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AN EXPLICIT SOLUTION FOR AN OPTIMAL
STOPPING/OPTIMAL CONTROL PROBLEM

WHICH MODELS AN ASSET SALE1

BY VICKY HENDERSON AND DAVID HOBSON

Warwick Business School and University of Warwick

In this article we study an optimal stopping/optimal control problem
which models the decision facing a risk-averse agent over when to sell an
asset. The market is incomplete so that the asset exposure cannot be hedged.
In addition to the decision over when to sell, the agent has to choose a control
strategy which corresponds to a feasible wealth process.

We formulate this problem as one involving the choice of a stopping time
and a martingale. We conjecture the form of the solution and verify that the
candidate solution is equal to the value function.

The interesting features of the solution are that it is available in a very
explicit form, that for some parameter values the optimal strategy is more
sophisticated than might originally be expected, and that although the setup
is based on continuous diffusions, the optimal martingale may involve a jump
process.

One interpretation of the solution is that it is optimal for the risk-averse
agent to gamble.

1. Introduction. The aim of this article is to study a mixed optimal stop-
ping/optimal control problem which arises in a natural way in finance as a mixed
investment/sale problem in an incomplete market.

The mathematical problem and its solution have several interesting features.
First, we can find an explicit solution and this is especially pleasing since the prob-
lem is multidimensional, although it does possess certain natural scalings. Second,
the form of the solution is unexpected, and turns out to be more complicated than
naive intuition might expect. In a sense to be made precise later, even though the
objective function is concave, the choice over stopping times induces an unex-
pected convexity. Third, the optimal strategy has novel mathematical features, and
although the setup is based on continuous processes, the optimal control involves
a combination of jumps and local times on rays.

There is a long history of problems from finance, such as those concern-
ing portfolio optimization (Merton [9]) and in American options (Samuel-
son/McKean [12]) being converted into problems in stochastic control and optimal
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stopping. Examples of mixed stopping/control problems include Henderson [3],
Karatzas and Kou [5], Karatzas and Sudderth [7], Karatzas and Wang [8] and
Karatzas and Ocone [6].

The situation that motivates our study is that of a risk-averse2 agent who has an
asset to sell at a time of her choosing, and who wishes to choose the sale time so as
to maximize the expected utility of total wealth at that moment. Here total wealth
includes both the revenue from the sale, and the value of any other assets. This is
an example of a problem from “Real Options” (see, e.g., Dixit and Pindyck [1])
where an asset is described as real in order to distinguish it from a financial asset
which may be dynamically hedged on a market. In the language of financial eco-
nomics, the asset is not redundant,3 and the market is incomplete. Although our
problem can be stated as an abstract stochastic control problem, we will often use
the language of financial mathematics, such as describing the objective function as
a utility function, and the controlled process as a wealth process. Our intuition for
the solution will partly come from the application to finance.

We consider two versions of the problem. In the simpler version, the agent has
a simple optimal stopping problem of when to sell the real asset, and other wealth
is constant. (We work with the bank account as numeraire, and imagine in that
case that the agent has no outside investment opportunities.) In the extended ver-
sion, the agent has the possibility to invest her other wealth. If she could choose
investments which displayed correlation with the real asset, then she could reduce
her risk exposure, by selling the financial asset if necessary. Similarly, if she could
choose investments with nonzero expectation, then she could increase her expected
returns. In either case we would expect her to be able to increase her expected util-
ity.

We rule out both of these possibilities by insisting that the set of available in-
vestments are uncorrelated with the real asset, and that they are fair. (In terms of
the mathematical statement of the problem, this means that the set of available con-
trols are martingales which have zero covariation with respect to the price process
of the real asset.) At first sight it appears that there is no way that an agent can make
use of these extra opportunities. However, we find that this is not the case, and that
the presence of the timing option to sell the real asset means that the risk-averse
agent becomes risk-seeking. Effectively the agent chooses to gamble. Thus our
model provides a rational explanation for gambling, albeit in a specialized setting,
without recourse to nonconcave utilities, inaccurate assessments of probabilities,
or other irrationalities.

The remainder of the paper is structured as follows. In the next section we give
a mathematical formulation of the problem and state the main result. The problem

2For our purposes (see also Müller and Stoyan [10]) a risk-averse agent is one who, offered the
choice between the certain yield E[Z] and the risky prospect Z, both payments to be made at a future
time T , prefers the certain payout, whatever the distribution of Z.

3An asset is redundant if its payoffs can be replicated through other securities.
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with no investment opportunities is the subject of Section 3, and the situation where
additional fair investments or gambles are available is contained in Section 4. In
both of these sections we consider an agent with a utility with constant relative
risk aversion coefficient less than 1. The results are extended to the case R > 1
in Section 5. This involves considerable extra work as an easy proof that a local
martingale is a supermartingale which is valid for R < 1 is no longer valid in
this case. Section 6 contains the logarithmic utility case together with concluding
remarks.

2. Utility maximization with discretionary stopping.

2.1. Preliminaries. The generic problem (in the next subsection we will be
both more precise and more explicit) is to find

V∗ = sup
τ,X∈X

E[U(τ,Xτ ,Yτ )](1)

where τ is a stopping time, Xt is a stochastic control chosen from a space X of
feasible strategies, and Y is an exogenous Markov process. In the terminology of
Karatzas and Wang [8] the stopping time τ is discretionary in the sense that it is
chosen by the agent.

The problem (1) should be compared with the problem in Karatzas and Wang [8]
[see (5.1) and (5.3)]. In some ways (1) is simpler, not least because it focuses com-
pletely on utility of terminal wealth, whereas the formulation in Karatzas and Wang
includes utility from consumption. (However, in terms of the general setup of this
subsection, it is clear that we too could include a consumption term.) A further
difference is that Karatzas and Wang place an explicit interpretation on X as the
gains from trade from an investment strategy in a multi-asset, frictionless market.
Again, this difference is largely cosmetic, and although we are not similarly ex-
plicit, this interpretation is also the one we have in mind. The main motivation for
the more general definition of X is so that optimal strategies will exist.

Instead, there are two fundamental differences between the problem in (1) and
the problem in Karatzas and Wang [8]. First, these latter authors assume that U

has no Y dependence and takes the particular form U(t, x, y) ≡ e−ρtU(x). Sec-
ond, they work in a complete market in which the traded financial assets span the
uncertainty set in the model. In contrast, in our setup the auxiliary process Y (rep-
resenting the price of the asset to be sold) enters into the optimization problem,
but is not part of the financial market, so that the model is not complete. Indeed,
the formulation (1) can itself be seen as a special case of a more general problem
in which U is random.

2.2. Problem definition. The idea is that X represents the wealth process of
an agent, and that Y represents the price process of a real asset. The agent owns
a single unit of the real asset. At the moment τ of the agent’s choosing at which
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the real asset is sold, the wealth of the agent increases from Xτ− to Xτ + Yτ . The
objective of the agent is to maximize the expected (increasing, concave) utility of
wealth, evaluated at τ .

Let Y be modeled by an exponential Brownian motion with dynamics

dYt = Yt (σ dWt + μdt), Y0 = y > 0,(2)

which is specified exogenously. It is convenient to set μ = γ σ 2/2.
The fundamental problem is to select a stopping time τ and a stochastic process

Xt from the set X where

X = {Xt : E[X0] = x;Xu + Yu ≥ 0, u ≤ τ ;
(3)

X is a càdlàg martingale such that [X,Y ]t ≡ 0}
so as to solve (for y > 0 and x > −y)

V g∗ ≡ V g∗ (x, y) = sup
τ,X∈X

E[UR(Xτ + Yτ )|X0 = x,Y0 = y],(4)

where the objective function U is given by

U(u) = UR(u) = u1−R − 1

1 − R
, R ∈ (0,∞), R �= 1.(5)

In particular we want to compare the solution to (4) with

V n∗ ≡ V n∗ (x, y) = sup
τ

E[UR(x + Yτ )|Y0 = y],(6)

where again the domain of V n∗ is (y > 0, x + y > 0). If x ≥ 0 in (6), then τ is
unrestricted; otherwise for x < 0 we are only interested in the case x + y > 0 and
we insist that τ ≤ inf{u :Yu = −x}.

Note that we do not work on a given probability space, but rather we are allowed
to design a model (�,F ,P) with associated filtration Ft , provided we do this in
a way such that W is an Ft -Brownian motion. (In the same spirit Karatzas and
Ocone [6] consider the probabilistic model as part of the solution, and call such a
model policy supporting.)

The superscript g on the value function denotes the fact that the (wealth) process
X is a martingale, or equivalently that the process X is the wealth resulting from
a series of fair gambles. The superscript n is an abbreviation for the no-gambling
case. Furthermore, the slightly nonstandard form of the utility function is chosen so
that in the limit R → 1 we recover logarithmic utility: recall that limR→1(x

1−R −
1)/(1 − R) = lnx. As a result the case of logarithmic utility U(x) = lnx can be
recovered immediately in the limit R → 1.

The solution to (2) is given by Yt = yeσWt+(γ−1)σ 2t/2 where γ = 2μ/σ 2. The
interesting case is when 0 < γ < 1. In this case Y , which is our model for the real
asset, is increasing in expectation, but does not increase to infinity almost surely.
The fact that Y has positive drift gives an incentive to hold onto the real asset,
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which is counterbalanced by the risk of price fluctuations resulting from a delayed
sale, to give a nondegenerate problem. Further, in the case γ < 1 we have that Y

tends to zero almost surely.
Note that in both (4) and (6) we do not want to insist that stopping time τ is

finite [and indeed, for 0 < γ < 1 it will turn out that 0 < P(τ < ∞) < 1 for the
optimal stopping rule]. However, we do need to be sure that lim(Xt∧τ +Yt∧τ ) and
lim(x + Yt∧τ ) exist as t increases to infinity. The existence of the latter limit is
guaranteed for γ < 1 since Yt → 0 almost surely as t → ∞. Further, the condition
Xt∧τ + Yt∧τ ≥ 0 provides a bound on X from below, and as we shall see this is
sufficient to give a limit for (Xt∧τ + Yt∧τ ).

The definition of the set X of admissible wealth processes reflects several fea-
tures. The fact that the quadratic variation [X,Y ] = 0 is a formalization of the idea
that there are no hedging instruments for Y . The martingale assumption reflects the
fact that the wealth process X is the gains process from a series of fair gambles.
(In the financial setting it might be appropriate to replace the martingale condi-
tion with a condition that X is a supermartingale. It should be clear that this does
not change the results.) The condition Xu + Yu ≥ 0 for u ≤ τ is a natural restric-
tion and rules out doubling strategies and gambling for resurrection. Finally, the
càdlàg assumption is a regularity condition to assume that certain quantities are
well defined.

Note that many of these assumptions can be relaxed but at the cost of losing the
explicit solution, and of losing the context within which our result (see Corollary 3
below) is so counterintuitive. For example (see Evans, Henderson and Hobson [2])
if we suppose that X is the gains from trade from an investment strategy in a traded
asset P , then we may have that P (and thence X) is correlated with Y , or that P

(and thence X) has nonzero drift.

2.3. Main results. In this section we state the main result in the case R < 1.
The proof of this result will follow from the analysis in the next two sections.

Recall that we are interested in the solutions to (4) and (6), and especially when
these two solutions are different. It turns out that there is a transition in the form
of the solution at a particular value of γ , namely γ−.

DEFINITION 1. Let �R(γ ) be given by

�R(γ ) = (R − γ )R(R + 1 − γ ) − (2R − γ )R(1 − γ ),

and let γ− ≡ γ−(R) be the unique solution in (0,R ∧ 1) of �R(γ ) = 0.

For two value functions V (1), V (2) defined on (y > 0, x + y ≥ 0) we write
V (1) ≡ V (2) if V (1)(x, y) = V (2)(x, y) for all pairs (x, y) and V (1) < V (2) if
V (1)(x, y) ≤ V (2)(x, y) for all pairs (x, y) with strict inequality for some pair.

THEOREM 2. Suppose R < 1. For γ ≤ γ−(R) (and for γ > R) we have that
V n∗ ≡ V

g∗ . Conversely, for γ− < γ ≤ R we have that V n∗ < V
g∗ .
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The results in the case R ≥ 1 are broadly similar; see, for example, Theorem 14.
However, the fact that the objective function is not bounded below when R ≥ 1
introduces some serious complications. For this reason we defer consideration of
this case until we have studied the case R < 1 in full detail.

In terms of the financial asset sale problem, Theorem 2 has the following corol-
lary:

COROLLARY 3. Suppose R < 1. For γ ≤ γ−(R) the solution to the optimal
selling problem is the same whether or not the agent has access to fair gambles.
For γ− < γ ≤ R the risk-averse agent can improve her utility by undertaking fair
gambles.

The main result of Corollary 3, namely that the agent can benefit from the op-
portunity to make alternative investments, would not be a surprise if either the
investments facilitated hedging, or if the investments were beneficial in their own
right. However, by insisting that these additional investments have zero return, and
that they are uncorrelated with the real asset, we have ruled out both of these mo-
tives for outside investment. If the real asset value Y was constant, or if τ was
fixed and predetermined, then there would never be a benefit to be obtained from
nonconstant x, and the agent would never gamble.

Instead, there are three key elements in our model which are necessary for the
main conclusion that gambling can be beneficial. These are that the market is in-
complete, so that exposure to fluctuations in Y cannot be fully hedged, that the
real asset is indivisible, and that the asset sale is irreversible. However, it remains
a surprise that these features are sufficient to induce a risk-averse agent to gamble.

3. Calculation of solution with constant wealth. We begin by deriving the
solution to (6) in the case 0 < R < 1. Rather than writing down a variational prob-
lem (HJB equation) we postulate that the optimal stopping rule belongs to a natural
candidate family. We calculate the value function for the optimal element of this
family, and then use a verification argument to show that we have solved the orig-
inal problem. In fact the class of stopping rules we will consider are the first times
that Y exceeds some large level.

Given the time-homogeneity of the problem, it is natural that the optimal stop-
ping region should be independent of time. Further, increased Y is associated with
greater risks so a natural candidate for the optimal stopping time is the first time
that Y exceeds a given level. To this end, for 0 < w ≤ x/y define

τw = inf{u ≥ 0 :Yu ≥ x/w}.
Suppose γ ≤ 0. Then, for all τ , E[U(x + Yτ )] ≤ U(x + E[Yτ ]) ≤ U(x + y) =

E[U(x +Y0)]. Thus τ = 0 is optimal. In financial terms the asset Y is depreciating
and since there is also a risk inherent in waiting to sell the asset and U is concave,
it is optimal to choose τ as small as possible.
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Now suppose γ ≥ 1. Suppose x > 0. Then τw < ∞ for arbitrarily small w and
V n∗ (x, y) ≥ U(x(1 + 1/w)). It follows that V n∗ (x, y) = ∞. To deal with the case
x < 0, for 0 < v < |x|/y define

τ̃v = inf{u ≥ 0 :Yu = |x|/v},
and set τ̃1 = inf{u ≥ 0 :Yu = |x|}. Then, for v < |x|/y,

E[U(x + Yτ̃1∧τ̃v
)]

(7)

= − 1

1 − R
+ 1

1 − R

(|x|1−R(−1 + 1/v)1−R)
P(τ̃v < τ̃1).

We can use the scale function of Y to calculate (for γ > 1), P(τ̃v < τ̃1) = (|x|1−γ −
y1−γ )/(|x|1−γ (1 − vγ−1)), and then E[U(x + Yτ̃1∧τ̃v

)] tends to infinity as v tends
to zero. [For γ = 1 we have P(τ̃v < τ̃1) = (lny − ln |x|)/(− lnv) with the same
conclusion.] Hence V n∗ (x, y) = ∞ for γ ≥ 1.

The case R < γ < 1 is also degenerate in a similar fashion. Define F(w) =
E[U(x + Yτw)], and recall that for γ < 1, Yt → 0. Then, for x > 0 and y ≤ x/w,

F(w) = (x1−R − 1)

1 − R
P(τw = ∞) + x1−R(1 + 1/w)1−R − 1

1 − R
P(τw < ∞)

(8)

= x1−R[1 + {(1 + 1/w)1−R − 1}(wy/x)1−γ ] − 1

1 − R
.

On differentiating we have

F ′(w) =
(

y

x

)1−γ

x1−Rw−γ

[
(1 − γ )

(1 + 1/w)1−R − 1

1 − R
− (1 + 1/w)−R

w

]

and since, for w > 0

(1 + 1/w)−R

w
> (1 + 1/w)1−R − 1,

it follows that for R ≤ γ < 1, F is a decreasing function. Then V n∗ (x, y) ≥
limw↓0 F(w) = ∞. If x < 0, the argument of the previous paragraph still applies
and V n∗ (x, y) = ∞. The case x = 0 is also easily dealt with.

If γ = R < 1 and x > 0, then V n∗ (x, y) ≥ limw↓0 F(w) = (x1−R + y1−R −
1)/(1 − R). Conversely, it follows from the twin facts that (x + y)1−R ≤ x1−R +
y1−R and that Y 1−R is a nonnegative martingale, that E[UR(x+Yτ )] ≤ E[(x1−R +
Y 1−R

τ − 1)/(1 − R)] ≤ (x1−R + y1−R − 1)/(1 − R). Hence V n∗ (x, y) = (x1−R +
y1−R − 1)/(1 − R). Further, if x ≤ 0, then it is easy to check using Itô’s for-
mula that (x + Yt )

1−R is a positive supermartingale, and hence V n∗ (x, y) = ((x +
y)1−R − 1)/(1 − R).

It remains to consider the nondegenerate case, which is covered in the following
results.
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DEFINITION 4. For 0 < w < ∞ define �(w) by

�(w) = (1 − γ )
(1 + 1/w)1−R − 1

1 − R
− (1 + 1/w)−R

w
.(9)

LEMMA 5. For 0 < γ < R < 1 there is a unique solution w∗ to �(w) = 0,
and w∗ < (R − γ )/γ .

PROOF. On differentiation we see that � has a unique turning point at w =
(R − γ )/γ , and that this turning point is a minimum. Further, limw→0 �(w) >

0 = limw→∞ �(w). It then follows that (R − γ )/γ > w∗ where w∗ is the unique
positive solution to �(w) = 0. �

For w > 0 define V w via: for y ≥ x/w,

V w(x, y) = (x + y)1−R − 1

1 − R
;(10)

and for y < x/w,

V w(x, y) = x1−R − 1

1 − R
+

(
yw

x

)1−γ

x1−R (1 + 1/w)1−R − 1

1 − R
.(11)

Note that for y < x/w, V w(x, y) = F(w).

PROPOSITION 6. Suppose R < 1.
For all γ ≤ 0, V n∗ (x, y) = ((x + y)1−R − 1)/(1 − R).
For all γ > R, V n∗ (x, y) = ∞.
For γ = R, V n∗ (x, y) = (x1−R + y1−R − 1)/(1 − R) for x ≥ 0 and V n∗ (x, y) =

((x + y)1−R − 1)/(1 − R) for x < 0.
In the nondegenerate cases 0 < γ < R, V n∗ ≡ V w∗

, where w∗ is the unique
positive solution to �(w) = 0.

PROOF. We cover the case 0 < γ < R, the other cases having been covered
in the discussion before the statement of the proposition. We need to show that
V w∗ ≡ V n∗ , where V n∗ is the solution to the problem in (6).

Lower bound. If x ≤ w∗y, then V n(x, y) ≥ U(x + y) = V w∗
(x, y). Other-

wise x is certainly positive, and for w < x/y and for the stopping rule τw we have
E[U(x + Yτw)] = F(w) where F is as given in (8). For 0 < γ < R the equation
F ′(w) = 0 has a unique solution w∗ in (0,∞), and it is easy to see that this so-
lution corresponds to a maximum of F . Then, for x ≥ w∗y, V n∗ (x, y) ≥ F(w∗) =
V w∗

(x, y).
Upper bound. It is an exercise in one-dimensional calculus to show that V w∗

satisfies (a subscript y denotes partial differentiation)

V w∗
(x, y) ≥ UR(x + y),(12)
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μyV w∗
y + 1

2σ 2y2V w∗
yy ≤ 0,(13)

with equality in (12) for y ≥ x/w∗, and equality in (13) for y < x/w∗. In particu-
lar, for y > x/w∗

γyV w∗
y + y2V w∗

yy = (x + y)−(R+1)y2
{
γ

x

y
− (R − γ )

}

and this expression is negative, since by Lemma 5, w∗ < (R − γ )/γ . Further,
using the definition of w∗, V w∗

y is continuous at y = x/w∗ and equal to x−R(1 +
1/w∗)−R .

By Itô’s formula, for any pair of initial values (x, y) and for any stopping time τ ,

V w∗
(x,Yt∧τ ) = V w∗

(x, y) +
∫ t∧τ

0

(
μYsV

w∗
y (x,Ys) + 1

2σ 2Y 2
s V w∗

yy (x,Ys)
)
dt

+
∫ t∧τ

0
σYtV

w∗
y (x,Ys) dWs

≤ V w∗
(x, y) +

∫ t∧τ

0
σYsV

w∗
y (x,Ys) dWs.

The right-hand side of this expression is a local martingale which is bounded below
[by V w∗

(0,0) = −1/(1 − R)] and hence is a supermartingale. Then, using (12),

E
y[UR(x + Yt∧τ )] ≤ E

y[V w∗
(x,Yt∧τ )]

≤ V w∗
(x, y) + E

y

[∫ t∧τ

0
σYsV

w∗
y (x,Ys) dWs

]

≤ V w∗
(x, y).

Letting t ↑ ∞ and using Fatou we conclude V n∗ (x, y) ≤ V w∗
(x, y). �

4. Calculation of the solution with gambling. The strategy of this section is
similar to that in the previous section. We exhibit a parametric family of combined
stopping rules and admissible martingales Xt . For each element in the family we
calculate the associated value function, and then we optimize over the parameter
values. This gives a lower bound on V

g∗ . Finally we show that this lower bound is
also an upper bound.

Recall that we are assuming R < 1. In order to rule out degenerate solutions we
assume that γ < 1.

4.1. Definition of a family of candidate strategies. Fix −1 < ξ < η with η > 0.
The aim is to specify a stopping rule τ = τη,ξ and a martingale X = Xη,ξ .

Suppose first that x ≤ ξy. In this case we take τ = 0, and X0 = x. Now suppose
ξy < x < ηy. Let X0 be the random variable such that X0 = ηy with probability
(x − ξy)/((η − ξ)y) and X0 = ξy otherwise. Then E[X0] = x. On X0 = ξy, take
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τ = 0. Finally, if x ≥ ηy, set X0 = x. In all cases we have that the sets τ > 0 and
X0 ≥ ηy are identical.

Hence we may suppose that X0 ≥ ηy. Define Lt = (maxs≤t Ys − X0/η)+. [We
use the label L, since by Skorokhod’s lemma, L is proportional to the local time
the process (Xt , Yt ) spends on the ray Xs = ηYs , where X is defined below.] Note
that L is an increasing process and define

At = η

(η − ξ)

∫ t

0

dLu

Yu

.

Let N be a standard Poisson process, independent of Y , and define Xt via

Xt = X0 +
∫ t

0
I{NAs−=0}η dLs −

∫ t

0
I{NAs−=0}Ys(η − ξ) dNAs .(14)

It follows that [X,Y ]t ≡ 0. Associated with Xt will be the stopping rule

τη,ξ = sup{u :NAu = 0},(15)

so that if X ever jumps, then the real asset is sold. For this reason we concentrate
on the process while NAt− = 0.

Provided NAt = 0 we have that Xt = X0 +ηLt . It follows that X only increases
when L increases (which can only occur when Y is at a maximum), and at those
times Lt = Yt − X0/η, so that Xt = ηYt . Then, taking the derivative form of (14),
and substituting for dLt ,

dXt = (
η dLt − Yt (η − ξ) dNAt

)
I{NAt−=0}

= −Yt (η − ξ)(dNAt − dAt)I{NAt−=0}.

It follows immediately that X is a local martingale, and the true martingale prop-
erty follows since X is bounded above and below by constant multiples of the
maximum of the exponential Brownian motion Yt .

Furthermore, it is also the case that the value of X can decrease only when
Xt− = ηYt . To see this, note that NAt can only jump at a point of increase of At ,
and this can only happen when L is increasing, so that as before (but now using
the right-continuity of paths) Xt− = ηYt . When X jumps, it jumps down from
Xt− = ηYt to

Xt = Xt− − Yt (η − ξ) = ηYt − Yt (η − ξ) = ξYt .

Observe also that Xt + Yt ≥ (1 + ξ)Yt > 0 for t ≤ τη,ξ . The definition of the
strategy (in terms of a gambling strategy Xt and a stopping strategy τ ) is now as
follows: X ≡ Xη,ξ is given by (14) and τ = τη,ξ by (15), at least on the set τ > 0.

Note that since we are in the case γ < 1, maxs≤t Ys will be finite almost surely,
and A∞ < ∞. It is convenient to write Y t = maxs≤t Ys . Let HY

z denote the first
hitting time of level z by Y , and set Ãz = AHY

z
. Recall that the situation has been
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reduced to the case y ≤ X0/η. Then, assuming Y∞ ≥ X0/η, for X0/η ≤ z ≤ Y∞
we have

Ãz = η

η − ξ

∫ HY
z

0

dLt

Yt

= η

η − ξ

∫ HY
z

HY
X0/η

dY t

Y t

= η

η − ξ

∫ z

X0/η

du

u
= η

η − ξ
ln

(
ηz

X0

)
.

Informally, the strategy (τη,ξ ,Xη,ξ ) can be described as follows. If Xt ≤ ξYt ,
then we stop immediately. We call this the stopping region S. If ξYt < Xt < ηYt

(and especially if ξy < x < ηy), then we take a fair gamble such that Xt jumps
to an end of this interval immediately. We call this the gambling region G. While
Xt > ηYt , we set Xt to be constant. We call this the waiting region W . If the
bivariate process (X,Y ) is in W , then either Y eventually reaches the level Xt/η

and we reach the boundary between the gambling and waiting regions, or not, in
which case Y tends to zero (provided γ < 1), and τ = ∞. If the former, then on
the boundary between G and W we take a gamble which either makes the bivariate
process jump to the boundary between S and G (and then we stop) or pushes the
process (an infinitesimally small distance) back into the waiting region W . (It is at
this point that the argument is informal; the precise description is given via local
times as above.) In this way, after perhaps an initial jump at time zero, once the
process is in (the closure of) W , it stays in this region, either indefinitely, or until
there is a jump from the boundary of W to S at which point we stop. In particular,
at no point do we ever enter the interior of G. See Figure 1.

Now that we have described the martingale (Xt)t≤τ , the next step is to determine
the value function associated with this strategy.

FIG. 1. Representation of the candidate strategy. In S we stop immediately, in W Xt is constant
and we wait until Yt = ηXt if ever, and in G we gamble, so that X leaves the interval (ξYt , ηYt )

instantly.
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PROPOSITION 7. Suppose γ < R+η/(η−ξ). Under the above strategy, spec-
ified by the thresholds (ξ, η), the value function is given by

V η,ξ (x, y) =
⎧⎨
⎩

UR(x + y), x ≤ ξy,
J (x, y), ξy < x < ηy,
K(x, y), ηy ≤ x,

where

J (x, y) =
(

x

ξy
− 1

)
ξ

η − ξ
K(ηy, y)

(16)

+
(

1 − x

ηy

)
η

η − ξ

[
y1−R(1 + ξ)1−R − 1

1 − R

]

and

K(x, y) = x1−R − 1

1 − R
+ y1−γ xγ−R�(17)

with

� ≡ �R(η, ξ) = η1−γ

[
η − ξ + η(ηR−1(1 + ξ)1−R − 1)/(1 − R)

η + (η − ξ)(R − γ )

]
.

Now suppose γ ≥ R + η/(η − ξ). Then V η,ξ (x, y) = UR(x + y) for x ≤ ξy and
infinity otherwise.

PROOF. The fundamental problem is to calculate

V η,ξ (ηy, y) = E
ηy,y[UR(Xτ + Yτ )]

where τ = τη,ξ is the stopping rule defined above and X = Xη,ξ . The values for
other starting positions can then be calculated easily using the martingale property
in the gambling region, and the probability of reaching a new maximum in the
waiting region. In particular, for ξy < x < ηy we have

V η,ξ (x, y) =
(

x

ξy
− 1

)
ξ

η − ξ
V η,ξ (ηy, y) +

(
1 − x

ηy

)
η

η − ξ
UR(ξy, y),

and for ηy < x we have

V η,ξ (x, y) =
(

ηy

x

)1−γ

V η,ξ (x, x/η) +
[
1 −

(
ηy

x

)1−γ ]
x1−R − 1

1 − R
.

So, suppose (X0, Y0) = (ηy, y). Recalling the definition of Ãz, and using γ < 1,
we have

P(Y τ > z) = P(N
Ãz

= 0|Y∞ > z)P(Y∞ > z)

= exp(−Ãz)

(
y

z

)1−γ

=
(

y

z

)φ
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where φ = (1 − γ ) + (η/(η − ξ)). Further,

P(Y τ ∈ dz, τ = ∞) = exp(−Ãz)P(Y∞ ∈ dz)

= (1 − γ )

(
y

z

)φ dz

z

and on this event Xτ = ηz and Yτ = 0. It follows that

P(Y τ ∈ dz, τ < ∞) = η

η − ξ

(
y

z

)φ dz

z

and on this set Xτ = ξz and Yτ = z.
If we assume that γ < R + η/(η − ξ), then R + φ > 1 and

V η,ξ (ηy, y)

= E
ηy,y[UR(Xτ + Yτ )]

=
∫ ∞
y

(
y

z

)φ dz

z

[
(1 − γ )

(ηz)1−R − 1

1 − R
+ η

η − ξ

(ξz + z)1−R − 1

1 − R

]

= yφ
∫ ∞
y

dz

(1 − R)

[(
(1 − γ )η1−R + η

η − ξ
(1 + ξ)1−R

)
z−R−φ − φz−(1+φ)

]

= y1−Rη1−R(1 + (1 − R)η−(1−γ )�) − 1

1 − R
,

where the last equality relies on a small amount of algebra.
If γ ≥ R + η/(η − ξ), then the integral near infinity of z−R−φ is infinite. �

4.2. Optimal parameter choice. It is clear from the expression for K that in
order to maximize the value function it is necessary to choose η and ξ to maximize
� = �R(η, ξ). We maximize � over the set η ≥ 0 and −1 < ξ ≤ η. The case η = ξ

corresponds to the choice τ = inf{u : Yu ≤ x/η} which was the class of stopping
times considered in Section 3.

Recall the definition of γ−(R) from Definition 1. In this section we will gener-
ally assume that γ < R so that the condition γ < R + η/(η − ξ) is automatically
satisfied.

LEMMA 8. Suppose R < 1. For 0 < γ ≤ γ−(R) the maximum of �R(η, ξ) is
attained at ξ∗(γ,R) = η∗(γ,R) = w∗ where w∗ is the solution to (9).

For γ−(R) < γ < R the maximum of �R(η, ξ) over ξ > −1, η > 0 and η ≥ ξ

is attained at (η∗, ξ∗) where η∗ and ξ∗ are given by

η∗ = (R − γ )(1 − R)

R

[
(R + 1 − γ ) − (R − γ )

(
1 + R − γ

1 − γ

)1/R]−1

(18)
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and

ξ∗ = (R + 1 − γ )

(R − γ )
η∗ − 1

R
.(19)

In this case,

�R(η∗, ξ∗) = (η∗)(1−γ )R

(R − γ )(1 + R − γ )
.

PROOF. For fixed γ ∈ (0,R) we want to maximize �R(η, ξ). It is convenient
to reparameterize the independent variables as η and δ = (η − ξ)/η, so that 0 <

δ < 1 + 1/η. Then, if �(η, δ) = �R(η, ξ), we have

�(η, δ) = η1−γ

1 + δ(R − γ )

[
δ + (1 − δ + 1/η)1−R − 1

1 − R

]
.

For fixed δ it is clear that the maximum of � over η is attained at an interior point.
However, this need not be the case for fixed η, and the maximum value of � may
occur at δ = 0. Thus we have to investigate the possibility of maxima of � which
occur on the boundaries. We have

∂�

∂η
= η−γ

1 + δ(R − γ )
(20)

×
[
(1 − γ )

(
δ + (1 − δ + 1/η)1−R − 1

1 − R

)
− 1

η(1 − δ + 1/η)R

]

and

∂�

∂δ
= η1−γ

(1 + δ(R − γ ))2(1 − R)
(21)

×
[
(1 − γ ) −

(
(1 − γ ) − δR(R − γ ) + (R − γ )/η

(1 − δ + 1/η)R

)]
.

Setting both expressions equal to zero, and obtaining expressions for (1 − δ +
1/η)R in each case, we find that at a turning point

(1 − R)δ{δηR(R − γ ) − (R − γ − ηR)} = 0.

Hence, for fixed η, there are at most two turning points given by

δ1 = 0 and δ2 = R − γ − ηR

η(R − γ )R
.

Note that 0 < δ2 only if η < (R − γ )/R.
Consider the turning point corresponding to δ1 = 0. For δ = 0,

∂�

∂η
= η−γ

[
(1 − γ )

(1 + 1/η)1−R − 1

1 − R
− 1

η(1 + 1/η)R

]
.
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Hence [recall (9)], (η = w∗(γ ), δ = 0) is a turning point of �. In order to de-
termine whether this point is a (local) maximum it is necessary to consider the
Hessian matrix of second derivatives. This is given by

�′′|(w∗,0) = (w∗)−(1+γ )

(w∗ + 1)(w∗ + (R − γ )/(1 − γ ))

×
[ −{R − γ (w∗ + 1)} {R − γ (w∗ + 1)}w∗
{R − γ (w∗ + 1)}w∗ −R(w∗)4

]
.

This matrix is negative definite, and hence the turning point is a local maximum,
provided 0 < R − γ (w∗ + 1) < R(w∗)2.

The first inequality follows from Lemma 5. For the second, note that for small γ ,
w∗(γ ) is greater than 1 and R(w∗)2 > R − γ (w∗ + 1). This will remain the case
until we first have R(w∗)2 = R − γ (w∗ + 1) or equivalently w∗ = (R − γ )/R.
Using the definition of �− the necessity condition for a local maximum translates
to γ < γ−. Otherwise, for γ > γ−, (w∗(γ ),0) is a saddle point.

Now consider the value δ = (R − γ − ηR)/(η(R − γ )R). Substituting this ex-
pression into ∂�/∂δ = 0 we find

(
1 + R − γ

R − γ
− 1 − R

Rη

)R

= (1 + R − γ )

(1 − γ )
.

We denote the solution of this equation by η∗ where η∗ is given in (18). For δ > 0,
or equivalently η < (R − γ )/R, we see that we need γ > γ−.

Using ξ = η(1−δ) and δ = (R−γ −ηR)/(η(R−γ )R) we obtain (19). Finally,
substitution of η∗ and ξ∗ into �R(η, ξ) gives that �R(η∗, ξ∗) = (η∗)1−γ R/((R −
γ )(1 + R − γ )).

Note that for all values of γ with 0 < γ < R we have shown that there is at most
one local maximum. It follows from consideration of � on the boundaries that this
is indeed the global maximum. �

4.3. The value function. Now we can state the solution to the optimal stopping
problem (4). For γ ≤ 0 the optimal stopping rule is to stop immediately, and for
γ > R, there is no optimal stopping rule (in the sense any candidate stopping rule
which is finite can be improved upon by waiting longer). These results are exactly
as in the case of Section 3, and so attention switches to the case 0 < γ < R. The
content of the next proposition is that for γ in this range the optimal stopping rule
is of the form described before Proposition 7, where the values of ξ and η are
chosen to maximize �(η, ξ).

PROPOSITION 9. Suppose R < 1.

(i) For γ ≤ 0, V
g∗ (x, y) = UR(x + y).

(ii) For 0 < γ ≤ γ− the value function is given by V
g∗ (x, y) = V w∗

(x, y) where
w∗ solves (9).
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(iii) For γ− < γ < R the value function is given by V
g∗ (x, y) = V η∗,ξ∗

(x, y)

where η∗ and ξ∗ are given by (18) and (19).
(iv) For γ ≥ R the value function is given by V

g∗ (x, y) = ∞.

PROOF. The proof in the cases (i) and (ii) follows the proof of Proposition 6,
the only additional step being to check that the value function is concave in x.

In case (iv) we know from Section 3 that if x ≥ 0 and γ > R, then there is a se-
quence of strategies for which wealth is constant and for which the value function
is arbitrarily large. Since this strategy remains feasible in the case with gambling
opportunities, the value function must be infinite in this case also. If x < 0, but
x + y > 0, then it is possible to take an initial gamble such that with some proba-
bility the post-gamble wealth X0 is positive; and conditional on this event the value
function is infinite. In this way we conclude that V g(x, y) = ∞ for x > −y also.
Finally, suppose γ = R. Let η = ε and ξ = −1 + ε. Then �R(ε,−1 + ε) = ε−γ

and for x > 0, V g(x, y) ≥ V ε,−1+ε(x, y) > y1−γ xγ−R�R(ε,−1+ε)−1/(1−R).
Hence, for x > 0, V g(x, y) = ∞ and this can be extended to x > −y by consider-
ing a suitable initial gamble as before.

It remains to prove the result in the case γ−(R) < γ < R. Proposition 7 gives
the value function for candidate strategies of a given form. The results of Lemma 8
describe how to choose the optimal member of this class. It remains to show that
it is sufficient to restrict attention to strategies of this type.

Write V c as shorthand for V η∗,ξ∗
where the superscript is intended to denote

the fact that this is a conjectured value function. Then for x ≤ ξ∗y, V c(x, y) =
UR(x + y); for ξ∗y < x ≤ η∗y,

V c(x, y) = 1

1 − R

[(
y1−R

η∗ − ξ∗
{(

x

y
− ξ∗

)
(η∗)1−R (2R − γ )(1 − γ )

(R − γ )(1 + R − γ )

+
(
η∗ − x

y

)
(1 + ξ∗)1−R

})
− 1

]

and for x ≥ yη∗,

V c(x, y) = x1−R − 1

1 − R
+ y1−γ x−(R−γ )(η∗)1−γ R

(R − γ )(1 + R − γ )
.

Since V c is the value function associated with some admissible strategy [indeed
the strategy associated with X and τ as defined in (14) and (15) for the constants
η∗ and ξ∗], V c is a lower bound on the value function V

g∗ .
In order to show that V c ≡ V

g∗ it will be sufficient to show that V c(x, y) ≥
UR(x + y) and that V c(Xt , Yt ) is a supermartingale for t ≤ τ , where τ is any
stopping rule such that (Xt + Yt ) > 0 for all t < τ , and X ∈ X. This rules out
Ponzi schemes for the wealth process Xt .

The verification that V c(x, y) ≥ UR(x + y) is a lengthy but straightforward
exercise. To prove that V c(Xt , Yt ) is a supermartingale for t ≤ τ we need the
following lemma.



A MODEL FOR AN ASSET SALE 1697

LEMMA 10. Suppose γ−(R) < γ < R, and suppose V c = V η∗,ξ∗
. Then V c is

concave in x so

V c(x + �,y) − V c(x, y) ≤ �V c
x (x, y),(22)

and LY V c ≤ 0 where

LY V = μyVy + 1
2σ 2y2Vyy.(23)

Moreover, the first derivatives with respect to x and y of V c are continuous at
x = ξ∗y and x = η∗y.

PROOF. Define the selling, gambling and waiting regions S, G and W via
S = {(x, y) :y > 0,−y < x ≤ ξ∗y}, G = {(x, y) :y > 0, ξ∗y < x < η∗y} and W =
{(x, y) :y > 0, η∗y ≤ x} as above.

Concavity in x: In S we have V c
x = (x+y)−R and V c

xx = −R(x+y)−(R+1) < 0.
In G, V c is linear in x with derivative V c

x = y−R((η∗)1−R + (η∗)1−γ �∗ − (1 +
ξ)1−R)/((1−R)(η∗ −ξ∗)). Finally in W , V c

x = x−R −(R−γ )x−(1+R−γ )y1−γ �∗
and V c

xx = −Rx−(R+1)(1 − (yη∗/x)1−γ ) ≤ 0.
LY V c ≤ 0: In S we have LY V c = (x +y)−(R+1)γy2((x/y)− (R −γ )/γ ). This

is negative provided ξ∗ ≤ (R − γ )/γ which follows from Lemma 5 and the fact
that ξ∗ ≤ w∗. In G, LY V c = y1−Rη−R(1 − γ )R((x/y) − η∗) < 0. Finally, in W ,
LY V c = 0.

Continuity of the derivatives at the boundaries S/G and G/W . Continuity of
the derivatives V c

x and V c
y follows from the identities

(1 − γ )

(1 + R − γ )
(η∗)1−R = (1 + ξ∗)−R

and

(1 + ξ∗)−R

= 1

(1 − R)(η∗ − ξ∗)

[
(η∗)1−R

(
(2R − γ )(1 − γ )

(R − γ )(1 + R − γ )

)
− (1 + ξ∗)1−R

]
. �

Return to the proof of Proposition 9. Applying Itô’s formula to V c (note that
we need a version of Itô’s formula which applies to functions of discontinuous
martingales; see, e.g., Rogers and Williams [11], Theorem VI.39.1) and using (22)
and then (23), for any X ∈ X,

V c(Xt∧τ , Yt∧τ ) ≤ V c(x, y) +
∫ t∧τ

0
σYuV

c
y dWu

+
∫ t∧τ

0

(
μYu + 1

2σ 2Y 2
uV c

yy

)
du +

∫ t∧τ

0
V c

x (Xu−, Yu) dXu

(24)

≤ V c(x, y) +
∫ t∧τ

0
σYuV

c
y dWu +

∫ t∧τ

0
V c

x (Xu−, Yu) dXu

= V c(x, y) + Mt∧τ
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where M is a local martingale.
Since R < 1 it follows easily that V c is bounded below on the domain x+y ≥ 0.

Hence the local martingale Mt∧τ is a supermartingale and this property is inherited
by V c(Xt∧τ , Yt∧τ ). In particular V c(Xt∧τ , Yt∧τ ) converges almost surely, and so
does Xt∧τ . Then by Fatou,

E[UR(Xτ + Yτ )] ≤ lim inf E[V c(Xt∧τ , Yt∧τ )] ≤ V c(x, y)

and it follows that V c ≡ V
g∗ . �

Note that Theorem 2 follows immediately on comparison of Proposition 6 with
Proposition 9.

5. Coefficients of relative risk aversion larger than 1. In this section we
consider the problems (4) and (6) for the case R > 1. The case R > 1 introduces
two new elements into the analysis.

The first new element is the fact that the case γ > R becomes more complicated.
When R < 1 and γ > R the value function is infinite. In this case the mean value
of Y 1−R is growing, and there is both no great risk associated with small (and even
zero) values of (X + Y) and a great reward from large values. However, when
R > 1, the agent must avoid Xt + Yt = 0 at all costs and the rewards for large
(X + Y) are bounded above. The net effect is that when wealth x is fixed and
negative, then it can never be optimal to allow x +Yt to hit zero, and there is a new
nondegenerate solution in the case γ > R > 1. For example, for the problem in (6)
we have:

THEOREM 11. Suppose γ > R > 1.
Suppose x ≥ 0. Then V n∗ (x, y) = U(∞) = 1/(R − 1).
Suppose x < 0. Set z∗ = (γ − 1)/(γ − R) > 1 and for |x| < y < |x|z∗ define

V z∗
(x, y) = 1 − (x + y)−(R−1)

R − 1

and for |x|z∗ ≤ y define

V z∗
(x, y) = 1

R − 1

[
1 − (γ − 1)γ−1

(R − 1)R−1(γ − R)γ−R
|x|γ−Ry−(γ−1)

]
.

Then V n∗ (x, y) = V z∗
(x, y).

Theorem 11 can be proved in a similar fashion to other results in this paper.
However, we will not discuss the case γ > R > 1 in detail. Instead we will con-
centrate on the second effect of considering the case R > 1, which is that the
fact that the objective function is not bounded below introduces new complica-
tions.
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The definitions of the critical ratios and the critical strategy do not change when
we consider R > 1, except that now we restrict attention to γ < 1 rather than
γ < R. As we shall see, the critical value of γ at which gambling becomes useful
is still given by the solution to �R(γ ) = 0, and η∗, ξ∗, �∗ and the value func-
tion are still given by their expressions in Lemma 8. Furthermore, the proofs of
Proposition 7 and Lemma 8 are unchanged [except that γ < R + η/(η − ξ) is now
automatic] and the lower bound parts of the verification lemmas (Propositions 6
and 9) are also valid. The only changes are in the proofs of the upper bounds.

We concentrate on the upper bound in Proposition 9, since the situation in
Proposition 6 is simpler and can be proved by identical ideas. The key issue is
that when R < 1 we can easily conclude that the local martingale M in (24) is
bounded below, and hence a supermartingale. When R > 1 this is no longer the
case.

There is an easy way to finesse the problem, which is to modify the def-
inition of X so that admissible pairs (τ,X) must satisfy Xt + Yt > ε > 0 or
more generally E[(inft≤τ {Xt + Yt })1−R] < ∞. In that case Mt∧τ is bounded
below by an integrable random variable and hence a supermartingale. (A fur-
ther alternative to the same effect would be to require that ({Xt∧τ + Yt∧τ })1−R

is uniformly integrable; see [4], Lemma 5.2.) However, this modification is un-
satisfactory since it arbitrarily rules out strategies which should in any case be
suboptimal—the optimal strategy involves liquidation before Xt + Yt gets too
small—and it rules these out artificially rather than by this suboptimality prop-
erty.

Instead, we retain the definition of X so that Xt + Yt ≥ 0 for t ≤ τ . We want to
find V

g∗ ≡ V
g∗ (x0, y0) for particular initial values X0 = x0 and Y0 = y0. Typically

we solve this problem by finding V
g∗ (x, y) for all initial values (x, y) simultane-

ously. Now we have to be slightly more careful. Given initial values (x0, y0), we
replace the objective function U with a larger function Ũ(x, y), which is bounded
below. We now find the candidate value function Ṽ associated with Ũ for all pos-
sible initial starting points. Since Ũ is bounded below, we can prove that the con-
jectured value function Ṽ is the true value function Ṽ∗ for objective function Ũ .
Finally, since Ũ is chosen so that it agrees with U on the stopping set, we conclude
the result we want that V η∗,ξ∗

(x0, y0) = V
g∗ (x0, y0). The key fact that makes this

approach work is that for the optimal strategy the pair (Xt , Yt ) is always stopped
before getting close to the origin, or to the line x = −y. For this reason we can
change the value of U on these neighborhoods without altering the value function
at the starting point.

LEMMA 12. Suppose R > 1 and γ−(R) < γ < 1. Fix ỹ > 0 and define D̃ =
{(x, y) : 0 < y ≤ ỹ,−y ≤ x ≤ ηỹ}. Define S̃ = S ∩ D̃C , G̃ = G ∩ D̃C and W̃ =
W ∩ D̃C , where D̃C denotes the complement of D̃ .
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(i) Define Ũ as follows: Ũ = U on G̃ and W̃ ; on S̃,

Ũ(x, y) = 1

1 − R

[(
y1−R

η∗ − ξ∗
{(

x

y
− ξ∗

)
(η∗)1−R (2R − γ )(1 − γ )

(R − γ )(1 + R − γ )

+
(
η∗ − x

y

)
(1 + ξ∗)1−R

})
− 1

]

and on D̃ ,

Ũ(x, y) = K∗(ỹη∗, y) − (η∗ỹ − x)K∗
x (ỹη∗, y)

= R

1 − R
ỹ1−R(η∗)1−R + xỹ−R(η∗)−R

+ R

(1 + R − γ )
y1−γ ỹ−(R−γ )(η∗)1−R

(
(1 + R − γ )

(R − γ )
− x

η∗ỹ

)
− 1

1 − R

where K∗ is the function in (17) evaluated at η∗ and ξ∗. Then Ũ ≥ U and Ũ is
bounded below.

(ii) Define Ṽ via Ṽ = Ũ on S̃ and D̃ and Ṽ = V η∗,ξ∗
on G̃ and W̃ . Then

Ṽ (Xt , Yt ) is a supermartingale, and for all X ∈ X,

Ṽ (x, y) ≥ sup
τ,X∈X

E
x,y[Ũ (Xτ ,Yτ )].(25)

PROOF. (i) On S̃, Ũ is constructed such that the value and first x-derivative
match those of U at ξ∗x. Since Ũ is linear in x, whereas U is concave, we have
Ũ ≥ U on S.

Similarly, on D̃ , Ũ is constructed such that the value and first x-derivative
match those of V c at (ηỹ, y). Since Ũ is linear in x, whereas V c is concave, we
have Ũ ≥ V c ≥ U on D̃ .

(ii) Exactly as in the proof of Proposition 9, it will follow that Ṽ (Xt , Yt ) is a
supermartingale provided that Ṽ is convex in x, LY Ṽ ≤ 0 and the first derivatives
of Ṽ are continuous at the boundaries between S̃, G̃, W̃ and D̃ . It then follows that

Ṽ (Xt , Yt ) ≤ Ṽ (x, y) + M̃t

[recall (24)], where M̃t is a local martingale which is bounded below, and hence a
supermartingale.

Let J ∗(x, y) and K∗(x, y) denote the functions J and K defined in Propo-
sition 7, but evaluated using the optimal parameters η∗ and ξ∗. Then in S̃,
Ũ(x, y) = J ∗(x, y) where the domain of J ∗ has been extended from G̃ into S̃.
It follows that Ṽ is linear in S̃ and G̃, and in D̃ linearity follows by construction.
In W̃ convexity of Ṽ is guaranteed by Lemma 10.

Similarly, the fact that LY Ṽ ≤ 0 follows immediately in S̃, G̃ and W̃ , and in D̃
it is easy to show that LY Ṽ = 0.



A MODEL FOR AN ASSET SALE 1701

Finally it is necessary to check that the first derivatives of Ṽ are continuous
at the boundaries. For the x-derivative on the W̃/D̃ boundary, this follows by
definition and the only nontrivial derivative to check is the y-derivative on the G̃/D̃
boundary, or equivalently on the S̃/D̃ boundary. The equality of the derivatives on
either side of the boundary follows by direct calculation, or by using the fact that
in G̃ and S̃

Ṽ (x, y) = J ∗(η∗y, y) − (η∗y − x)J ∗
x (η∗y, y)

whereas in D̃ , the same formula remains true but with J ∗ replaced by K∗. Using
this second method, the result follows from the fact that K∗

xx(η
∗y, y) = 0.

Given that Ṽ (Xt , Yt ) is a supermartingale it is a short step to prove (25). Note
that on G̃ and W̃ ,

Ṽ = V η∗,ξ∗ ≥ U = Ũ

so that Ṽ ≥ Ũ everywhere. Then

Ṽ (x, y) ≥ sup
τ,X∈X

E[Ṽ (Xτ ,Yτ )] ≥ sup
τ,X∈X

E[Ũ (Xτ ,Yτ )]. �

PROPOSITION 13. Suppose R > 1 and γ < 1.

(i) For γ ≤ 0, V
g∗ (x, y) = UR(x + y).

(ii) For 0 < γ ≤ γ− the value function is given by V
g∗ (x, y) = V w∗

(x, y).
(iii) For γ− < γ < 1 the value function is given by V

g∗ (x, y) = V η∗,ξ∗
(x, y).

This leads immediately to the following analogue of Theorem 2.

THEOREM 14. Suppose R > 1 and γ < 1. For γ ≤ γ−(R) we have that V n∗ ≡
V

g∗ . Conversely, for γ−(R) < γ < 1 we have that V n∗ < V
g∗ .

PROOF OF PROPOSITION 13 IN THE CASE γ− < γ . Suppose (x, y) is such
that x ≥ ξ∗y. Fix ỹ ≤ y, and use this ỹ to define D̃ , S̃, G̃ and W̃ as in the lemma
above, together with Ũ and Ṽ . Note that either (x, y) ∈ G̃ or (x, y) ∈ W̃ .

We know from consideration of the strategy (τ η∗,ξ∗
,Xη∗,ξ∗

), which we abbre-
viate here to (τ ∗,X∗), that

V η∗,ξ∗
(x, y) = E[U(X∗

τ∗, Yτ∗)] ≤ sup
τ,X∈X

E[U(Xτ ,Yτ )] = V g∗ (x, y).

Now let (τ,X) be any admissible strategy. Then, by a simple comparison and
Lemma 12,

E[U(Xτ ,Yτ )] ≤ E[Ũ (Xτ ,Yτ )] ≤ Ṽ (x, y).

Finally, since (x, y) ∈ G̃ ∪ W̃ , in which region Ṽ = V η∗,ξ∗
we have E[U(Xτ ,

Yτ )] ≤ V η∗,ξ∗
(x, y) and V

g∗ = V η∗,ξ∗
.



1702 V. HENDERSON AND D. G. HOBSON

Now suppose that x < ξ∗y. For fixed risk aversion R, the optimal ratio ξ∗ is
decreasing in γ . Let γ̂ > γ be such that ξ∗(γ̂ ) = x/y, and let Ŷ denote the solution
to (2) for this parameter value. Then

Ŷt = Yte
σ 2(γ̂−γ )t/2 ≥ Yt .

Thus

sup
τ,X∈X

E[U(Xτ ,Yτ )] ≤ sup
τ,X∈X

E[U(Xτ , Ŷτ )] = (x + y)1−R − 1

1 − R
,(26)

where this last equality follows from the fact that if x = ξ∗(γ̂ )y, then it is optimal
to stop immediately. Since there is equality in (26) for τ = 0 we have V

g∗ (x, y) =
V η∗,ξ∗

(x, y) = U(x, y) for x < ξ∗y. �

6. Conclusions and further remarks.

6.1. Logarithmic utility. The results for the case of logarithmic utility can eas-
ily be recovered by taking the limit R → 1. For example, the equation �R(γ−) = 0
can be rewritten as

1

R − 1

[(
(2R − γ−)

(R − γ−)

)R−1

− 1
]

= R

(1 − γ−)(2R − γ−)
.

Letting R → 1 we find that γ− = γ−(1) is the unique solution in (0,1) to

ln
(

2 − γ

1 − γ

)
= 1

(1 − γ )(2 − γ )
.

In a similar fashion we can let R → 1 in the defining equations for w∗, V w , η∗,
ξ∗ and V η,ξ . In this way we can deduce the results for logarithmic utility from
Propositions 9 and 13.

COROLLARY 15. Suppose U(x) = lnx and γ < 1. For γ ≤ γ−(1) we have
that V n∗ ≡ V

g∗ . Conversely, for γ−(1) < γ < 1 we have that V n∗ < V
g∗ .

6.2. Other limiting cases. It is interesting to consider the limiting cases R ↓ 0
and R ↑ ∞. As R ↓ 0 the utility function approaches linear and γ−(R) approaches
zero. If γ ≤ 0, then it is always optimal to sell the real asset immediately, whereas
if γ > 0, it is optimal to hold onto the real asset indefinitely.

Conversely, in the limit R ↑ ∞, γ−(R) → 1. In this case, for γ < 1 it is
never optimal to gamble. Let E(w) = limR↑∞(R − 1)UR(1 + w/(R − 1)); then
E(w) = 1 − e−w . In this sense at least the limit R ↑ ∞ corresponds to exponential
utility. The optimal sale problem for exponential utility has been studied by Hen-
derson [3]. For exponential utility wealth factors out of the problem, so the value
function is always concave in x.
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6.3. Convexities and gambling in related models. The main phenomenon
which our model attempts to capture is that the timing option (discretionary stop-
ping) and market incompleteness potentially induce a convexity in the value func-
tion, and this encourages the risk-averse agent to gamble.

Convexities of this form, and the consequent predictions of risk-seeking behav-
ior, can arise in other ways. First, the objective function may itself be convex, for
example if the agent has limited liability with respect to losses. (The agent then
“gambles for resurrection.”) Second, a convexity may arise from an interaction be-
tween discounting and consumption, as the following example, slightly modified
from Karatzas and Wang [8], illustrates.

Consider the problem of finding, for a positive “discount factor” ρ > 0,

V g∗ ≡ V g∗ (x) = sup
τ,X∈X

E[e−ρτ ln(Xτ )],(27)

where

X = {Xt : E[X0] = x;Xu ≥ 0, u ≤ τ ;X is a càdlàg martingale}.(28)

Define also

V n∗ ≡ V n∗ (x) = sup
τ

E[e−ρτ ln(x)].
It is easy to see that

V n∗ (x) = (lnx)+.

(When x < 1 the agent can defer τ indefinitely, and the presence of the discount
factor encourages him to do so.)

The function V n∗ (x) is not convex. It follows that the agent who can undertake
a gamble at time 0 should do so, and that

V g∗ (x) = (lnx)I{x>e} + (x/e)I{x≤e}.

For x ≥ e, the optimal stopping rule is τ = 0. For x < e there is no optimal
strategy, but there is a sequence of strategies indexed by m ∈ N, with associ-
ated value functions which converge to V

g∗ . These strategies involve an initial
fair gamble at time 0, after which wealth is either e or x/m [with probabilities
p = x(m − 1)/(em − x) and 1 − p, resp.].

It should be noted that the objective function e−ρτ lnx has some perverse fea-
tures, and the interpretation of ρ as a discount factor is hard to justify in economic
terms. When there is no uncertainty and x > 1, the agent prefers τ = 0, since en-
dowments received later are less valuable. However, when x < 1, the agent prefers
to take τ as large as possible. In this case the agent prefers a (certain) payout later
rather than sooner, which is inconsistent with the standard interpretation of dis-
counting. Effectively, the fact that losses can be deferred indefinitely introduces
a gambling for resurrection element into the problem. Note that since there is no
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discount factor in our problem, there is no relationship between the causes of the
incentives to gamble in the Karatzas and Wang [8] model, and in the model of this
paper.

The above examples illustrate that there are many reasons why agents facing
optimization problems may seek to take outside gambles. Sometimes these reasons
may be traced back to a convexity in the objective function. In contrast, in our
model the incentive to gamble arises from an interaction between the timing option
over when to sell, and the market incompleteness.

6.4. Concluding remarks. In this article we have given an explicit solution to
a mixed optimal control/optimal stopping problem. Associated with the explicit
solution for the value function is an explicit element X ∈ X. This control can be
characterized in terms of a local time on a ray. The optimal pair (Xt , Yt ) receives
a local time push to keep the process within the region Xt ≥ η∗Yt , and to preserve
the martingale property of X there are compensating downward jumps. Thus, even
though the setup involves continuous processes, it is necessary to introduce dis-
continuous processes in order to define the optimal wealth process.

In the case of relative risk aversion coefficients less than 1, the proof can be
completed by conjecturing the form of the optimal strategy, and then using a ver-
ification lemma. When R > 1 the fact that the objective function is unbounded
below introduces significant extra complications. However, it is intuitively clear
that the conjectured strategy is still optimal, since the optimal strategy is to sell
immediately when wealth is small. This gives us the key to proving optimality in
this case: we modify the objective function on parts of the space that the optimal
controlled process never reaches; for this modified problem the value function is
bounded everywhere, but the solution is equal to the solution of the original prob-
lem at the starting point.

The most interesting feature about the problem is that the solution is not as
might be predicted. Instead, although the agent is fully rational and risk averse,
the incompleteness of the market and the presence of the American-style timing
option to sell the real asset induces her to gamble.
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