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Abstract. This article is dedicated to localization of the principal eigenvalue (PE) of the Stokes operator acting on solenoidal vector
fields that vanish outside a large random domain modeling the pore space in a cubic block of porous material with disordered
micro-structure. Its main result is an asymptotically deterministic lower bound for the PE of the sum of a low compressibility
approximation to the Stokes operator and a small scaled random potential term, which is applied to produce a similar bound for
the Stokes PE. The arguments are based on the method proposed by F. Merkl and M. V. Wütrich for localization of the PE of
the Schrödinger operator in a similar setting. Some additional work is needed to circumvent the complications arising from the
restriction to divergence-free vector fields of the class of test functions in the variational characterization of the Stokes PE.

Résumé. Cet article est dédié à l’étude de la localisation de la valeur propre principale (VPP) de l’opérateur de Stokes sous la
condition de Dirichlet sur la frontière d’un grand domaine aléatoire qui modélise l’espace des pores d’ un bloc cubique de matière
poreuse dotée d’une microstructure désordonnée. Le résultat principal est une borne inférieure asymptotiquement déterministe
pour la VPP de l’opérateur correspondant á l’écoulement d’un liquide peu compressible en présence d’un petit potentiel positif
aléatoire. Les arguments sont fondés sur la méthode proposée par F. Merkl et M. V. Wütrich pour localiser la VPP de l’opérateur de
Schrödinger dans une situation similaire. Des efforts supplémentaires sont nécessaires pour combattre les complications provenant
de la réduction à la classe de champs vectoriels de divergence nulle de la famille des fonctions utilisées pour caractériser la VPP
de l’opérateur de Stokes par une formule variationnelle.
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1. Introduction

This article deals with localization of the principal eigenvalue (PE) of the Stokes operator acting on solenoidal vector
fields over a fine-grained random domain that models the pore space in a large block of a material with disordered
micro-structure (e.g., porous rock). Below, the flow domain is

Ft = Q̂0
t \ S, Q̂0

t =
(

−1

2
t,

1

2
t

)d

⊂ Rd, t � 1, (1.1)
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where the closed set S = S(ω) = {x: V (x,ω) = 1} ⊆ Rd models the “skeleton” of the porous material, and V is a
measurable {0,1}-valued random field.

The PE St of the Stokes operator acting on solenoidal velocity fields from the Sobolev space H1
0(Ft ) admits the

following well-known variational characterization in terms of Rayleigh quotients (see [8], Chapter 1.8):

St = inf
{‖φ‖−2

2 ‖∇φ‖2
2: div(φ) = 0, φ ∈ H1

0(Ft )
}
. (1.2)

Under natural assumptions about the structure of the flow domain, this PE exhibits essentially deterministic asymptotic
behaviour as t → ∞.

Rigorous results on asymptotically deterministic behaviour of the PE of an elliptic operator with random elements
originate in the work of A.-S. Sznitman on localization of the PE of the Laplacian under the Dirichlet condition on
the boundary of a random domain (see [6,7] and the bibliography therein).

The method of enlargement of obstacles [7], used in most earlier publications to derive a lower bound on the PE,
compares it with the Dirichlet PE’s for subdomains of simpler shape that are compatible with a typical configuration
of the random element (see, e.g., [6,7,9]).

Later, Merkl and Wütrich [4] elaborated a new method to localize the PE of the Schrödinger operator with a
“scaled” small random non-negative potential term by analyzing feasibility of specific values of the Rayleigh quotient
for individual test functions. This article adapts the approach of [4] to flows in porous media.

Lower bound on Stokes PE

To show that the large-volume asymptotic behavior of PE (1.2) is essentially deterministic, it suffices to find for it
asymptotically equivalent deterministic upper and lower confidence bounds. This can be done by techniques quite
similar to those used for localization of the Laplacian’s PE in the same setting.

Yet, the use of divergence-free fields as test functions in (1.2) complicates the construction of a confidence interval
for the Stokes PE and makes it less explicit – both unilateral bounds include the constant

S = inf
{‖φ‖−2

2 ‖∇φ‖2
2: div(φ) = 0,

∣∣{|φ| > 0
}∣∣ = 1, φ ∈ H1(Rd

)}
, (1.3)

which1 can be loosely interpreted as the smallest value that the PE of the Stokes operator can have for domains
of unit measure. It is strictly positive and at least as large as the Faber–Krahn bound for the Dirichlet PE of the
Laplacian because of the additional restriction on the class of test functions. Constant (1.3) can be approximated ([10],
Lemma A.1) by its counterparts for the low compressibility approximations to the Stokes operator [8], Chapter 1.6:

S = lim
α→0+Cα, Cα = inf

{‖φ‖−2
2 Kα(φ):

∣∣{|φ| > 0
}∣∣ = 1

}
, (1.4)

where Kα(φ) = ∫
Rd K̂α(φ(x))dx, K̂α(φ) = |∇φ|2 + α−1(div(φ))2, and the vector-valued test functions are from

H1(Rd).
Only the lower confidence bound for PE (1.2) is derived below – the approach of [4] is applied to prove the

following theorem of [10].

Theorem 1.1. Denote by Sz(ω) = S ∩ {x :x − z ∈ (− 1
2 , 1

2 ]d} the complement to the flow region in the unit cube
centered at z ∈ Zd .

If there exist independent identically distributed random variables ξz, z ∈ Zd , such that

0 ≤ ξz ≤ 1, |Sz| ≥ ξz, P{ξz = 0} ≤ p, μ = Eξz > 0, (1.5)

then for each ε > 0

lim
t→∞ P

{
(ln t)2/dSt >

(
ν

d

)2/d

S − ε

}
= 1, ν = ln

(
1

p

)
. (1.6)

1Here and below |A| is the Lebesgue measure of a set A ⊂ Rd . Constant (1.3) was introduced in [10], Eq. (1.10), in a different form.
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The matching upper bound

∀ε > 0 lim
t→∞ P

{
(ln t)2/dSt <

(
1

d
ln

(
1

p

))2/d

S + ε

}
= 1 (1.7)

was derived in [10] (for d = 2) and [11] (for d ≥ 3) for a model of porosity where the skeleton consists of isolated
components. In this model, the indicator function of the set S in (1.1) satisfies the inequality

1S(x;ω) ≤
∑
z∈Zd

εz(ω)1W(x − z), (1.8)

the closed set W � (− 1
2 , 1

2 )d , |W | > 0, is sufficiently regular, and the binary random variables εz ∈ {0,1} are inde-
pendent and identically distributed, p = P{εz = 0} = 1 − P{εz = 1} ∈ (0,1). Combined, Eqs (1.6) and (1.7) show that
conditions (1.5) and (1.8) ensure deterministic asymptotic behaviour of St for this model of porosity, and it is not
affected by translations and rotations of the skeleton.

The bounds (1.6) and (1.7) are, unfortunately, much less explicit then the well-known results on localization of the
PE of the Laplacian [7] using the Faber–Krahn inequality.

It is obvious that in definition (1.3) a minimizer, if it exists, cannot be unique because the problem is invariant with
respect to translations and rotations. Both calculation of S and characterization of shapes of the sets whose Stokes
PE’s are close to this constant seem to be open problems. The proof of (1.4) mentioned above does not provide any
practical approach to calculating S .

In the proof of Theorem 1.1, information about the possible shapes of sets with small Stokes PE’s is relatively
unimportant.

By contrast, the main difficulty in the proof of (1.7) lies in showing that a typical configuration of the skeleton
allows the existence of divergence-free test functions with bounded support and Rayleigh quotients sufficiently close
to S .

For d = 2, the choice of test functions in definition (1.3) can be limited to ones having bounded support ([10],
Lemma A.4) whatever the configuration of the skeleton. For d ≥ 3, this question remains open, and the derivation of
the upper bound in [11], Lemma 2.1, is more complicated because it exploits the possibility of adjusting a divergence-
free test function with low Rayleigh quotient to a given configuration of the flow region whenever this contains a
sufficiently large “vacuity” (a connected subset free from inclusions of the skeleton).

Low compressibility approximation to Stokes PE

The restriction of the class of admissible test functions in (1.2) to divergence-free ones precludes the use of some
techniques of [4] that employ cutoffs.

To bypass this difficulty, the method of [4] is used to derive the lower bound first for the Dirichlet PE of the
auxiliary operator that acts on smooth functions as

Λα,β,tφ = −
(


φ +
(

1

α

)
∇ div(φ)

)
+ (ln t)−2/dβV φ. (1.9)

It combines a low-compressibility approximation to the Stokes operator ([8], Chapter 1.6) with a small potential term
that substitutes the random boundary [4]. For a given configuration of skeleton, the Dirichlet PE of operator (1.9) is

Cα,β,t
def= inf

φ∈H1
0( Q̂0

t )

‖φ‖−2
2

(
Kα(φ) + (ln t)−2/dβ

∥∥V 1/2φ
∥∥2

2

)
, (1.10)

where notation is that of (1.4) and the test functions are extended from Q̂0
t to all Rd by zero. It is obvious from

definitions (1.2) and (1.10) that

St ≥ Cα,β,t . (1.11)
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Technically, the main result of this article is the following theorem on the limit behaviour of PE (1.10) under normal-
ization

λ(t, α,β)
def= (ln t)2/dCα,β,t . (1.12)

Theorem 1.2. If condition (1.5) is satisfied, then the normalized PE (1.12) admits the deterministic confidence bounds

∀ε > 0 lim
t→∞ P

{
λ(t, α,β) > Cα,β − ε

} = 1, (1.13)

where in notation of (1.10)

Cα,β
def= inf

{
Kα(φ) + βG(φ;d): φ ∈ H1(Rd

)
,‖φ‖2 = 1

}
,

and the function G(u) = − ln E exp{−uξ0} is used to define

Γ (h;φ) =
∫

Rd

G
(
h
∣∣φ(x)

∣∣2)dx, h > 0, (1.14)

G(φ;D) = sup
h>0

{
h−1(Γ (h;φ) − D

)}
, D ∈ R. (1.15)

Theorem 1.1 is deduced from Theorem 1.2 and inequality (1.11).
Theorem 1.2 and its proof mainly digress from [4] in the form of the functional characterizing the feasible values

of individual Rayleigh quotients and the use of Cramér’s transform to derive a tractable estimate for the exponential
moment of ‖V 1/2φ‖2

2.
The proofs of Theorem 1.2 and Theorem 1.1 occupy, respectively, Sections 2 and 3. The appendices contain some

necessary auxiliary material.

Notation

Points in Rd and their coordinates are denoted x = (xj ). The scalar product is x · y = ∑
xjyj and |x| = √

x · x is the
corresponding norm. One more norm in use is |x|∗ = maxj |xj |, and the corresponding distance from a point to a set
is Dist(x,B) = inf{maxj |xj − yj |: y ∈ B}. For a d × d matrix a = (ajk) the norm |a| = (a: a)1/2 corresponds to the
product a: b = ∑d

j,k=1 ajkbjk .

For a finite set, #(S) is the number of its elements, and |A| is the Lebesgue measure of a set A ⊂ Rd . Sets obtained
by translations and changes of scale are denoted

a + αG = {
x ∈ Rd : x = a + αy,y ∈ G

}
, a ∈ Rd,α ∈ R,G ⊆ Rd .

The cube (− 1
2 , 1

2 ]d is always denoted Q; Q0, �Q are its interior and closure.

For a real-valued function ∇ψ = (∇jψ) is the gradient and |∇ψ | its norm; by analogy |∇φ|2 = ∑d
j,k=1(∇jφ

(k))2

for a function φ = (φ(j)) ∈ Rd . The divergence is div(φ). Notation of integrals is often abbreviated:
∫
G

f (x)dx may
be reduced to

∫
G

f or
∫

f if the context excludes misunderstanding. P and E denote probability and expectation on
the probability space 〈Ω,F ,P〉.

Notation of function spaces follows [8] or [1]. For G ⊆ Rd , the spaces of scalar or vector valued summable func-
tions are denoted Lp(G), and ‖ · ‖p or ‖ · ‖Lp(G) is the corresponding norm. For a bounded open set G, the Sobolev
space H 1

0 (G) is the closure in the norm ‖φ‖H 1 = (‖φ‖2
2 +‖∇φ‖2

2)
1/2 of the space C∞

0 (G) of scalar smooth functions
with compact support in G. Its counterpart for vector valued functions is H1

0(G), and as in [8], Chapter 1.1.4, the
subspace of solenoidal fields on G is V(G) = {φ ∈ H1

0(G): div(φ) = 0}. The spaces H 1(Rd) and H1(Rd) are the
closures of the set of compact-supported smooth scalar and vector valued functions in the norm ‖φ‖H 1 .

Positive constants are denoted c, ci, ĉ, etc. No attempt is made to keep track of their numerical values, so the
same notation may be used for different quantities depending on the context. Implicit “equalities” similar to c · c = c,
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c + c = c, etc. mean that the value of a new constant appearing in a calculation is determined by the same parameters
as those of the old ones.

The calculations below use some multiplicative inequalities for the Sobolev space H 1
0 (G) ([3], Chapter II.2):

‖φ‖q ≤ C(q)‖φ‖2/q

2 ‖∇φ‖1−2/q

2 , q > 2, d = 2,
(1.16)

‖φ‖2/(1−2/d) ≤ C(d)‖∇φ‖2, d ≥ 3.

One more tool is a modification of the Poincaré–Friedrichs inequality: if φ is an H 1 function defined on a convex
set Q+ and Q0,Q1 ⊆ Q+ are its subsets such that |Q1|/|Q0| ≤ αd∗ , then

‖φ‖2
L2(Q1)

≤ 2αd∗‖φ‖2
L2(Q0)

+ ρ2(Q+)
C(α∗)‖∇φ‖2

L2(Q+)
, (1.17)

where ρ(Q+) is the diameter of Q+; the constant on the right-hand side admits the estimate C(α∗) ≤ c(d)max{α∗,
αd−1∗ } with c(d) that depends on the dimension d alone (see [9] for a proof).

2. Low compressibility bound on PE

2.1. Reduction to smaller boxes

Below the original spatial variable x̂ ∈ Q̂t is changed to

x = τ x̂ ∈ Qt
def= τQ̂t = τ tQ0, τ = (ln t)−1/d . (2.1)

In the new variables, the eigenvalue problem for operator (1.9) becomes −(Δφ + α−1∇ div(φ)) + βVtφ = λφ,
φ|∂Qt = 0, where Vt (x) = V (τ−1x;ω). Its PE equals the normalized PE of (1.12) and (1.13):

λ(t, α,β) = inf
{‖φ‖−2

2

(
Kα(φ) + β

∥∥V
1/2
t φ

∥∥2
2

)
: φ ∈ H1

0(Qt )
}
. (2.2)

The parameter τ of (2.1), μ of (1.5), and a large odd integer number T = T (t) are used below to define partitions
of Rd into cells C0

z = τ(z + Q) of size H0 = τ and blocks C1
ζ = H1(ζ + Q) with H1(t) = τT . The sets

Qt = {
z ∈ Zd : C1

1 ∩ Qt �= ∅}
, #(Qt ) ≤

(
t

T
+ 2

)d

,

(2.3)

Et =
{
z ∈ Qt :

∣∣C1
z

∣∣−1∣∣{Vt = 1} ∩ C1
z

∣∣ ≤ 1

2
μ

}
,

label all blocks that intersect Qt and those where the “solid skeleton” covers a small fraction of volume.
If limt→∞ H1(t) ≥ H∗, then for large t and z /∈ Et∫

C1
z

|φ|2 ≤ cμ−1Ĥ 2
∫

C1
z

(|∇φ|2 + β
∥∥V

1/2
t φ

∥∥2
2

)
, Ĥ 2 = max

{
H 2∗ ,

1

β

}
. (2.4)

This estimate follows from inequality (1.17) with Q+ = C1
z , Q0 = C1

z ∩ {Vt = 1}, Q1 = Q+ \Q0, and αd∗ = 2/μ− 1.
When Et = ∅ and t is large, inequality (2.4) provides for PE (2.2) the rough lower bound

λ(t, α,β) ≥ cμmin
{
H−2∗ , β

} ≥ c1μmin
{
μ2/d , β

}
.

Lemma 2.1. If H1(t) → H∗ > (32μ−2d)1/d as t → ∞, then P{Et = ∅} → 1.
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Proof. By condition (1.5) |{Vt = 1} ∩ C1
z | ≥ Ξz, where Ξz = ∑

C0
ζ ⊂C1

z
ξζ . Hence Az = {|{Vt = 1} ∩ C1

z |/|C1
z | ≤

1
2μ} ⊆ {Ξz ≤ 1

2μ}.
For large t , it follows from (2.4), the inequality of S. N. Bernstein (see [5], Chapter 3.4), the restrictions on H1,

and the estimate μ = Eξz ≤ 1, that T = H1/τ > H∗/
√

2 and

P(Az) ≤ P
{
Ξz ≤ 1

2
μ

}
≤ exp

{
−μ2T d/8

1 + μ/2

}
≤ exp

{
− 1

16
μ2Hd∗ ln t

}
.

Since ln #(Qt ) = (1 + o(1))d ln t by (2.3), this implies the relations

lim
t→∞ P{Et �= ∅} = lim

t→∞ P
( ⋃

z∈Qt

Az

)
≤ lim

t→∞ #(Qt ) exp

{
− 1

16
μ2Hd∗ ln t

}
= 0.

�

Below the size of blocks H1(t) satisfies the condition of Lemma 2.1, and L = L(t) is a large natural number. The
normalized PE (2.2) is estimated using its counterparts

λ(L)
z = inf

{‖φ‖−2
L2

(
Kα(φ) + β

∥∥V
1/2
t φ

∥∥2
2

)
: φ ∈ H1

0

(
Q

(L)
z−

)}
(2.5)

for the same operator restricted to functions that vanish outside the cubes Q
(L)
z− = LH1(z + 14

10Q) contained in larger

cubes Q
(L)
z = LH1(z + 15

10Q).

Lemma 2.2. Define JL = {z ∈ Zd : Q
(L)
z ∩ Qt �= ∅}. If H1 satisfies the conditions of Lemma 2.1, then for each ε > 0

and ĉ = ĉ(α,β,H∗)

lim
t→∞

P
{
λ(t, α,β) ≥ (1 − ε)

(
1 + ĉ

L2

)−1

min
z∈Jt

λ(L)
z

}
= 1.

In Lemma 2.2 the ratio ĉ/L2 can be made arbitrarily small by the choice of L. The random variables λ
(L)
z are

identically distributed.

Proof of Lemma 2.2. It suffices to derive the estimate of the lemma assuming that Et = ∅ because limt→∞ P{Et =
∅} = 1.

Following [4], choose a smooth function ζ(x) ∈ [0,1] such that ζ(x) = 1 for x ∈ Q and ζ(x) = 0 for x /∈ 14
10Q,

while
∑

z∈Zd ζ 2(x − z) = 1 and |∇ζ(x)| ≤ c for all x ∈ Rd .
Define ζz(x) = ζ((LH1)

−1x − z) and take a function ψ(x) ∈ H1
0(Qt ). By the above, the functions ψz(x) =

ζz(x)ψ(x) satisfy the equalities (notation is that of (1.11))∑
z∈Zd

∣∣ψz(x)
∣∣2 = ∣∣ψ(x)

∣∣2
,

∑
z∈Zd

ζ 2
z (x)K̂α

(
φ(x)

) = K̂α

(
φ(x)

)
,

so simple calculations show that

∑
z∈Zd

Kα(ψz) =Kα(ψ) + ω, |ω| ≤
∫

Qt

|ψ |2
(

1 +
(

1

α

)) ∑
z∈Zd

|∇ζz|2,

where
∑

z∈Jt
|∇ζz(x)|2 ≤ c(LH1)

−2 because each point of Rd belongs to a uniformly bounded number of sets
{∇ζz �= 0}.
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It follows from (2.5) that λ
(L)
z ‖ψz‖2

2 ≤ Kα(ψz) + β
∫
Q

(L)
z

Vt |ψz|2 for each z. Combined with estimate (2.4), the

inequality shows that for each ψ ∈ H1
0(Qt )

min
z∈Jt

λ(L)
z ‖ψ‖2

2 = min
z∈Jt

λ(L)
z

∑
z∈Jt

‖ψz‖2
2

≤
∑
z∈Jt

(
Kα(ψz) + β

∫
Q

(L)
z

Vt |ψz|2
)

≤ Kα(ψ) + β

∫
Qt

Vt |ψ |2 + c(LH1)
−2‖ψ‖2

2

≤ (
1 + cĤ 2(LH1)

−2)(Kα(ψz) + β

∫
Qt

Vt |ψ |2
)

. �

2.2. Reduction to individual Rayleigh quotients

For the functions that determine the “partial PE” (2.5) used in Lemma 2.2, the norm ‖∇φ‖2 is bounded from above
and below by quantities that depend only on L, β , and H1.

Lemma 2.3. For large t and z ∈ Jt

λ(L)
z = inf

{(
Kα(φ) + β

∥∥V
1/2
t φ

∥∥2
2

)
: φ ∈ Φ(L)

z

}
, (2.6)

where Φ
(L)
z = {φ ∈ H1

0(Q
(L)
z− ): λ− ≤ ‖∇φ‖2

2 ≤ 2λ+,‖φ‖2
2 = 1}, λ− = inf{‖φ‖−2

2 ‖∇φ‖2
2: φ ∈ H1

0(Q
(L)
z− )}, and λ+ =

β + inf{‖φ‖−2
2 ‖∇φ‖2

2: φ ∈ H1
0(Q

(L)
z− ),div(φ) = 0}.

Proof. The inequality λ
(L)
z ≤ λ+ is immediate from definition (2.5) because 0 ≤ Vt ≤ 1 and hence β‖V 1/2

t φ‖2
2 ≤

β‖φ‖2
2. Consequently, if ‖φ‖2 = 1 and ‖∇φ‖2

2 > 2λ+, then

Kα(φ) + β
∥∥V

1/2
t φ

∥∥2
2 ≥ ‖∇φ‖2

2 ≥ 2λ+ > λ(L)
z . �

Lemma 2.4. If H1(t) satisfies the conditions of Lemma 2.1, then for each δ > 0 and t > t∗(δ) there exists a finite
family of test functions Gδ = Gδ(H∗,L,α,β, t) ⊂ H1

0(Q
(L)
0 ) such that

λ
(L)
0 ≥ min

φ∈Gδ

{‖φ‖−2
2

(
Kα(φδ) + β

∥∥V
1/2
t φ

∥∥2
2

)} − cδ.

The value of the constant c is determined by H∗, L, α and β . Neither the number of functions #(Gδ) nor c depends
on t .

Proof. The change of scale g∗(x) = g(H∗H−1
1 x) reduces functions on Q

(L)
0 = 15

10LH1Q to ones defined on the set

H∗H−1
1 Q

(L)
0 = 15

10LH∗Q that is independent of t . It is easily seen that |λ(L)
0 /λ∗ − 1| ≤ c1|H1 − H∗| for large t , where

λ∗ = inf
φ∈Φ

(L)
0

‖φ∗‖−2
2 (Kα(∇φ∗) + ‖V 1/2∗ φ∗‖2

2) and the constant c1(H∗,L,β,α) is independent of t .

Let n(x) ≥ 0 be a C∞-smooth kernel such that
∫
n(x)dx = 1 and n(x) = 0 for |x| ≥ 1. For functions φ ∈ Φ

(L)
0 and

small δ > 0, the convolutions φδ(x) = ∫
φ∗(x + δy)n(y)dy vanish outside H∗H−1

1 Q
(L)
0 by (2.5) and (2.6). It follows

from well-known estimates for convolutions that ‖φδ‖2 ≤ ‖φ∗‖2 and

‖φ∗ − φδ‖2 ≤ cλ
1/2
+ δ‖φ∗‖2, Kα(φδ) ≤ Kα(φ∗).

Since 0 ≤ Vt ≤ 1, the above formula implies that for each φ ∈ Φ
(L)
0

1 − c1δ ≤ ‖φδ‖2
2 ≤ 1,

∣∣∥∥V
1/2∗ φ∗

∥∥2
2 − ∥∥V

1/2∗ φδ

∥∥2
2

∣∣ ≤ c2δ,
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where ci are positive constants. It is immediate that for small δ > 0

λ
(L)
0 ≥ inf

φ∈Φ
(L)
0

(
Kα(φ) + β

∥∥V
1/2
t φ

∥∥2
2

) ≥ inf
φ∈Φ

(L)
0

Kα(φδ) + β‖V 1/2∗ φδ‖2
2

‖φδ‖2
2

− c3δ.

For each fixed δ > 0, the function φδ and all its derivatives are uniformly bounded by quantities proportional to
‖φ‖2. Hence the unit ball in L2(Q

(L)
0− ), which contains Φ0, is transformed by change of scale and convolution into

a pre-compact subset of H1
0(

15
10LH∗Q) containing Φ

(L,δ)
0 = {φδ: φ ∈ Φ

(L)
0 }. This ensures the existence of the set Gδ

and the constant c of the lemma. �

Lemma 2.5. If H1(t) satisfies the conditions of Lemma 2.1, then there exist positive constants ci such that for each
fixed natural L and δ > 0 the scaled PE (2.2) satisfies the relation

∀w > 0 lim
t→∞ P

{
λ(t, α,β) < w

} ≤ lim
t→∞ #(Jt )#(Gδ)q∗(t),

where the set Gδ and its cardinality #(Gδ) are described in Lemma 2.4, and q∗(t) = sup{P{‖φ‖−2
2 (Kα(φ) +

β‖V 1/2
t φ‖2

2) < w0}: φ �≡ 0, φ ∈ H1
0(R

d)} with w0 = (w + c1δ)(1 + ĉ/L2).

Proof. If Et = ∅, then the estimate of Lemma 2.2 holds true, and p = limt→∞ P{λ(t, α,β) < w} satisfies the inequal-
ity

p ≤ lim
t→∞ P

{
Et �= ∅} + lim

t→∞ P
{

min
z∈Jt

λ(L)
z < w∗} ≤ lim

t→∞ P{Et �= ∅} + lim
t→∞ #(Jt )P

{
λ

(L)
0 < w∗}

with w∗ = w(1 + ĉ/L2) because all random variables λ
(L)
z have the same distribution. The desired estimate follows

from Lemma 2.4:

P
{
λ

(L)
0 < w∗} ≤ P

{
min
φ∈Gδ

{‖φδ‖−2
2

(
Kα(φδ) + β

∥∥V
1/2∗ φδ

∥∥2
2

)}
< w∗ + cδ

}
≤ #(Gδ) sup

φ∈H1(Rd )

P
{‖φδ‖−2

2

(
Kα(φδ) + β

∥∥V
1/2∗ φδ

∥∥2
2

)
< w∗ + cδ

}
.

�

2.3. Feasibility of low individual Rayleigh quotients

Rarity of small values of potential term
The large deviation techniques used below are exposed in [5], Chapter 8.

Consider the averages 〈f 〉z = τ−d
∫
C0

z
f (x)dx over cells C0

z of size τ . It is easy to see that |〈Vt |φ|2〉z −
〈Vt 〉z〈|φ|2〉z| ≥ −〈||φ|2 − 〈|φ|2〉z|〉z because 0 ≤ Vt ≤ 1, while the Hölder inequality and the classical multiplica-
tive inequalities for Sobolev spaces (see [3], Chapter II.2) imply the estimates〈∣∣|φ|2 − 〈|φ|2〉

z

∣∣〉
z
= 〈∣∣|φ|2 − ∣∣〈φ〉z

∣∣2 − 〈|φ|2 − ∣∣〈φ〉z
∣∣2〉

z

∣∣〉
z
,

≤ 2
〈∣∣|φ|2 − ∣∣〈φ〉z

∣∣2∣∣〉
z
≤ c1τ

〈|∇φ|2〉1/2
z

〈|φ|2〉1/2
z

. (2.7)

By condition (1.5) ξz ≤ 〈Vt 〉z ≤ 1, which leads to the inequalities

〈
Vt |φ|2〉

z
≥ Xz − c1τ

〈|∇φ|2〉1/2
z

〈|φ|2〉1/2
z

, 0 ≤ Xz
def= ξz

〈|φ|2〉
z
≤ 〈|φ|2〉

z
,

where the random variables Xz are independent. Summing them and applying the Cauchy inequality results in the
estimate∥∥V

1/2
t φ

∥∥2
2 ≥ τdΞ − c1τ‖∇φ‖2‖φ‖2, Ξ

def=
∑
z∈Zd

Xz. (2.8)
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For x̃(t) = x(t) + c1τ‖∇φ‖2‖φ‖2, this implies the inequality

P
{∥∥V

1/2
t φ

∥∥2
2 ≤ x(t)

} ≤ P
{
τdΞ ≤ x̃(t)

}
. (2.9)

In notation of Theorem 1.2, the exponential moments of random variables of (2.8) are expressed through Gz(h) =
− ln Ee−hXz = G(h〈|φ|2〉z) and

− ln E exp{−hΞ} = τ−d �Gt(h;φ),

�Gt(h;φ)
def= τd

∑
z∈Zd

Gz(h) = τd
∑
z∈Zd

G
(
h
〈|φ|2〉

z

)
. (2.10)

The functional �Gt(h;φ) is essentially a majorant for − ln E exp{−h‖V 1/2
t φ‖2

2}.
Denote by X̂z independent random variables whose distributions are obtained from those of Xz by the Cramér

transform:

P{X̂z ∈ B} = Ft,z,h(B) = E exp{−hXz}1{Xz ∈ B}
E exp{−hXz} , h > 0. (2.11)

The expectation of X̂z is EX̂z = G′
z(h) (here and below prime stands for d/dh), and its variance satisfies the inequality

var(X̂z) = −G′′
z (h) ≤ EX2

z exp{−hXz}
E exp{−hXz} ≤ 〈|φ|2〉2

z
. (2.12)

Set Ξ̂0 = ∑
z∈Zd (X̂z − EX̂z). The standard inversion formula for the Cramér transform yields the equality

P
{
Ξ ≤ τ−dx

} = exp
{−τ−d

(�Gt(h) − h�G′
t (h)

)}
EehΞ̂0 1A, (2.13)

where 1A is the indicator of the event A = {Ξ̂0 ≤ τ−d(x − �G′
t (h))}.

Lemma 2.6. Let h > 0 be a fixed positive number and φ ∈ H1(Rd) a fixed function. If limt→∞(x(t) − �G′
t (h)) < 0,

then

lim
t→∞ τd ln P

{∥∥V
1/2
t φ

∥∥2 ≤ x(t)
} ≤ − lim

t→∞
( �Gt(h) − h�G′

t (h)
)
.

Proof. For large t , the assumptions of the lemma guarantee that x̃(t) − �G′(h) < 0 in (2.9), so by (2.13)

ln P
{
Ξ ≤ τ−d x̃(t)

} ≤ −τ−d
(�Gt(h) − h�G′

t (h)
)
.

Indeed, the expectation in (2.13) does not exceed one because Ξ̂0 ≤ 0 over the domain of integration in (2.13). �

The following technical lemma presents the estimate of Lemma 2.6 in a more tractable form (see the proof in
Appendix A).

Lemma 2.7. Let h > 0 be a fixed positive number and φ ∈ H1(Rd) a fixed function. If limt→∞(x(t) − Γ ′(h;φ)) < 0,
then

lim
t→∞ τd ln P

{∥∥V
1/2
t φ

∥∥2 ≤ x(t)
} ≤ −(

Γ (h;φ) − hΓ ′(h;φ)
)
.
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Feasible values of individual Rayleigh quotients
The typical values of the ratio ‖φ‖−2

2 ‖V 1/2
t φ‖2 for a non-zero function φ ∈ H1(Rd ) are characterized by func-

tional (1.15). To simplify calculations it is assumed that ‖φ‖2 = 1 unless stated otherwise. Notation is that of (1.6).
The function G(h) of (1.14) is non-negative, non-decreasing, concave, and bounded. By its definition e−G(u) ≡

E exp{−uξ0}, and it follows from (1.5) that p ≤ E exp{−uξ0} ≤ 1 for all u > 0, so 0 = G(0) ≤ G(u) ≤ ν. Its deriva-
tives can be expressed in terms of expectations (see (2.11) and (2.12)), and Lebesgue’s theorem provides the limits as
h → ∞:

0 < G′(u) = eG(u)Eξ0e−uξ0 ≤ μ

p
, G′(0) = μ,

(2.14)
lim

u→∞G(u) = ν, lim
u→∞uG′(u) = 0.

Moreover, −G′(u) ≤ G′′(u) = (eG(u)Eξ0e−uξ0)2 − eG(u)Eξ2
0 e−uξ0 ≤ 0 because ξ2

0 ≤ ξ0.
The function Γ (h;φ) of (1.14) is well defined and has derivatives

Γ ′(h;φ) =
∫ ∣∣φ(x)

∣∣2
G′(h∣∣φ(x)

∣∣2)dx > 0, Γ ′′(h) =
∫

|φ|4G′′(h|φ|2)dx > 0,

for φ ∈ L2(Rd) because by the above G has bounded derivative, so both G(h|φ|2) and |φ|2G′(h|φ|2) are integrable.
The second derivative exists for h > 0 because |φ|4|G′′(h|φ|2)| ≤ Ch−1|φ|2 ∈ L1(Rd), C = supu>0 uG′(u), by the
estimate for G′′ following (2.14). It is easily seen that

0 < Γ (h;φ) <

(
μ

p

)
h‖φ‖2

2, lim
h→0+Γ (h;φ) = 0, (2.15)

lim
h→0+Γ ′(h;φ) = μ‖φ‖2

2, 0 < Γ ′(h;φ) ≤
(

μ

p

)
‖φ‖2

2. (2.16)

If φ ∈ Rd and D∞ = D∞(φ)
def= ν|{|φ| > 0}| < ∞, then

Γ (h;φ) < lim
h→∞Γ (h;φ) = D∞, lim

h→∞hΓ ′(h;φ) = 0. (2.17)

Lemma 2.8. The function D �→ G(φ;D) of (1.15) is continuous and non-increasing on [0,∞). If φ vanishes outside
a set of finite measure, then G(φ;D) > 0 for D < D∞ and G(φ;D) = 0 for D ≥ D∞, where the threshold value D∞
is defined in (2.17).

For each D ∈ (0,D∞] and arbitrarily small numbers ε, δ > 0, one can find a finite number h > 0 such that

0 ≤ G(φ;D) − h−1(Γ (h) − D
) ≤ δ, D − ε ≤ Γ (h) − hΓ ′(h) ≤ D. (2.18)

If 0 < D < D∞, then there exists h > 0 such that (2.18) holds with δ = ε = 0.

Proof. If D < D∞, the function in (1.15) attains maximum at a single point. Indeed, its derivative can be represented
in the form(

h−1(Γ (h) − D
))′ = h−2U(h), U(h) = hΓ ′(h) − (

Γ (h) − D
)
.

Clearly, U(0) = D > 0 and limh→∞ U(h) = D − D∞ < 0 (see (2.15) and (2.17)). For h > 0 the derivative U ′(h) =
hΓ ′′(h) is strictly negative, so by the implicit function theorem the equation

U(h) ≡ D − (
Γ (h) − hΓ ′(h)

) = 0

defines a unique strictly increasing function h(D). This point is the required maximum and by the above

G(φ,D) = h−1(Γ (
h(D)

) − D
) = [

h−1(hΓ ′(h) − U(h)
)]|h=h(D) = Γ ′(h(D)

)
> 0.
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Relations (2.18) are obviously true for h = h(D) with δ = ε = 0.
By (2.16) and (2.17) Γ (h)−hΓ ′(h) < D∞ for each finite h > 0, so it follows from (2.17) that limD↗D∞ h(D) = ∞

and limD↗D∞ G(φ;D) = 0.
If D ≥ D∞, then it follows from (2.16) and (2.17) that G(φ;D) = limh→∞ 1

h
(Γ (h;φ)−D) = 0 because U(h) > 0

for all finite h. Moreover, limh→∞ U(h) = 0 for D = D∞. Hence it suffices to take a large enough value of h > 0 to
satisfy (2.18). �

Consider Σα,β(D)
def= inf{Kα(φ) + βG(φ;D): ‖φ‖2 = 1, φ ∈ H1(Rd)} (cf. (1.11)). Later it will be essential that

Σα,β(d) = Cα,β (see (1.13)).

Lemma 2.9. (a) If ‖φ‖2 = 1 and 0 ≤ w < G(φ;D), then

lim
t→∞(ln t)−1 ln P

{
τ−d

∥∥V
1/2
t φ

∥∥2
2 ≤ w

}
< −D.

(b) If φ ∈ H1(Rd) and ‖φ‖2 = 1, then for each ε ∈ (0,Σα,β(D))

lim
t→∞(ln t)−1 ln P

{
Kα(φ) + β

∥∥V
1/2
t φ

∥∥2
2 < Σα,β(D) − ε

β

}
< −D.

The probabilities of the lemma are zero for w < 0 or ε > Σα,β(D).

Proof of Lemma 2.9. By Lemma 2.8 there exists h > 0 such that G(φ,D) = h−1(Γ (h,φ) − D) and Γ (h,φ) −
hΓ ′(h,φ) = D. Consequently, w−Γ ′(h) = w−G(φ,D) < 0, so assertion (a) of the lemma follows from Lemma 2.7.

Assertion (b) follows from (a). Inequality Σα,β(D) ≤ Kα(φ) + βG(φ,D) follows from the definitions of Σα,β

and G, so in case of G(φ,D) > 0

P
{
Kα(φ) + β

∥∥V
1/2
t φ

∥∥2
2 < Σα,β − ε

} ≤ P
{∥∥V

1/2
t φ

∥∥2
2 < G(D) − ε

β

}
. �

2.4. Proof of Theorem 1.2

Choose a partition of Rd into blocks of size H1(t) satisfying the conditions of Lemma 2.1. Apply Lemmas 2.2 and 2.5
with w = Cα,β − 2ε selecting L and δ so that in notation of the latter lemma

lim
t→∞ P

{
λ(t, α,β) < w

} ≤ lim
t→∞ #(Jt )#(Gδ)q∗(t),

where q∗(t) = supφ P{‖φ‖−2
2 (Kα(φ) + β‖V 1/2

t φ‖2
2) < w0} and for large t

w0 = (w + c1δ)

(
1 + ĉ

L2

)
< Cα,β − ε.

By the construction limt→∞(ln t)−1 ln(#(Jt )#(G(δ))) = d . Since

lim
t→∞(ln t)−1 ln q∗(t) < −d

by the estimate for w0 and Lemma 2.9 (with D = d and Σα,β(d) = Cα,β ), it follows that limt→∞ P{λ(t, α,

β) < w} = 0.

3. Low compressibility bound: case of large β

The bulk of this section is occupied by the proof of the following lemma. Theorem 1.1 is derived from it at the end of
the section.
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Lemma 3.1. Consider Cα,β defined in (1.13) and Cα of (1.4). Under the conditions of Theorem 1.1 limβ→∞ Cα,β =
(ν/d)2/dCα .

Proof. The argument below makes use of scaling properties of the analogues of PE’s (1.4) for domains of arbitrary
positive measure:

inf
{‖φ‖−2

2 ‖∇φ‖2
2: div(φ) = 0,

∣∣{|φ| > 0
}∣∣ = u

} = u−2/dS,
(3.1)

inf
{‖φ‖−2

2 Kα(φ):
∣∣{|φ| > 0

}∣∣ = u
} = u−2/dCα.

By Lemma 2.5 G(φ;d) = 0 if D∞(φ) = ν|{φ �= 0}| ≤ d . For this reason definition (1.13) and (3.1) imply the
inequality

Cβ,α ≤ s∗
def= inf

{
‖φ‖−2

2 Kα(φ):
∣∣{φ �= 0}∣∣ ≤ d

ν

}
=

(
ν

d

)2/d

Cα. (3.2)

Thus, the test functions that determine the value of Cβ,α are, for each β > 0, in the set

Φ0 = {
φ ∈ H1(Rd

)
: ‖φ‖2 = 1,Kα(φ) ≤ s∗

}
. (3.3)

To prove Lemma 3.1, it suffices to show that the value of limβ→∞ Cβ,α is determined by test functions satisfying
condition G(φ;d) = 0. To do so, set (3.3) is divided, for each β , into a few subsets defined using a small number δ > 0
and a function ε(β) > 0 such that ε(β) ↘ 0 and βε(β) ↗ ∞ as β → ∞. Below φε(x) = min{|φ(x)|, ε1/2(β)} and

Ψ1(β) = {
φ: ‖φε‖2

2 ≤ ε1/2(β)‖φ‖2
2

} ∩ Φ0, (3.4)

Ψ2(β) =
{
φ:

∣∣{∣∣φ(x)
∣∣2

> φ2
ε (x)

}∣∣ ≤ d + δ

ν

}
∩ Φ0. (3.5)

The elimination of irrelevant test functions is based on properties of G and Γ summarized in (2.14)–(2.17).
(a) If φ ∈ Φ0 \ Ψ1(β), then one gets a lower bound for G(φ;d) choosing h(β) = ε−1(β) in (1.15). It is easily

seen that G(u) ≥ Cμu for 0 < u ≤ 1 in (2.14). Since h(β)φ2
ε (x) ≤ h(β)(ε1/2(β))2 ≤ 1, this leads to the inequalities

Γ (h(β);φ) ≥ ∫
G(h(β)φ2

ε (x))dx ≥ Cμh(β)‖φε‖2
2 ≥ Cμh(β)ε1/2(β).

It follows from (1.13), (1.15) and (3.2) that for large β the exclusion of test functions from Φ0 \ Ψ1(β) does not
influence the value of Cβ,α because of the uniform lower bound

∀φ ∈ Φ0 \ Ψ1(β) βG(φ;d) ≥ βε1/2(β)
(
Cμ − ε1/2(β)d

) ↗ ∞.

(b) If φ ∈ Ψ1(β) \ Ψ2(β), then |φ|2 > φ2
ε ≥ ε(β) on a set of large measure. Since limu→∞ G(u) = ν, one can

choose u so large that G(u) > (1 − (δ/d)2)ν and take h(β) = uε−1(β) to see that

Γ
(
h(β)

) ≥ G(u)
∣∣{|φ|2 > φ2

ε

}∣∣ ≥
(

1 −
(

δ

d

)2)
ν(d + δ)

ν
≥ d + 1

2
δ.

Thus, also test functions from Ψ1 \ Ψ2 can be excluded when the infimum in (1.13) is calculated for large β because
for them

βG(φ;d) ≥ βh−1(β)
(
Γ (h;φ) − d

) ≥ 1

2

(
δ

u

)
βε(β) → ∞.

(c) By (3.2) and (3.3) it suffices to show that there exist functions κ∗(δ) > 0 and B(κ) such that limδ→0+ κ∗(δ) = 0
and for β > B(κ∗(δ))

{
φ: ‖φ‖−2

2 Kα(φ) ≥ s∗ − κ∗(δ)
} ∩ Ψ 0 �= ∅, Ψ 0 def= Ψ1(β) ∩ Ψ2(β). (3.6)
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In the proof of (3.6) the Rayleigh quotient of a function φ ∈ Ψ 0(β) is compared with that of ζUφ. The special cutoff
function ζU , constructed individually for each test function φ, vanishes outside the set U whose measure does not
significantly exceed d/ν, so ‖ζUφ‖−2

2 ‖∇(ζUφ)‖2
2 cannot be much smaller than s∗ of (3.2) and (3.3).

The construction2 of U and ζU is described in detail in Appendix B. For a test function φ ∈ Ψ 0 it is based on the
set

E = {
x:

∣∣φ(x)
∣∣ > φε(x)

}
. (3.7)

The set U = U(φ) (see (B.4)) results from approximation of E by a finite union of cubes Ck
z = Hk(z + Q) of sizes

Hk = T k−K∗h∗, k = 0, . . . ,K∗ − 1, that are “empty,” i.e., |Ck
z ∩E| > (1 −γ )|Ck

z |. The cutoff function ζU is described
in (B.7).

The parameters used in the construction of U and ζU are functions of the number δ > 0 in definition (3.5) such that
as δ → 0

T = T (δ) ↗ ∞, γ = T −κ , m0 ∼ T κ ∈ N, 0 < h∗ <
1

2
γ, (3.8)

where T (δ) is a large odd natural number and κ > 0 a fixed small positive exponent. The natural number K∗ = K∗(T )

is chosen so as to satisfy the conditions m0/T < γ and md
0/(K∗ + 1) < γ (see (B.5)).

Since ‖φ‖2 = 1, it follows from (B.10) and (B.6) that for ε1 = (αγm2
0)

−1/2

(1 + c1ε1)

( |U |2/d

Cα

)∫
U

Kα

(
φ(x)

)
dx ≥ 1 − c3

(
ε1H

−2
k0

+ γ −1)‖φε‖2
2 − c4γ ‖∇φ‖2

2

and |U | ≤ (1 + c4γ )|E| ≤ (1 + c4γ )(d + δ)/ν. Combined, these inequalities yield the estimate

‖φ‖−2
2 Kα(φ) ≥ Cα|U |−2/d

(
1 − c5(ε1 + γ ) − c6

(
ε1H

−2
k0

+ γ −1)‖φε‖2
2

)
≥ Cα

(
ν

d

)2/d(
1 + δ

d

)−2/d(
1 − c′(ε1 + γ ) − c′′(ε1H

−2
k0

+ γ −1)‖φε‖2
2

)
. (3.9)

In the latter estimate, ‖φε‖2
2 ≤ εν−1(d + δ) converges to zero uniformly on Ψ 0 as β → ∞, while the quantities

γ −1H 2
k0

and ε1, which do not depend on β , can be made arbitrarily small if T = T (δ) is chosen large enough.
Thus, given δ, one can select T = T (δ) so that (3.9) guarantees the estimate

‖φ‖−2
2 Kα(φ) > Cα

(
ν

d

)2/d/
(1 + 2δ)

if Ψ 0(β) �= ∅ and β is large enough.
The arguments in (a)–(c) show that limβ→∞ Cα,β = Cα . The lemma is proved. �

Proof of Theorem 1.1. By Lemma 3.1 limβ→0+ Cα,β = Cα . Combined with (1.11) and (1.4), this fact allows one to
conclude that for each ε > 0 and sufficiently small values of α = α(ε) and β = β(ε).

lim
t→∞ P

{
(ln t)2/dSt >

(
ν

d

)2/d

S − ε

}
≥ lim

t→∞ P
{
(ln t)2/dCα,β,t >

(
ν

d

)2/d

S − ε

2

}
= 1. �

2It is, in essence, a simpler version of one used in [10] (and goes back to “the method of enlargement of obstacles” of [6,7]).



14 V. V. Yurinsky

Appendix A. Proof of Lemma 2.7

It suffices to establish the convergence of the derivative �G′
t (h) → Γ ′(h) for each fixed value of h > 0; the convergence

of �Gt(h) follows. By definitions (1.14) and (2.10),

�G′
t (h) − Γ ′(h) = τd

∑
z∈Zd

(
G′

z(h) − Γ ′
z (h)

)
, Γz(h) = 〈

G
(
h|φ|2)〉

z
,

and it is easily seen that

G′
z(h) − Γ ′

z (h) = 〈
EξzU(θ)W(θ)

〉
z
|θ=1
θ=0, (A.1)

where U(x, θ) = ((1 − θ)|φ(x)|2 + θ〈|φ|2〉z), and for each x and θ the weight W(x, θ) = e−hξzU(x,θ)/Ee−hξzU(x,θ)

satisfies the condition EW(θ) = 1. Moreover, U̇ (x)
def= (∂/∂θ)U = −(|φ(x)|2 − 〈|φ|2〉z).

(a) For d = 2,3 it suffices to use Barrow’s formula in the form

G′
z(h) − Γ ′

z (h) =
∫ 1

0

(
d

dθ

)〈
EξzU(θ)W(θ)

〉
z

dθ =
∫ 1

0

3∑
k=1

Ψk dθ, (A.2)

where Ψ1(θ) = 〈EξzU̇(θ)W(θ)〉z, Ψ2(θ) = −h〈Eξ2
z U(θ)U̇(θ)W(θ)〉z, and Ψ3(θ) = −h〈(EξzU̇(θ)W(θ))(EξzU(θ)×

W(θ))〉z.
Indeed, both U ≥ 0 and |U̇ | can be estimated from above by non-random quantities, and the same estimates hold

true for the cell averages of the expectations with weight W in (A.2). It follows from (2.7), (1.16), and the Hölder
inequality that∣∣〈EξzU(θ)W(θ)

〉
z

∣∣ ≤ 〈(|φ|2 + 〈|φ|2〉
z

)〉
z
EξzW(θ) ≤ 2

〈|φ|2〉
z
,

(A.3)〈
E

∣∣ξzU̇(θ)
∣∣W(θ)

〉
z
≤ 〈∣∣|φ|2 − 〈|φ|2〉

z

∣∣EξzW(θ)
〉
z
≤ Cτ

〈|∇φ|2〉1/2
z

〈|φ|2〉1/2
z

.

A similar calculation shows that∣∣〈(EξzU̇(θ)W(θ)
)(

EξzU(θ)W(θ)
)〉

z

∣∣ ≤ 〈∣∣〈|φ|2〉
z
− |φ|2∣∣(|φ|2 + 〈|φ|2〉

z

)〉
z
≤ c

〈∣∣φ − 〈φ〉z
∣∣2〉1/2

z

〈|φ|6〉1/2
z

.

Combining the above estimates, one arrives from (A.2) at the inequality∣∣G′
z(h) − Γ ′

z (h)
∣∣ ≤ C

〈∣∣φ − 〈φ〉z
∣∣2〉1/2

z

(
(1 + h)

〈|φ|2〉1/2
z

+ h
〈|φ|6〉1/2

z

)
.

Application of (1.16) and the Cauchy inequality to sums of cell averages results in the estimate∣∣�G′
t (h) − Γ ′(h)

∣∣ ≤ cτ‖∇φ‖2
(‖φ‖2 + ‖φ‖3

6

) ≤ cτ
(‖φ‖2

H1 + ‖φ‖4
H1

)
. (A.4)

(b) For d ≥ 4, there is no estimate for ‖φ‖6 in terms of ‖φ‖H2 . This difficulty is circumvented by truncation: the

Rd -valued test function φ ∈ H1(Rd) is approximated by the function φr = (φ
(j)
r ) with coordinates

φ
(j)
r (x) = min

{∣∣φ(j)(x)
∣∣, r} sign

(
φ(j)(x)

)
.

Clearly, |φr | ≤ |φ| and |φr − φ| ≤ |φ|. If φ ∈ H1(Rd ), then φr belongs to the same space and (see [3], Chapter II.3 or
[2], Chapter 7.4)

‖φr‖p ≤ ‖φ‖p, 1 ≤ p < ∞, ‖∇φr‖2 ≤ ‖∇φ‖2. (A.5)

Define Ur(x, θ) = ξz((1 − θ)|φr(x)|2 + θ〈|φr |2〉z). Using the same weights W , difference (A.1) is represented in
the form

G′
z(h) − Γ ′

z (h) = A(θ)|θ=1
θ=0 + ε1,z(θ)|θ=1

θ=0, (A.6)



Lower bound for Stokes PE in random domain 15

where A(θ) = 〈EξzUr(θ)W(θ)〉z and ε1,z(θ) = 〈Eξz(U(θ) − Ur(θ))W(θ)〉z.
(b1) Evidently, 0 ≤ |φ|2 − |φr |2 ≤ 2|φ − φr | |φ|, so ξz|U(x, θ) − Ur(x, θ)| ≤ 2|φ − φr | |φ| + 〈2|φ − φr | |φ|〉z

by (1.5) and∣∣ε1,z(θ)
∣∣ ≤ ∣∣〈E∣∣U(θ) − Ur(θ)

∣∣W(θ)
〉
z

∣∣ ≤ c
〈|φ − φr |2

〉1/2
z

〈|φ|2〉1/2
z

. (A.7)

Choose p ∈ (2,2/(1 − 2/d)]. Note that φ(x) − φr(x) �= 0 only if |φ(x)| > r . It follows from (1.16) that

‖φ − φr‖2
2 ≤ r−(p−2)

∫ ∣∣φ(x)
∣∣p dx ≤ c(p)r−(p−2)‖φ‖p

H1 .

The Cauchy inequality for sums and the above inequality show that for p = 2/(1 − 2/d)

τd
∑
z∈Zd

∣∣ε1,z(θ)
∣∣ ≤ c‖φ − φr‖2‖φ‖2 ≤ c(d)r−2/(d−2)‖φ‖d/(d−2)

H1 ‖φ‖2.

(b2) To estimate the first term on the right-hand side in (A.6), it proves convenient to represent it in the form

A(θ)|θ=1
θ=0 =

∫ 1

0

(
d

dθ

)〈
ξzUr(θ)W(θ)

〉
z

dθ =
∫ 1

0

(
F1(θ) + F2(θ) + F3(θ)

)
dθ,

where F1(θ) = 〈EξzU̇r (θ)ξzW(θ)〉z, F2(θ) = −h〈Eξ2
z Ur(θ)U̇(θ)W(θ)〉z, and F3(θ) = −h〈(EξzU̇(θ)W(θ)) ×

(EξzUr(θ)W(θ))〉z.
The argument used to derive (A.3) and inequality (A.5) prove that∣∣F1(θ)

∣∣ ≤ c
〈∣∣φr − 〈φr 〉z

∣∣2〉1/2
z

〈|φr |2
〉1/2
z

≤ cτ
〈|∇φ|2〉1/2

z

〈|φ|2〉1/2
z

.

It is immediate from (A.1) that |Ur(θ)| ≤ cr2, so by (A.3)∣∣F2(θ)
∣∣ ≤ cr2h

〈
E

∣∣U̇(θ)
∣∣W(θ)

〉
z
≤ cr2hτ

〈|∇φ|2〉1/2
z

〈|φ|2〉1/2
z

.

Finally, |F3(θ)| ≤ h〈|U̇ (θ)|cr2〉z ≤ cr2hτ 〈|∇φ|2〉1/2
z 〈|φ|2〉1/2

z .
It follows that for each cell∣∣A(θ)|θ=1

θ=0

∣∣ ≤ cτ(1 + h)
(
1 + r2)〈|∇φ|2〉1/2

z

〈|φ|2〉1/2
z

.

Combining the above estimate with (A.7) and applying the Cauchy inequality to the sums in z, one concludes that∣∣�G′
t (h) − Γ ′(h)

∣∣ ≤ τd
∑
z∈Qt

(|ε1,z| + cτ
〈|∇φ|2〉1/2

z

(
1 + hr2〈|φ|2〉1/2

z

))

≤ c
(
r−2/(d−2)‖φ‖d/(d−2)

H1 ‖φ‖2 + τ(1 + h)
(
1 + r2)‖∇φ‖2‖φ‖2

)
.

The choice r = τ−1/(d−1) yields the final estimate which proves the lemma,∣∣�G′
t (h) − Γ ′(h)

∣∣ ≤ cτ 1/(d−1)(1 + h)
(‖φ‖2+2/(d−2)

H1 + ‖φ‖2
H1

)
.

Appendix B. Block approximation of sets

Construction of block approximation

Below, a set E of finite Lebesgue measure |E| is approximated by the union of disjoint cubic blocks of several standard
sizes as in [11].
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An odd natural number T and a number H0 > 0 determine a hierarchy of scales and partitions of the space into
equal cells C0

z or blocks of levels k > 0

Ck
z = Hk(z + Q), Hk = T kH0, z ∈ Zd , k = 0,1,2, . . . .

Each (k + 1)-block Ck+1
z is the union of T d disjoint sub-blocks of level k. The number T will be large later on.

One more parameter γ ∈ (0,1) is used to sort blocks according to the fraction of their volume covered by E. The
“empty” blocks Ck

z are numbered by integer vectors

z ∈ Ek = {
z:

∣∣Ck
z

∣∣−1∣∣Ck
z ∩ E

∣∣ > 1 − γ
}
. (B.1)

Since |E| is finite, Ek = ∅ for sufficiently large k.
Sets (B.1) define the solid sets E+

k = ⋃
z∈Ek

Ck
z , Ek = E ∩ E+

k , and

Ψk =
⋃
�≥k

E+
� , Φk = E+

k \ Ψk+1, k = 0,1,2, . . . . (B.2)

Obviously,
⋃

k≥0 Ek ⊆ E and |Ek| ≤ |E+
k | ≤ (1 − γ )−1|Ek|.

By the construction, the sets Φk are disjoint, each set Φk is the union of empty blocks of level k, and Ψk is the
union of disjoint empty blocks C�

ζ , � ≥ k, so |Φk| ≤ (1 − γ )−1|Φk ∩ E| and |Ψk| ≤ (1 − γ )−1|E|.
For each k, the complement of Ψk is covered by non-empty blocks of level k because all empty cubes of this and

higher levels are included in Φl , l ≥ k.
To define the set U , choose one more parameter m0 ∈ N so that m0 < T .
Suppose that EK∗ �= ∅ for some K∗ > 0. Let k0 ∈ {0,1, . . . ,K∗} be the highest level such that

|Φk0 ∩ E| ≤ |E|
K∗ + 1

, |Φk0 | ≤
(1 − γ )−1|E|

K∗ + 1
. (B.3)

(Its existence follows from the inequality
∑K∗

k=0 |Φk ∩E| ≤ |E|.) The set U is the m0Hk0 -neighborhood of the set Ψk0

defined in (B.2):

U = {
x: Dist(x,Ψk0) ≤ m0Hk0

}
. (B.4)

Its measure admits a simple estimate in terms of the original set E. If a point of U is no further than m0Hk0 from some
empty block C�

ζ ⊂ Ψk0 , � > k, of size H� = T �−k0Hk0 , it belongs to the larger cube (1 + cm0/T )H�(ζ + Q) whose

volume is (1 + cm0/T )d |C�
ζ |. The volume of the set Φk0 is small by (B.3), and its m0Hko -neighborhood cannot have

volume greater than (2m0 + 1)d |Φk0 |. Consequently,

|U | ≤
(

1 + c′m0

T

)
|Ψk0 | + c′′md

0 |E|(K∗ + 1)−1(1 − γ )−1.

This inequality is applied in situations where the parameters satisfy the condition

m0

T
< γ,

md
0

K∗ + 1
< γ. (B.5)

In this case, there exist positive constants ci such that for γ < c0

|U | ≤
(

1 + c1

(
m0

T
+ md

0

K∗ + 1

)) |E|
1 − γ

≤ (1 + c2γ )|E|. (B.6)
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Cutoff for block approximation

Let U be the set defined in (B.4) for a given value of γ > 0 (see (B.1)). Take a cutoff function ζU : Rd → [0,1] such
that

ζU (x) =
{

1, x ∈ Ψk0 ,
0, Dist(x,Ψk0) ≥ m0Hk0 ,

∣∣∇ζU (x)
∣∣ ≤ c

m0Hk0

, (B.7)

where the constant c does not depend on the shape of the set Ψk0 . All blocks C
k0
z where the gradient ∇ζU does not

vanish identically are non-empty.
It is proved in [11] that there exist constants ci > 0 (independent of α > 0), such that for K̂α of (1.11), γm2

0 > c0,

and ε1
def= (αγm2

0)
−1/2

∫
Ψk0

|ψ |2 ≤ (1 + c1ε1)

( |U |2/d

Cα

)∫
U

K̂α(ψ) + c2ε1H
−2
k0

‖ψ‖2
L2(Rd\E)

. (B.8)

The proof is based on the fact that in each non-empty block C
k0
z the subsets Q0 = C

k0
z \ E and Q1 = C

k0
z ∩ E have

comparable measures: |Q1|/|Q0| ≤ 1/γ . Hence, the Poincaré–Friedrichs inequality (1.17) can be used to show that

‖φ‖2
L2(C

k0
z )

≤ cγ −1
(∫

C
k0
z \E

|φ|2 + H 2
k0

∫
C

k0
z

∣∣∇φ(x)
∣∣2 dx

)
. (B.9)

The inequality remains true for unions of disjoint non-empty k0-blocks.

Remark B.1. The proof of Lemma 3.1 uses inequality (B.8) in the form

(1 + c1ε1)

( |U |2/d

Cα

)∫
U

Kα

(
φ(x)

)
dx ≥ ‖φ‖2

2 − c3
(
ε1H

−2
k0

+ γ −1)‖φε‖2
2 − c4γ ‖∇φ‖2

2. (B.10)

In this case, the selection of “empty” blocks is based on set (3.7). This set and parameters (3.8) of its block approxi-
mation are determined by the choice of a test function φ = φε with specified properties (see (3.4), (3.6), (3.9)).

The existence of empty blocks at level K∗ (of size h∗ < γ/2) used in the construction is guaranteed by defi-
nition (3.3). Indeed, for a “non-empty” block C

K∗
z the choice of E and h∗ and inequality (B.9) provide the esti-

mate
∫
C

K∗
z

|φ|2 ≤ c(γ −1
∫
C

K∗
z

φ2
ε + γ

∫
C

K∗
z

|∇φ|2). In absence of empty K∗-blocks this would imply the inequality

‖φ‖2
2 ≤ c(γ −1‖φε‖2

2 + γ ‖∇φ‖2
2) and the lower bound ‖φ‖−2

2 Kα(φ) ≥ γ −1ĉ(1 − γ −1ε1/2(β)) for the Rayleigh quo-
tient, which contradicts (3.3) if γ = γ (T ) is small and β is large.

The special choice of set (3.7) and (B.9) used to define U of (B.4) and ζU of (B.7) ensure the estimate
∫

Rd\Ψk0
|φ|2 ≤

c(γ −1‖φε‖2
2 +γ ‖∇φ‖2

2). (Note that γ −1H 2
k ≤ γ for k ≤ K∗ by (3.8).) By inequality (B.8) with ε1 = (αγm2

0)
−1/2 and

the choice of set (3.7) this leads to (B.10):

(1 + c1ε1)

( |U |2/d

Cα

)∫
U

Kα(φ) ≥
∫

Ψk0

|φ|2 − c2ε1H
−2
k0

‖φ‖2
L2(Rd\E)

≥ ‖φ‖2
2 − c3

(
ε1H

−2
k0

+ γ −1)‖φε‖2
2 − c4γ ‖∇φ‖2

2.
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