

physically binds in proximity to gene i in a ChIP-binding experiment, and mij ,
the probability of a binding site for TF j in the upstream region of gene i. The
second component of our model incorporates both bij and mij into a combined
prior distribution for our unknown regulation indicators Cij :

p(Cij |mij , bij ,wj ) ∝ [bCij

ij (1 − bij )
1−Cij ]wj · [mCij

ij (1 − mij )
1−Cij ]1−wj .(3)

The variable wj is the relative weight of the prior ChIP-binding information bij

versus the TF binding site information mij . The weights w = (w1, . . . ,wJ ) are
TF-specific but not gene-specific, and are designed to reflect potential global dif-
ferences in quality between the binding data and promoter sequence data for TF j .
However, since this relative quality is not necessarily known a priori, we will treat
each weight wj as an unknown variable. Clearly, if only ChIP binding data for
TF j are available, then wj = 1 and equation (3) reduces to a function of bij only,
whereas if only promoter sequence data for TF j are available, then wj = 0 and
equation (3) reduces to a function of mij only. In cases where both data types
are available, our model will estimate the weight wj so that our prior distribu-
tion moves toward our likelihood based on expression data, thereby creating an
appropriate balance between the two sources of prior information.
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The Bayesian approach gives us a principled framework for connecting these
model components into a single posterior distribution for all unknown parameters:

p(C,w,�|g,f ,m,b) ∝ p(g|f ,C,�) · p(C|m,b,w) · p(�,w),

where � denotes the collection of linear model parameters, that is, � =
(α,β,γ , σ 2). The term p(g|f ,C,�) represents our first model level with expres-
sion data g = (git ) and f = (fjt ) and p(C|m,b,w) represent our second model
level with ChIP binding data b = (bij ) and promoter sequence data m = (mij ). All
that remains is the specification p(�,w), the prior distributions for our TF-specific
prior weights w = (w1, . . . ,wJ ) and our linear model parameters �:

(a) baseline gene i expression: αi ∼ Normal(0, τ 2
α),

(b) TF linear effects: βj ∼ Normal(0, τ 2
β),

(c) TF interaction effects: γjk ∼ Normal(0, τ 2
γ ),

(d) residual gene expression variance: σ 2 ∼ Inv−χ2
ν ,

(e) prior distribution weights: wj ∼ Uniform(0,1).

In Section 4.2 we discuss choices of these hyper-parameters τ and ν that are non-
influential on our posterior inference. We estimate the joint posterior distribution
of all unknown parameters by Markov chain Monte Carlo simulation. Specifically,
we use Gibbs sampling [Geman (1984)], where we iteratively sample values of
one set of parameters given all other parameters:

1. Sampling � given C,w and data g,f ,b,m.
2. Sampling C given w,� and data g,f ,b,m.
3. Sampling w given C,� and data g,f ,b,m.

The details of our Gibbs sampling implementation are given in the Appendix. Soft-
ware for our procedure is available for download at http://www.cbil.upenn.edu/
COGRIM/.

3. Application to the yeast regulatory network. We applied our model to
extensive available data for the simple organism Saccharomyces cerevisiae (bud-
ding yeast). We used 314 gene expression experiments, each involving 6026 yeast
genes. A detailed reference list for our expression data sources and description
of some preliminary data cleaning and manipulation is given in the supplemen-
tal materials. We also have both ChIP binding data [Lee et al. (2002)] and pro-
moter element data [Matys et al. (2003)] for 39 yeast transcription factors. Thus,
the dimension of our observed expression data g = (git ) is 6026 genes × 314
conditions, while f = (fjt ) is 39 TFs × 314 conditions. The dimensions of our
observed binding data b = (bij ) and m = (mij ) are both 6026 genes × 39 TFs.
Our supplemental materials also contain a detailed evaluation of the convergence
of our Gibbs sampling algorithm.

In Section 3.1 below we examine our posterior results for the regulation indi-
cators C in our model, which are the primary goal of our investigation. We use

http://www.cbil.upenn.edu/COGRIM/
http://www.cbil.upenn.edu/COGRIM/
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available external information from the biological literature to confirm our infer-
ence and compare to previous methods. In Section 3.2 we present additional results
for the interaction between TFs in our yeast application where the regulatory ac-
tions of many TFs are being modeled simultaneously. Finally, in Section 3.3 we
examine posterior inference for our weighting parameters between the two dif-
ferent sources of available prior information for each Yeast transcription factor.
A reduced form of our model is applied to Yeast and two transcription factors in
the higher organism Mus musculus (mouse) in a related paper [Chen, Jensen and
Stoeckert (2007)].

3.1. Inference for regulation indicators C. The samples of each indicator vari-
able Cij from our Gibbs sampling algorithm were used to estimate the posterior
probability P(Cij = 1) for each possible gene i and TF j relationship. We consid-
ered any (i, j) combination with posterior probability P(Cij = 1) higher than 0.5
as an inferred gene–TF relationship, and we then call the ith gene a target gene
of transcription factor j . For our yeast application, we focus on the inferred target
genes for 39 transcription factors where external validation measures of biological
relevance are available. We also give a visual representation of the regulatory net-
work in our supplemental materials. We use two validation measures, TF knockout
data and MIPS functional categories, to compare the inferred gene sets from our
full model involving all three data sources to reduced forms of our model that only
involve subsets of our data sources. With these same two validation measures, we
also compare our model inference to the inferred target genes produced by several
previous integration methods: GRAM [Bar-Joseph et al. (2003)], ReMoDiscovery
[Lemmens et al. (2006)] and MA-Networker [Gao, Foat and Bussemaker (2004)].
Finally, we compare our model results to target gene sets constructed based on
heuristic thresholds of single data sources used in isolation. Following the recom-
mendation of Lee et al. (2002), we use thresholded ChIP-binding data alone by
classifying any genes with binding p-values less than 0.001 as gene targets. We
also use thresholded expression data alone by calculating the pairwise correlation
between gene expression gi and the expression f j of TF j , and classifying the
most correlated 1% of genes as targets. This 1% threshold gave the best perfor-
mance among several different thresholds that we considered.

Our most reliable validation uses the results of TF knockout experiments from
the Rosetta Yeast Compendium [Hughes et al. (2000)] for four yeast TFs: Yap1,
Swi4, Swi5 and Gcn4. Knockout experiments are considered a gold standard for
the regulatory activity of individual transcription factors. In each of these experi-
ments, a knockout strain of yeast was created with a specific TF removed from the
genome. Microarray chips are then used to quantify the knockout response for each
gene: the change in expression for each gene between the knockout and wild-type
strains. Genes that are targets of the knocked-out TF should show greater knockout
response between the wild-type strain and the knock-out strain.
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Within each TF knockout experiment, we calculated a t-statistic for the knock-
out response for genes inferred to be targets by each method, which are shown in
Figure 1. Methods with larger t-statistic values in Figure 1 show a greater knock-
out response within their inferred target genes, which supports the biological rel-
evance of that method. For each TF experiment, our model using expression data
only (“Exp”) is clearly inferior to our model with multiple data sources (“All 3”
and “ExpChIP”). Our model based on all three data sources (“All 3”) shows sim-
ilar performance to our model without promoter sequence data (“Exp+ChIP”),
which suggests that this third data source is not contributing substantially to in-
ference. We will revisit this issue when we examine our variable weight inference
in Section 3.3. The inferred target genes from our integrated models (“All 3” and
“ExpChIP”) show uniformly superior performance across the four experiments,
suggesting that our full probabilistic model is capturing more signal than previous
integrated methods (MA-Networker, GRAM and ReMoDiscovery). The inferred
target genes based on thresholded single data shows considerably worse perfor-
mance, which demonstrates that an integrated approach based on multiple data
sources leads to superior inference for regulatory networks.

As a second validation, we used the MIPS database [Mewes (2002)] to assign
a functional category to each gene in our yeast application. For each of our 39
TFs, we looked for over-represented functional categories within each set of in-
ferred target genes. A set of putative gene targets that share similar gene functions

FIG. 1. T-statistics of knockout response.
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are likely to be involved in the same biological pathway, which validates the in-
ference that they are regulated by a common transcription factor. Any functional
category with a p-value of less than 0.001 (p-value calculated using the hyper-
geometric distribution) was considered to be significantly over-represented. The
proportion of inferred target genes that shared over-represented functional cate-
gories (averaged across the 39 TFs) was calculated for our inferred targets, as
well as the inferred targets from other methods. We compare the average pro-
portion of over-represented functions between methods in Figure 2. As observed
in our knockout validation, our model using expression data only (“Exp Only”)
does not perform nearly as well as our model with multiple data sources (“All 3”
or “Exp+ChIP”). Our model without promoter data (“Exp+ChIP”) actually per-
forms better than our model with all three data sources (“All 3”), which is also seen
in a subset of the knockout experiments above. Both of these integrated versions
of our model have a higher proportion of over-represented functions compared to
previous integrated methods, though the performance for all integrated methods
are quite similar. The inferred target genes from each of the integrated methods
show substantially greater functional over-representation than inferred target genes
from the thresholding of a single data source, which again confirms that combining
multiple data sources can improve inference. An interesting side note is that the
version of our model using expression data alone gives better performance com-

FIG. 2. Average proportion of genes with over-represented functions. Height of bars represents
the average proportion of over-represented functions, while lines represent the standard error of the
average.
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pared with using thresholded expression data. This result suggests that our model
for expression data captures additional signal compared to a threshold approach
even without integrating additional data sources, though the integrated versions of
our model give even better results.

3.2. Inference for linear model parameters. Our yeast application involves the
simultaneous modeling of multiple transcription factors, which also allows us to
infer the partial linear effects β of individual transcription factors as well as in-
teraction effects γ between pairs of transcription factors. We consider a particular
parameter βj or γjk as significant if their 95% posterior interval does not contain
zero. It should be noted that we are actually examining the posterior distribution
of each βj and γjk parameter conditional on our regulatory indicators Cij = 1,
since any genes where Cij = 0 make no contribution to the conditional distribu-
tion of βj , as seen in equation (6) of the Appendix. Thus, the parameters βj should
be interpreted as the linear effect of TF j on gene expression if TF j is a regulator
of the gene. Similarly, the parameter γjk should be interpreted as the interaction
effect of TFs j and k on gene expression if TFs j and k are both regulators of the
gene.

Among the linear effects β , we found sixteen activators (significantly posi-
tive βj ’s) and one repressor (significantly negative βj ), which are listed in the
supplemental materials. Fourteen of the sixteen activators and the RME1 repres-
sor discovered by our model were previously reported in the SGD database [SGD
project (2005)], which gives further evidence that our method is very effective at
distinguishing appropriate regulatory relationships. Our model also identified 196
TF pairs which had significant interaction parameters γjk . Using our inferred reg-
ulation indicators C, we imposed an additional restriction that each significant pair
of TFs had to also share at least four target genes in common, which resulted in
a reduced set of 84 TF pairs. A substantial subset of these 84 TF pairs discovered
by our model are also validated by previous biological studies, as outlined in the
supplementary materials.

3.3. Inference about weighting parameters. A novel component of our pro-
posed methodology was the introduction of a weighting variable wj which bal-
ances the relative quality of the prior distribution based on the ChIP binding data
versus the prior distribution based on the promoter sequence data for each TF j

individually. Figure 3 gives a boxplot representation of the posterior distributions
of the weight variables wj for all 39 transcription factors.

We see a substantial amount of heterogeneity between each weight variable,
which reflects differences in the quality of available data for different transcription
factors. We also observe that the posterior distributions for nearly all of these tran-
scription factors are centered around values substantially higher than 0.5, which
suggests that the ChIP binding data is being favored as the superior source of prior
information for our variable selection indicators C. The most extreme example is
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FIG. 3. Posterior distributions of weight variables.

the RME1 transcription factor, where essentially all of the posterior mass for wj is
greater than 0.8. This general trend matches the common perception of practition-
ers that a ChIP binding experiment will provide better evidence of regulation than
predictions based on sequence data. Other examples include the four transcription
factors (indicated by a “K” symbol in Figure 3) for which we have TF knockout
data. In Section 3.1 we noticed that the knockout response was generally similar
between our full model with all three data sources and a reduced model without
the promoter sequence data (wj set equal to 1 for all j ). Now we see that this
similar performance is expected, considering that the distribution of wj in the full
model is centered quite close to one anyways. It should be noted, however, that
this phenomenon is not uniform across all transcription factors. Not all posterior
distributions of wj are pushed toward the boundary value of 1, and in a few cases,
such as MSN4, include some posterior mass less than 0.5, which is evidence that
the promoter sequence data is also making a contribution to inference.

4. Model sensitivity and consequences.

4.1. Network sparsity. Most gene regulatory networks are inherently quite
sparse with only a small subset of all genes controlled by any one transcription
factor. In terms of our parameterization, this concept translates into an expectation
that, for any j , only a small number of genes i will have Cij = 1. There are a
variety of variable selection methods that enforce sparsity on the selection space,
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such as the lasso [Tibshirani (1996), Efron et al. (2004)]. In the Bayesian vari-
able selection approach, one can also incorporate sparsity by using a small prior
probability on the selection indicators, p(Cij = 1) = α, where α is small (e.g.,
α = 0.01). In our model, we do not have a constant prior probability α for each
selection indicator. Rather, we have specific prior probabilities based our the ChIP
and sequence data, as in (3). However, as seen in Figure 4, these probabilities bij

and mij tend to be quite small themselves. To further investigate the sparsity in
our model, we repeatedly generated regulatory networks C from our prior distri-
bution (3). From these repeatedly (m = 10000) generated networks, we estimated
the probability P(Cij = 1) for each gene i and gene j , and tabulated the number
Nj of inferred target genes for each TF j [genes i with P(Cij = 1) ≥ 0.5]. This
procedure is analogous to the inference from our full model, but only uses the
prior probabilities based on ChIP and sequence data. This entire experiment was
repeated for different values (ranging from 0.05 to 0.95) of each weight parameter
wj , so that we have a range of Nj values for each TF j depending on the different
values of wj . Figure 5 shows a boxplot that indicates the range of Nj values over
all values wj for each of our 39 transcription factors. We see that the number of
inferred target genes Nj for each TF j is quite small relative to the total number of
genes in the network (≈6000). These results demonstrate that our prior distribu-
tion on the network selection indicators Cij is capturing our prior expectations that
the Yeast regulatory network should be relatively sparse. We also see substantial
differences between TFs in terms of the variability of the number of target genes

FIG. 4. Distribution of bij and mij values.



BAYESIAN INFERENCE FOR REGULATORY NETWORKS 625

FIG. 5. Boxplots of distribution of Nj for each TF j . Black dots are number of inferred genes from
full model.

Nj , which is indicative of significance between-TF variability in the response of
the inferred target gene set to changing values of the weight w. This result provides
further motivation for the use of TF-specific weights wj that balance the ChIP and
sequence motif data. Finally, we also included the number of inferred genes Nj

from the posterior distribution of our full model (black dots) in Figure 5. We see
that our posterior inference differs substantially from our prior inference for most
transcription factors, but the overall sparsity of the network is maintained in our
posterior distribution.

4.2. Sensitivity to prior specification. Our prior distribution p(Cij |mij , bij ,

wj ) for each regulation indicator Cij is designed to balance the influence of the
ChIP binding probability bij and promoter element probability mij . This balance
is achieved in equation (3) by using a weighted geometric mean. We also explored
alternative prior specifications that balance our ChIP binding and promoter ele-
ment data sources. Specifically, we also considered a prior distribution for Cij

based on the arithmetic mean of our ChIP binding probability bij and promoter
element probability mij ,

p(Cij |mij , bij ,wj )
(4)

= [wjbij + (1 − wj)mij ]Cij
[
1 − (

wjbij + (1 − wj)mij

)]1−Cij .

For all 39 TFs, we explored differences between the prior probabilities using
equation (4) to the prior probabilities using equation (3). Specifically, we ex-
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amined the difference between the two prior distributions in terms of the num-
ber of a priori inferred target genes for each TF [i.e., number of genes i with
p(Cij = 1|mij , bij ,wj ) ≥ 0.5 for each TF j ]. For this calculation, we needed to as-
sume a reasonable value for each weight wj , so we used the posterior mean of each
wj from Section 3.3. Only three TFs (ABF1, RAP1, REB1) showed a substantial
difference in the number of a priori inferred target genes between the two priors,
though these three TFs also had the largest total number of a priori inferred target
genes among all 39 TFs. For the remaining TFs, there was very little difference in
the number of a priori inferred target genes. We also examined the differences in
the a posteriori inferred target genes for the transcription factor HAP4, and found
that the list of inferred target genes was quite similar regardless of whether our
original prior (3) or the alternative prior (4) were implemented. We evaluated the
small differences between the inferred gene lists using our functional categories
validation measure (Section 3.1), and found that the inferred target genes using
our original prior (3) gave a slightly higher proportion of over-represented func-
tional categories. Given the observed lack of substantial difference between the
two prior formulations, and since the specification (4) is a more complicated func-
tional form to implement in our Gibbs sampler, we prefer the use of our original
prior specification (3).

Another issue is the potential sensitivity of our posterior inference to the spec-
ified prior distributions for the parameters (α,β, γ, σ 2) which appear in the linear
model for the expression data (1). The influence of the prior distributions given
in Section 2 depends on the values of the hyper-parameters (ν, τ 2

α, τ 2
β , τ 2

γ ). The
nature of the dependence is clear in the conditional distribution formulas in Ap-
pendix. The influence of the prior distribution on posterior inference for σ 2 is very
small when ν is small. The prior distributions for the regression coefficients α,β
and γ can also be made noninfluential by making the prior variance hyperparame-
ters τ 2

α, τ 2
β and τ 2

γ very large. Our posterior results given in Section 3 are based on

values of ν = 2 and τ 2
α = τ 2

β = τ 2
γ = 10000. In many variable selection problems

with a large but sparse covariate space, more informative prior distributions on
the regression coefficients are used that enforce shrinkage toward values of zero
(exclusion of variables). However, that is not necessary in this case, since we have
enforced sparsity in our model directly through the selection indicator variables C,
as detailed in Section 4.1.

5. Discussion. We have presented a Bayesian hierarchical model for com-
bining heterogeneous sources of biological data to infer regulatory relationships
between genes and transcription factors. Within a variable selection framework,
we build upon previous linear models for gene expression data [Bussemaker, Li
and Siggia (2001), Tadesse, Vannucci and Lio (2004), Gao, Foat and Bussemaker
(2004)] by allowing interactions between transcription factors and incorporating
additional information about regulation based on other data sources. The Bayesian
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paradigm allows us to incorporate these additional data sources in a natural way
through the use of prior distributions for our variable selection indicators. This
variable selection model also permits genes to belong to multiple regulatory clus-
ters, which allows us to model multiple biological pathways simultaneously. Our
full probabilistic model does not rely on any pre-clustering of our data and re-
duces dependence on arbitrary parameter cutoffs compared to previous methods
[e.g., Liao et al. (2003), Yang (2005), Boulesteix and Strimmer (2005)]. When ap-
plied to available data in Saccharomyces cerevisiae (Yeast), the inferred relation-
ships from our model with multiple data sources were shown to be biologically
relevant using external validation measures, with substantially better performance
compared with predictions from previous methods (MA-Networker, GRAM and
ReMoDiscovery), as well as predictions from thresholding of a single data source.
In addition to inferring gene–TF relationships, our model also estimated syner-
gistic and antagonistic interactions between transcription factors, many of which
were also validated by previous studies.

The use of informative vs. noninformative prior distributions is a topic of con-
tinued discussion within the Bayesian statistical community. Noninformative prior
distributions are often used in the context where very little prior information is
known, but the researcher still prefers a Bayesian inferential approach for their ap-
plied problem. In other cases, prior information is known about the applied prob-
lem, in which case the Bayesian paradigm provides a natural way to build this ad-
ditional information into the probability model. Our current methodology provides
a pragmatic compromise of these two approaches: we use informed prior distribu-
tions for our primary inferential targets, the regulation indicators C, but our model
also involves noninformative prior distributions for parameters of secondary inter-
est, such as the coefficients of our linear model for expression data. Our approach
of building additional data sources into our model via an informed prior distribu-
tion for our regulation indicators C contrasts with most previous Bayesian variable
selection research, where criteria are used that assume noninformative prior distri-
butions or avoid prior specification entirely. See [George (2000)] for a review of
these noninformative methods and [George and McCulloch (1996)] for a hierar-
chical Bayesian variable selection model using noninformative prior distributions.

In some previous cases, prior knowledge is incorporated into variable selection,
as in the regression model of Garthwaite and Dickey (1996), the logistic regression
model of Chen, Ibrahim and Yiannoutsos (1999) and the generalized linear mixed
models of Chen et al. (2003). Even more related to our application, Sabatti (2005)
used an informed prior distribution based on binding site data to model regulatory
networks. However, in their model, only regulation indicators with strong prior ev-
idence are allowed to be nonzero, so that a gene–TF relationship without prior evi-
dence based on sequence data is not permitted regardless of the evidence from gene
expression data. Despite relaxing this restriction in our model, our inferred gene
regulatory network remains quite sparse, as seen in Section 4.1. The popular “net-
work component analysis” approach [Liao et al. (2003), Yang (2005), Boulesteix
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and Strimmer (2005)] also assumes that the relationships derived from ChIP bind-
ing data alone are known without error. This is a rather restrictive assumption,
especially when one considers that ChIP experiments are typically limited to a
single condition, but TF binding can vary across different conditions. In contrast,
our model allows inferred relationships based on strong gene expression evidence
that are not completely evident based on our prior information (ChIP binding or
promoter sequence data). Although TF expression is not a perfect proxy for TF
activity, we believe it is the best experiment-specific measure of TF activity that
our current data resources allow. Our model could certainly be further improved
by using a more direct measure of TF activity, such as actual TF protein levels in
the cell, but available data on TF protein levels is severly limited at this time.

A fundamental element of our informed prior approach is that we actually have
a choice between two prior distributions for our regulation indicators C, one in-
formed prior based on ChIP binding data, and another based on promoter sequence
data. Since we do not know from application to application (in this case, from
transcription factor to transcription factor) which data source is more accurate, we
introduce a variable weight that provides a balance between the two prior distri-
butions. This weight variable w is itself assigned a noninformative uniform prior
distribution, and we also assign noninformative prior distributions for our linear
model parameters. The weighting of different sources of information in a Bayesian
model is briefly mentioned by Berry and Hochberg (1999). Ibrahim and Chen
(2000) and Chen et al. (2003) introduce the power prior distribution: a weight
between their regression model likelihood and a prior distribution based on his-
torical data. In contrast, our weight variables are used as a balance between two
“competing” prior distributions, which means that the estimated posterior distrib-
ution of each weight variable can shed substantial insight into the relative quality
of our two sources of prior data. In fact, our weighted prior distribution can be
interpreted as the combination of our two sources of prior information that best
matches the likelihood distribution based on expression data. The results from our
Yeast application indicate that our variable weight methodology achieves an appro-
priate balance between our two sources of prior information. Our results confirm
the commonly-held belief that promoter sequence data is generally much less re-
liable than the ChIP binding data, although promoter sequence data can be useful
in some cases.

APPENDIX: GIBBS SAMPLING IMPLEMENTATION

The posterior distribution of our unknown parameters is proportional to the
product of our model likelihood and our assumed prior distributions,

p(C,w,�|g,f ,m,b)

∝ p(g|f ,C,�) · p(C|m,b,w) · p(w) · p(α) · p(β) · p(σ 2)
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=
N∏

i=1

T∏
t=1

(2πσ 2)−1/2 exp

[ −1

2σ 2

(
git − αi −

J∑
j=1

βjXijt

)2]

×
N∏

i=1

J∏
j=1

[bCij

ij (1 − bij )
1−Cij ]wj · [mCij

ij (1 − mij )
1−Cij ]1−wj

×
N∏

i=1

1

τα

exp
[ −1

2τ 2
α

α2
i

]
·

J∏
j=1

1

τβ

exp
[ −1

2τ 2
β

β2
j

]
· 1

σ
exp

[ −1

2σ 2

]
,

where Xijt = Cijfjt . We use the following Gibbs sampling [Geman (1984)] steps
to estimate the joint posterior distribution of all unknown parameters.

Step 1. Sampling linear model parameters �. The regulation matrix C is as-
sumed known during this step, so we do not need to use our prior data b,m or the
current values of w. We use C to construct the variables X, where Xijt = Cijfjt .
The linear model parameters � are then separately estimated by the following it-
erative strategy. Note that in the steps below, we have combined our interaction
coefficients γjk and linear coefficients βj into a single set of parameters β . Since
each intercept αi is independent from the other α’s, they can be separately sam-
pled,

p(αi |β, σ 2,g,X) ∝ exp

[ −1

2σ 2

T∑
t=1

(
git − αi −

J∑
j=1

βjXijt

)2]
· exp

[ −1

2τ 2
α

α2
i

]

= exp

[ −1

2να

(
αi − να

σ 2 ·
T∑

t=1

Yt

)2]
,

where Yt = git − ∑J
j=1 βjXijt and να = (T /σ 2 + 1/τ 2

α)−1. This distribution im-
plies that

αi ∼ Normal

(
να

σ 2 ·
T∑

t=1

Yt , να

)
.(5)

We can make our prior distribution for each αi to be noninformative by making τα

very large (in this study, 10000) relative to the contribution of the likelihood to the
variance (σ 2/T ).

Our slope and interaction coefficients βj ’s are not independent from each other,
and so must be iteratively sampled:

p(βj |α, σ 2,g,X)

∝ exp

[ −1

2σ 2

N∑
i=1

T∑
t=1

(
git − αi −

J∑
j ′=1

βj ′Xij ′t

)2]
· exp

[ −1

2τ 2
β

β2
j

]
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= exp

[ −1

2σ 2

N∑
i=1

T∑
t=1

(Vit − βjXijt )
2

]
· exp

[ −1

2τ 2
β

β2
j

]
,

where Vit = git − αi − ∑
j ′ �=j βj ′Xij ′t , which reduces further to

p(βj |α, σ 2,g,X) ∝ exp
[ −1

2νβ

(
βj − νβ

σ 2 · TV X

)2]
,

where νβ = (TXX/σ 2 + 1/τ 2
β)−1, TXX = ∑N

i=1
∑T

t=1 X2
ij t and TV X =∑N

i=1
∑T

t=1 VitXijt .
This distribution implies that

βj ∼ Normal
(

νβ

σ 2 · TV X, νβ

)
.(6)

We can make our prior distribution for each βj to be noninformative by making τβ

very large (in this study, 10000) relative to the contribution of the likelihood to the
variance (σ 2/TXX).

For the residual variance σ 2, we use a χ2
ν prior distribution for σ with hyper-

parameter ν = 2, which results in the following conditional distribution:

p(σ 2|α,β,g,X)

∝ (σ 2)−(T N/2+2) · exp

[ −1

2σ 2

N∑
i=1

T∑
t=1

(
git − αi −

J∑
j=1

βjXijt

)2]

= (σ 2)−((T N+2)/2+1) · exp
[ −1

2σ 2 (Vσ + 1)2
]
,

where Vσ = ∑N
i=1

∑T
t=1(git − αi − ∑J

j=1 βjXijt )
2. We see that the influence of

this prior is very small on the posterior distribution for σ 2, which is a scaled-
inverse χ2 distribution with degrees of freedom parameter T N + 2 and scale pa-
rameter s2 = (Vα + 1)/(T N + 2).

Step 2. Sampling regulation indicators C. We are assuming that both our linear
model parameters � and our weights w are known for this step of the algorithm.
When estimating a new value for each Cij , we also can condition on C′, which
is all the other Ci′j ′ values in C (i′ �= i and j ′ �= j ). This gives us the following
conditional distribution for Cij :

p(Cij |�,w,C′,g,f ,b,m)

∝ exp

[ −1

2σ 2

T∑
t=1

(
git − αi −

J∑
j=1

βjCijfjt

)2]
(7)

× [bCij

ij (1 − bij )
1−Cij ]wj · [mCij

ij (1 − mij )
1−Cij ]1−wj .
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Let Z1 be the value of equation (7) when Cij = 1 and Z0 be the value of equation
(7) when Cij = 0. We sample a new value of Cij equal to 1 or 0 with probabilities
proportional to Z1 or Z0 respectively.

Step 3. Sampling prior weights w. We are assuming that the regulation matrix
C is known for this step of the algorithm, so we do not need to use any of the
expression data, g or linear model parameters � for this step. For each TF j , we
need to sample a new weight wj based on the following distribution:

p(wj |C,b,m) ∝ A(wj )
−1 ·

[
n∏

i=1

(bij )
Cij (1 − bij )

1−Cij

]wj

(8)

×
[

n∏
i=1

(mij )
Cij (1 − mij )

1−Cij

]1−wj

.

The normalizing constant A(wj ) present in (8) comes from the integration of
p(wj ,Cj |b,m) over all configurations of Cj :

A(wj ) =
n∏

i=1

[(bij )
wj (mij )

1−wj + (1 − bij )
wj (1 − mij )

1−wj ].(9)

We sample a new value wj via grid sampling: we evaluate (8) over a fine grid of
points in the unit interval, and sample one of these points with probability pro-
portional to (8). Multiple chains of our Gibbs sampling algorithm were run from
different starting points until we were confident that the chains had converged to
the same range of values. Details of our convergence diagnostics are given in the
supplemental materials.

Acknowledgments. We would like to thank Jonathan Schug and Edward I.
George for helpful discussions.

REFERENCES

BANERJEE, N. and ZHANG, M. Q. (2003). Identifying cooperativity among transcription factors
controlling the cell cycle in yeast. Nucleic Acids Research 31 7024–7031.

BAR-JOSEPH, Z., GERBER, G. K., LEE, T. I., RINALDI, N. J., YOO, J. Y., ROBERT, F., GOR-
DON, D. B., FRAENKEL, E., JAAKKOLA, T. S., YOUNG, R. A. and GIFFORD, D. K. (2003).
Computational discovery of gene modules and regulatory networks. Nature Biotechnology 21
1337–1342.

BERRY, D. A. and HOCHBERG, Y. (1999). Bayesian perspectives on multiple comparisons. J. Statist.
Plann. Inference 82 215–227. MR1736444

BOULESTEIX, A.-L. and STRIMMER, K. (2005). Predicting transcription factor activities from com-
bined analysis of microarray and chip data: A partial least squares approach. Theoretical Biology
and Medical Modelling 2 23.

BUSSEMAKER, H. J., LI, H. and SIGGIA, E. D. (2001). Regulatory element detection using corre-
lation with expression. Nature Genetics 27 167–171.

http://www.ams.org/mathscinet-getitem?mr=1736444


632 S. T. JENSEN, G. CHEN AND C. J. STOECKERT

CHEN, G., JENSEN, S. T. and STOECKERT, C. J. (2007). Clustering of genes into regulons using
integrated modeling—COGRIM. Genome Biology 8 R4.

CHEN, M.-H., IBRAHIM, J. G., SHAO, Q.-M. and WEISS, R. E. (2003). Prior elicitation for model
selection and estimation in generalized linear mixed models. J. Statist. Plann. Inference 111 57–
76. MR1955872

CHEN, M.-H., IBRAHIM, J. G. and YIANNOUTSOS, C. (1999). Prior elicitation, variable selection
and Bayesian computation for logistic regression models. J. Roy. Statist. Soc. Ser. B 61 223–242.
MR1664057

EFRON, B., HASTIE, T., JOHNSTONE, I. and TIBSHIRANI, R. (2004). Least angle regression (with
discussion). Ann. Statist. 32 407–499. MR2060166

GAO, F., FOAT, B. and BUSSEMAKER, H. (2004). Defining transcriptional networks through inte-
grative modeling of mRNA expression and transcription factor binding data. BMC Bioinformat-
ics 5 1.

GARTHWAITE, P. and DICKEY, J. (1996). Quantifying and using expert opinion for variable-
selection problems in regression. Chemometrics and Intelligent Laboratory Systems 35 1–26.

GEMAN, S. and GEMAN, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Trans. Pattern Anal. Machine Intelligence 6 721–741.

GEORGE, E. (2000). The variable selection problem. J. Amer. Statist. Assoc. 95 1304–1308.
MR1825282

GEORGE, E. and MCCULLOCH, R. (1996). Stochastic search variable selection. In Markov Chain
Monte Carlo in Practice (W. E. Gilks, S. Richardson and D. J. Spiegelhalter, eds.) 203–213.
Chapman and Hall/CRC, Boca Raton, FL. MR1397966

HUGHES, T., MARTON, M., JONES, A., ROBERTS, C., STOUGHTON, R., ARMOUR, C., BEN-
NETT, H., COFFEY, E., DAI, H., HE, Y., KIDD, M., KING, A., MEYER, M., SLADE, D., LUM,
P., STEPANIANTS, S., SHOEMAKER, D., GACHOTTE, D., CHAKRABURTTY, K., SIMON, J.,
BARD, M. and FRIEND, S. (2000). Functional discovery via a compendium of expression pro-
files. Cell 102 109–126.

IBRAHIM, J. G. and CHEN, M.-H. (2000). Power prior distributions for regression models. Statist.
Sci. 15 46–60. MR1842236

KLOSTER, M., TANG, C. and WINGREEN, N. (2005). Finding regulatory modules through large-
scale gene-expression data analysis. Bioinformatics 21 1172–1179.

LEE, T., RINALDI, N., ROBERT, F., ODOM, D., BAR-JOSEPH, Z., GERBER, G., HANNETT, N.,
HARBISON, C., THOMPSON, C., SIMON, I., ZEITLINGER, J., JENNINGS, E., MURRAY, H.,
GORDON, D., REN, B., WYRICK, J., TAGNE, J., VOLKERT, T., FRAENKEL, E., GIFFORD,
D. and YOUNG, R. (2002). Transcriptional regulatory networks in Saccharomyces cerevisiae.
Science 298 763–764.

LEMMENS, K., DHOLLANDER, T., DE BIE, T., MONSIEURS, P., ENGELEN, K., SMETS, B.,
WINDERICKX, J., DE MOOR, B. and MARCHAL, K. (2006). Inferring transcriptional modules
from ChIP-chip, motif and microarray data. Genome Biology 7 R37.

LIAO, J. C., BOSCOLO, R., YANG, Y.-L., TRAN, L. M., SABATTI, C. and ROYCHOWDHURY, V. P.
(2003). Network component analysis: Reconstruction of regulatory signals in biological systems.
Proc. Natl. Acad. Sci. 100 15522–15527.

MATYS, V., FRICKE, E., GEFFERS, R. ET AL. (2003). TRANSFAC: Transcriptional regulation,
from patterns to profiles. Nucleic Acids Research 31 374–378.

MEWES, H., FRISHMAN, D., GULDENER, U., MANNHAUPT, G., MAYER, K., MOKREJS, M.,
MORGENSTERN, B., MUNSTERKOTTER, M., RUDD, S. and WEIL, B. (2002). MIPS: A data-
base for genomes and protein sequences. Nucleic Acids Research 30 31–34.

SABATTI, C. and JAMES, G. M. (2005). Bayesian sparse hidden components analysis for transcrip-
tion regulation networks. Bioinformatics 22 922–931.

http://www.ams.org/mathscinet-getitem?mr=1955872
http://www.ams.org/mathscinet-getitem?mr=1664057
http://www.ams.org/mathscinet-getitem?mr=2060166
http://www.ams.org/mathscinet-getitem?mr=1825282
http://www.ams.org/mathscinet-getitem?mr=1397966
http://www.ams.org/mathscinet-getitem?mr=1842236


BAYESIAN INFERENCE FOR REGULATORY NETWORKS 633

SEGAL, E., SHAPIRA, M., REGEV, A., PE’ER, D., BOTSTEIN, D., KOLLER, D. and FRIEDMAN,
N. (2003). Module networks: Identifying regulatory modules and their condition-specific regula-
tors from gene expression data. Nature Genetics 34 166–176.

SEGAL, E., TASKAR, B., GASCH, A., FRIEDMAN, N. and KOLLER, D. (2001). Rich probabilistic
models for gene expression. Bioinformatics 1 1–10.

SGD PROJECT (2005). Saccharomyces genome database. Available at http://www.yeastgenome.org.
TADESSE, M. G., VANNUCCI, M. and LIO, P. (2004). Identification of DNA regulatory motifs and

Bayesian variable selection. Bioinformatics 20 2553–2561.
TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser.

B 58 267–288. MR1379242
XING, B. and VAN DER LAAN, M. J. (2005). A statistical method for constructing transcriptional

regulatory networks using gene expression and sequence data. J. Comput. Biol. 12 229–246.
YANG, Y.-L., SUEN, J., BRYNILDSEN, M. P., GALBRAITH, S. J. and LIAO, J. C. (2005). Inferring

yeast cell cycle regulators and interactions using transcription factor activities. BMC Genomics 6
90.

S. T. JENSEN

DEPARTMENT OF STATISTICS

THE WHARTON SCHOOL

UNIVERSITY OF PENNSYLVANIA

PHILADELPHIA, PENNSYLVANIA 19104
USA
E-MAIL: stjensen@wharton.upenn.edu

G. CHEN

DEPARTMENT OF BIOENGINEERING

CENTER FOR BIOINFORMATICS

UNIVERSITY OF PENNSYLVANIA

PHILADELPHIA, PENNSYLVANIA 19104
USA
E-MAIL: ggchen@pcbi.upenn.edu

C. J. STOECKERT, JR.
DEPARTMENT OF GENETICS

CENTER FOR BIOINFORMATICS

UNIVERSITY OF PENNSYLVANIA

PHILADELPHIA, PENNSYLVANIA 19104
USA
E-MAIL: stoeckrt@pcbi.upenn.edu

http://www.yeastgenome.org
http://www.ams.org/mathscinet-getitem?mr=1379242
mailto:stjensen@wharton.upenn.edu
mailto:ggchen@pcbi.upenn.edu
mailto:stoeckrt@pcbi.upenn.edu

	Introduction and motivation
	Bayesian model and implementation
	Application to the yeast regulatory network
	Inference for regulation indicators C
	Inference for linear model parameters
	Inference about weighting parameters

	Model sensitivity and consequences
	Network sparsity
	Sensitivity to prior specification

	Discussion
	Appendix: Gibbs Sampling Implementation
	Acknowledgments
	References
	Author's Addresses

