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Abstract. For a sequence of i.i.d. random variables {ξx : x ∈ Z} bounded above and below by strictly positive finite constants,
consider the nearest-neighbor one-dimensional simple exclusion process in which a particle at x (resp. x + 1) jumps to x + 1
(resp. x) at rate ξx . We examine a quenched non-equilibrium central limit theorem for the position of a tagged particle in the
exclusion process with bond disorder {ξx : x ∈ Z}. We prove that the position of the tagged particle converges under diffusive
scaling to a Gaussian process if the other particles are initially distributed according to a Bernoulli product measure associated to
a smooth profile ρ0 : R → [0,1].

Résumé. Soit {ξx : x ∈ Z} une suite de variables aléatoires i.i.d. bornées supérieurement et inférieurement par des constantes
finies et strictement positives. Nous étudions le théorème central limite “quenched” pour la position d’une particule marquée dans
l’exclusion simple symmétrique unidimensionnelle où les variables d’occupation des sites x et x + 1 sont échangés à taux ξx . Nous
démontrons que la position de la particule marquée converge à l’échelle diffusive vers un processus Gaussien si les particules sont
initiallement distribuées d’après une mesure de Bernoulli associée à un profil lisse ρ0 : R → [0,1].
MSC: 60K35

Keywords: Hydrodynamic limit; Tagged particle; Non-equilibrium fluctuations; Random environment; Fractional Brownian motion

1. Introduction

A classical problem in statistical mechanics consists in proving that the dynamics of a single particle in a mechanical
system are well approximated on a large scale by a Brownian motion [9,19]. In a seminal paper, Kipnis and Varadhan
[10] proved an invariance principle for the position of a tracer particle in the symmetric simple exclusion process.
The method relies on a central limit theorem for additive functionals of Markov processes and uses time reversibility
and translation invariance. This approach has been extended to interacting particle systems whose generators satisfy a
sector condition or, more generally, graded sector conditions ([12] and references therein).

In [8], we proved a non-equilibrium central limit theorem for the position of a tagged particle in the one-
dimensional nearest-neighbor symmetric exclusion process. We assumed that the initial state is a product measure
associated to a smooth profile. Observing that the position of the tagged particle can be recovered from the density
field and the total current through a bond, we deduced a central limit theorem for the tagged particle from a joint
non-equilibrium central limit theorem for the density field and the current.
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The evolution of random walks in a random environment has attracted some attention in these last years ([20] and
references therein). Recently, a quenched central limit theorem has been proved for random conductance models [18].
Here, to each bond {x, y} of Z

d is attached i.i.d. strictly positive random variables ξx,y . Under some conditions on the
variables ξ , the authors proved, among other results, that for almost all environments ξ , a random walk on Z

d which
jumps from x to y at rate ξx,y converges, when diffusively rescaled, to a Brownian motion.

In this article we consider a one-dimensional nearest-neighbor exclusion process evolving on an environment ξ .
Each particle behaves as the random walk described above, with the additional rule that a jump is suppressed whenever
a particle decides to jump over a site already occupied. Under very mild assumptions on the environment, we prove
that the density field converges to the solution of a heat equation, generalizing a previous result obtained by Nagy
[16].

Assuming that the environment is strictly elliptic, i.e., formed by i.i.d. random variables ξx,x+1 strictly bounded
away from 0 and ∞, we prove a non-equilibrium central limit theorem for the density field, which holds for almost all
realizations of the environment. Here the assumption of independence and identical distribution of the environment
could be relaxed. In contrast with [6], where annealed central limit theorems are considered, we prove in this article a
quenched statement.

From this result and from a non-equilibrium central limit theorem for the current, we prove the main result of the
article which states a central limit theorem for the position of a tagged particle starting from a configuration in which
particles are distributed according to a Bernoulli product measure associated to a smooth density profile. This central
limit theorem holds for almost all environment ξ ’s.

The approach and the main technical difficulties can be summarized in a few words to the specialists. The model
is in principle non-gradient due to the presence of the environment [4]. However, a functional transformation of the
empirical measure (3.5) turns it into a gradient model. The proof that the transformed empirical measure is close to
the original empirical measure imposes some conditions on the the environment.

The same strategy can be applied to derive a non-equilibrium central limit theorem for the density field. Here,
however, to prove tightness and to show that the transformed density field is close to the original, some sharp estimates
on the space time correlations are needed as well. The deduction of these estimates require a Nash type bound on the
kernel of the random walk in the random conductance model, which has been proved only under a strict ellipticity
condition of the environment. At this point, it remains to adapt the strategy introduced in [8] to prove the central limit
theorem for the tagged particle.

While in Rome in April 2005, the second author showed to A. Faggionato the model and the method described
in next section to derive the hydrodynamic behavior of this bond disorder model. At that time he thought that the
approach required uniform ellipticity of the environment. A few months later, A. Faggionato [1], generalizing Nagy’s
method [16], and the authors proved independently the hydrodynamic behavior requiring only the assumptions stated
in Theorem 2.1 below.

2. Main results

We state in this section the main results of the article. Denote by X the state space {0,1}Z and by the Greek letter η

the elements of X so that η(x) = 1 if there is a particle at site x for the configuration η and η(x) = 0 otherwise.
Consider a sequence {ξx : x ∈ Z} of strictly positive numbers. The symmetric nearest-neighbor simple exclusion

process with bond disorder {ξx : x ∈ Z} is the Markov process {ηt : t ≥ 0} on X whose generator Lξ,N acts on cylinder
functions f as

(Lξ,Nf )(η) = N2
∑
x∈Z

ξx(∇xf )(η),

where (∇xf )(η) = f (σx,x+1η) − f (η) and

σx,yη(z) =
{

η(y), z = x,
η(x), z = y,
η(z), z �= x, y.

Notice that the process is sped up by N2.
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Existence and ergodic properties of this Markov process can be proved as in the space homogeneous case [14,16].
Moreover, the Bernoulli product measures να in {0,1}Z, with marginals να{η(x) = 1} = α for α ∈ [0,1], are extremal,
reversible measures.

For each profile ρ0 : R → [0,1], denote by νN
ρ0(·) the product measure on X with marginals given by νN

ρ0(·){η(x) =
1} = ρ0(x/N). For a measure μ on X , let P

N
μ stand for the probability measure on the path space D(R+,X ) induced

by the Markov process ηt and the measure μ.
The empirical measure associated to the process ηt is defined by

πN
t (du) = 1

N

∑
x∈Z

ηt (x)δx/N(du).

Fix 0 < γ < ∞. Let C2
0(R) be the set of twice continuously differentiable functions G : R → R with compact

support. Fix a profile ρ0 : R+ → [0,1]. A bounded function ρ : R+ × R → [0,1] is said to be a weak solution of the
heat equation{

∂tρ = γ −1�ρ,

ρ(0, ·) = ρ0(·) (2.1)

if

〈ρt ,G〉 = 〈ρ0,G〉 +
∫ t

0
ds

〈
ρs, γ

−1�G
〉

(2.2)

for all t ≥ 0 and all G in C2
0(R). In these equations, � stands for the Laplacian and 〈ρ,H 〉 for the integral of H with

respect to the measure ρ(u)du. It is well known that for any bounded profile ρ0 : R → [0,1], there exists a unique
weak solution of (2.1). The first main result of the article states a quenched law of large numbers for the empirical
measure under weak assumptions on the environment {ξx : x ∈ Z}.

Theorem 2.1. Assume that supx∈Z ξx < ∞ and

lim
K→∞

1

K

K∑
x=1

ξ−1
x = γ, lim

K→∞
1

K

−1∑
x=−K

ξ−1
x = γ (2.3)

for some 0 < γ < ∞. Fix a profile ρ0 : R → [0,1]. Under P
N

νN
ρ0(·)

, πN
t converges in probability to the weak solution of

(2.1): For every continuous function with compact support G, every t ≥ 0 and every δ > 0,

lim
N→∞ P

N

νN
ρ0(·)

[∣∣〈πN
t ,G

〉 − 〈ρt ,G〉∣∣ > δ
] = 0,

where ρ(t, u) is the weak solution of (2.1).

To prove a quenched non-equilibrium central limit theorem for the empirical measure, assume that {ξx : x ∈ Z} is a
sequence of i.i.d. random variables defined on a probability space (Ω,P,F) such that

P
[
ε ≤ ξ0 ≤ ε−1] = 1 (2.4)

for some ε > 0. This strong ellipticity condition is needed in Section 6 to prove sharp estimates of the decay of the
space–time correlation functions. All other arguments require the weaker integrability condition: E[ξ−6

0 ] < ∞.

Fix a profile ρ0 : R → [0,1] and an environment ξ . Let ρ
N,ξ
t (x) = EνN

ρ0(·)
[ηt (x)]. A trivial computation shows that

ρ
N,ξ
t : Z → [0,1] is the solution of the discrete linear equation{

∂tρt (x) = N
{
ξx(∇Nρt )(x) − ξx−1(∇Nρt )(x − 1)

}
,

ρ0(x) = ρ0(x/N),
(2.5)
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where (∇Nh)(x) = N{h(x + 1) − h(x)}. We denote frequently ρ
N,ξ
t by ρN

t .
Denote by S(R) the Schwartz space of rapidly decreasing functions and by S ′(R) its dual, the space of distributions.

Let {YN
t , t ≥ 0} be the density fluctuation field, a S ′(R)-valued process given by

YN
t (G) = 1√

N

∑
x∈Z

G

(
x

N

){
ηt (x) − ρ

N,ξ
t (x)

}

for G in S(R). Next theorem states the almost sure convergence of the finite dimensional distributions of YN
t to the

marginals of a centered Gaussian field.

Theorem 2.2. Let {ξx : x ∈ Z} be a sequence of i.i.d. random variables satisfying assumption (2.4). Let ρ0 : R → [0,1]
be a profile with first derivative in L1(R)∩L∞(R). There exists a set of environments Ω0 with total measure such that
for every ξ in Ω0, every k ≥ 1 and every 0 ≤ t1 < · · · < tk , (YN

t1
, . . . , YN

tk
) converges to a centered Gaussian vector

(Yt1 , . . . , Ytk ) with covariance given by

E
[
Ys(G)Yt (H)

] =
∫

R

χ
(
ρ0(u)

)
TsG(u)TtH(u)

+ 2γ −1
∫ s

0
dr

∫
R

χ
(
ρ(r,u)

)∇Ts−rG(u)∇Tt−rH(u) (2.6)

for all 0 ≤ s ≤ t , G, H in S(R). Here ρ stands for the solution of the heat equation (2.1), {Tr : r ≥ 0} for the semi-
group associated to γ −1� and χ(α) = α(1 − α) for the compressibility in the exclusion process.

Denote by ν
N,∗
ρ0(·) the measure νN

ρ0(·) conditioned to have a particle at the origin and by XN
t the position at time t of

the particle initially at the origin. Define uN
t = u

N,ξ
t by the relation

uN
t∑

x=0

ρ
N,∗
t (x) ≤ ξ−1

∫ t

0
N2{ρN,∗

s (−1) − ρN,∗
s (0)

}
ds <

uN
t +1∑
x=0

ρ
N,∗
t (x), (2.7)

where ρ
N,∗
t is the solution of (2.5) with initial condition ρ

N,∗
0 (0) = 1, ρ

N,∗
0 (x) = ρ0(x/N), x �= 0. Let WN

t = (XN
t −

uN
t )/

√
N .

Theorem 2.3. Let {ξx : x ∈ Z} be a sequence of i.i.d. random variables satisfying assumption (2.4). Let ρ0 be an initial
profile with first derivative in L1(R) ∩ L∞(R) and second derivative in L∞(R). There exists a set of environments
Ω0 with total measure and the following property. For every ξ in Ω0, every k ≥ 1 and every 0 ≤ t1 < · · · < tk , under
P

ν
N,∗
ρ0(·)

, (WN
t1

, . . . ,WN
tk

) converges in law to a Gaussian vector (Wt1, . . . ,Wtk ) with covariances given by

ρ(s,us)ρ(t, ut )E[WsWt ] =
∫ 0

−∞
dvP [Zs ≤ v]P [Zt ≤ v]χ(

ρ0(v)
)

+
∫ ∞

0
dvP [Zs ≥ v]P [Zt ≥ v]χ(

ρ0(v)
)

+ 2

γ

∫ s

0
dr

∫ ∞

−∞
dv pt−r (ut , v)ps−r (us, v)χ

(
ρ(r, v)

)

provided s ≤ t . In this formula, Zt = ut + B0
t/γ , where B0

t is a standard Brownian motion starting from the origin,

and pt (v,w) stands for the kernel of B0
t/γ .
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3. Hydrodynamic limit

We prove in this section Theorem 2.1. Fix an environment satisfying (2.3) and denote by M+(R) the set of positive
Radon measures in R. Fix T ≥ 0 and a bounded profile ρ0 : R → [0,1]. Let {QN : N ≥ 1} = {QN,ξ : N ≥ 1} be the
sequence of measures on D([0, T ],M+(R)) induced by the Markov process πN

t and the initial state νN
ρ0(·).

The proof of Theorem 2.1 is divided in two steps. We first prove tightness of the sequence {QN }N , and then
that all limit points of {QN }N are supported on weak solutions of the hydrodynamic equation. It follows from these
two results and the uniqueness of weak solutions of the heat equation (2.1) that πN

t converges in probability to the
absolutely continuous measure ρ(t, u)du whose density is the solution of (2.1) (cf. [9]).

It turns out that this program cannot be accomplished for the empirical measure πN
t , but for a “corrected by the

environment” process XN
t , which is close enough to the empirical measure πN

t .

3.1. Corrected empirical measure

Denote by C2
0(R) the space of twice continuously differentiable functions with compact support. For a function G in

C2
0(R) and an environment ξ , let TξG : Z → R be the sequence defined by

(TξG)(x) =
∑
j<x

ξ−1
j

{
G

(
j + 1

N

)
− G

(
j

N

)}
. (3.1)

For each N ≥ 1 and each function G in C2
0(R), the series

∑
x ξ−1

x [G((x + 1)/N) − G(x/N)] is absolutely sum-
mable because G has compact support. Moreover, it follows from (2.3) that

Tξ,G = T N
ξ,G :=

∑
x∈Z

ξ−1
x

{
G

(
(x + 1)

N

)
− G

(
x

N

)}
(3.2)

converges to 0 as N ↑ ∞.
We introduce TξG for two reasons. On the one hand, we expect (TξG)(x) to be close to γG(x/N), which is the

content of Lemma 3.1. On the other hand,

N
{
(TξG)(x + 1) − (TξG)(x)

}
ξx = (∇NG)

(
x

N

)
,

where ∇N stands for the discrete derivative: (∇NG)(x/N) = N{G(x + 1/N) − G(x/N)}. Hence, formally,

Lξ,N

1

N

∑
x∈Z

(TξG)(x)η(x) = 1

N

∑
x∈Z

(�NG)

(
x

N

)
η(x), (3.3)

where �N stands for the discrete Laplacian.
Of course, TξG may not belong to �1(Z), the space of summable series, and the left-hand side of the previous

formula may not be defined. To overcome this difficulty, we modify TξG in order to integrate it with respect to the
empirical measure. Fix an arbitrary integer l > 0 which will remain fixed in this section. Let g = gl : R → R be defined
by

g(u) =
{0, u < 0,

u/l, 0 ≤ u < l,
1, u ≥ l.

For each function G in C2
0(R), let

(Tξ,lG)(x) := (TξG)(x) − Tξ,G

Tξ,g

(Tξg)(x). (3.4)

Notice that Tξ,g converges to γ almost surely, as N ↑ ∞. In particular, by (3.2) the ratio Tξ,G/Tξ,g vanishes almost
surely as N ↑ ∞. At the end of this section we prove the following statement.
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Lemma 3.1. For each function G in C2
0(R), and each environment ξ satisfying (2.3), Tξ,lG belongs to �1(Z) and

lim
N→∞

1

N

∑
x∈Z

∣∣∣∣Tξ,lG(x) − γG

(
x

N

)∣∣∣∣ = 0.

Denote by XN
t the corrected empirical measure defined by

XN
t (G) = X

N,l,ξ
t (G) = 1

N

∑
x∈Z

Tξ,lG(x)ηN
t (x) (3.5)

for each function G in C2
0(R).

As mentioned before, the sequence Tξ,lG(x) has two properties. On the one hand, in view of Lemma 3.1, it is close
to γG(x/N) in �1(Z). In particular, the integral of G with respect to the empirical measure is close to γ −1XN

t (G)

uniformly in time. On the other hand, by (3.3), the martingale associated to γ −1XN
t (G) has an integral term which

can be expressed as a function of the empirical measure. Indeed, for a function G in C2
0(R), let MN

t (G) = M
N,l,ξ
t (G)

be the martingale defined by

MN
t (G) = XN

t (G) − XN
0 (G) −

∫ t

0
ds N2LXN

s (G)

= XN
t (G) − XN

0 (G) −
∫ t

0
ds

{〈
πN

s ,�NG
〉 − Tξ,G

Tξ,g

〈
πN

s ,�Ng
〉}

. (3.6)

3.2. Tightness of πN
t

It is well known that a sequence of probability measures {QN }N on D([0, T ],M+(R)) is tight if and only if the se-
quence {QN(G)}N is tight for all G ∈ C2

0(R), where QN(G) is the probability measure in D([0, T ],R) corresponding
to the process 〈πN

t ,G〉.
We claim that the process XN

t (G) is tight. Recall Aldous criteria for tightness in D([0, T ],R):

Lemma 3.2. A sequence of probability measures {PN }N in D([0, T ],R) is tight if

(i) For all 0 ≤ t ≤ T and for all ε > 0 there exists a finite constant A such that supN PN(|xt | > A) < ε,
(ii) For all δ > 0,

lim
β→0

lim sup
N→∞

sup
τ∈T
θ≤β

PN

(|xτ+θ − xτ | > δ
) = 0,

where T is the set of stopping times with respect to the canonical filtration bounded by T .

To prove tightness of XN
t (G) note that (i) is automatically satisfied because the number of particles per site is

bounded and Tξ,lG converges to γG in �1(Z).
To check condition (ii), fix a stopping time τ bounded by T and θ ≤ β . Recall from formula (3.6) that we may

express XN
τ+θ (G) − XN

τ (G) as the sum of a martingale difference and an integral. On the one hand, computing the
quadratic variation of the martingale MN

t (G), we obtain that

EN

[(
MN

τ+θ (G) − MN
τ (G)

)2]
= EN

[∫ τ+θ

τ

ds
1

N2

∑
x∈Z

{
∇NG

(
x

N

)
− Tξ,G

Tξ,g

∇Ng

(
x

N

)}2(
ηN

s (x + 1) − ηN
s (x)

)2
]
.

The previous expression is bounded above by θN−1{C(G) + l−1(Tξ,G/Tξ,g)
2}, which vanishes as N ↑ ∞ in view of

(2.3) and (3.2).
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On the other hand, since there is at most one particle per site and since G belongs to C2
0(R),

∣∣∣∣
∫ τ+θ

τ

ds
1

N

∑
x∈Z

{
�NG

(
x

N

)
− Tξ,G

Tξ,g

�Ng

(
x

N

)}
ηN

s (x)

∣∣∣∣ ≤ C0β + 2β

l

∣∣∣∣Tξ,G

Tξ,g

∣∣∣∣
for some finite constant C0 depending only on G. As N ↑ ∞, the second term vanishes in view of (2.3), (3.2). This
proves condition (ii) of Lemma 3.2 and tightness of the process XN

t (G).
In view of Lemma 3.1,

sup
0≤t≤T

∣∣γ 〈
πN

t ,G
〉 − XN

t (G)
∣∣ ≤ 1

N

∑
x∈Z

∣∣∣∣γG

(
x

N

)
− Tξ,lG(x)

∣∣∣∣ (3.7)

converges to 0 as N ↑ 0. In particular, 〈πN
t ,G〉 is also tight, with the same limit points of XN

t (G). Since this statement
holds for all G in C2

0(R), the sequence QN is tight.

3.3. Uniqueness of limit points

Let Q be a limit point of the sequence {QN }N . Since there is at most one particle per site, Q is concentrated on
absolutely continuous paths π(t,du) = ρ(t, u)du, with positive density bounded by 1: 0 ≤ ρ(t, u) ≤ 1.

We have seen in the last subsection that Q is also a limit point of XN
t . Fix a function G in C2

0(R) and recall
the definition of the martingale MN

t (G) given in (3.6). By the proof of the tightness of XN
t , the expectation of the

quadratic variation of MN
t (G) vanishes as N ↑ ∞. In particular, in view of (3.7), the measure Q is concentrated on

trajectories πt such that

〈πt ,G〉 = 〈π0,G〉 +
∫ t

0
ds

〈
πs, γ

−1�G
〉

for all 0 ≤ t ≤ T , G in C2
0(R). By the uniqueness of weak solutions of the heat equation, Theorem 2.1 is proved.

We conclude this section with the

Proof of Lemma 3.1. Tξ,lG belongs to �1(Z) because it belongs to �∞(Z) and vanishes outside a finite set. Fix a
smooth function G in C2

0(R).
Consider first the sum over x ≤ 0. In this case (Tξgl)(x) = 0 so that (Tξ,lG)(x) = (TξG)(x). In particular,

1

N

∑
x≤0

∣∣∣∣(Tξ,lG)(x) − γG

(
x

N

)∣∣∣∣ = 1

N

∑
x≤0

∣∣∣∣ 1

N

∑
y<x

ξ̂−1
y (∇NG)

(
y

N

)∣∣∣∣,
where ξ̂−1

y = ξ−1
y − γ . Both sums in x and y start from −AN , for some A > 0, because G has compact support. Fix

ε > 0. Since G′ is uniformly continuous, there exists δ > 0 such that |G′(v) − G′(u)| ≤ ε if |v − u| ≤ δ. We may
therefore replace (∇NG)(y/N) by G′(kδ), for kδ ≤ y/N ≤ (k + 1)δ, paying a price bounded by C(G)ε. After this
replacement, the law of large numbers (2.3) ensures that the previous expression vanishes as N ↑ ∞.

Similarly, for x ≥ lN , (Tξgl)(x) = Tξ,gl
so that (Tξ,lG)(x) = (TξG)(x) − Tξ,G. Therefore,

(Tξ,lG)(x) − γG

(
x

N

)
= − 1

N

∑
y≥x

ξ̂−1
y (∇NG)

(
y

N

)

and we may repeat the previous arguments to show that the sum for x ≥ lN vanishes as N ↑ ∞.
Finally, for 0 ≤ x < lN , we estimate separately (TξG)(x) − γG(x/N) and {Tξ,G/ Tξ,gl

}(Tξgl)(x). The first piece
is handled as before, while the second vanishes as N ↑ ∞ in view of (3.2) and because (Tξgl)(x)/Tξ,gl

is absolutely
bounded by 1. This proves Lemma 3.1. �
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4. Fluctuations of the empirical measure

Let {ξx : x ∈ Z} be a sequence of i.i.d. random variables defined on a probability space (Ω,P,F). We prove in this
section a quenched non-equilibrium central limit theorem for the empirical measure. The proof relies on sharp esti-
mates of the decay of the space–time correlation functions presented in Section 6 which requires the strong ellipticity
condition: P [ε ≤ ξ−1

0 ≤ ε−1] = 1 for some ε > 0. To stress that it is only in the estimation of the correlation functions
that we need this condition, we present all other proofs under the weaker assumption that E[ξ−6

0 ] < ∞. Moreover, the
hypotheses of independence, identical distribution and finiteness of the sixth moment can be relaxed.

Throughout this section the index l of the operator Tξ,l introduced in the previous section depends on N as l =
lN = N1/4. Recall that we denote by S(R) the Schwartz space of rapidly decreasing functions. We may extend the
operators Tξ , Tξ,l to S(R):

Lemma 4.1. Assume that E[ξ−6
0 ] < ∞ and fix a function G ∈ S(R). There exists a subset ΩG with total measure

such that for each ξ in ΩG TξG(x) is well defined and

lim
N→∞N1/4 sup

x∈Z

∣∣∣∣TξG(x) − γG

(
x

N

)∣∣∣∣ = 0.

In particular, limN→∞ N1/4Tξ,G = 0. Moreover,

lim
N→∞ sup

x∈Z

∣∣∣∣Tξ,lG(x) − γG

(
x

N

)∣∣∣∣ = 0

and

lim
N→∞

1

N

∑
x∈Z

∣∣∣∣Tξ,lG(x) − γG

(
x

N

)∣∣∣∣ = 0.

The proof of this lemma is given at the end of this section. By interpolation it follows from this result that

lim
N→∞

1

N

∑
x∈Z

∣∣Tξ,lG(x)
∣∣p =

∫ ∣∣γG(u)
∣∣p du (4.1)

ξ -almost surely for all 1 ≤ p ≤ ∞.
Recall the definition of the density field YN

t given just before the statement of Theorem 2.2. Denote by ZN
t the

fluctuation density field corrected by the environment:

ZN
t (G) =: 1

γ
YN

t (Tξ,lG) = 1

γ
√

N

∑
x∈Z

(Tξ,lG)(x)
{
ηN

t (x) − ρ
N,ξ
t (x)

}

for functions G in S(R).
We prove in this section a non-equilibrium central limit theorem for the density field ZN

t in random environment
and deduce from this result the convergence of the finite dimensional distributions of the field YN

t defined in Section 2.
Recall that we denote by S ′(R) the Schwartz space of distributions. For a profile ρ0 : R → (0,1) and an environment
ξ = {ξx : x ∈ Z} and T > 0, let Q

N,ξ
ρ0 be the measure on D([0, T ],S ′(R)) induced by the process ZN

t and the initial
state νN

ρ0(·).

Proposition 4.2. Fix a profile ρ0 : R → (0,1) with a bounded and integrable first derivative. There exists a set of
environments Ω0 with total measure such that for each ξ in Ω0, Q

N,ξ
ρ0 converges to a centered Gaussian field Zt with

covariance given by (2.6).
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The strategy of the proof of Proposition 4.2 is similar to the one adopted for the hydrodynamic limit. We prove
tightness of the distributions of ZN

t in D([0, T ],S ′(R)) and that all limit points of ZN
t satisfy a martingale problem

which characterizes the limiting measure.
We start proving tightness. For a function G in S(R), consider the martingale MN

t (G) defined by

MN
t (G) = ZN

t (G) − ZN
0 (G) −

∫ t

0
γ N

1 (s,G)ds, (4.2)

where

γ N
1 (s,G) = YN

s

(
γ −1�NG

) − Tξ,G

Tξ,g

YN
s

(
γ −1�Ngl

)
.

The quadratic variation 〈MN(G)〉t of this martingale is equal to
∫ t

0 γ N
2 (s,G)ds, with γ N

2 (s,G) given by

1

γ 2N

∑
x∈Z

ξ−1
x

{
(∇NG)

(
x

N

)
− Tξ,G

Tξ,g

(∇Ngl)

(
x

N

)}2(
ηN

s (x + 1) − ηN
s (x)

)2
.

In view of Mitoma’s criterion for the relative compactness of a sequence of measures in D([0, T ],S ′(R)) (cf. [5,7,
15]), to show that the process ZN

t is tight, it is enough to prove that

sup
N

sup
0≤t≤T

EνN
ρ0(·)

[
ZN

t (G)2] < ∞, sup
N

sup
0≤t≤T

EνN
ρ0(·)

[
γ N
i (t,G)2] < ∞ (4.3)

for i = 1, 2 and a dense family of functions G in S(R). Moreover, to show that all limit points of the sequence ZN
t

are concentrated on C([0, T ],S ′(R)), we need to check that for each function G in S(R) there exists a sequence
δN = δ(t,G,N), vanishing as N ↑ ∞, such that

lim
N→∞ PνN

ρ0(·)

[
sup

0≤t≤T

∣∣ZN
t (G) − ZN

t−(G)
∣∣ ≥ δN

]
= 0. (4.4)

To prove (4.3), consider a countable dense subset of functions S0(R) = {Gk: k ≥ 1} in S(R). Let Ω0 =⋂
k≥1{ΩGk

∩ Ω(G′
k)

2 ∩ Ω�Gk
}, where ΩG are the total measure sets introduced in Lemma 4.1. Fix an environment ξ

in Ω0 and a function G in the class {Gk: k ≥ 1}. By Theorem 6.1,

EνN
ρ0(·)

[
ZN

t (G)2] ≤ 1

γ 2N

∑
x∈Z

(Tξ,lG)(x)2 + C1

γ 2

(
1

N

∑
x∈Z

∣∣(Tξ,lG)(x)
∣∣)2

for some finite constant C1 depending only on ε, ρ0 and T . Since ξ belongs to Ω0, by (4.1), as N ↑ ∞, these
expressions converge to finite expressions.

On the other hand, by definition of γ N
1 (t,G),

γ 2

2
EνN

ρ0(·)

[
γ N

1 (t,G)2] ≤ EνN
ρ0(·)

[
YN

t (�NG)2] +
{

Tξ,G

Tξ,g

}2

EνN
ρ0(·)

[
YN

t (�Ngl)
2].

The first term is handled in the same way as ZN
t (G). The second term is also simple to estimate, since

YN
t (�Ngl)

2 = N

l2
N

{[
ηN

t (0) − ρN
t (0)

] − [
ηN

t (lN) − ρN
t (lN)

]}2
,

and since, by Lemma 4.1, (Tξ,G/Tξ,g)
2Nl−2

N vanishes as N ↑ ∞ for all ξ in Ω0.
Finally, by definition of γ N

2 (t,G),

EνN
ρ0(·)

[
γ N

2 (t,G)2] ≤ 2

γ 2N

∑
x∈Z

ξ−1
x ∇NG

(
x

N

)2

+ 2

Nl2
Nγ 2

(
Tξ,G

Tξ,g

)2 ∑
0≤x<lN

ξ−1
x .
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The first term converges to a finite constant as N ↑ ∞, while the second term vanishes for ξ in Ω0.
Since condition (4.4) follows from the fact that no more than one particle jumps at each time, the previous estimates

show that for each environment ξ in Ω0, the sequence Q
N,ξ
ρ0 is tight and that each limiting point is concentrated on

C([0, T ],S ′(R)).
We consider now the question of uniqueness of limit points. Fix ξ in Ω0, let Qξ be a limit point of Q

N,ξ
ρ0 and

assume without loss of generality that Q
N,ξ
ρ0 converges to Qξ . Let A, Bt , t ≥ 0, stand for the operators γ −1�,√

2γ −1χ(ρ(t, u))∇ , respectively, where ρ is the solution of the heat equation (2.1) and χ is the compressibility given
by χ(α) = α(1 − α).

According to the Holley–Stroock [7] theory of generalized Ornstein–Uhlenbeck processes and to Stroock and
Varadhan [21], there exists a unique process Zt in C([0,+∞),S ′(R)) with the following two properties: Z0 is a
centered Gaussian field with covariance given by

E
[
Z0(G)Z0(H)

] =
∫

R

G(u)H(u)χ
(
ρ0(u)

)
du (4.5)

for all G, H in S(R). Moreover, the processes Mt(G), mt(G) defined by

Zt(G) − Z0(G) −
∫ t

0
Zs(AG)ds and

(
Mt(G)

)2 −
∫ t

0
‖BsG‖2 ds (4.6)

are martingales with respect to the canonical filtration {Fs : s ≥ 0} for all G in S(R). Of course, it is enough to check
these conditions for a dense family of functions in S(R).

Recall the definition of the class S0(R) and fix a function G in S0(R). An elementary computation of the charac-
teristic function EνN

ρ0(·)
[exp{iθZN

0 (G)}] shows that ZN
0 converges to a centered Gaussian field with covariances given

by (4.5).
Recall from (4.2) the definition of the martingale MN

t (G) and fix a bounded function U in Fs . To prove that Mt(G)

is a martingale, it is enough to show that

lim
N→∞ EνN

ρ0(·)

[
MN

t (G)U
] = E

[
Mt(G)U

]
(4.7)

for all t ≥ s.
Since ZN

t (G) is bounded in L2(PνN
ρ0(·)

), (4.7) holds with ZN
t (G) − ZN

0 (G), Zt(G) − Z0(G) in place of MN
t (G),

Mt(G). By the Schwarz inequality and a previous estimate,

EνN
ρ0(·)

[(
Tξ,G

Tξ,g

∫ t

0
YN

s (�Ngl)ds

)2]
≤ Ct2N

l2
N

(
Tξ,G

Tξ,g

)2

vanishes as N ↑ ∞ for all ξ in Ω0. On the other hand, by the Schwarz inequality, Theorem 6.1 and Lemma 4.1,

EνN
ρ0(·)

[(∫ t

0

{
YN

s (�NG) − ZN
s (�NG)

}
ds

)2]
≤ C1t

5/2
(

1

N

∑
x∈Z

∣∣∣∣�NG

(
x

N

)
− γ −1(Tξ,l�NG)(x)

∣∣∣∣
)2

+ t2 1

N

∑
x∈Z

{
�NG

(
x

N

)
− γ −1(Tξ,l�NG)(x)

}2

vanishes as N ↑ ∞ for all ξ in Ω0. Replacing YN
s (�NG) by ZN

s (�G) and recalling all previous estimates, we deduce
that

lim
N→∞ EνN

ρ0(·)

[
U

∫ t

0
γ N

1 (s,G)ds

]
= lim

N→∞ EνN
ρ0(·)

[
U

∫ t

0
γ −1ZN

s (�G)ds

]
= E

[
U

∫ t

0
Zs(AG)ds

]

because ZN
s (�G) is bounded in L2. This concludes the proof of (4.7).
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To prove (4.7) with mt(G), mN
t (G) = MN

t (G)2 − 〈MN(G)〉t in place of Mt(G), MN
t (G), observe first that

EνN
ρ0(·)

[MN
t (G)4] is bounded uniformly in N in view of Theorem 6.1, so that EνN

ρ0(·)
[UMN

t (G)2] converges to

E[UMt(G)2].
To show that EνN

ρ0(·)
[U〈MN(G)〉t ] converges to E[U ∫ t

0 ‖BsG‖2 ds], notice that EνN
ρ0(·)

[〈MN(G)〉2
t ] is bounded

uniformly in N , for all ξ in Ω0, and that 〈MN(G)〉t can be written as

∫ t

0
ds

1

γ 2N

∑
x∈Z

ξ−1
x (∇NG)(x)2(ηN

s (x + 1) − ηN
s (x)

)2

plus a remainder which vanishes as N ↑ ∞ for all ξ in Ω0. By Theorem 6.1 and the Schwarz inequality,

∫ t

0
ds

1

N

∑
x∈Z

ξ−1
x (∇NG)

(
x

N

)2{
ηN

s (x) − ρN
s (x)

}

vanishes in L2(PνN
ρ0(·)

), as well as the same expression with η̄N
s (x)η̄N

s (x + 1) in place of η̄N
s (x) = ηN

s (x) − ρN
s (x).

The penultimate integral is thus equal to

∫ t

0
ds

1

γ 2N

∑
x∈Z

ξ−1
x (∇NG)

(
x

N

)2{
ρN

s (x + 1) + ρN
s (x) − 2ρN

s (x + 1)ρN
s (x)

}

plus a remainder which vanishes in L2(PνN
ρ0(·)

). This shows that EνN
ρ0(·)

[U〈MN(G)〉t ] converges to E[U ∫ t

0 ‖BsG‖2 ds]
and concludes the proof of uniqueness.

Proof of Theorem 2.2. By Lemma 4.1 and Theorem 6.1, for each t ≥ 0 and G in S(R), ZN
t (G) − YN

t (G) vanishes
in L2 ξ -almost surely as N ↑ ∞. In particular, we may deduce from the central limit theorem for ZN

t the convergence
of the finite dimensional distributions of YN

t . �

We conclude this section with the following proof.

Proof of Lemma 4.1. Fix G in S(R) and recall that ξ̂−1
x = ξ−1

x − γ . For N fixed, TξG(x) is well defined because∑
−k≤x≤k ξ−1

x (∇NG)(x/N) is a Cauchy sequence in L2(P ). Observe that, by the Mean Value Theorem, for any
function G ∈ S(R), there exists a constant C0(G) such that∣∣∣∣(∇NG)

(
x

N

)∣∣∣∣ ≤ C0(G)

1 + (x/N)4
.

By Doob’s inequality, for each x < y, A > 0,

P

[
max

x<z≤y

∣∣∣∣∣ 1

N

z∑
w=x+1

ξ̂−1
w (∇NG)

(
w

N

)∣∣∣∣∣ > A

]
≤ C0(G)E[ξ−6

x ]
A6N3

for some finite constant C0 depending on G. Take A = N−{(1/4)+ε} for some 0 < ε < 1/12, estimate the right-hand
side by C0(G)E[ξ−6

x ]N6ε−3/2 and let y ↑ ∞ to conclude by Borel–Cantelli that

N1/4 max
x<z

∣∣∣∣∣ 1

N

z∑
w=x+1

ξ̂−1
w (∇NG)

(
w

N

)∣∣∣∣∣
vanishes, as N ↑ ∞, almost surely. This proves the first statement of the lemma.
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Since

Tξ,G = 1

N

∑
x∈Z

ξ−1
x (∇NG)

(
x

N

)
= 1

N

∑
x∈Z

ξ̂−1
x (∇NG)

(
x

N

)
,

Tξ,G is absolutely bounded by supx∈Z |TξG(x)− γG(x/N)| and the second claim of the lemma follows from the first
one.

To prove the last two statements, notice that (Tξ,lG)(x) − γG(x/N) is absolutely bounded by RN
ξ,G(x) +

|Tξ,G|1{0 < x < lNN}, where RN
ξ,G(x) is equal to

1

N

∣∣∣∣∑
y<x

ξ̂−1
y ∇NG

(
y

N

)∣∣∣∣ for x ≤ 0,
1

N

∣∣∣∣∑
y≥x

ξ̂−1
y ∇NG

(
y

N

)∣∣∣∣ for x > 0.

In particular, by the first part of the proof and since lN = N1/4, supx∈Z |Tξ,lG(x) − γG(x/N)|, lNTξ,G vanishes, as
N ↑ ∞, ξ -almost surely. On the other hand, by the Tchebychev and Hölder inequality,

P

[
1

N

∑
x∈Z

RN
ξ,G(x) > A

]
≤ C0

A4N4

∑
x∈Z

(
1 + |x|3(1+ε)

)
E

[
RN

ξ,G(x)4]

for some ε > 0 and some finite constant C0 = C0(ε). Since G belongs to S(R), the previous expectation is less than or
equal to C0E[ξ−4

0 ]N−2FG(x/N) for some rapidly decreasing positive function FG. The left-hand side is thus bounded
above by C0(ε)E[ξ−4

0 ]N3ε−2A−4. Choosing 0 < ε < 1/7, A = N−ε we conclude the proof of the last statement of
the lemma with a Borel–Cantelli argument. �

5. Central limit theorem for a tagged particle

We prove in this section Theorem 2.3. Unless otherwise stated, we assume throughout this section that ρ0 is an initial
condition with first derivative in L1(R) ∩ L∞(R) and second derivative in L∞(R), and that the environment satisfies
the assumptions of the previous section. The proof follows closely the approach presented in [8]. We omit therefore
some details.

We first consider the current through a bond. For each x in Z, denote by JN
x,x+1(t) the current over the bond

{x, x + 1} in the time interval [0, t]. This is the total number of particles which jumped from x to x + 1 minus the
total number of particles which jumped from x + 1 to x in the time interval [0, t].

The current JN
x,x+1(t) can be related to the occupation variables ηt (x) through the formula

JN
x−1,x(t) − JN

x,x+1(t) = ηt (x) − η0(x). (5.1)

The first result states a law of large numbers for the current through a bond assuming that the environment satisfies
condition (2.3).

Proposition 5.1. Consider a sequence {ξx : x ∈ Z} satisfying (2.3) and a profile ρ0 : R+ → [0,1] satisfying the as-
sumptions stated at the beginning of this section. For every δ > 0,

lim
N→∞ P

N

νN
ρ0(·)

[∣∣∣∣J
N
0,1(t)

N
+

∫ t

0
γ −1(∂uρ)(s,0)ds

∣∣∣∣ > δ

]
= 0,

where ρ(t, u) is the solution of (2.1).

Proof. Fix a > 0. Identity (5.1) and a summation by parts give that

1

aN2

aN∑
x=1

ξ−1
x

{
JN

x,x+1(t) − JN
0,1(t)

} = 1

aN2

Na∑
x=1

{
ηN

0 (x) − ηN
t (x)

} aN∑
k=x

ξ−1
k . (5.2)
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Since the right-hand side is of order a and we will send a to 0 at the end of the proof, the law of large numbers for
JN

0,1(t)/N follows from a law of large numbers for a−1N−2 ∑Na
x=1 ξ−1

x JN
x,x+1(t) for each a fixed. We may rewrite this

latter expression as

1

aN2

aN∑
x=1

ξ−1
x MN

x,x+1(t) + 1

a

∫ t

0

{
ηN

s (1) − ηN
s (aN + 1)

}
ds, (5.3)

where

MN
x,x+1(t) =: JN

x,x+1(t) − N2
∫ t

0
ξx

{
ηN

s (x) − ηN
s (x + 1)

}
ds,

x in Z, are orthogonal martingales with quadratic variation 〈MN
x,x+1〉t given by

N2
∫ t

0
ξx

{
ηN

s (x) − ηN
s (x + 1)

}2 ds.

In view of (2.3) and of the explicit expression for the quadratic variation of the orthogonal martingales MN
x,x+1(t),

the first term in (5.3) vanishes in L2(P
N

νN
ρ0(·)

) as N ↑ ∞. On the other hand, by Lemma 6.5, the variance of the second

term in (5.3) vanishes as N ↑ ∞. Its expectation is equal to

1

a

∫ t

0

{
ρN,ξ

s (1) − ρN,ξ
s (aN + 1)

}
ds.

By Lemma 6.6, this integral converges to a−1
∫ t

0 {ρs(0) − ρs(a)}ds, where ρ is the solution of (2.1). It remains to let
a ↓ 0 to conclude the proof. �

We prove now a quenched non-equilibrium central limit theorem for the current. Let J̄ N
x,x+1(t) = JN

x,x+1(t) −
EνN

ρ0(·)
[JN

x,x+1(t)].

Proposition 5.2. There exists a total measure set Ω0 ⊂ Ω with the following property. For each ξ in Ω0, each k ≥ 1
and each 0 ≤ t1 < · · · < tk , the random vector N−1/2(J̄ N

−1,0(t1), . . . , J̄
N
−1,0(tk)) converges in law to a Gaussian vector

(Jt1 , . . . , Jtk ) with covariances given by

E[JsJt ] =
∫ 0

−∞
dv P [Bs ≤ v]P [Bt ≤ v]χ(

ρ0(v)
)

+
∫ ∞

0
dv P [Bs ≥ v]P [Bt ≥ v]χ(

ρ0(v)
)

+ 2γ −1
∫ s

0
dr

∫ ∞

−∞
dv pt−r (0, v)ps−r (0, v)χ

(
ρ(r, v)

)

provided s ≤ t . In this formula, Bt = B0
t/γ , where B0

t is a standard Brownian motion starting from the origin, and
pt (v,w) is the kernel of Bt .

Proof. The proof of this proposition is similar to the one of Theorem 2.3 in [8]. Some details are therefore omitted.
Let H0(u) = 1{u ≥ 0} and define the sequence {Gn: n ≥ 1} of approximations of H0 by

Gn(u) =
{

1 −
(

u

n

)}+
1{u ≥ 0}.
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We claim that for every t ≥ 0,

lim
n→∞ EνN

ρ0(·)

[
N−1/2J−1,0(t) − YN

t (Gn) + YN
0 (Gn)

]2 = 0 (5.4)

uniformly in N . The proof of (5.4) relies on the estimates of the two point space–time correlation functions, presented
in Lemma 6.5, and follows closely the proof of Proposition 3.1 in [8]. We leave the details to the reader.

Fix t ≥ 0 and n ≥ 1. By approximating Gn in L2(R) ∩ L1(R) by a sequence {Hn,k: k ≥ 1} of smooth functions
with compact support, recalling Theorem 2.2, we show that YN

t (Gn) converges in law to a Gaussian variable denoted
by Yt (Gn).

By (5.4), {YN
t (Gn) − YN

0 (Gn): n ≥ 1} is a Cauchy sequence uniformly in N . In particular, Yt (Gn) − Y0(Gn) is a
Cauchy sequence and converges to a Gaussian limit denoted by Yt (H0)−Y0(H0). Therefore, by (5.4), N−1/2J−1,0(t)

converges in law to Yt (H0) − Y0(H0).
The same argument shows that any vector N−1/2(J−1,0(t1), . . . , J−1,0(tk)) converges in law to (Yt1(H0) −

Y0(H0), . . . , Ytk (H0) − Y0(H0)). The covariances can be computed since by (2.6)

E
[{

Yt (H0) − Y0(H0)
}{

Ys(H0) − Y0(H0)
}]

= lim
n→∞E

[{
Yt (Gn) − Y0(Gn)

}{
Ys(Gn) − Y0(Gn)

}]
= lim

n→∞

{∫
R

{
(TtGn)(TsGn) + G2

n − (TtGn)Gn − (TsGn)Gn

}
χ

(
ρ0(u)

)

+ 2γ −1
∫ s

0
dr

∫
R

(∇Tt−rGn)(∇Ts−rGn)χ
(
ρ(r,u)

)}
.

A long but elementary computation permits us to recover the expression presented in the statement of the proposition
(cf. the proof of Theorem 2.3 in [8]). �

We turn now to the behavior of a tagged particle. Let ν
N,∗
ρ0(·) be the product measure νN

ρ0(·) conditioned to have a

particle at the origin. All our previous results for the process starting from νN
ρ0(·) remain in force for the process starting

from ν
N,∗
ρ0(·), since we can couple both processes in such a way that they differ at most at one site at any given time.

Denote by XN
t the position at time t ≥ 0 of the particle initially at the origin. Since the relative ordering of particles

is conserved by the dynamics, a law of large numbers for XN
t is a consequence of the hydrodynamic limit and the law

of large numbers for the current [8,13,17]. In fact, the distribution of XN
t can be obtained from the joint distribution

of the current and the empirical measure via the relation

{
XN

t ≥ n
} =

{
J−1,0(t) ≥

n−1∑
x=0

ηt (x)

}
(5.5)

for all n ≥ 0 and a similar relation for n ≤ 0.

Theorem 5.3. Consider a sequence {ξx : x ∈ Z} satisfying (2.3) and a profile ρ0 : R+ → [0,1] satisfying the assump-
tions presented at the beginning of this section. For every t ≥ 0, Xt/N converges in P

ν
N,∗
ρ0(·)

-probability to ut , the

solution of∫ ut

0
ρ(t, u)du = − 1

γ

∫ t

0
(∂uρ)(s,0)ds. (5.6)

Notice that ut satisfies the differential equation

u̇t = − 1

γ

(∂uρ)(t, ut )

ρ(t, ut )
·
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The proof of this result is similar to the one of Theorem 2.5 in [8] and left to the reader.
It remains to prove a central limit theorem for the position of the tagged particle.

Proof of Theorem 2.3. Recall the definition of uN
t presented just before the statement of the theorem, assume that

uN
t > 0 and fix a in R. By Eq. (5.5), the set {Xt ≥ uN

t + a
√

N} is equal to the set in which

J−1,0(t) ≥
uN

t∑
x=0

ηt (x) +
a
√

N−1∑
x=1

ηt

(
x + uN

t

) −
{

E
ν

N,∗
ρ0(·)

[
J−1,0(t)

] −
uN

t∑
x=0

ρ
N,∗
t (x)

}
. (5.7)

We claim that second term on the right-hand side of this equation divided by
√

N converges to its mean in L2.
Indeed, by Theorem 6.1, its variance is bounded by C0(ε, ρ0)aN−1/2 for some finite constant C0. Notice that we are
taking expectations with respect to a measure, νN,∗

ρ0(·), whose associated profile does not have a bounded first derivative.

However, coupling this measure with νN
ρ0(·), in such a way that they differ at most by one particle at every time, we

can still show that the variance is bounded by C0(ε, ρ0)aN−1/2 as claimed. The same ideas, the linearity of Eq. (2.5)
and the Nash estimate, stated in Proposition 6.2 below, show that ρN,∗ converges uniformly on compact sets to the
the solution of the heat equation (2.1) because ρN converges in view of Lemma 6.6.

To compute the expectation of the second term on the right hand side of (5.7), observe that the middle term in (2.7)
is equal to E

ν
N,∗
ρ0(·)

[J−1,0(t)]. By the proof of the law of large numbers for the current, this middle expression divided

by N converges to −γ −1
∫ t

0 (∂uρ)(s,0)ds. In particular, by the law of large numbers for the empirical measure and
by relation (5.6), N−1uN

t converges to ut . Hence, by the uniform convergence of ρN,∗,

1√
N

a
√

N−1∑
x=1

ρ
N,∗
t

(
x + uN

t

)

converges to aρ(t, ut ) and so does in probability the second term on the right-hand side of (5.7).
By definition of uN

t , the third term on the right-hand side is absolutely bounded by 1.

Finally, by (5.4), for fixed t , N−1/2{J−1,0(t)−∑uN
t

x=0 ηt (x)} behaves as YN
t (Gn)−YN

0 (Gn)−YN
t (1{[0, uN

t /N ]}),
as N ↑ ∞, n ↑ ∞. Repeating the arguments presented in the proof of Proposition 5.2, since uN

t /N converges to ut , we
show that this latter variable converges in law to a centered Gaussian variable, denoted by Wt , and which is formally
equal to Yt (Hut ) − Y0(H0), where Ha(u) = 1{u ≥ a}.

Up to this point we proved that

lim
N→∞ P

ν
N,∗
ρ0(·)

[
XN

t − uN
t√

N
≥ a

]
= P

[
Wt ≥ aρ(t, ut )

]
provided ut > 0. Analogous arguments permit us to prove the same statement in the case ut = 0, a > 0. By symmetry
around the origin, we can recover the other cases: ut < 0 and a in R, ut = 0 and a < 0.

Putting all these facts together, we conclude that for each fixed t , (Xt − uN
t )/

√
N converges in distribution to

the Gaussian Wt/ρ(t, ut ) = [Yt (Hut ) − Y0(H0)]/ρ(t, ut ). The same arguments show that any vector (N−1/2[Xt1 −
uN

t1
], . . . ,N−1/2[Xtk − uN

tk
]) converges to the corresponding centered Gaussian vector. It remains to compute the

covariances, which can be derived as in the proof of Proposition 5.2. Details are left to the reader. �

6. Correlation estimates

We assume throughout this section that {ξx : x ∈ Z} is a sequence of numbers bounded below and above: 0 < ε <

ξx < ε−1 for all x, and that the profile ρ0 : R → [0,1] has bounded first derivative. Recall that ρN
t (x) = Eν

ρN
0 (·)[ηt (x)]

satisfies Eq. (2.5).
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For n ≥ 1, denote by En the subsets of Z with n points. For each xn = {x1, . . . , xn} in En, let

ϕt (xn) = Eν
ρN

0 (·)

[
n∏

i=1

{
ηt (xi) − ρN

t (xi)
}]

.

Theorem 6.1. Fix a finite time interval [0, T ] and an initial profile ρ0 with a bounded first derivative. There are
constants Cn, depending only on ε, ρ0, n and T , such that

sup
x2n∈E2n

t∈[0,T ]

∣∣ϕt (x2n)
∣∣ ≤ C2n

Nn
, sup

x2n+1∈E2n+1

t∈[0,T ]

∣∣ϕt (x2n+1)
∣∣ ≤ C2n+1 logN

Nn+1
.

The proof of this theorem follows closely the proof of [5] for the simple exclusion process without environment.
We start with a Nash estimate for the transition probability of a random walk in elliptic environment [2,3,11]. Denote
by L1 the generator of a random walk in the bond environment ξ :

(L1f )(x) = ξx−1
{
f (x − 1) − f (x)

} + ξx

{
f (x + 1) − f (x)

}
.

Let p
ξ
t (x, y) be the transition probability associated to the generator L1.

Proposition 6.2. There exists a finite constant C0(ε), depending only on ε, such that p
ξ
t (x, y) ≤ C0(ε)t

−1/2 for all x,
y in Z, t ≥ 0.

The proof of Theorem 6.1 relies also on a comparison between the semigroup associated to the evolution of n

exclusion particles with the semigroup associated to n independent particles. For n ≥ 1, denote by Ln the generator
corresponding to the evolution of n exclusion particles in the environment ξ :

(Lnh)(xn) = N2
n∑

i=1

1{x + ei ∈ En}ξxi

[
h(xn + ei) − h(xn)

]

+ N2
n∑

i=1

1{x − ei ∈ En}ξxi−1
[
h(xn − ei) − h(xn)

]

for every function h :En → R. In this formula, for 1 ≤ i ≤ n, ei stands for the ith canonical vector in R
n and xn is

understood as the vector (x1, . . . , xn). Denote by Sn(t) the semigroup associated to Ln and by S0
n(t) the semigroup

associated to n independent particles evolving in the environment ξ .
A bounded symmetric function f : Z2 → R is said to be positive definite provided∑

x,y

f (x, y)βxβy ≥ 0

for every sequence {βx :x ∈ Z} with
∑

x βx = 0 and
∑

x |βx | < ∞. A bounded symmetric function f : Zn → R is said
to be positive definite if it is so for each pair of coordinates. From [14] we have that

Proposition 6.3. Let f : Zn → R be a bounded, symmetric, positive definite function. Then,

Sn(t)f ≤ S0
n(t)f

for all t ≥ 0.

Theorem 6.1 is based on an induction argument. Observe first that

d

dt
ϕt (xn) = (Lnϕt )(xn) + Γt(xn), (6.1)
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where

Γt(xn) = 2N2
∑
x∈Z

x,x+1∈xn

ξx

[
ϕt

(
xx+1
n

) − ϕt

(
xx
n

)][
ρN

t (x + 1) − ρN
t (x)

]

− N2
∑
x∈Z

x,x+1∈xn

ξxϕt

(
xx,x+1
n

)[
ρN

t (x + 1) − ρN
t (x)

]2
.

Here and below xy
n, xy,z

n stand for the configuration xn \ {y}, xn \ {y, z}, respectively.
In view of the differential equation (6.1), we can represent ϕt (xn) as an expectation with respect to a random walk

in an environment ξ with sources at the boundary ∂En = {xn ∈ En;mini �=j |xi − xj | = 1}: denote by Exn (resp. E
0
xn

)
the expectation with respect to n exclusion (resp. independent) particles starting at xn. Since ϕ0(xn) = 0, we have that

ϕt (xn) =
∫ t

0
ds Exn

[
Γs

(
xn(t − s)

)]
. (6.2)

Since ϕt (x) = 0 for all x in Z, t ≥ 0, to start the induction argument, set n = 2 and remark that the first term in
the definition of Γt vanishes. On the other hand, by (6.5) below, the derivative ∇NρN

t is uniformly bounded. Since
the environment is elliptic and ϕt (φ) = 1, Γt (x2) is absolutely bounded by C0(ε, ρ0)1{x2 ∈ ∂E2} for some finite
constant C0.

The function f : Z2 → R defined by f (x, y) = 21{x = y} + 1{|x − y| = 1} is bounded, symmetric and positive
definite. Therefore, by Proposition 6.3, by the integral representation (6.2) of ϕt and by the previous estimate of Γt ,

ϕt (x, y) ≤ C(ε,ρ0)

∫ t

0
E

0
(x,y)

[
f

(
x2(s)

)]
ds.

It remains to apply Proposition 6.2 and to integrate in time, keeping in mind that time is sped up by N2, to obtain that

sup
x �=y∈Z

∣∣ϕt (x, y)
∣∣ ≤ C(ε,ρ0)

√
t

N
≤ C(ε,ρ0, T )

N

for all 0 ≤ t ≤ T .
To extend this estimate to n ≥ 3, we need to exploit the non-trivial cancellations in the first term of the definition

of Γt . For n ≥ 1, let

An
t =: sup

xn∈En

∣∣ϕt (xn)
∣∣,

Bn
t =: sup

x∈Z

sup
xn−1∈En−1

xn−1 ��x,x+1

∣∣ϕt

(
xn−1 ∪ {x}) − ϕt

(
xn−1 ∪ {x + 1})∣∣.

We claim that there exists a finite sequence of constants C(ε,ρ0, n), n ≥ 2, such that

An
t ≤ C(ε,ρ0, n)

∫ t

0

{
NBn−1

s + An−2
s

} ds

N
√

t − s
,

Bn
t ≤ C(ε,ρ0, n)

∫ t

0

{
NBn−1

s + An−2
s

} ds

1 + N2(t − s)
. (6.3)

Theorem 6.1 follows from these bounds and elementary computations.
It remains to prove the estimates (6.3). The first one is simpler and follows the same steps presented for n = 2. Fix

n ≥ 3 and a configuration xn in En. Assume that the particles are evolving according to a stirring process. By (6.2)
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and by definition of Ak
s , Bk

s ,

∣∣ϕt (xn)
∣∣ ≤

∫ t

0
ds Exn

[∣∣Γs

(
xn(t − s)

)∣∣]

≤ C(ε,ρ0, n)

∫ t

0
ds Pxn

[
xn(t − s) ∈ ∂En

]{
NBn−1

s + An−2
s

}
for some finite constant C(ε,ρ0, n). Since xn(t − s) belongs to the boundary of En, there are at least two particles at
distance one. By definition of the the stirring process, any pair of particles evolves according to a symmetric exclusion
process in the environment ξ . In particular, comparing the original process with independent particles and applying
the Nash estimate, we can bound the probability appearing in the last displayed formula by C{N2(t − s)}−1/2. This
proves the first estimate in (6.3).

We now turn to Bn
t . Since B1

t = 0, fix n ≥ 2, x in Z and xn−1 in En−1 such that x, x + 1 /∈ xn−1. Consider n + 1
particles evolving on Z according to the following rules. They start from xn−1, x, x + 1 and evolve according to a
stirring process. However, when the particles starting at x and x + 1 are at distance 1, each one jumps, independently
from the other, to the site occupied by the other at the rate determined by the environment. Once these particles occupy
the same site, they remain together forever. Notice that the two distinguished particles behave until they meet exactly
as two independent particles.

Denote by Pxn−1,x,x+1, Exn−1,x,x+1 the probability and the expectation corresponding to the evolution just de-
scribed. Let τ be the coalescence time of the distinguished particles and let xn(t, x), xn(t, x + 1) be the configuration
at time t of the system starting from xn−1 ∪ {x}, xn−1 ∪ {x + 1}, respectively. By construction, xn(t, x) = xn(t, x + 1)

for t ≥ τ . In particular,

ϕt

(
xn−1 ∪ {x}) − ϕt

(
xn−1 ∪ {x + 1})

=
∫ t

0
ds Exn−1,x,x+1

[
Γs

(
xn(t − s, x)

) − Γs

(
xn(t − s, x + 1)

)]

=
∫ t

0
ds Exn−1,x,x+1

[
1{τ > t − s}{Γs

(
xn(t − s, x)

) − Γs

(
xn(t − s, x + 1)

)}]
.

By definition of Ak
s and Bk

s , this expression is less than or equal to

C0

∑
y=x,x+1

∫ t

0
ds

{
NBn−1

s + An−2
s

}
Pxn−1,x,x+1

[
τ > t − s,xn(t − s, y) ∈ ∂En

]

for some finite constant C0 = C0(ε, ρ0, n). In view of the Nash estimate, replacing the indicator function 1{τ > t − s}
by 1{τ > (t − s)/2} and applying the Markov property at time (t − s)/2, we bound the previous expression by

C0

∫ t

0
ds

{
NBn−1

s + An−2
s

} 1√
1 + N2(t − s)

Pxn−1,x,x+1

[
τ >

(t − s)

2

]
.

By (6.4) below, the probability appearing in the previous formula is bounded above by C(ε){1 +N2(t − s)}−1/2. This
concludes the proof of estimate (6.3) and the one of Theorem 6.1.

Let xt be a random walk in the environment {ξx : x ∈ Z} starting from x0 = 0. Denote by P the probability measure
on the path space D(R+,Z) induced by xt . For each a �= 0, let τa be the first time the random walk xt reaches a:

τa =: inf{t ≥ 0;xt = a}.
Lemma 6.4. There exists a finite constant C0 = C0(ε), depending only ε, such that

P(τa > t) ≤ C0a√
1 + t

for all t > 0.
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Proof. Define the function u : Z → R by u(0) = 0, u(x + 1) − u(x) = ξ−1
x . Since the environment is elliptic, ε ≤

u(x)/x ≤ ε−1 for all x �= 0. Moreover, an elementary computation shows that u(xt ) is a martingale of quadratic
variation 〈u(x)〉t given by

∫ t

0

(
ξ−1
xs−1 + ξ−1

xs

)
ds.

Fix b < 0 < a and set τ = min{τa, τb}. By Doob’s optional sampling theorem, E[u(xτ )] = 0 and E[u(xτ )
2 −

〈u(x)〉τ ] = 0. Therefore,

P(τa < τb) = −u(b)

u(a) − u(b)
, −u(a)u(b) = E

∫ τ

0

(
ξ−1
xs−1 + ξ−1

xs

)
ds,

so that E[τ ] ≤ −u(a)u(b)(2ε)−1. In particular,

P(τa > t) ≤ P(τ > t) + P(τa > τb) ≤ −u(a)u(b)

2εt
+ u(a)

u(a) − u(b)
.

Minimizing over b < 0 we conclude the proof of the lemma. �

The same ideas provide a bound on the coalescence time of two independent particles in the environment ξ . Fix
x in Z and consider two independent random walks Xt , Yt , on the environment ξ such that X0 = x, Y0 = x + 1. For
b > 0, let τ ∗, τb be the first time such that Yt = Xt , Yt = Xt + b, respectively.

Recall the definition of the function u defined in the proof of Lemma 6.4. Since Xt , Yt are independent, Mt =
u(Yt ) − u(Xt ) − 1 is a martingale. Repeating the arguments presented in the proof of Lemma 6.4, we obtain that

P(τ ∗ > t) ≤ C0√
1 + t

(6.4)

for all t > 0 and some finite constant C0 depending only on ε. Of course, when the time is sped up by N2, t is replaced
by tN2.

A bound on the space–time correlations can be deduced from Theorem 6.1. For x, y in Z and s ≤ t , let

ψs,t (y;x) = Eν
ρN

0 (·)
[{

ηs(y) − ρN
s (y)

}{
ηt (x) − ρN

t (x)
}]

.

Lemma 6.5. There exists a finite constant C0, depending only on ε, ρ0 such that

sup
x,y∈Z

∣∣ψs,t (y;x)
∣∣ ≤ C0

N

{√
s + 1√

t − s

}

for all 0 ≤ s ≤ t .

Proof. Fix s ≥ 0 and y in Z. For t ≥ s, x in Z, let ψt(x) = ψs,t (y;x). Notice that ψt satisfies the Cauchy problem

{ d
dt

ψt (x) = L1ψt(x),

ψs(x) = 1{x �= y}ϕs(x, y) + 1{x = y}ρN
s (y)

(
1 − ρN

s (y)
)
,

where L1 is the generator defined at the beginning of this section. It remains to recall the Nash estimate for the
semigroup and the proof of Theorem 6.1, in which we showed that ϕs(x, y) is bounded by C

√
s/N . �

We conclude this section with a result on the solution of the discrete linear equation (2.5).
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Lemma 6.6. Let ρ0 : R → [0,1] be a profile whose first derivative ρ′
0 belongs to L1(R) ∩ L∞(R) and whose second

derivative ρ′′
0 belongs to L∞(R). The solution ρN

t of Eq. (2.5) converges uniformly on compact sets of R+ × R to the
solution of (2.1). In particular, for all t ≥ 0 and all function G in C1

0(R),

lim
N→∞

1

N

∑
x∈Z

G

(
x

N

)
ρN

t (x) =
∫

G(u)ρ(t, u)du,

lim
N→∞

1

N

∑
x∈Z

G

(
x

N

)(∇NρN
t

)
(x) =

∫
G(u)(∂uρ)(t, u)du,

where ρt (u) is the solution of the linear heat equation (2.1).

Proof. Consider the initial condition ρ
ξ
0 = ρ

N,ξ
0 : Z → R defined by ρ

ξ
0 (0) = γρN

0 (0), (∇Nρ
ξ
0 )(x) = ξ−1

x (∇NρN
0 )(x).

By the estimates presented at the beginning of Section 4, ρ
ξ
0 (x) − γρ0(x) vanishes, as N ↑ ∞, uniformly in x.

Denote by ρ
ξ
t = γρ

N,ξ
t the solution of Eq. (2.5) with initial condition ρ

ξ
0 . We claim that the sequence {ρN,ξ

t : N ≥ 1}
is equicontinuous on each compact set of R+ × R. The proof relies on uniform bounds of ρ

ξ
t , ∇Nρ

ξ
t , (d/dt)ρ

ξ
t .

First of all, by the maximum principle,

inf
x∈Z

ρ
ξ
0 (x) ≤ inf

x∈Z

ρ
ξ
t (x) ≤ sup

x∈Z

ρ
ξ
t (x) ≤ sup

x∈Z

ρ
ξ
0 (x).

Denote by ∇ξ the discrete derivative defined by (∇ξ h)(x) = Nξx{h(x + 1) − h(x)}. (∇ξ ρ
ξ
t ) satisfies the equation

d

dt

(∇ξ ρ
ξ
t

)
(x) = N2ξx

{(∇ξ ρ
ξ
t

)
(x + 1) + (∇ξ ρ

ξ
t

)
(x − 1) − 2

(∇ξ ρ
ξ
t

)
(x)

}
.

In particular, ∇ξ ρ
ξ
t satisfies the maximum principle and is uniformly bounded because we assumed the initial condi-

tion to have a bounded derivative.
Let ρ̇

ξ
t = (d/dt)ρ

ξ
t . By definition,

ρ̇
ξ
t (x) = N

{(∇ξ ρ
ξ
t

)
(x) − (∇ξ ρ

ξ
t

)
(x − 1)

} = (∇N∇ξ ρ
ξ
t

)
(x − 1).

Since

d

dt
ρ̇

ξ
t (x) = N2{ξx

[(∇N∇ξ ρ
ξ
t

)
(x) − (∇N∇ξ ρ

ξ
t

)
(x − 1)

] − ξx−1
[(∇N∇ξ ρ

ξ
t

)
(x − 1) − (∇N∇ξ ρ

ξ
t

)
(x − 2)

]}
,

ρ̇
ξ
t (x) = (∇N∇ξ ρ

ξ
t )(x − 1) satisfies a maximum principle. By definition of ρ

ξ
0 , ∇ξ ,

(∇N∇ξ ρ
ξ
0

)
(x − 1) = N

{(∇ξ ρ
ξ
0

)
(x) − (∇ξ ρ

ξ
0

)
(x − 1)

} = (�Nρ0)(x).

In particular, (d/dt)ρ
ξ
t (x) is uniformly bounded because we assumed the initial condition to have a bounded second

derivative.
Notice that the previous bound does not hold for the initial condition ρ0 since ∇N∇ξ ρ0 is of order N . This explains

the introduction of ρ
ξ
0 .

The estimates just obtained prove the equicontinuity of the sequence {ρN,ξ
t : N ≥ 1} on each compact set of

R+ × R. Since every limit point is a weak solution of the heat equation, by uniqueness of weak solutions, ρξ
t converges

uniformly on compact sets to the solution of (2.1) with initial condition γρ0.
Since ρ

ξ
0 − γρ0 converges uniformly to 0, by the maximum principle, ρN

t converges uniformly on compact sets to
the solution of (2.1). This concludes the proof of the lemma. �
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Let ht (x) = ξx(∇NρN
t )(x). A simple computation shows that (d/dt)ht (x) = ξx(�Nht )(x). Hence, ht satisfies a

maximum principle and

sup
t≥0

sup
x∈Z

∣∣(∇Nρt )(x)
∣∣ ≤ C(ε) sup

x∈Z

∣∣(∇Nρ0)(x)
∣∣ (6.5)

because ∇NρN
t is absolutely bounded above and below by C(ε)|ht |.
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